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The application of energy and entropy cycles to the analysis of chemical lasers is dkusscd and illustrated by explicit ic 
suits for six reactions. hleasures of the actual and the limiting efficiency (and bounds on these efficiencies) are derived and 
computed. In particular, it is shown that the nascent rotational excitation of the reaction products is available (on therms 
dynamic grounds) for hsing. The entropy changes during the different stages of lasing are computed (invoking the state pro- 
perty of the entropy) as the difference between the initial and tiial values. Ezxplicit algorithms for computing the dificrcnt 
entropies arc provided. 

1. Introduction 

This paper has two distinct goals. On the theoretical side we consider the application of thermodynamic-type 
arguments to a bulk, macroscopic system which is not in thermal equilibrium. From a more down to earth point 
of view we apply the thermodynamic arguments to analyze the operation of chemical lasers [l-3] pumped by 
(any one) of the following reactions 

F+H2 +H+HF (I) F +DH+H+DF (Iv) 

F+D2 -+D+DF (11) CI+HI +I +HCl (v) 

F+HD+D+HF (111) 0 + cs --* s +co. (VI) 

Tire formal and computational goals are interwoven in the discussion. Chemical lasers are used, as an example of a 
system in thermal disequilibrium, to illustrate the theoretical arguments. Conversely, the thermodynamic analysis 
provides additional insight into the workings of the chemical laser. It should however be explicitly stated that we 

are more concerned with the method rather than with deriving entirely new results. What we present (and illustrate) 
is an alternative point of view and many of our conclusions have been previously derived via different approaches. 

The key concept in the discussion is that of the entropy as a state function [4-l I], The system need not be in 
thermal equilibrium in order that the entropy be well defined. It is sufficient that the state be reproducible. The in- 
formation-theoretic approach to statistical mechanics has argued this point for some time. The novel point here is 
that we shall not treat purely schematic situations nor will we recover known, equilibrium, results. Rather, we pro- 

vide actual working expressions for a molecular gas in disequilibrium and, in the final step, come up with numbers. 
We do limit ourselves however to the (important but restrictive) case of a system which is uniform in space. 
. The methods used in thjs paper were previously employed by us in the study of microscopic disequilibrium [7, 
1 1 - 141. There we have shown how one can characterize the population of molecular enera levels and how such 
nonequilibrium distributions can be assigned an entropy. We follow the same approach in the present application. 

l Work supported by the U.S. Air Force, Office of Scicntitic Research under Grant 74-2725. 
l * Now at the Department of Chemical Physics, The Weizmann Institute. Rehovot, IsraeL 
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Since the gas is (by assumption) spatially uniform. its state (at any given instant) is specified in terms of the distri- 
bution of the internal and translational energies of the molecules. The entropy of the gas will then be defined in 
terms of these distributions. A particularly important property which we will repeatedly invoke is the following: 

Among all systems of a given mean energy. the one in thermal equilibrium has the highest entropy. We shall de- 
monstrate this assertion iater (section 2) as well as provide the necessary algorithms for the explicit computation 
of the entropy. From this point on, however, we shall assume that there is a measure, called entropy, which can 
be computed, if the distribution function of the molecular energy states is known. As an example we can take the 
nascent products of an exoergic chemical reaction. Chemical lasers and chemiluminescence type techniques [ 15- 
IS] have established the distribution of the unrelaxed reaction products. Hence, the distribution of nascent reac- 
tion products can be assigned an entropy. If these nascent products were to relax adiabatically (and without the 
presence of a buffer gas) they would eventually reach a state of thermal equilibrium. While this (equilibrium) state 
would have the same mean energy as the nascent products it would necessarily have a higher entropy. 

For the purpose of the analysis we have adopted the following (oversimplified) scheme for the operation of a 
chemical laser [l&17]. We start from the reactants(in thermal equilibrium) in the presence of a large excess of 
an inert, buffer, gas. The buffer gas is assumed to retain its temperature throughout. (The mean energy content of 
the buffer gas is thus constant. It serves as the heat reservoir.) Our discussion is thus limited* to an isothermal op- 
eration of the laser. Collisions between the reactants lead to the formation of nascent product molecules. Consider 
now these newly formed products before they had time to engage in subsequent collisions with the molecules of 
the buffer gas. The mean energy of these nascent product molecules equals the mean energy of the reactive reactant 
molecules. For the reactions under consideration (and most other reactions) the mean enerm of the reactive reactants 

exceeds the mean energy of all reactants. The difference is the. so called, activation energy of the reaction (161 (at 
the given temperature). The magnitude of this increase in energy content in going over from thermal reactants to 
nascent products is quite small for the exoergic reactions under consideration. Leaving the details to the appendices, 
fig. 1 shows the (mean) energy content at 300 K for reaction (V). 

The exoergicity of the reaction is released partly as internal energy of the products and partly as relative transla- 
tional energy. Colkions with the buffer gas molecules rapidly equilibrate the translational motion and relax the ro- 

tational energy. We assume that the rotational relaxation is sufficiently efficient so as to equilibrate all the rotational 
states in any given vibrational manifold [I 5,171. Any excess energy (over the thermal mean) released into the trans- 
latiopal and/or the rotational energy of the nascent products is thus very quickly relaxed (in our model, not neces- 
sarily in reality [ 19,20]). This excess energy is removed into the buffer and is not available to extract as work. A 

40- 
CI+HI wHCI+l 

Fig. 1. Energy cycle for reaction (v) at 300 K. Starting with 
thermal reactants (T. on the left) Lhe energy increases (by ~hc 
activation energy) on going to Lhe nsrent, (N), unrelsed pro- 

ducts The energy loss on going to Lhe king products(L) OG 
curs due Lo the ~ransIational and roLAonai rehxation of Lhe 
nascent products. Lasing occurs between the taring and posl- 
lasii: (P) productr The residual vibrational excitation of Lhc 
post-king producu is relaxed during their thermalization Lo 
give the equilibrated. thermal products(T). T* designates Lhe 
‘heated products’ stage, (discussed in section 2). where Lhe 
~hcrmf products are raised in Lempexature unLil their (me3n) 
ener,uy content equals that of the nascent products The ex- 
plicit expressions used in the computations axe given in ap 
pendix C. 

l This limitation is adopted only for simplicity. One can readily modify the formulation so as to incorporate heating and cooling 
of the buffer medium. See 0. Kafri and R.D. Levine, Optics Corrunun. 12 (1974) 118. 
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central question is whether such losses are, in principle, unavoidable. Must one, no matter what, lose a fraction of 
the exoergicity if the system is to operate as a laser? it turns out that the answer is yes and that the actual losses 
(in our model) exceed the thermodynamic threshold. In other words, the available work (under ideal operating 
conditions and when there is complete translational and rotational relaxation), is less than the maximal amount 
allowed by thermodynamics. 

We refer to the distribution of product molecules which retained the relative vibrational populations of the nas- 
cent products but is in translational and rotational equilibrium (with the buffer gas) as the lasing products. The 
(mean) energy of the Iasing products (shown in fig. 1 as L) is available for chemical laser action. It should be clear 
that our different ‘stages’ have no particular significance from a kinetic point of view. There is no intended impli- 
cation that all (or some) of the product molecules are in the ‘lasing products’ stage at any given instant of time. 
In the same way that not all products are simultaneously ‘nascent’. These constructs simply represent thermody- 
namic stages, i.e., states of the system whose energy and entropy can be readily computed and interpreted. The 
‘state property’ of the energy and entropy means that the changes as a mole of reactants is converted to a mole 
of products can be computed as a sum of the changes between the comecutive stages. 

As has been discussed before [ 1.211, lasing in a diatomic gas does not require vibrational population inversion. 
We shall return to these considerations in section 3. Here we merely note that while in principle lasing can pro- 
ceed until the vibrational distribution has been thermalized, in practice, due to losses, this is not the case. We al- 
low for this possibility by the inclusion of a ‘post lasing’ stage. This corresponds to a highly relaxed vibration& 
population distribution but one which is still not in complete thermal equilibrium with the buffer gas. We charac- 
terize this distribution by its mean vibrational energy content (cf. appendices). 

The final stage is that of products in equilibrium with the buffer gas. The (small) energy difference between the 
post lasing and the thermalized products stages is again taken up by the buffer gas. 

The following is then a very schematic summary of the model of a chemical laser. An energy-rich system in dis- 
equilibrium (the reaction products) is coupled (via collisions) to a heat reservoir (the buffer gas). A fraction of the 
excess energy of the system (excess over the energy content at equilibrium with the reservoir) is extracted as pure 
work*. The complementary fraction is dissipated into the reservoir. The following sections consider the construc- 
tion and interpretation of the energy and entropy cycles for such a process. 

The concepts of entropy and (mean) energy of the system are sufficient for the discussion of available energy, 
section 2. The discussion there is carried out with special reference to isothermal operation, to conform to our 
simple model of the laser. Section 3 considers a thermodynamic treatment of lasing at a particular vibrotational 
transition and section 4 extends the treatment to lasing at several frequencies. All the algorithms used in the actual 
computational work have been collected in three appendices. 

2. Entropy and pumping efficiency [9,10] 

Chemical lasers are similar to electrochemical cells in that they convert chemical energy directly into work. In 
thjs section we consider their maximal efficiency, i.e., the fraction of chemical energy that could, in principle, be 
converted to work. We shall show that (as in the case of cells) the maximal possible (or ‘pumping’) efficiency is 
quite high, usually above 90%. We shall then turn to the model discussed in the introduction to find tbst rotational 
relaxation is avoidable (on thermodynamic grounds) and that the rotational excitation of the nascent products can 
be extracted as pure work. 

We consider an energy fich system (the nascent reaction products) coupled to a heat reservoir (the buffer gas). 
Work is done by the system until it is in equilibrium with the reservoir. Let the amount of energy released by the 
reaction be E, [per mole; see eq. (11) below]. What fraction of this energy is available as work? 

l We have assumed here that the taxer light being wel; cotlim~ed and well defined in Cmquency carries prrctically no entropy and 
hence is (thermodynamically) equivalent to pure work 19,23,24]. 
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During the process’the reservoir maintained its temperature T. If the entropy transferred from the system to 
the reservoir is AShi, the energy Q transferred from the system to the reservoir is, at least, TA!$, . (The 
inequality, i.e. Q 2 TM,, follows from conventional arguments since the coupling of system and reservoir need 
not be reversible). Hence, the amount of energy of the system available as work is E, - TLU,, . The efficiency is 
thus 

n=(Ep - TAS,,)IE, = 1 - TaS,lE,. (1) 

Thus far there was no real need to depart from very conventional arguments. We now want however to relate 
the entropy change of the reservoir to the entropy change of the system. It is at this point that we depart from 
the classical tradition since, in the initial, energy rich, state the system is not in thermal equilibrium and hence can- 
not be assigned an ‘equilibrium’ entropy. 

The distribution of nascent products can be characterized as follows’ The chemical reaction leads to formation 
of products in different quantum states i. The (relative) rates of formation of these product states can be meas- 
ured. The bulk chemical change corresponds, on the molecular level, to many, many binary reactive collisions. 
Hence the relative rates of formation correspond to the probabilities of formation of the different product states. 
Each quantum state i of the products can then be assigned a probability P(i) which is the fractional rate of forma- 
tion of state i. When the experiment is repeated, the same probabilities will be assigned. (Since the number of reac- 
tive collisions is SO very hi&. probabilities equal the observed frequencies.) Hence, the distribution of nascent pro- 
ducts can be characterized by an ‘information-theoretic’ [4-l 1 j entropy 

S [il = -R p(i) In P(i). 

Here R is the gas constant and the logarithm is to the natural base. The square bracket notation indicates that the 
entropy was computed as a sum over quantum states. We show in appendix C how to reduce (2) to a *working’ ex- 
pression for an explicit computation. We shall also show that for thermal equilibrium (2) reduces to the known ex- 
pression for the entropy of a gas. At this point it is sufficient to note that the entropy is positive (for x < I, lnx<O) 
and is defined even when P(i) + 0 (since x In x + 0 asx + 0). The maximal value of the entropy obtains when all 
the probabilities are equal. 

The highest possible efficiency obtains when the entropy increase of the reservoir is just balanced by the change 

ASP 

AS, =S, -ST (3) 

in entropy of the system. Here S, and ST are the entropies of the nascent and thermalized products respectively. 
This highest value is denoted r+,: 

t+, = 1 - TASJE, (4) 

and obtains when AS,, = AS,. 
We now prove that 

AS, = SN - S, =G Ep/T. (5) 

The equality applies only when the nascent products are also in equilibrium (at the temperature 7”). The efficiency 
(T+,) is thus nonnegative and vanishes only when no work can be extracted, (i.e., when the nascent products have 
the same distribution as the thermalized products. This necessarily implies E, = 0). 

The entropy SN is computed, in principle, from eq. (2) where p(i) is now the (quantum state) distribution of the 
nascent products. Similarly, we introduce U(i), 

WI = exp (- EilR q/Q, (6) 

as the distribution of the thermalized products. Q is the (ordinary, equilibrium) partition function defined so that 
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CiU(l) = 1. The entropy ST is defined by eq. (2) as well, with U(i) as the distribution. Explicitly 

S-r = -R CC/(i) In U(i) = -R XV(i) [- (Ei/RT) - In Q) = 7’ cE$J(i) + R In Q_ (7) 
i i i 

The last line is the standard expression for the entropy of a system in thermal equilibrium [6]. 
To prove the result (5) we employ the ubiquitous inequality [ 1 l] 

lnx <x-l, 

(with equality for x = I). It thus follows that 

(8) 

- p(i) In [P(i)/U(i)] = SN + p(i) In U(i) = FP(i) In [CJ(i)lP(i)] d 5;P(i) ([U(i)/P(i)l - 1) = it, 

and hence that 

S, < - CP(i) In I/(9. 
i 

(3 

The inequality (9) provides a general bound on theentropy in terms of the actual distribution (i.e.,P(i)) used co 
define S, and some arbitrary normalized distribution*,U(i). 

To derive the explicit bound (5) one merely needs to insert (6) for the [in (9) arbitrary] distribution U(i). This 
gives 

S, G T-’ cEj P(i) + R In Q = ST + L-,/T. 
i 

(10) 

Here E, is the difference in the energy content of the nascent and the thermalized products, 

E, = CEi P(i) - CE,- U(i). 
i i 

(11) 

Another very useful bound on SN is 

SN =a,*. (12) 

Here ST . is the entropy of the thermalized products at such temperature T’ that their energy content equals the 
energy content of the nascent products. To prove (12) we merely insert in (9) the distribution 

U’(i) = exp (- Ei/RT*)/Q*. (13) 

Here T’ is determined by the implicit equation [cf. (1 I)] 

Ep = FEi U*(i) - cEilI( (14) 
i 

where U(i) is the thermal distribution (6) (at the buffer gas temperature r). Ep is available from thermochemical 
data. 

l In fact it is suflicient that TiU(i) C 1 for (9) to hold. 
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An upper bound on A!$,, 

AS, =+ -S, (1% 
and a lower bound on the pumping efficiency v,, 

q, = 1 - T(ASp/Ep) 3 1 - T(ST. - ST)&, (16) 
can thus be obtained, even in the absence of any information on the distribution of the nascent products. Standard 
algorithms for the (equilibrium) entropy S-,. are available [6] but common experience with the magnitude of en- 
tropies of hot gases is sufficient to indicate that ST* - ST is, typically, of the order of lo-20 eu even for highly 
exothermic reactions so that qp is seldom significantly below unity. 

There are therefore two entropy differences that characterize the energy available from the nascent products. 
One, AS, = SN - ST, is the entropy difference between the nascent and thermalized products. TAS, is the rnini- 
mal energy loss to the reservoir or qp = I-TAS,/Ep is the highest possible efficiency. TA& is the actual energy 
toss Or 4 = l-TAS,/Ep is the actual efficiency. In the model of the chemical laser outlined in section 1, the 
majpr energy loss to the reservoir is the excess (over thermal) translational and rotational energy of the nascent 
products. Chemical reactions seldom release less than about l/3 of their exoergicity into translation and rotation 
and since E,, is roughly equal to the exoergicity we have that, typically, (TASM/Ep) > l/3. On the other hand, 
for these reactions ASP < A$, so that not all the energy that is thermodynamically available is actually extracted 
as laser light. Clearly, the fault is with the mechanism that allows more dissipation of energy into the reservoir than 
is thermodynamically essential. Are there however any compensating aspects? What purpose can the excessive en- 
tropy loss (AS, - AS,) serve. To explore this point we consider in section 3 lasing at a particular transition. 

Detailed algorithms for computing the energies and entropies are provided in the appendices. Table 1 is a sum- 

mary of the magnitude of the different measures employed in this section. 

Table 1 

Pumping paramclers of chemical lawsa) 

l= +Hz -HH1: +H 
F +Dz -DDF +D 
F +HD+HF +D 
F +HD-DF +H 
Cl+111 -HCI+l 

o+cs~co+s 

EQ ASP Ash1 9 ‘IQ SN ST STY T* 

33.1 5.6 31.0 0.66 0.95 124.9 119.3 134.1 5650 
33.2 6.9 44.0 0.60 0.94 129.4 122.5 138.1 5490 
32.3 1.0 45.3 0.58 0.93 128.2 121.2 136.5 5530 
33.8 6.6 50.1 0.55 0.94 127.2 120.6 136.3 5610 
325 8.2 30.1 0.72 0.92 139.0 130.8 146.3 5390 

90.0 16.6 184.3 0.38 0.94 148.7 132.1 155.3 13260 

a) Entropies in enuopy units (cu I= cal mar‘ deg-‘). Energies in kcal mof’ . Temperatures in K. For computational dctiils see ap 
pendices A and C. 

3. Population inversion and amplifiition of light 

That it is not possible for a macroscopic body to decrease its energy by laser emission (or light amplification) 
can be seen as follows. Consider an energy rich macroscopic body within an enclosure. Let the body emit light. 
The body loses energy and hence enpopy. The entropy of the isolated enclosure (cooler body plus light) cannot 
decrease. It follows that entropy must be associated with the emitted radiation. It is possible for a body to lose 
energy as radiation only when this radiation carries its appropriate share of entropy. 

Ordinary radiation is not equivalent to pure work since it has to be assigned an entropy, depending on its spec- 
tral width and angular (spatial) distribution. Only a coherent (well co&mated and with a narrow frequency range) 
pencil of radiation carries no entropy [9,23,24]. Amplification of light (or lasing) requires that the emitted radia- 
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tion be coherent and so equivalent to pure work. Hence, a macroscopic body cannot lose its entire excess energy 
as laser emission. 

Once it is real&d that laser light carries practically no entropy and is equivalent to work, the restriction above 
is obvious from the second law. A macroscopic body cannot undergo a process where the only net effect is that 
the body cools down while an equivalent amount of energy is available as work*. 

Lasing is possible if the entire available energy is not extracted as light energy but some of it is ‘wasted’, [9,to, 
261, say, by delivering it to a cold heat reservoir. As an example we consider lasing at a particular p-branch (u, 
.I + u - 1 ,J + 1; fig. 2) transition of a diatomic molecule. 

We consider the nascent diatomic reaction products after completion of translational and rotational relwation 
(the ‘lasing products’). Let P(v,J) be the population of the vibrotational levels so that the vibrotational entropy is** 

When the populations change by a small amount (SP(u.J)) the corresponding change in the entropy is 

The first term does not contribute since the change in the populations must be such that the total number of mole- 
cules is unchanged 

Let a small fraction, SP, of molecules emit light while making a u,J + u- 1 ,.I + 1 transition. Here SP = SP(u-I, 
J + 1) = -Sp(u,J). The change in the entropy (per mole) isSSt_, 

I 
J 

-5- 

8200 V 
J- 

BOCO- 3- 

Fig. 2. The funneling mechanism for hsing when the rotational 
rclaxxation is fast Shown arc P-and R-branch transitions in HF. 

IP”-, V-1 
(r) denotes the u. I - v - I,1 + 1 transition. The ui- 

brational population in the drawing corresponds to P(u) = 
flu-l) (ix_. To - + -)_I Following the radhtivc transition is 
tic rotational relaxation (where u is unchanged) and then the 
(conceptual) pumping back where cnly u but not I is changed. 

l This is possible for a systemat a negative temperature (9.25-263. However, a macroscopic body cannot possess 2 negative tern-- 
perature. That does not exclude o more limited situation where a particubr transition is assigned a negative temperature, asd& 
cussed below. 

l * The degeneracy factor, (U + 1). can be traced to the summaticn over the 2/+ 1 (so called ‘magnetic’) states witbin each Ievel 
1. ct. appendix C. 
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SS 
6SL =rp = &P(” 

SS 6s 
- -=R ln [P(v,5)/(7,1+ l)] -R In [P(u - 1,J + l)/(U + 3)]. 

- l,J+ I) SP(IJ.J) (10) 

If the transition is to Iase we must have SS, > 0 for otherwise the emitted light would have to carry away entropy 
(of, at least, --6S,, per mole) and ordinzuy fluorescence would result. The condition for lasing is thus [IO] 

P(u,J)/(3,+ l)>P(lJ- l,J+ 1)/(7J+3) (21) 

as previously derived [l ,21,22] from non-thermodynamic considerations. 
The entropy change, &St_, upon lasing reflects the changes in the vibrotational populations. Since during the 

lasing the gas loses energy one can introduce a ‘lasing temperature’, TL, as the coefficient of proportionality be- 
tween the increase in energy (- iluL, where vL is the transition frequency) and increase in entropy @St_). --IrvL 

= TLSSL or 

AS, = - I’“#-L. (22) 

Lasing thus corresponds to a ‘negative’ temperature TL. (It should be clear, however, that Tt_ is simply a conven- 
ient measure for SS,.) Lasing is possible as long as TL is negative and terminates when the populations are such 
that the equality in (71) obtains, i.e., when SS, -+ 0 or* T, -+ - 00. Figs. 3 and 4 show T,_ for different transitions 
in the HF chemical laser for two different situations. One is that of complete rotational relaxation when** 

%J,J) = P(u) H&J). 03) 

qP(Jlu) = 1, (24) 

P(JIu) = @,1(21 : I) exp [- hcB&J + l)/RT]. (25) 

This is the case extensively treated in this paper. For comparison sake, fig. 4 shows TL for a nascent rotational dis- 
tribution when P(JIu) is of the form? [14,27] 

p(Jlu) = (u t 1) (E - E,, - E,(U)] 1’2 eXp [- 80 - e,EJ@)hE - &)I- 

It is seen that Tt_ is higher (i.e., nearer to -0) for the nascent rotational distribution. Writing (20) and (22) to- 
gether as 

P(u.J) P(u - l,J+ 1) -1 -- 
(u+l) W+3) 

= exp (-hvLIRT,), (27) 

it is clear that a higher T, implies a higher &St_ for the transition. 
When the rotational distribution is in thermal equilibrium (21) is equivalent to 

%cB,(J + l)/RT> ln [P(u - 1)/P(u)], (28) 

where the inequality applies when dSl_ > 0 (or TL < 0) and the equality applies ‘at threshold’, i.e., when 6SL = 0. 
It is thus not necessary to have vibrational population inversion (i.e., p(u) > 40 - 1)) in order to achieve lasing. In 

l Recall that the negative temperatureaxisgocsfrom -- (which is barely hotter than +=I IO -0 (which is the highest possible tem- 
pcr~lurc). 

** P(~u) ti the popuhtion or the rotzticxut SMes wnhin 3 giver. vibrationA mntifold. 8, is the rot~tiorwl corubnt nnd QR is lhe 
(rotational partition) ftktion that insures that P(Ilu) is normatiscd s,in (24). To simplify tic notation we asmmc thx the ro- 
titional constit (and hence QR) are independent of u. This assumption is not cssentiatand was not used in the computations. 

t E is the cncrgy nva&blc to the rcaclion products while E, and EJ(u) are the vibrational and rotational energies. OR is P para- 
mctu of the distxibution. and Oo is defied such that P(Jlv) is nonlizcd as in (24). 
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Fig_ 3. Thhe Lkng tempcraturc. TL. vcrsusJ in the HF chemical 
laser for P- and K-branch uansitlons from a rclucd rotational 

distribution. (For computational details scc appendix A.) 

Fig. 4. TL vcrsusJ in the fIF chemical bscr for CI ~KISCCW~ HXLI- 
tiollal distnbution, for comparison with <I& 3. The XIOWS m- 
dicatc the highest I lcvcl populated by the reclctlon rot v = 2.3. 
rcspcctivcly. 

fact, if we characterize the ratio P(IJ - 1)/P(u) by an empirical temperature r,, (i.e., In [P(u)] = ko,/RT,). 

eq. (28) can be written as 

Z&(3 + 1)/w, Zz T/T,,. (29) 

To summarize: Lasing only requires a ‘line’ (or ‘partial’) inversion, i.e., TL < 0 (or 6S, > 0). If there is com- 
plete inversion (i.e., T, < 0 or 6S, < 0), lasing (for P-branch transitions*) is possible at any positive temperature T. 

In principle, lasing is possible when the entropy of the body does not decrease as it emits light. How is this re- 

quirement implemented for the present mechanism? When light emission occurs the rotational equilibrium (in 
both the u and u - 1 mamfolds) is disturbed. The population of the u,J level is depleted while that of the u 2 1. 

J + 1 level is enhanced. To restore equilibrium we can imagine the following cycle. The excess population in the 
u - 1, J + 1 level is deactivated (by collisions, say) to the u - 1 ,J level. During this stage, energy of YKB,(J f 1) 
(per mole) is transferred to the buffer gas and its entropy thus increases by ~SR, 

6S, = ‘LhcB,(J + 1)/T. (30) 

Note that since the rotational population is in equilibrium with the buffer gas, 6S, is defied as the entropy de- 

crease of the diatomic gas due to the decrease in its (mean) rotational energy. In fact, by definition 

* For R-branch (J -4 J - 1) transitions 6sR = - 2B,I/Tand the condition (21) now reads (2&J/& C -T/T, Lxing in the R- 

branch is possible only for complete vibrational inversion. 
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Finally, to zestore the Gtial state, we need to pump the excess population from the u - 1J to the u,J level. 
This will correspond to increasing the vibrational energy content by hew, (per mole). The corresponding change 
in *e entropy is 

(32) 

Here again, since pumping corresponds to an increase in energy by hco,, we can define T, by kw, = T&Y, or 

SS,, = hcu,/T,. 

From (20). (31) and (32) 

(33) 

6S, = SSR - 6s” (34) 

Hence, only if the entropy loss to the buffer gas during the rotational ‘hole fag (6SR) is larger than the entropy 
increase due to vibrational pumping (SS,) will lasing take place. The entropy increase during the lasing (6SL) is com- 
pensated for by the decrease when collisions with the buffer gas restore the rotational equilibrium*. 

We have thus provided the following thermodynamic interpretation of lasing in a diitomic gas in rotational equi- 
librium. During the lasing &he rotational equilibrium is perturbed. A ‘hole’ is created at the emitting level while an 
excess appears at the final level. Collisions with the buffer gas restore the rotational equilibrium and, in SO doing, 
reduce its entropy (with a compensating increase in the entropy of the buffer gas). If this decrease is sufficient to 
overcome the entropy increase which oLcurs when the vibrational energy content is restored, lasing is possible. The 
entropy loss which occurs while the nascent products relax to the lasing products is not essential from a thermo- 
dynamic point of view. It represents avoidable losses. 

The relation (34) provides an ‘entropy cycle’ for lasing at a particular frequency. In conventional thermodyna- 
mics such cycles are expressed as ZiQi/Ti 3 0, where Qj and Ti are the heat transfer and temperature at the ith 
stage of the cycle. Using (22), (30) and (33). the entropy cycle (34) can be written as 

WL/TJ_ = Welts - xe(J + 1)/T, (35) 

where wL =w, - 2B,(J + 1). The equality in (35) reflects our central assumption that rotational relaxation is suf- 

ficiently efficient to maintain the rotational populations (P (flu)) in (thermal) equilibrium with the buffer gas. If 
this is not the case 6SR > 2B,(J + 1)/T. Thus, while (34) is invariably true**, (35) is restricted to the case when 
the rotational distriiution is thermal; it reads in general 

&$/IX =-q_/TL G 2B,(J + 1)/T - we/T,. (36) 

The right hand side of (36) provides an upper bound for 6S,. The only parameter not readily available is T, [de- 
fined by (33)]. Once the nascent vibrational population has been measured (and this is somewhat easier than the 
characterization of the nascent vibrational distribution) T, can be readily computed for any pair of vibrational 
levels. 

lasing is possible, from a thermodynamic point of view when 6SL > 0 (or 5’ f 0). Of all the variables in the 
right hand side of (36), only T can be readily varied?. One can then define the *threshold temperature*, Tti, as 
that value of T for which 6SL = 0. Clearly 6SL > 0 for any T < Tti, for P-branch transitions. For R-branch transi- 
tions, where f =I - 1. 6SR < 0 since energy is transferred from the buffer gas to the king system in order to re- 
store rotational equilibrium. Hence 6S, can be positive for R-branch transitions only if P(u) > P(u - 1). When 
this condition obtains, 6S, > 0 for any T > T,,,. 

in general, Tlh is defined by LYL = 0 or 

P(uJ)/(U + 1) =P(u’J’)I(2! + 1). (37) 
* Similar considaationr apply for an R-branch transition. 

l + One can readily verify that (34) is simply the statement that for a cyclic proceu there is no net change in the entropy. 
t This h the basis of the zero @in method [ 181. For this, and otha, techniques see [ 15,181. 
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Using the equality in (29) this implies (for P-branch transitions) 

2B,(J + 1)/w, = Tlh/T,. (38) 

For practical computations it is more useful to introduce the parameter &, which is often sufficient to charac- 
terize the entire nascent vibrational population in the form 

P(u)=S(l -f)%xp(-h ” 0 - U). (3% 

Here/, = Eu/E is the fraction of the reactants energy available as vibration and X0 insures that W(u) = I. Then 
(37) can be rewritten as 

Tm = W&J) - E/WI/~ c- \(f” - f”,) + 9 m [(I - f”)/(l - f,*)l I. (40) 

Fig. 5 shows computed values of Tu., for both P and R transitions in the F + Hz laser. As is very evident the J- 
dependence is quite different for the two types of transitions [ 18). For P-branch transitions, where 6Sht increases 
with increasing J, 6S, increases with J, and for the example shown, king is possible at all temperatures. For the 
R-branch transitions, where 6S, decreases at increasing J, lasing is possible (at 300 K) only for the lowest rota- 
tional levels. Additional considerations and explicit computational agorithms are provided in the appendices. To 
avoid any misunderstandings we mention explicitly that (in contrast to T,) X, is a u-independent parameter [7, 
14,171. 

Fig. 5. The tieshold temperature. Tu,. for Lsinc in the HF 
chemical laser. versus J. Transitions for which Wing is possibIe 
at 300 K are connected by a solid tine. &or computational 
details see appendix A.) 

4. Efficiency 

In an actual chemical laser, radiation is emitted at several frequencies. Let x(uJ) be the number of photons 
emitted in the u,J + u - 1, J + 1 transition (per mole of nascent products). The work available (as coherent radia- 
tion) is* 

w = “2 x(&J) hc [we - 2B,(J + l)]. (41) 
# 

l We ale overlooking the possibility of R-branch lasing (at low .I). This introduas no essential modifiitionr Ako. in the appendix. 
we shall use more realistic (vibrating rotor) energy lcveh in evaluactng (41). 
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The actual efficiency is n 

n = W/EP (42) 

and the energy released as heat to the buffer gas is Qht 

QM = TAS,, = E, - Ii’. (43) 

There are two contributions to QhI. The major one is (EN - EL) + (E,, - ET-), the energy difference between the 
nascent and lasing products and between the post-lasing and thermal products. This is the energy wasted during the 
(thermodynamically) inessential relaxation processes. The other one is Qn, 

QR = IJC vq X(u& 2&&r + 1). (44) 

the energy transferred to the buffer gas while maintaining the rotational equilibrium during lasing, 

QR =T~R; m, = “q x(&f) =,. 

In terms of E, the energy available in the lasing products, 

E=QR + W=/ZC F,jcc~,J) CAJ~, 

(45) 

(46) 

the efficiency can be written as 

t7=IV~~p=(~V/~(EfE,)=p(H’/E)=p(l -T&R/E). (47) 

Here 

P = EIEP = (IV + QR)/W’ + QM) (48) 

is the reduction in efficiency due to the relaxation of the nascent (to the lasing) and of the post-lasing (to the 
thermal) products. 

As expected, the overall efficiency of the Iasing to post-lasing process, IV/E, is not the sum but the weighted 
sum of the efficiencies of the individual trmsitions. Using (41) and (46) 

IVIE = FJ tl(u,J) e(O’l~ (49) 
3 

Here q(u,J) is the efficiency of a particular transition 

n(u,,,) = (ircw, -- nsR)/ircw, = 1 - m,(., + I)/‘+ 

and e(u,J) is the fraction of the available energy (E) provided by that transition, 

e(u,J) =x(u.J) IlCO,/E. 

For the king to post-lasing stage, one can defme the pumping entropy (cf. (32)) by 

(50) 

(51) 

As” = “q x(u.4 6s”. (52) 

so that (34) now reads 

ML = MR- ti,. 

Here, using (22) and (41) 

(53) 
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w(vJ) is the fraction of the available work provided by the particular transition 

w(vJ-) = x(&J) hv,/W. 

Combining (49) (53) and (54) 

(5% 

IV/E = ~~(1 - T “q w(v,J)/T,)-‘. 
, 

Here no is the overall vibrational pumping efficiency 

(56) 

71” = 1 - rA&/E. (57) 

The denominator in (56) is the reduction of the actual efficiency (W/E) below the pumping efficiency because of 
the operation at a finite gain [9, 101. 

It is at this point that the ‘state property’ of the entropy is of critical importance. Rather than compute AS, as 
in (52), i.e., along the ‘path’ from the lasing to the post-lasing products, we can simply put 

as, = s, - s,,. (58) 

Here St_ and St,,_ are the entropies of the distributions of the lasing and post-lasing products, computed using (2). 
with the explicit details provided in the appendices. Since the precise specification of the post&sing state is sub- 
ject to an assumption about the mean vibrational energy content left after lasing is completed it is important to 
note that Sp, > S, where S, is the entropy of the thermal products so that 

A.s,=Gs,-sT, ‘1” 2 1 - T(SL - ST)/E_ (.w 

The results of explicit computations for the six reactions are collected in tables 24 and in figs. 1 and 6-10. 
Table 2 provides the thermodynamic measures that govern the efficiency. Tables 3 and 4 provide the aciuai meas- 
ures that are displayed in figs. 6-l 1, and which were used to derive the results shown in table 2. Details of the 
computations are provided in the appendices. 

Fig. 6. An energy cycle for the reaction (1). (Same notation as 
in f= 1. For computzrtiorut details see appendix C.) 

Fig. 7. An energy cycle for the reaction (VI). (Same notation 
as in f& 1. For computationat details see appendix C.) 
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Fig. 8. An entropy cycle for the reaction (I). (Same notation 
as in fig. 1. For computalional details see appendix C.) 

60 

- o+cs - co*s 

N- 

Fii IO. An cnuopy cycle for the reaction (VI). (Smc nota- 

tion as in fii 1. For computational details set appendix C.) 

Table 2 
Vibrational paramclcrs a) 

65/d 
Fig. 9. An entropy cycle for the reaclion (v). (Same notation 
2s in fog. I. For computational derails see appcndiv C.) 

CI+HI - HCl+I P 
Products at 

I 

140 
75 

a 
;; 

Fig. 11. A detailed entropy cycle for the reaction (V). (For the 
definitions and computational procedures, see appendix C, on- 

der the heading ‘nascent products’.) Here, and in fg. 9.0~ = 1.1. 

F +Hz -HI: +H 33.1 23.2 0.66 2.2 0.91 -1.7 
F + Dz -DDP +D 33.2 20.8 0.60 2.3 0.97 -5.7 
F +IlD-HI: +D 323 19.9 0.5s 2.6 0.96 -6.7 
F +tlD-DF +H 33.8 19.4 0.55 2.1 0.96 -5.5 

Cl+HI -HCl+I 325 23.8 0.12 2.4 0.91 -8.0 

o+cs-+co+s 90.0 622 0.38 4.9 0.98 -7.1 

a) Here aS, = SL - ST; nv = 1 - TAS,,/E. Other details as in table 1. 



A. Ben-Shad et al/Chemical lasers 381 

Table 3 
Parameters of energy cycles a) 

EN = ET* EL EPL ET 

F +Hz 4HF tH 34.6 24.7 2.7 1.5 
F +Dz *DF tD 34.1 22.3 23 1.5 
F tHD-HHF tD 33.8 21.4 2.7 1.5 
F +HD--DF tH 35.3 20.9 2.3 1.5 
CItHI -rHCI+I 34.0 25.3 2.0 1.5 
otcs +co ts 91.5 63.7 29.0 1.5 

a) Energies in kd mol-’ . 

Table 4 
PUamcters of entropy cycles 3) 

SR SN SL SPL 

F +Ha -HHF +H 120.4 124.9 121.5 120.0 114.3 134.1 4.0 
r: +D2 +DT: +n lx_2 129.4 124.8 123.2 122.5 138.1 3.3 
F +HDeHF tD 120.6 128.2 123.8 121.9 121.2 136.5 

F +HD-DF +H 120.6 127.2 123.3 121.2 120.6 136.3 ::i 
CltHl -HCltl 132.1 139.0 133.2 131.5 130.8 146.3 4.0 
o+cs-cots 133.2 148.7 131.0 135.6 132.1 155.3 2.9 

a) Enlropics in eu. 

5. Summary 

The use of entropy cycles for computing the thermodynamic parameters relevant to chemical laser action has 
been discussed and illustrated. In particular, the ‘state function* property of the entropy has been used fo evaluate 

the entropy change during a process in terms of the difference between the initial and final values of the entropy. 
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Appendix A: The calculation of TL and Tti 

Most of the results presented in the various figures and tables of this paper are based on the vibrating rotor (VR) 
level scheme for diatomic molecules 171. Measuring the energy from the ground vibrational level of the diatomic 
molecule 

E,=hcw,u [I -xe(u+ l)], (A-1) 

E,(u) = IzcB J(J + l), (A-2) 
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whereB,=B, -(u+~)oL,_ 
For u,J + IJ - 1 J’ transitions we have 

AE, = E, - E,_, = hcw,(l - &IJ) 

and 

(A.3) 

~J(u)=EJ(u)-E,~(u-I) =-2B,(J+ l)-a(J+l)(J+2). 

= 2BJ - aJ(J - 1). 

The lasing temperature TL in the P or the R branch is determined by 

(P branch,J’ = J + l), 

(Rbranch,J’=J-1). (A.41 

--.BdL-= P(u) P(Jl0) 
P(u- 1,J’) P(u- I)P(J’(u- 1) = w exp {- [AE,, + AE,(u)]IRTL]. 2&l + 1 (A.9 

For P(u) we have taken the nascent vibrational distribution of HF molecules generated by the reaction F + H2 -+ HF 
+ H. which can be represented as 17. 171 

p(u) = P&J) exp (- X0 - $Q9, 64.6) 

where 

PO(u) = [(E - Eu)3’2,Bu]/( “CO (E - EJ3/‘/Bu) - I. (A.7) 

E is the total energy available for the reactions products. X, is the vibrational temperature parameter and A0 en- 
sures the normalization 

“co P(u) = 1, (A.81 

where u* is the maximal u consistent with E, GE. The vibrational temperature parameter, \,, characterizes the 
deviation of the aclual distribution P(u) from a microcanonical distribution PO(u) (see appendix c). Large and 
negative X, values correspond to large population inversions and high gains [ 17,28,29]. For the F + H, + HF + H 

reaction X, = -6.9, E = 34.6 kcal/mole and u* = 3 1171. Note that (39) is equivalent to (A.6) if we take B, = B, 
and replace in (A-7) summation over u by integration over E,. This corresponds to the passage from the VR model 
to the RRHO approximation (appendix C). 

In order to demonstrate the effect of rotational thermalization on the inversion, TL was computed for two dif- 
ferent rotational distributions. 

(a) The tlrermal rotatiozal distribution 

P(Jlu) = Q;$J) (U + 1) exp [- E,(u)/RT] , (A-9) 

with T= 300 K. P(Jlu) depends only weakly upon u via B, which appears in (A.4) for E,(u) and in the rotational 
partition function Q,(u) = RT/hcB,. From (AS), (A.6) and (A.9) we find 

TL = WE” + AE&)l /R D.&,/E + aEJ(u)/RT - 4 In [(E - E,)/(E - E,- ,)I I. (A.lO) 

The values of TL for the P3_2, Pz_, 1, R3-2 and R,, L bands of HF are shown in fig. 3. 
(b) The non-relaxed rorarionol distribution which characterizes the rotational level populations of the nascent 

products. This distribution can be described by (see (26)) 

P(Jlu) = (2J t 1) [l - E,(u)/(E - E,)] *I* exp [- B. - eREI(u)/(E - E,)] , (A.1 1) 
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where OR is a rotational temperature parameter characterizing the deviation of P(Jlu) from the microcanonical 
rotational distribution Po(Jlu) 0: (U + 1) [ 1 - EJ(u)/(E - E,)] “‘, et-, ensures the normalization 

J*(u) 

(A.12) 

where p(u) is the highest rotational level in the u manifold, i.e., the highest J which satisfies E,(u) GE - E,. AS 
distinguished from the thermal distribution (A.9). (A.12) depends strongly upon u. This fact is reflected both by 
the range of P(Jlu) [i.e., by J’(u)] and by the decrease in the value ofJ at which P(Jlu) obtains its maximum 
when u increases. For the F + H2 -+ HF + H reaction On = 1.75 [27]_ Insertion of (A.6) and (A.1 1) into (AS) 
leads to 

-~ln~[E-E,-EJ(U)1/(E-E,_1 -EJ*(U- I)]}}. (A-13) 

From figs. 3 and 4 it is seen that fTit(, which measures the degree of inversion. is (for most transitions) smaller 
for the nascent rotational distribution (A.1 1). This is due to the fact that, as distinguished from the case of ther- 
mal rotations (A.9), the nascent rotational distributions at different vibrational manifolds do not ‘overlap’ each 
other. 

The threshold (zero gain) temperatures shown in fig. 5, are determined by (A.lO) in the limit of TL *m. 

Hence 

TO, = X_AuYR I- A.,E,/E ++ In [(E - E,)/(E - E,_l)l 1. (A.14j 

Note that (A.14) is more general than &EJ(u)/AE, = T,,,/T, in the sense that when several vtbrational levels are 
involved T, (but not A,,) is a function of u. 

Appendix B: Funneling 

The simplified laser model employed in this paper rests on two central assumptions. First, rotational energy 
transfer is fast enough to ensure complete rotational relaxation before the start of the laser pulse and to prevent 
‘hole burning’ in the rotational distributions during the pulse. Second, vibrational relaxation is sufficiently slow 
to ensure that during the pulse the vibrational populations are modified only because of the radiative transitrons. 
At the start of the laser pulse the vibrational distribution is that of the nascent products, i.e., it is usually ‘highiy 
inverted’ and TL is negative for most P-branch and few R-branch transitions, fig. 3. Since the rotational distribu- 
tions (in all vibrational manifolds) are thermal, the inversion (and the gain) is high for the low P(J +J f 1) transi- 
tions. They are the first to reach threshold and to start lasing. [P(J +.I + 1) always overcomes (and hence, quen- 
ches) the R(J +J - 1) transition.] Due to lasing the vibrational po 

P 
ulations are continuously changing and the 

general trend is to decrease P(u)/P(u - I), or, in terms of (29). 7-L is continuously increasing. Therefore, as 
time progresses, the king condition (29) can only be fulfilled for continuously increasing values ofJ. The fast 
rotational relaxation ‘funnels’ the rotational populations and the laser radiation towards higher and higherJ. 
This description was suggested by Berry [ 171 in order to explain the temporal evolution of the king transitions 
in the HF laser. The thermodynamic considerations presented in section 3 can provide a rough idea about the 
rotational levels from which the bulk of the radiation takes place. It should be stressed however that our consider- 
ations are subject to the validity of the lasing mechanism suggested above*. 

* It should be also mentioned that the phenomena of progression of the tasecr pulse towaxd hi& I may. sometimes, be the result of 
a different mechanism. If there is no heat bath. e.g., the buffer gas pressure is low, and heat conduction to the walls is negligible 
the king molecules are warmed up by the energy rcle-ased in the pumping reaction. This leads to a temperature rke accompanied 
by an increase in J of the highest gain transitions [ 30,3 1 I. 
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The energy change associated with the passage from the lasing to the post-king stage is E, 

E = c &_(u) - PpLWI E,, (B.l) 
” 

where, at least in principle, the post lasing distribution may be identical to the thermal product distribution*. 
For the laser model just described, E can also be expressed as 

E = ~~00 (E, - E,_ I 1, tB.2) 
” 

where 

x(u) = ,+0 = “,F” [P&J’) - &(u’)l. (B-3) 

x(u,J) is the number of photons emitted from the u,J level (per mole) [see (4l)j. x(u) is. therefore, the number of 
photons emitted in the u + u - 1 band (per mole). The second equality in (8.3) accounts for cascading from h&her 
to lower vibrational levels. 

The light emitted as laser radiation, i.e., the work, is given by (section 4) 

W=E- 7’ASv=+I) [I~~-E,._~ +E,(u)-J?,+~(u- I)], (B.4) 

where ASv = S, - SpL, (or St_ - ST), and only J +J + 1 transitions ark considered. From (B.2) and (B.4) we ob- 
tain 

ThS,=+A [E/+t(o- I)-E.r(u)l. 
. 

In the VR mode1 

(B-5) 

EJ+,(u- l)-EJ(u)=2B,(J+ 1)+0,(-f+ 1)(Jt2). (B.6) 

In order to estimate the ‘average J’ from which lasing transitions will take place, we approximate (B.5) by replac- 
ing every B, by B, (i.e., B, for u = I), and neglecting the second order correction in (B.6). (Note that due to cas- 
cading the u = 1 + 0 band is usually the most intense one.) Thus 

v+ l)=~Jx(un(J+ I)=TAYJ2B1. (R-7) 

Since B, decreases with u, TASJIB, is a lower bound on U + I). 
Table 5 presents estimates of u> for the chemical lasers pumped by reactions I-IV, for which experimental 

data exist [ 171. Since, as mentioned before, the post lasing distribution is somewhat artificial, we have taken 
two estimates for Mv; A$) = S, - Spt_ with a = 0.1 (see appendix C) and A,!$:) = SL -ST.-f,_,,_ z ~W~cBt-~ 
is the most probable rotatronal level at the buffer gas temperature, T = 300 K. JexP indicates the range of J values 
over which P-branch transitions were observed experimentally. It is seen that both estimates of dn fall within this 
range. 

l The values shown in figs 6- I1 rep.esent only one powilc choice. The deiition of the post-lasing distribution is somewhat arbilrary. 
See appendix C. 
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Table 5 
The rotational distribution during king 

F+H, -HF+H 
F+D2 -DDF+D 
F+HD-HF+D 
F+HD-DF+H 

As!, ) (cv.) &) (c v ) V . . (J)(l) 'J'(2) Jcxp Jm.p. 

1.5 L2 3 5 4-11 2 
1.6 2.3 7 10 4-14 3 
1.9 2.6 4 6 4-11 2 
1.9 2.7 8 12 5-13 3 

Appendix C: Explicit algorithms for the energy and entropy at different stages 

In this appendix we present the explicit expressions used to calculate the entropies and energies of the various 

stages illustrated in figs. 1 and 6-l 1 and tables l-5. 
The stages considered are: (1) Thermal reactants; atoms A and molecules BC in thermal. but not chemical, 

equilibrium at temperature T. (2) Nascent products; the products of the A + BC + AB + C reaction before any 

relaxation took place. (3) Lasing products; the vibrational distribution is assumed to be the same as for the nascent 

products but the rotational distribution of the AB molecules and the translational motions of AB and C are taken 
to be thermal, at the heat bath (buffer gas) temperature T. (4) Post lasing products; the products at the end of the 
laser pulse. (5) Thermal products; molecules AB and C in thermal equilibrium at temperature T. (6) Heaied pro- 
ducts; the products at the temperature T* corresponding to the same average energy as the nascent products. 

The center of mass motion is not modified by the reaction. Since in the thermal reactant stage the center of 
mass motion is thermal it will remain thermal throughout the passage from the thermal reactants to the thermal 
products. Thus, with the exception of the last stage (heated products), we shall disregard the center of mass mo- 
tion from our considerations. 

The energy distribution in each stage can be characterized by the probability distribution function (pdf). 
&ET, u,J), where ET is the relative translational motion of the atom -diatom pair (A + BC or Ab + C), u is the 
vibrational state of the diatom andJ its (2 + I)-fold degenerate rotational level. Keeping in mind that ET is a 
continuous variable, then P(f+, u,J) dET is the probability of finding an atom-diatom system with relative lrans- 
lational energy in the range ET, E T + dET and with the molecule in the v,J level. In certain cases it is more con- 
venient to represent the state of the system by alternative (but equivalent) pdf’s. For example, in characterizing 
the nascent products of highly exoergic reactions (typical for chemical lasers), we shall see that P(E,uJ) is a more 
convenient pdf. Here, E = ET + E, + E/(U) is the total energy of the triatomic (atom + diatom) system. 

Except in the stage of the nascent products the translational, rotational and vibrational motions are independ- 
ent and P(ET, v,J) will be used. The entropy Sand the energy E of the system are given by [7,16$2] 

The square bracket on the 1b.s. of (C.1) serve to denote the summation variables; they do not contain functional 
arguments. The density of states factor p(ET, u,J) results from the continuous character of the translational mo- 

tion. It is given by 17,321 

@+I u& = (u + l) b&-). (C3) 
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where 

/-T&j = (2 117 $fi3)_ p 1 312E1 ’ 
?I- (C.4) 

is the density of translational states (per unit volume) corresponding to the relative atom-,diatom motion with 
reduced mass ~1. [For reactants p = j+t = nrA~nnC/(I?lA + r?znC), &, = ?IrAn + mC /(“‘An + nrC).] 

When the three types of motion are not coupled to each other we have 

W--f, &J-I = WT) P(u) PQ. KY) 

Hence, the entropy and the energy can be written as sums of three independent contributions [S] 

S=S[E+] +S[u] +S[J], (C.6) 

S[u] = - R c P(u) ln P(u), (C.8) 
” 

SfJl = - R T!‘(J) In [P(J)/(ZJ + I)]. 

and similarly 

(C-9) 

(E) = (ET) + E”) + L5.J). (C.10) 

In fact, due to the u-dependency of EJ(u), there is always some coupling between the vibrational and rotational 
motions; i.e., P(J) in (C.5) should be replaced by P(Jlu), and S[J) in (C-6,9) by S[Jlu](see below). However, 
this coupling has only a minor effect on the rotational entropy and energy. Thus, while in all computations (A.l) 
was used for E,, we have sometimes taken E:l(u) = B,J(J + I), where B, is an averaged rotational constant (see 

below). 
When the total (triatomic) energy E is sharply defined (as in stage 2, below), it is more convenient to employ 

the representation 

P(E,u,J) = P(L) P(ullE? = P(E) P(uIE) P(JbE), (C.11) 

where P(uIE) and P(JIuE) are conditional pdrs normalized according to (A.7) and (A.1 2), respectively. The en- 
tropy is expressed now as 

S = S[E,uJI = -R JdE go ,Fo P(E,~,J)IP(~,~,~I, 

where p(E,u,J’) is identical, apart from the notation, to p(ET,u,J). lt should be noted that both representations of 

S lead to identical results; this will be shown explicitly for the nascent products. 
The density of states can be factorized into [7,8] 

PW,u,J) = P(E) ~,WlE) = I-W &-J(uW()WE), (C.13) 

where 

PQ = “co ;+ dE,M. (C.14) 

f~o(tJ]E), etc., are normalized (conditional) density of states functions whose defmitions follow from (C.13) and 
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(C.14). From (C.3), (C.4), (C.13) and (C.14), we obtain 

Po(LJ,JIE) = N(2.J + 1) [E - E” - EJ(U)] 1’2, 

where N is a normalization factor (in the RRHO approximation N = 15 ~~*c%J,B,/~E~~~). Similarly 

(C.15) 

J*(u) 

Po(vIE) = ,Fo P&flE) 

= (E - EJ3t2 B;’ 
(- 

;co (E - Eu)3’2 B;’ 

-1 

(C-16) 
. 

(C.17) 

and 

= (S/Z)hco,(E - E,)3’2/E5’2, (C.lS) 

P&lvE) = ~o(vJIE)/PO(V~E) = N’[E - E, - EJ(v)] “‘/(E - E,)3’2, (C.19) 

where (C.17) and (C-19) result from treatingJ as a continuous variable while (C.18) is the (classical) RRHO ap- 
proximation where we take B, = Bc and integrate instead of summing over v. (Note thatdv = dE,/trcw,.) P,-,(JIE) 
and Po(uIIE) are recognized as the pre-exponential factors in (39) or (A.6) and (26) or (A.1 1) respectively. Sub- 

stitution of (C.11) and (C.13) into (C-12) yields 

S[E,V,J] = S[E] + S[vI&] + S[JIvE] , (C.20) 

where 

SW1 = -RJaP(E) In ME)/P(E)I, (C.21) 

S[vIE] = JdE P(E) S[vlE) = -R IdE P(f5);go PW) In [P(v)lE)/Po(4E)1 , (C.22) 

U* 

S[JlvE] = j-d~ PQ UFO P(vIE) S[-‘IvE) 

l 

= - R JdE p(E) “$ P(vlE) J$o P(JIvE) In [P(JlvE)/PQ (Jlvf31. (C.23) 

It can be shown that S[E] > 0 while S[vlE] G 0 and S[JIuE] G 0. Only if P(vIE) = Po(ulE) we have S[vlEl = 0. 
This is the case of a microcanonical distribution at any given E. Since in a state of thermal equilibrium every small 
energy shell is microcanonically populated, then S[vE] = 0. Similarly S[JluE] = 0 only when P(IIuE) = Po(JlvE). 
The non-negative (zero only at equilibrium) quantities S[vIE] and S[JlvE] provide measures of deviation from 

equilibrium, they are called ‘entropy deficiencies’ [7,14,32]. 
We turn now to an explicit treatment of each stage of the cycles. 

C. 1. Tllermal reactants 

In this stage every degree of freedom is separately in equilibrium with the heat bath. Although the representa- 

tion P(E-,-,v,J) with (C.S)-(C.lO) is convenient we shall first consider the P(E,u,J) representation to prepare *he 
way for the next stage. 

We consider exoergic reactions and choose a common energy scale for reactants and products, with its zero at 
the ground vibrational level of the products. 
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The total energy distribution P(E). in (C.11). is canonical 

PR(E) =&t(E) exp (- EIRT)IQR, 

where 

L+(E) = 0. For E - E, - E,(u) <MI,, 

(C.23) 

=“qeJ+ 1)PT.R 1 E - AD, -E,- EJ(u)], otherwise, (C.25) 

where R symbolizes ‘Reactnats’. ALI, > 0 is the exoergicity OF the reaction (‘zero point to zero point’ difference) 
and QR is the partition function. pT R denotes the density of translational states OF the reactants. 

QR = 1 PR(n exP (- EMT) a= exp (- ~JRT)QT,KQ~.KQR,R- 
U 

(C.26) 

The Q Factors in the last equation are the partition Functions For the (relative) translational motion of A + BC (per 
unit volume). the rotation of BC and the vibration of BC. respectively. 

QT.R = s tib.R(ET) exp(- EJRT)=(I_~RRT/~~~')~", (C.27) 
0 

Q R,R = F(ZJ+ l)exp(- EJ/Rc =RT(hcBR, (C.28) 

Q “,K = F exp(-E,,/RT)= [I -exp(-kw~/RT)j-‘. (C.39) 

The expressions on the r.h.s. of (C.28) and (C.29) correspond to the RR and HO approximations, respectively. 
B, and wR stand for the rotational constant and the vibrational frequency of the reactant molecule. 

As mentioned before, in equilibrium, P(ullE) = Po(UrlE), hence S[UrE] = 0 and it is easily seen that 

S[E,U,JI = S[E:1 = W)/T + R In QK = (ET) + (E,) + (E,) + AD,)lT + R (-ADolRT+ Ln (QI,RQR,RQ~,R)] 

=S[&] +S[u] +.Y[J'], (C.30) 

where S[ET] =K-$/T+R In QT,r,, etc. The resolution P(ET,uJ) = p(ET) p(u) p(J) will also yield (C-30). 
Since in thermal equilibrium 

S(ET] P S[Jl > S[u] ((2.3 1) 

we can ignore the vibrational contribution to the entropy of the thermal reactants. 
In the subsequent stages. however, the changes in the vibrational entropy are the most relevant ones, and will 

not be neglected. 
For the energy of the reactants we have 

E)== 0, ++RT. (C.32) 

where the average vibrational energy of the reactants was neglected (among all the molecules involved in reactions 
I-VI only CO and CS have non-negligible vibrational energies at ordinary temperatures). 



C.2. Nascent prod~rcrs 

Since the total energy is conserved in the reaction, the nascent products will have the same total energy as that 
of the reactive reactants. (The reactive reactants are those which can pass over the activation barrier.) Thus, p(E) 
of the nascent products is determined, in principle, not only by p(E) of the thermal reactants but also by the re- 

action rate constant k(E). However, for highly exoergic reactions with low activation barriers. (like reactions I-VI) 
which take place at ordinary temperatures we have Ea 4 AD, 2 E and it can be assumed that P(E) of the reactive 
reactants is sharply (with respect to E) peaked at E = AD0 + E, + $ HT. hlaking the additional assumption that the 

shape of P(E) of the reactive reactants (and therefore also P(E) of the nascent products) is similar to that of the 
thermal reactants, we obtain 

PN(E) = PR(& - E,), 

with PR(L) given by (C.24). (N denotes “Nascent’). Hence 

(Cc3.i) 

SN [E] = -R 7 tip,(E) In [PN(E)p,(#?)] 
U (C.33) 

= - R f ti P,(E - E,) ln [pa(& - E,)/oR(E - E,)] + R j dE PR(E - E,) ln [.op(E)/PR(E - E,)I. 
0 0 

Changing variables from t’ - La to t’and noting that PR(E) = 0 for E < ALI, it is easily verified that the first term 
is simply SR [El, the entropy of the thermal reactants. 

The second term represents the entropy increase due to the fact that on the product side 1.‘. and therefore the 

density of states, is much larger. This second integral can be evaluated numerically. However. since PR(E) is nar- 

row (its spread in E is about RT) and p,,(E) changes only slowly with E, the integral can be approximated by the 

average value of the integrand. (The two procedures were numerically compared and good agreement was obtained.) 

Since at ordinary temperatures the vibration of the reactants is essentially u = 0 then Pk(E) a E3” exp (- E/RT). 

and (E) as RT. Thus, replacing the integral by the value of the integrnnd at E = MI,, + E, + $RT yields finally 

S,y [El = SR [E] + R ln [,+(E)/Pk(& + +RT)l 

= SR [E] + R In [(,P/,R)3’a (B&,)(7/S hcwp)~5’1/($R7-j3/1). (C35) 

We have used here (C.14) (in the RRHO approximation), for pp (E is large), and (C.75) for oR (only u =O is 

populated). 

An additional, negative, contribution to S[E,u,J] of the nascent products comes from the entropy deficiency 

S[uJlEl. This can be further decomposed into S[ulE] + S[JluE]. All the reactions studied here can be characterized 

by product vibrational and rotational distributions of the form of (A.6) and (A.1 l), respectively [7,1?,17,27].(The 

only exception is the unknown product rotational distribution in reaction VI for which we take (A.1 I) with OR = 0.) 

Taking into account that the width of PN(E) is much smaller than E we obtain 

S[ulE] = S[ulE) = ho + Av (E,)/E. (C.36) 

Similarly 

S[JluE] =Ss[JIuE)= 0, +Bk LE,/(E - E”)). (C-37) 

Note that VU> = @‘J/E. is the average fraction of reaction energy which appears as product vibrational energy. For 

reactions I-VI (EJE = 0.7 and -X, = 5-8. 

To summarize, SN [E&J] is the sum of the terms on the 1.h.s. of (C.35), (C.36) and (C.37). 
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The average energy of the nascent product is 

(C.38) 

C.3. Lasing products 

At this stage the translational and rotational motions have already been relaxed to the buffer gas temperature 
but the vibrational motion is still non relaxed, i.e., p(u) is given by (A.6). We use now the resolution (C.5) with 

P(%-) = L+(&-) exp (- ET/R T)lQp (C.39) 

fia = (25 + 1) exp (- B,J(J + l)/RT)/QR , (C.40) 

where BE is the averaged vibrational constant. In the calculations C was taken as the most populated vibrational 
level. (From this point on we shail only deal with the products and the symbol P will be omitted.) 

The entropy of the lasing products is 

S, = S[ET] + S[u] + S[J] , (C.41) 

with 

SIET]=~~)IT+RInQT=PR+RInQT, (C.42) 

S[J] = (ER)/T + R In QR = R + R In QR, (C.43) 

IJ’ 

S[u] = -R UFO P(u) In P(u). K.44) 

Note that since S[u] and S[u]E] are different quantities, S[u] is not given now by (C.36). (Furthermore S[uE] GO 
while S]u) > 0.) 

The average energy of the lasing products is given by 

E,_ = b!?$ + (EJ? + (EJ 

=*RT+EJ. 

Note that (E3 > RT, for the lasing products. 

C4. Post .hshg products 

(C.45) 

(C.46) 

Due to funneling, lasing does not terminate when all P(u) are equal. Ignoring V-R.T relaxation and spontaneous 
emission, the post lasing vibrational distribution (P&), p(J) are thermal) is determined by the cavity (Schawlow- 
Townes) threshold condition. We employed here an approximation suggested elsewhere [ 171. There, it was as- 
sumed that at the end of the laser puke 

P(u) = c C-P, a< I,C=(l -a)/(1 -G*+l), (C.47) 

where u* is the highest u populated initially by the reaction. Note that if (Y < 1, P(u) is, to a very good approxima- 
tion, a Boltzmann distribution 

P(u) = a”( I - a) (C.48) 

with an effective vibrational temperature T, defined by 

Q = exp (- hco,‘RT,). (C.49) 
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Following [ 171 we assumed CI = 0.1 for reactions I-V. For the 0 + CS + CO + S reaction we have simply taken 
a = 0.82, so that (Et - E&/E,, = 0.38, which is the efficiency reported for the CO hrser in [33]. 

It should be emphasized that the post lasing stage is somewhat artificial, since towards the end of the pulse, 
vibrational relaxation is always significant. 

C.5. Ttrcnnal products 

In this stage the vibrational distribution joins the rotational and translational modes and is at equilibrium at 
the buffer gas temperature T. (P(u) is given by (C-48) and (C.39) with T, = T.) For T = 300 K both S[u] and 
Ev> are negligible and we take 

S, =S[ETJ +S[J) =fR +R InQTQR, (C.50) 

4 ~$RT, (C.51) 

where Q= is the partition function of the relative translational motion of AB + C and QR is the rotational parti- 
tion function of AB. 

C.6. Heated products 

The heated products stage corresponds to the maximum entropy distribution discussed in section 2. Namely, a 
canonical distribution whose average energy is equal to that of the nascent products. TWO kinds of ‘heated pro- 
duct’ distributions are considered in fig. I I and the tables. 

Ln the first place a distribution describing the hypothetical situation where all the product degrees of freedom 
(except the three associated with the center of mass motion of AB + C), are in thermal equilibrium at a temperature 
r”. The value of T* is determined by the requirement that the average energy of the ‘heated products’ will equal 
that of the nascent products (excluding the center of mass energy). Using (C.38) and the HO model we find 

E T I = AlI, + Ea +$RT=$RT* +lrcwp exp (- Ilcw#?T*)/[I - exp (- Ircc+fRT*)l. (C.52) 

Since T* is generally of the order of 103-I O4 K, i.e., lrcwp = RT*, the vibrational contributions to the energy 
and the entropy cannot be neglected. 

The entropy of this stage is given by 

ST * =$R +R InQT(T*)QR(T*)+R(E,,)/T*- R In [I - exp(- hcw~/RT*)~, (C.53) 

where QT(Tr) and Qn(T*) are giben by (C.27) and (C.28), respectively with pr,, BP and p instead of pR, B, and 
T, respectively. EE,) is equaJ to the second term in (C.53). 

Note that the situation described in this stage cannot be achieved experimentally, because the center-of-mass 
motion cannot be kept at the lower temperature T. However, as was emphasized in section 2 S,t and ET* pro- 

vide useful bounds on the efficiency of chemical lasers. In fact, we may also consider a more realistic process by 
allowing the center of mass motion to exchange energy wiih the relative and internal motions of AB f C. In this 
case the average energy of the heated products, including the center of mass energy, will equal that of the nascent 
product, i.e., 

ET = A&, + Ej + 4RT= 4RF + hcwP exp (- ircr.+/R~)/[ 1 - exp (- Iicwp/Rf)] (C.54) 

where, to account for the center of mass energy , $ RT and fRF were added to the 1.h.s. and rhs. of (C.52). re- 
spectively. 

The entropy of these heated products is the sum of (C.53) with T’ replaced by 7 and 

ST(c.m.) = SR + R ln &,,j!?), (C.55) 
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where Q,, is an ordinary translational partition functions of a mass nt = mA + m, + me. As the bounds on 
the efficiency associated with S T+ are more significant than those associated with ST, we hzve shown ST only 
in fig. I 1. For all other reactions only ST* was computed. 
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