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The application of cnergy and cntrapy cycles to the analysis of chemical lasers is discussed and illustrated by explicit se-
sults for six reactions. Measures of the actual and the limiting efficiency (and bounds on these efficiencies) are derived and
computed. In particular, it is shown that the nascent rotational excitation of the reaction products is available (on thermo-
dynamic grounds) for lasing. The cntropy changes during the different stages of lasing are computed (invoking the state pro-
perty of the entropy) as the difference between the initial and final values. Explicit algorithms for computing the different
entropics arc provided.

1. Introduction

This paper has two distinct goals. On the theoretical side we consider the application of thermodynamic-type
arguments to a bulk, macroscopic system which is not in thermal equilibrium. From a more down to earth point
of view we apply the thermodynamic arguments to analyze the operation of chemical lasers {1—-3] pumped by
(any one) of the following reactions

F+H, >H+HF ) F + DH- H+DF 1v)
F+D, »D +DF (i Cl+HI —1 +HC W)
F +HD~ D + HF ) O +CS ~S +CO. Vi)

The formal and computational goals are interwoven in the discussion. Chemical lasers are used, as an example of a
system in thermal disequilibrium, to illustrate the theoretical arguments. Conversely, the thermodynamic analysis
provides additional insight into the workings of the chemical laser. It should however be explicitly stated that we
are more concerned with the method rather than with deriving entirely new results. What we present (and illustrate)
is an alternative point of view and many of our conclusions have been previously derived via different approaches.

The key concept in the discussion is that of the entropy as a state function [4—11]. The system need not be in
thermal equilibrium in order that the entropy be well defined. It is sufficient that the state be reproducible. The in-
formation-theoretic approach to statistical mechanics has argued this point for some time. The novel point here is
that we shall not treat purely schematic situations nor will we recover known, equilibrium, results. Rather, we pro-
vide actual working expressions for a molecular gas in disequilibrium and, in the final step, come up with numbers.
We do limit ourselves however to the (important but restrictive) case of a system which is uniform in space.

The methods used in this paper were previously employed by us in the study of microscopic disequilibrium (7,
11—-14]. There we have shown how one can characterize the population of molecular energy levels and how such
non-equilibrium distributions can be assigned an entropy. We follow the same approach in the present application.
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** Now at the Department of Chemical Physice, The Weizmann Institute, Rehovot, Israel.
$ Now at the Department of Chemistry, The University of Wisconsin, Madison, Wisconsin,
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Since the gas is (by assumption) spatially uniform, its state (at any given instant) is specified in terms of the distri-
bution of the internal and translational energies of the molecules. The entropy of the gas will then be defined in
terms of these distributions. A particularly important property which we will repeatedly invoke is the following:
Among all systems of a given mean energy, the one in thermal equilibrium has the highest entropy. We shall de-
monstrate this assertion [ater (section 2) as well as provide the necessary algorithms for the explicit computation
of the entropy. From this point on, however, we shall assume that there is a measure, called entropy, which can
be computed, if the distribution function of the molecular energy states is known. As an example we can take the
nascent products of an exoergic chemical reaction. Chemical lasers and chemiluminescence type techniques (15—
18] have established the distribution of the unrelaxed reaction products. Hence, the distribution of nascent reac-
tion products can be assigned an entropy. If these nascent products were to relax adiabatically (and without the
presence of a buffer gas) they would eventually reach a state of thermal equilibrium. While this (equilibrium) state
would have the same mean energy as the nascent products it would necessarily have a higher entropy.

For the purpose of the analysis we have adopted the following (oversimplified) scheme for the operation of a
chemical laser {15—17]. We start from the reactants (in thermal equilibrium) in the presence of a large excess of
an inert, buffer, gas. The buffer gas is assumed to retain its temperature throughout. (The mean energy content of
the buffer gas is thus constant. It serves as the heat reservoir.) Our discussion is thus limited™ to an isothermal op-
eration of the laser. Collisions between the reactants lead to the formation of nascent product molecules. Consider
now these newly formed products before they had time to engage in subsequent collisions with the molecules of
the buffer gas. The mean energy of these nascent product molecules equals the mean energy of the reactive reactant
molecules. For the reactions under consideration (and most other reactions) the mean energy of the reactive reactants
exceeds the mean energy of all reactants. The difference is the, so called, activation energy of the reaction [16] (at
the given temperature). The magnitude of this increase in energy content in going over from thermal reactants to
nascent products is quite small for the exoergic reactions under consideration. Leaving the details to the appendices,
fig. 1 shows the (mean) energy content at 300 K for reaction (V).

The exoergicity of the reaction is released partly as internal energy of the products and partly as relative transla-
tional energy. Collisions with the buffer gas molecules rapidly equilibrate the translational motion and relax the ro-
tational energy. We assume that the rotational relaxation is sufficiently efficient so as to equilibrate all the rotational
states in any given vibrational manifold [15,17]. Any excess energy (over the thermal mean) released into the trans-
lational and/or the rotational energy of the nascent products is thus very quickly relaxed (in our model, not neces-
sarily in reality {19,20]). This excess energy is removed into the buffer and is not available to extract as work. A
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* This limitation is adopted only for simplicity. One can readily modify the formulation $0 as to incorporate heating and cooling
of the buffer medium, See O. Kafri and R.D. Levine, Optics Commun. 12 (1974) 118,
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central question is whether such losses are, in principle, unavoidable. Must one, no matter what, lose a fraction of
the exoergicity if the system is to operate as a laser? It turns out that the answer is yes and that the actual losses
(in our model) exceed the thermodynamic threshold. In other words, the available work (under ideal operating
conditions and when there is complete translational and rotational relaxation), is less than the maximal amount
allowed by thermodynamics.

We refer to the distribution of product molecules which retained the relative vibrational populations of the nas-
cent products but is in translational and rotational equilibrium (with the buffer gas) as the lasing products. The
(mean) energy of the fasing products (shown in fig. 1 as L) is available for chemical laser action. It should be clear
that our different ‘stages’ have no particular significance from a kinetic point of view. There is no intended impli-
cation that all (or some) of the product molecules are in the ‘lasing products’ stage at any given instant of time.

In the same way that not all products are simultaneously *nascent’. These constructs simply represent thermody-
namic stages, i.e., states of the system whose energy and entropy can be readily computed and interpreted. The
‘state property’ of the energy and entropy means that the changes as a mole of reactants is converted to a mole
of products can be computed as a sum of the changes between the consecutive stages.

As has been discussed before {1,21], 1asing in a diatomic gas does not require vibrational population inversion.
We shall return to these considerations in section 3. Here we merely note that while in principle lasing can pro-
ceed until the vibrational distribution has been thermalized, in practice, due to losses, this is not the case. We al-
low for this possibility by the inclusion of a “post lasing’ stage. This corresponds to a highly relaxed vibrationai
population distribution but one which is still not in complete thermal equilibrium with the buffer gas. We charac-
terize this distribution by its mean vibrational energy content (cf. appendices).

The final stage is that of products in equilibrium with the buffer gas. The (small) energy difference between the
post lasing and the thermalized products stages is again taken up by the buffer gas.

The following is then a very schematic summary of the model of a chemical laser. An energy-rich system in dis-
equilibrium (the reaction products) is coupled (via collisions) to a heat reservoir (the buffer gas). A fraction of the
excess energy of the system (excess over the energy content at equilibrium with the reservoir) is extracted as pure
work*. The complementary fraction is dissipated into the reservoir. The following sections consider the construc-
tion and interpretation of the energy and entropy cycles for such a process.

The concepts of entropy and (mean) energy of the system are sufficient for the discussion of available energy,
section 2. The discussion there is carried out with special reference to isothermal operation, to conform to our
simple model of the laser. Section 3 considers a thermodynamic treatment of lasing at a particular vibrotational
transition and section 4 extends the treatment to lasing at several frequencies. All the algorithms used in the actual
computational work have been collected in three appendices.

2. Entropy and pumping efficiency [9,10}

Chemical lasers are similar to electrochemical cells in that they convert chemical energy directly into work. In
this section we consider their maximal efficiency, i.e., the fraction of chemical energy that could, in principle, be
converted to work. We shall show that (as in the case of cells) the maximal possible (or ‘pumping’) efficiency is
quite high, usually above 90%. We shall then turn to the model discussed in the introduction to find that rotational
relaxation is avoidable (on thermodynamic grounds) and that the rotational excitation of the nascent products can
be extracted as pure work.

We consider an energy rich system (the nascent reaction products) coupled to a heat reservoir (the buffer gas).
Work is done by the system until it is in equilibrium with the reservoir. Let the amount of energy released by the
reaction be Ep [per mole; see eq. (11) below]. What fraction of this energy is available as work?

* We have assumed here that the laser light being well collimated and well defined in frequency carries practically no entropy and
hence is (thermodynamically) equivalent to pure work [9,23,24].
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During the process the reservoir maintained its temperature 7. If the entropy transferred from the system to
the reservoir is AS)y, the energy Q transferred from the system to the reservoir is, at least, TASy. (The
inequality, i.e. @ = TAS), follows from conventional arguments since the coupling of system and reservoir need
not be reversible). Hence, the amount of energy of the system available as work is E, — TASy;. The efficiency is
thus

n=(E, — TASY)IE, =1 — TAS\/E,. (1)

Thus far there was no real need to depart from very conventional arguments. We now want however to relate
the entropy change of the reservoir to the entropy change of the system. It is at this point that we depart from
the classical tradition since, in the initial, energy rich, state the system is not in thermal equilibrium and hence can-
not be assigned an ‘equilibrium’ entropy.

The distribution of nascent products can be characterized as follows' The chemical reaction leads to formation
of products in different quantum states i. The (relative) rates of formation of these product states can be meas-
ured. The bulk chemical change corresponds, on the molecular level, to many, many binary reactive collisions.
Hence the relative rates of formation correspond to the probabilities of formation of the different product states.
Each quantum state i of the products can then be assigned a probability P(i) which is the fractional rate of forma-
tion of state i. When the experiment is repeated, the same probabilities will be assigned. (Since the number of reac-
tive collisions is so very high, probabilities equal the observed frequencies.) Hence, the distribution of nascent pro-
ducts can be characterized by an ‘information-theoretic’ [4—11] entropy

Slil=-R Z,_)P(i) In PG). )

Here R is the gas constant and the logarithm is to the natural base. The square bracket notation indicates that the
entropy was computed as a sum over quantum states. We show in appendix C how to reduce (2) to a ‘working’ ex-
pression for an explicit computation. We shall also show that for thermal equilibrium (2) reduces to the known ex-
pression for the entropy of a gas. At this point it is sufficient to note that the entropy is positive (forx <1, Inx <0)
and is defined even when P(i) = O (since x In x - 0 as x -+ 0). The maximal value of the entropy obtains when all
the probabilities are equal.

The highest possible efficiency obtains when the entropy increase of the reservoir is just balanced by the change
as,

AS, =Sy - St (3)
in entropy of the systein. Here Syy and S are the entropies of the nascent and thermalized products respectively.
This highest value is denoted Np:

n, =1 — TAS/E, @

and obtains when AS; = AS,,.
We now prove that
AS, =Sy — ST <E,/T. {5)

The equality applies only when the nascent products are also in equilibrium (at the temperature 7). The efficiency
(np) is thus nonnegative and vanishes only when no work can be extracted, (i.e., when the nascent products have
the same distribution as the thermalized products. This necessarily implies £, = 0).

The entropy Sy is computed, in principle, from eq. (2) where (i) is now the (quantum state) distribution of the
nascent products. Similarly, we introduce U(i),

U() = exp (—E/RT)[Q, ©)
as the distribution of the thermalized products. Q is the (ordinary, equilibrium) partition function defined so that
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Z;U(i) = 1. The entropy Sy is defined by eq. (2) as well, with U(i) as the distribution. Explicitly
St = =R 223U(i) In UG) = — R 23UG) [— (E/RT) ~ In Q] = T-' 2ZE;U() +R In Q. )
! H i

The last line is the standard expression for the entropy of a system in thermal equilibrium [6].
To prove the result (5) we employ the ubiquitous inequality [11]

Inx<x-1, 8
(with equality for x = I). It thus follows that
- 22P() In [POIV@] =Sy + 22P@) In UG = 22P() In [UGIPG] < 23PG {UVOIP@] - 13=0,
1 ! !
and hence that

Sy <~ 22PG) In UG). )
1

The inequality (9) provides a general bound on the-entropy in terms of the actual distribution (i.e., P(i)) used to
define Sy and some arbitrary normalized distribution * U@).

To derive the explicit bound (5) one merely needs to insert (6) for the [in (9), arbitrary] distribution U(i). This
gives

Sy ST L2IE;P() +RInQ =Sy +ET. (10)
{
Here £ is the difference in the energy content of the nascent and the thermalized products,
E,= ;E,- P() — 'ZE,- ua. an

Another very useful bound on Sy is

SN < S e 12)

Here S_.« is the entropy of the thermalized products at such temperature 7° that their energy content equals the
energy content of the nascent products. To prove (12) we merely insert in (9) the distzibution

U*(i) =exp (— E;/RT")/Q". (13)
Here T" is determined by the implicit equation [cf. (11)]

E,= ?E,- U* () - 2EUG), (14)

where U(i) is the thermal distribution (6) (at the buffer gas temperature 7). E,, is available from thermochemical
data.

* In fact it is sufficient that £;U() < 1 for (9) to hold.
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An upper bound on ASp,

ASp < S'r" -8t (15)
and a lower bound on the pumping efficiency y
M, =1 = T(AS,/E,) 2 1 — T(Spa — S7)IE, (16)

can thus be obtained, even in the absence of any information on the distribution of the nascent products. Standard
algorithms for the (equilibrium) entropy S are available [6] but common experience with the magnitude of en-
tropies of hot gases is sufficient to indicate that S_« — Sy is, typically, of the order of 10—20 eu even for highly
exothermic reactions so that np is seldom significantly below unity.

There are therefore two entropy differences that characterize the energy available from the nascent products.
One, AS,, = S\ — St, is the entropy difference between the nascent and thermalized products. TAS, is the mini-
mal energy loss to the reservoir or 1, = 1-TAS/E,, is the highest possible efficiency. TASy is the actual energy
loss or 7 = 1—TASp, /Ep is the actual efficiency. In the model of the chemical laser outlined in section 1, the
major energy loss to the reservoir is the excess (over thermal) transiational and rotational energy of the nascent
products. Chemical reactions seldom release less than about 1/3 of their exoergicity into translation and rotation
and since Ej, is roughly equal to the exoergicity we have that, typically, (TASy/E,) > 1/3. On the other hand,
for these reactions AS,, < ASy, so that not all the energy that is thermodynamically available is actually extracted
as laser light. Clearly, the fault is with the mechanism that allows more dissipation of encrgy into the reservoir than
is thermodynamically essential. Are there however any compensating aspects? What purpose can the excessive en-
tropy loss (ASy — AS,) serve. To explore this point we consider in section 3 lasing at a particular transition.

Detailed algorithms for computing the energies and entropies are provided in the appendices. Table 1 is a sum-
mary of the magnitude of the different measures employed in this section.

Table 1
Pumping parameters of chemical lasers?)

Ep ASp ASM n np SN ST St* T*
F +H; —HIF +H 33.1 5.6 317.0 0.66 0.95 124.9 119.3 134.7 5650
F +D; —-DF +D 33.2 6.9 44,0 0.60 0.94 129.4 122.5 138.1 5490
F +HD—+HF +D 323 7.0 45.3 0.58 0.93 128.2 121.2 136.5 5530
F +HD—~DF +H 33.8 6.6 50.1 0.55 0.94 127.2 120.6 136.3 5610
Cl+HI — HCl+1 32.5 8.2 30.1 0.72 0.92 139.0 130.8 146.3 5390
O +CS ~CO +S 90.0 16.6 184.3 0.38 0.94 148.7 132.1 155.3 13260

a) Entropics in entropy units (cu = eal mofl™* deg‘l ). Energies in keal mol™, Temperatures in K. For computational details see ap-
pendices A and C.

3. Population inversion and amplification of light

That it is not possible for a macroscopic body to decrease its energy by laser emission (or light amplification)
can be seen as follows. Consider an energy rich macroscopic body within an enclosure. Let the body emit light.
The body loses energy and hence entropy. The entropy of the isolated enclosure (cooler body plus light) cannot
decrease. It follows that entropy must be associated with the emitted radiation. It is possible for a body to lose
energy as radiation only when this radiation carries its appropriate share of entropy.

Ordinary radiation is not equivalent to pure work since it has to be assigned an entropy, depending on its spec-
tral width and angular (spatial) distribution. Only a coherent (well collimated and with a narrow frequency range)
pencil of radiation carries no entropy [9,23,24]. Amplification of light (or lasing) requires that the emitted radia-
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tion be coherent and so equivalent to pure work. Hence, a macroscopic body cannot lose its entire excess energy
as laser emission.
Once it is realised that laser light carries practically no entropy and is equivalent to work, the restriction above
is obvious from the second law. A macroscopic body cannot undergo a process where the only net effect is that
the body cools down while an equivalent amount of energy is available as work*®.
Lasing is possible if the entire available energy is not extracted as light energy but some of it is ‘wasted’, [9,10,
261, say, by delivering it to a cold heat reservoir. As an example we consider lasing at a particular p-branch (v,
J v~ 1,J+ 1; fig. 2) transition of a diatomic molecule.
We consider the nascent diatomic reaction products after completion of translational and rotational relaxation
(the ‘lasing products). Let P(v, J) be the population of the vibrotational levels so that the vibrotational entropy is**

S[v,J] =—R Z‘J P(u,J) In [P(v, DI + 1)]. an
v
When the populations change by a small amount (6§ P(v,J)) the corresponding change in the entropy is
85=—R ZJ) {1 +1n [P, N)/(27 + 1)]} 8P(v, ) = — R Z; In [P(u, N2 + 1)} 8P(v,J). (18)
v v,

The first term does not contribute since the change in the populations muzst be such that the total number of mole-
cules is unchanged

5 Z}P(u,n=a(1)=o= ZJ)&P(U,J). )

Let a small fraction, 8P, of molecules emit light while making a v,J = v—1,J + 1 transition. Here 6P = 6P(v—1,
J +1)=—=8P(v,J). The change in the entropy (per mole) is 65,

J
5- 4
200} v
- v
8000}~ 3 =
- 2 4
750&- 1\ ,ﬁ (1)

-Pv.)) Plv,d)/(2] s1) =]

TE ~- pA
£ Gal N ) g
w " 5- i
i & V-1 . . . .
4400 4 1 Fig. 2. The funncling mechanism for lasing when the rotationat
I \ iy relaxation is fast. Shown are P- and R-branch transitions in HF,
4200} ¥ 28 — 3— b Py u—l(l) denotes thc v, J —+ v—-1,J + 1 transition, The vi-
| / ' 2 ] brational population in the drawing corresponds to P(v) =
40001~ 6 ] P(v-1) (ie., T}, —~ + =).] Following the radiative transition is
-plv. J) PV, )20 the rotational relaxation {(where v is unchanged) and then the

(conceptual) pumping back where cnly v but not J is changed.

* This is possible for a system.at a negative temperature {9,25-26]. However, 2 macroscopic body cannot possess 2 negative tem-
perature. That does not exclude a more limited situation where a particular transition is assigned a negative temperature, as dis-
cussed below, :

** The degeneracy factor, (27 + 1), can be traced to the summation ovet the 2J 4 1 (so called ‘magnetic") states within each level
J, cf. appendix C.
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55U =28 = ST T ~ Pegy =R In PG+ D] - R o [P - LI+ DT +3). (20

If the transition is to lase we must have 65 > 0 for otherwise the emitted light would have to carry away entropy
(of, at least, — 55 , per mole) and ordinary fluorescence would result. The condition for lasing is thus [10]}

PO,ND(T+1)=Pu—1,J+1)/(27+3) @n

as previously derived {1, 21, 22] from non-thermodynamic considerations.

The entropy change, 8§ , upon lasing reflects the changes in the vibrotational populations. Since during the
lasing the gas loses energy one can introduce a ‘lasing temperature’, 77, as the coefficient of proportionality be-
tween the increase in energy (— Ay , where vy is the transition frequency) and increase in entropy (85 ), —/wy

=T 88 or
BSL = - IIUL/TL. (-’7)
Lasing thus corresponds to a ‘negative’ temperature 7' . (It should be clear, however, that T; is simply a conven-

ient measure for 85 .) Lasing is possible as long as 7', 1s negative and terminates when the populations are such

that the equality in (21) obtains, i.e., when 65; ~ 0 or* T, — — o=. Figs. 3 and 4 show 7 for different transitions
in the HF chemical laser for two different situations. One is that of complete rotational relaxation when™*

P(v,J) = P(v) P(JIv), (23)
‘J&P(Jw) =1, (24)
P(/lv) = Qg2 - 1) exp [~ hcBJ(J + 1)/RT]. 25

This is the case extensively treated in this paper. For comparison sake, fig. 4 shows T} for a nascent rotational dis-
tribution when P(Jlv) is of the formt [14,27)

PU) = (U +1) [E - E, — Ef)} "2 exp [- 8 — g E;(OI(E — E ] (26)
It is seen that T is higher (i.e., nearer to —0) for the nascent rotational distribution. Writing (20) and (22) to-

gether as

- ~1
i Clarsm ) = e iRy, @

it is clear that a higher T implies a higher 65 for the transition.
When the rotatjonal distribution is in thermal equilibrium (21) is equivalent to

2heBo(J + 1)/RT = In [P(v ~ 1)[P(v)], (28)

where the inequality applies when 657 > 0 (or 7} < 0) and the equality applies ‘at threshold’, i.e., when 85; = 0.
It is thus not necessary to have vibrational population inversion (i.e., P(t) > P(v — 1)) in order to achieve lasing. In

* Recalf that the negative temperature axis goes from —oe (which is barely hotter than +e) to —0 (which is the highest possible tem-
perature).

** P(Jjv) is the popuiation of the rotational states within a giver vibrational manifold. B, is the rotational constant and QR is the
(rotationat partition) function that insures that P(Jlv) is normalised as in (24). To simplify the notation we assume that the ro-
tational constant (and hence Q) are independent of v. This assumption is not essential and was not used in the computatjons.

t £ is the encrgy available to the reaction prodncts while £, and E y(v) are the vibrational and rotational energies. OR is a para-
meter of the distribution, and 84 is defined such that P¢Jiv) is normalized as in (24
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T " T 2T T T
F ¢ Hy —= HF » Ho(Lasmg) F ¢ Hy — HF + H (Nascent)
st- W*-69 , T=300°K r A\*-69, =175 1
Rz—z_ 1 v
1- . 7
. /
i' R /;? g
3-2
o jll —_
P3~2
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10%/1,

L L 1 ~ ala 1R I - 2
(¢} 5 10 J 15 0 LY 10 15
Fig. 3. The lasing temperature, 7T, versus J in the HIF chemical Fig. 4. T, versus J in the HIF chemical faser for a nascent rota-
faser for P- and R-branch transitions from a relaxed rotational tional distribution, for comparison with fig. 3. The arrows mn-
distribution. (For computational details sce appendix A.) dicate the highest 7 level populated by the reaction for v = 2,3,

respectively.

fact, if we characterize the ratio P(v — 1)/P(v) by an empirical temperature T, (i.e., In [P()] = hcw, /RT,),
eq. (28) can be written as

2B(J + Vw, > T/T,,. 29)

To summarize: Lasing only requires a ‘line” (or ‘partial’) inversion, i.e., T <0 (or 8§; > 0). If there is com-
plete inversion (i.e., T, <0 or 85, < 0), lasing (for P-branch transitions™) is possible at any positive temperature T,
In principle, lasing is possible when the entropy of the body does not decrease as it emits light. How is this re-
quirement implemented for the present mechanism? When light emission occurs the rotational equilibrium (in
both the v and v — 1 mamfolds) is disturbed. The population of the v,J level is depleted while that of thav =1,
J + 1 level is enhanced. To restore equilibrium we can imagine the following cycle. The excess population in the
v — 1,7 + 1 level is deactivated (by collisions, say) to the v — 1,J level. During this stage, energy of 2hcB . (J + 1)
(per mole) is transferred to the buffer gas and its entropy thus increases by 85,

8SR = 2heB (J + V|T. (&{1)]

Note that since the rotational population is in equilibrium with the buffer gas, 65y is defined as the entropy de-
crease of the diatomic gas due to the decrease in its (mean) rotational energy. In fact, by definition

_ B8S 58 _ Pw—10)(P—1,J+ DY} _
~ 3SR =P -1 SR = LT D) “R'“{ (e ) } ”'CB“(“”I;”

* For R-branch (J = J ~ 1) transitions 8SR = — 2Be//T and the condition (21) row reads (28ef/we) < ~7/Ty. Lasing in the R-
branch is possible only for complete vibrational inversion.
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Finally, to restore the iritial state, we need to pump the excess population from the v — 1,J to the v,J level.
This will correspond to increasing the vibrational energy content by heccw,, (per mole). The corresponding change
in the entropy is

_ &S 55 _ P,y (P — 1,0\
SS"-BP(UJ)_SP(U— 1)) '“Rln{(?.lﬂ)( (27+1) ) }_Rln [PEYPE = DI ¢2)

Here again, since pumping corresponds to an increase in energy by hcw,, we can define T, by hcw, = TS, or

8S, = hcw,/T,. (33)
From (20), (31) and (32)
58S =58Sg —8S, (39)

Hence, only if the entropy loss to the buffer gas during the rotational *hole filling’ (5Sg ) is larger than the entropy
increase due to vibrationa! pumping (8S,) will lasing take place. The entropy increase during the lasing (85 ) is com-
pensated for by the decrease when collisions with the buffer gas restore the rotational equilibrium®.

We have thus provided the following thermodynamic interpretation of lasing in a diatomic gas in rotational equi-
librium. During the lasing the rotational equilibrium is perturbed. A ‘hole’ is created at the emitting level while an
excess appears at the final level. Collisions with the buffer gas restore the rotational equilibrium and, in so doing,
reduce its entropy (with a compensating increase in the entropy of the buffer gas). If this decrease is sufficient to
overcome the entropy increase which occurs when the vibrational encrgy content is restored, lasing is possible. The
entropy loss which occurs while the nascent products relax to the lasing products is not essential from a thermo-
dynamic point of view. It reprasents avoidable losses.

The relation (34) provides an ‘entropy cycle’ for lasing at a particular frequency. In conventional thermodyna-
mics such cycles are expressed as Z,0;/T; = 0, where Q; and T are the heat transfer and temperature at the ith
stage of the cycle. Using (22), (30) and (33), the entropy cycle (34) can be written as

WL /Ty, = /T, — 2B, + 1)/T, (35)

where w; =w, — 2B,(J + 1). The equality in (35) reflects our central assumption that rotational relaxation is suf-
ficiently cfficient to maintain the rotational populations (P(/1v)) in (thermal) equilibrium with the buffer gas. If
this is not the case 8Sg = 2B,(J + 1)/T. Thus, while (34) is invariably true® *,(35) isrestricted to the case when
the rotational distribution is thermal; it reads in general

88y fhe=—wy [Ty <2B,(J +1)/T — w,|T,. (36)

The right hand side of (36) provides an upper bound for 65| . The only parameter not readily available is 7|, [de-
fined by (33)]. Once the nascent vibrational population has been measured (and this is somewhat easier than the
characterization of the nascent vibrational distribution) T, can be readily computed for any pair of vibrational
levels.

Lasing is possible, from a thermodynamic point of view when 85} = 0 (or T[l < 0). Of all the variables in the
right hand side of (36), only T can be readily variedf. One can then define the ‘threshold temperature’, Ty, as
that value of T for which &Sy = 0. Clearly 85; > O for any T < Ty,, for P-branch transitions. For R-branch transi-
tions, where J' =J — 1, §Sg < 0 since energy is transferred from the buffer gas to the lasing system in order to re-
store rotational equilibrium. Hence 85 can be positive for R-branch transitions only if P(v) > P(v — 1). When
this condition obtains, 65| > 0 for any T > Ty,.

In general, Ty, is defined by 65y =0 or

PN+ 1) =P J) Q' +1). 37
* Similar considerations apply for an R-branch transition,

** One can readily verify that (34) is simply the statement that for a cyclic process there is no net change in the entropy.
1 This is the bags of the zero gain method [18]. For this, and other, techniques see [15,18].
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Using the equality in (29) this implies (for P-branch transitions)
2B,(J + 1)Jw, = Ty/T,. (38)

For practical computations it is more useful to introduce the parameter A, which is often sufficient to charac-
terize the entire nascent vibrational population in the form

PO =501 - £, exp (- 2g = W 1). (39)

Here f, = E|E is the fraction of the reactants energy available as vibration and A insures that ZP(v) = 1. Then
(37) can be rewritten as

Ty = [EA®) ~ Ep @R {~ N, — £) + 3 In [(1 = 1)/ ~ i)} ) (40)

Fig. 5 shows computed values of T, for both P and R transitions in the F + H, laser. As is very evident the J-
dependence is quite different for the two types of transitions [18]. For P-branch transitions, where 85y, increases
with increasing J, Sy increases with.J, and for the example shown, lasing is possible at all temperatures. For the
R-branch transitions, where 5Sy; decreases at increasing J, lasing is possible (at 300 K) only for the lowest rota-
tional levels. Additional considerations and explicit computational agorithms are provided in the appendices. To
avoid any misunderstandings we mention explicitly that (in contrast to T,) A, is a vindependent parameter [7,
14,17].

T T T4
| F + H; —= HF ¢« H Lasing —l
A -69 , T=300°K
15001—
L.
1000—
2 T
< »
= b
500—
: P,/o - Fig. 5. The threshold temperature, Ty, for lasing in the HF
o A chemical laser, versus J. Transitions for which lasing is possible
"J n | at 300 K are connected by a solid line. (For computational
) 5 10 B details sce appendix A.)
4, Efficiency

In an actual chemical laser, radiation is emitted at several frequencies. Let x(v,J) be the number of photons
emitted in the v,J > v — 1,J + 1 transition (per mole of nascent products). The work available (as coherent radia-
tion) is*

W= Z} x(J) he [w, - 2B,(J + 1)]. (41)

* We are overlooking the possibility of R-branch lasing (at low J). This introduces no essential modifications. Also, in the appendix,
we shall use more realistic (vibrating rotor) energy lcvels in evaluating (41).



378 A. Ben-Shaul et al.[Chemical lasers

The actual efficiency is n

7= W/E, (42)
and the energy released as heat to the buffer gas is Q)
Oy =TASy =E, — W. (43)

There are two contributions to Qy,. The major one is (Ey — E) + (Epy — E7), the energy difference between the
nascent and lasing products and between the post-lasing and thermal products. This is the energy wasted during the
(thermodynamically) inessential relaxation processes. The other one is Og,

O = he E, X(.J) 2B,(J + 1), (44)
v,
the energy transferred to the buffer gas while maintaining the rotational equilibrium during lasing,
O = TASg; ASp = Z} x(v.J) BSg. (45)

In terms of £, the energy available in the lasing products,

E=Qgp t+W=hc g Xy w,, (46)
the efficiency can be wri‘tten as

n=WJE, = (W/E) (E[E,) = p(W/E} = p(1 — TASy /). @7
Here

p=E[E,=(W+Qp)I(W+0y) (48)

is the reduction in efficiency due to the relaxation of the nascent (to the lasing) and of the post-lasing (to the
thermal) products.

As expected, the overall efficiency of the lasing to post-lasing process, W/E, is not the sum but the weighted
sum of the efficiencies of the individual transitions. Using (41) and (46)

WE = Zi (v, J) e). (49)
v,
Here n1(v,J) is the efficiency of a particular transition
n(v,J) = (hew, - TOSRhew, = 1 — 2B (J + 1)/w, (50)
and e(v,J) is the fraction of the available energy (F) provided by that transition,
e(,)) = x(v,J) hew,JE. (s1)
For the lasing to post-lasing stage, one can define the pumping entropy (cf. (32)) by
AS, = EJx(uJ) 5S,. (52)
v,
so that (34) now reads
AS) = ASg— AS,. (53)

Here, using (22) and (41)
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AS = - Z; x(ud) hwy [Ty = =W E, WU Ty. (54
v, v,
w(v,J) is the fraction of the available work provided by the particular transition .
wJ) = x(v,J) hvy [W. (55)

Combining (49), (53) and (54)
WE=0,(01-T Z; wNIT)™ . (56)

Here n,, is the overall vibrational pumping efficiency
n, = | — TAS, [E. 7

The denominator in (56) is the reduction of the actual efficiency (W/E) below the pumping efficiency because of
the operation at a finite gain 9, 10].
It is at this point that the ‘state property’ of the entropy is of critical importance. Rather than compute AS, as
in (52), i.e., along the ‘path’ from the lasing to the post-lasing products, we can simply put
ASV=SL _SPL' (58)
Here Sy and Sp;_are the entropies of the distributions of the lasing and post-lasing products, computed using (2),
with the explicit details provided in the appendices. Since the precise specification of the post-lasing state is sub-

ject to an assumption about the mean vibrational energy content left after lasing is completed it is important to
note that Sp; 2 St where Sy is the entropy of the thermal products so that

as, <8y ~ Sy, ny =1 — T(Sy — Sp)IE. (59)

The results of explicit computations for the six reactions are collected in tables 2—4 and in figs. 1 and 6—10.
Table 2 provides the thermodynamic measures that govern the efficiency. Tables 3 and 4 provide the aciuai meas-
ures that are displayed in figs. 6—11, and which were used to derive the results shown in table 2. Details of the
computations are provided in the appendices.

40~ . = .
F+Hy; —= HF +H 100 O+CS —= CO+S
B T [ T— = ——N —_—T
T N
;_; 30— \ 1 —- 75r—- B
S k)
£ g L—
> 7 — L £ F
= =
O «
= 20 - 2 50l -
z | 3 L
S @
o 1=
w =~ _
“ o . 25— P -
= L
P_
o N T 0 T
Fig. 6. An encrgy cycle for the reaction (1). (Same notation as Fig. 7. An energy cycle for the reaction (VI). (Same notation

in fig. 1. For computational details see appendix C.) as in fig. 1. For computational details see appendix C.)
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as in fig. 1. For computational details seec appendix C.)
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Fig. 10. An cntropy cycle for the reaction (VI). (Same nota-
tion as in fig. 1. For computational details sec appendix C.)

I CieHl== HCl+]
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Fig. 9. An entropy cycle for the reaction (V). (Same notation
as in fig. 1. For computational details see appendix C.)
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Fig. 11. A detailed entropy cycle for the reaction (V). (For the
definitions and computational procedures, se¢ appendix C, un-
der the heading *nascent products’.) Here, and in fig. 9, g = 1.1,

Table 2
Vibrational parameters 2)
Ep E n asy Ty A

F +H, —HF +H 33.1 23.2 0.66 2.2 0.97 -1.7
F +Dy -DF +D 33.2 20.8 0.60 2.3 0.97 -5.7
F +HD—HF +D 32.3 19.9 0.58 2.6 0.96 -6.7
F +HD-—-DF +H 33.8 19.4 0.55 2.7 0.96 -5.5
Cl+HI -~ HCL+1 325 23.8 0.72 24 0.97 -8.0
O +CS —-CO +5 90.0 62.2 0.38 4.9 0.98 -7.7

3) Here ASy = Sp - STiny = 1 — TAS,/E. Other details as in table 1.
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Table 3
Parameters of energy cycles 2)

En=ET* Ey, EpL Ex
F +H, -HF +H 34.6 24.7 2.7 LS
F +Dy; -DF +D 34.7 223 23 1.5
F +HD—~HF +D 33.8 21.4 2.7 L5
F +HD~DF +H 35.3 20.9 2.3 L5
Cl+HI -~ HCI+1 34.0 25.3 2.0 LS
O+CS —+-CO +8S 91.5 63.7 29.0 L5
a) Energies in kcal moi™.
Tablc 4
Parameters of entropy cycles a)
SR SN Sy SpL ST ST+ ~-SNIWIE]
F +Hy ~HF +H 120.4 1249 121.5 120.0 119.3 134.7 4.0
IF +D; -DF +D 122.2 129.4 124.8 123.2 1225 138.1 3.3
F +HD-~HF +D 120.6 128.2 123.8 121.9 121.2 136.5 2.5
F +HD~DF +H 120.6 127.2 123.3 121.2 120.6 136.3 3.8
Cl+HI - HCl+1 132.1 139.0 133.2 131.5 130.8 146.3 4.0
O+CS -CO +5§ 133.2 148.7 137.0 135.6 132.1 1553 29

a) Entropics in eu.

5. Summary

The use of entropy cycles for computing the thermodynamic parameters relevant to chemical laser action has
been discussed and illustrated. In particular, the ‘state function’ property of the entropy has been used fo evaluate

the entropy change during a process in terms of the difference between the initial and final values of the entropy.
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Appendix A: The calculation of 77 and Ty,

Most of the results presented in the various figures and tables of this paper are based on the vibrating rotor (VR)

level scheme for diatomic molecules [7]. Measuring the energy from the ground vibrational level of the diatomic
molecule

E,=hcwyy [1 —x. (v +1)], (A.1)
Efv)=heB J({J +1), (A.2)
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- 1
where B, =B, — (v +' 3) -
For v,J -+ v — 1,J' transitions we have

AE,=E,—E, | =hcw (1 — 2x.v) (A3)
and
AE;(V=E;(v) ~E;v—1) =—2B,(J+ 1) —a( +]1)(J +2), (Pbranch,J' =J + 1),
=2BJ—al(J - 1), (R branch,J'=J —1). (A4)

The lasing temperature T in the P or the R branch is determined by

Py _ P(v) P(J|v) AL S
Po-1,J% Pu-DPU'lv-1) 2U'+1

exp {— [AE, + AE,(V)1/RT ). (A.S5)

For P(v) we have taken the nascent vibrational distribution of HF molecules generated by the reaction F + H, +HF
+ H, which can be represented as [7, 17]

P(v) = Py(v) exp (— Ao — NE,JE), (A6)
where
Ut
_ 372 b 372, ) !
Py(v) = [(E - E )'“/B,] . (E-E)N""IB,}) . (A7)
om

E is the total energy available for the reactions products, A, is the vibrational temperature parameter and Ag en-
sures the normalization

Z=%) P(U)= 1, (AS)

where v* is the maximal v consistent with E, < E. The vibrational temperature parameter, X, characterizes the
deviation of the actual distribution £(v) from a microcanonical distribution Py(v) (see appendix C). Large and
negative A, values correspond to large population inversions and high gains [17,28,29]. For the F + H, > HF +H
reaction A, = 6.9, F = 34.6 kcal/mole and v* = 3 [17]. Note that (39) is equivalent to (A.6) if we take B,=B,
and replace in (A.7) summation over v by integration over £,,. This corresponds to the passage from the VR model
to the RRHO approximation (appendix C).

In order to demonstrate the effect of rotational thermalization on the inversion, T} was computed for two dif-
ferent rotational distributions.

(a) The thermal rotational distribution

P) = O} (v) (2F + 1) exp [— E;(v)/RTY, (A9)

with 7= 300 K. P(/lv) depends only weakly upon v via B, which appears in (A.4) for £;(v) and in the rotational
partition function Q,(v) = RT/hcB,.. From (A.5), (A.6) and (A.9) we find

Ty = [AE, + AE,(W)] IR {NAE,/E + AE,W)/RT — 3 In [(E - EJIE - E,_1}. (A.10)

The values of T for the P3_,,,P;, |, R3_,; and R,_,; bands of HF are shown in fig. 3.
(b) The non-relaxed rotational distribution which characterizes the rotational level populations of the nascent
products. This distribution can be described by (see (26))

PUo) = (2 + 1) [1 — EAO)(E — E)} 2 exp [— 8 — 6 EJNE — E )], (A.11)
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where O is a rotational temperature parameter characterizing the deviation of P(J|v) from the microcanonical
rotational distribution Po(/lv) = (2 + 1) [1 — E(v)/(E — E,)] 172, 6 ensures the normalization

J*(v)
27 PU)=1, (A.12)
J=0

where J*(v) is the highest rotational level in the v manifold, i.e., the highest J which satisfies Efv) < E - E,,. As
distinguished from the thermal distribution (A.9), (A.12) depends strongly upon v, This fact is reflected both by
the range of P(J|v) [i.e., by J*(uv)] and by the decrease in the value of J at which P(Jlv) obtains its maximum
when v increases. For the F + H, —~ HF + H reaction 6 = 1.75 [27]. Insertion of (A.6) and (A.11) into (A.5)
leads to

Ty = [AE, + AE;()1/R (NEJE + 0 ((E,Q/(E - E))—Ep@~—DIE - E,_)]

— 3 in{[E - E, - E;0)E - E,_, — Ep(o— DI} (A.13)

From figs. 3 and 4 it is seen that { T 1|, which measures the degree of inversion. is (for most transitions) smaller
for the nascent rotational distribution (A.11). This is due to the fact that, as distinguished from the case of ther-
mal rotations (A.9), the nascent rotational distributions at different vibrational manifolds do not ‘overlap’ each
other.

The threshold (zero gain) temperatures shown in fig. 5, are determined by (A.10) in the limit of 7| —+<o.
Hence

T = AEH MR (- NEJE+3In [(E - EME - E, DI} (A.1d)

Note that (A.14) is more general than AE,;(0)/AE = Ty,/T, in the sense that when several vibrational levels are
involved T,, (but not 7)) is a function of v.

Appendix B: Funneling

The simplified laser model employed in this paper rests on two central assumptions. First, rotational energy
transfer is fast enough to ensure complete rotational relaxation before the start of the laser pulse and to prevent
‘hole burning’ in the rotational distributions during the pulse. Second, vibrational relaxation is sufficiently slow
to ensure that during the pulse the vibrational populations are modified only because of the radiative transitions.
At the start of the luser pulse the vibrational distribution is that of the nascent products, i.e., it is usually ‘highly
inverted’ and T is negative for most P-branch and few R-branch transitions, fig. 3. Since the rotational distribu-
tions (in all vibrational manifolds) are thermal, the inversion (and the gain) is high for the low P(J = J + 1) transi-
tions. They are the first to reach threshold and to start lasing. [P(J ~J + 1) always overcomes (and hence, quen-
ches) the R(J = J — 1) transition.} Due to lasing the vibrational populations are continuously changing and the
general trend is to decrease P(v)/P(v — 1), or, in terms of (29), T, * is continuously increasing. Therefore, as
time progresses, the lasing condition (29) can only be fulfilled for continuously increasing values of J. The fast
rotational relaxation ‘funnels’ the rotational populations and the laser radiation towards higher and higher J.
This description was suggested by Berry [17] in order to explain the temporal evolution of the lasing transitions
in the HF laser. The thermodynamic considerations presented in section 3 can provide a rough idea about the
rotational levels from which the bulk of the radiation takes place. It should be stressed however that our consider-
ations are subject to the validity of the lasing mechanism suggested above®.

* It should be also mentioned that the phenomena of progression of the laser pulse toward high J may, sometimes, be the result of
a different mechanism. If there is no heat bath, e.g., the buffer gas pressure is low, and heat conduction to the walls is negligible
the lasing molecules are warmed up by the energy released in the pumping reaction, This leads to a temperature rise accompanied
by an increase in J of the highest gain transitions (30,31{.



3384 A. Ben-Shaul et al./Chemical lasers
The energy change associated with the passage from the lasing to the post-lasing stage is E,
E= 23 [PL(v) - Pp(v)] E,,, (8.1)
v

where, at least in principle, the post lasing distribution may be identical to the thermal product distribution®.
For the laser model just described, E can also be expressed as

E= Zix@) (E, ~E,-1), (B2)
where

x@) = 2x@) = I [P0 - P ). ®3)
X(v,J) is the number of photons emitted from the v,J level (per mole) [see (41)]. x(v) is, therefore, the number of

photons emitted in the v —+ v — I band (per mole) The second equality in (B.3) accounts for cascading from higher
to lower vibrational levels.

The light emitted as laser radiation, i.e., the work, is given by (section 4)

W=E—TASV=ZJ>x(u,J) (E, —E,_y +Ef0) ~ Egey(o— DI, (B.4)

where AS, =S| — Spy, (or S, — St), and only J +J + 1 transitions are considered. From (B.2) and (B.4) we ob-
tain

7AS, = 21 x(wJ) [Eyay (0= D)~ £ @) (B.5)
In the VR model
Epg (=1 —Ef)=2B,(J + 1) +a,(J + 1) (J +2). (B6)

In order to estimate the ‘average J* from which lasing transitions will take place, we approximate (B.5) by replac-
ing every B, by B, (i.., B, for v = 1), and neglecting the second order correction in (B.6). (Note that due to cas-
cading the v =1 ~ 0 band is usually the most intense one.) Thus

Jib= Zix(u,l) ¢ + 1)~ TAS, 28,. (B.7)

Since B,, decreases with v, TAS, /2B, is a lower bound on (/ + I).
Table 5 presents estimates of {J) for the chemical lasers pumped by reactions I—IV, for which experimental
data exist [17]. Since, as mentioned before, the post lasing distribution is somewhat artificial, we have taken
two estimates for AS,; AS} (= Sy, — Spp with a = 0.1 (see appendix C) and ASm =SL = St-Jmp. © VRT/2hcB}—%
is the most probable rotauonal level at the buffer gas temperature, T = 300 K. Jc‘p indicates lhe range of J values

over which P-branch transitions were observed experimentally. It is seen that both estimates of (J) fall within this
range.

* The values shown in figs. 6— 11 rep. esent only one possible choice. The definition of the post-lasing distribution is somewhat arbitrary.
See appendix C.
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Table 5
The rotational distribution during lasing
1) (2)
as vy as? (e Dy Uiz Jexp Jmp.

F+Hy ~HF+H 1.5 2.2 3 5 4-11 2
F+Dy ~DF+D 1.6 2.3 7 10 4-14 3
F+HD—~HF+D 1.9 26 4 6 4-11 2
F+HD—~DF+H 1.9 2.7 8 12 5-13 3

Appendix C: Explicit algorithms for the energy and entropy at different stages

In this appendix we present the explicit expressions used to calculate the entropies and energies of the various
stages illustrated in figs. 1 and 6—11 and tables 1-5.

The stacas considered are: 1) Thermal reactants: atoms A and mo!

a1l al.usua VUMIIUVILVU dlw. \l] A3lW3111Q) IvawiAtito, avwvill a1 LR A ll‘le BC lllnl 'hp nl' h"' nnf rham.ca!

ecules
equilibrium at temperature 7. (2) Nascent products; the products of the A + BC - AB + C reaction before any
relaxation took place. (3) Lasing products; the vibrational distribution is assumed to be the same as for the nascent
products but the rotational distribution of the AB molecules and the transiational motions of AB and C are taken
to be thermal, at the heat bath (buffer gas) temperature 7. (4) Post lasing products; the products at the end of the
laser pulse. (5) Thermal products; molecules AB and C in thermal equilibrium at temperature T. (6) Heaied pro-
ducts; the products at the temperature T corresponding to the same average energy as the nascent products.

The center of mass motion is not modified by the reaction. Since in the thermal reactant stage the center of
mass motion is thermal it will remain thermal throughout the passage from the thermal reactants to the thermal
products. Thus, with the exception of the last stage (heated products), we shall disregard the center of mass mo-
tion from our considerations.

The energy distribution in each stage can be characterized by the probability distribution function (pdf),
P(E,v,J), where Ep is the relative translational motion of the atom—diatom pair (A+BCor Ab + C),vis the
vibrational state of the diatom and J its (2/ + 1)-fold degenerate rotational level. Keeping in mind that £y isa
continuous variable, then P(E}, v,J) dE7 is the probability of finding an atom—diatom system with relative trans-
lational energy in the range Ex, £1 + dE and with the molecule in the v,J level. In certain cases it is more con-
venient to represent the state of the system by alternative (but equivalent) pdf’s. For example, in characterizing
the nascent products of highly exoergic reactions (typical for chemical lasers), we shall see that P(E,v,J) is a more
convenient pdf. Here, E = E + E, + E;(v) is the total energy of the triatomic (atom + diatom) system.

Except in the stage of the nascent products the translational, rotational and vibrational motions are independ-
ent and P(E, v,J) will be used. The entropy S and the energy £ of the system are given by (7,16,32]

s=SlEg,vd) =—R [ dEr 22 23 MEp,v) In [PEr, v)lpEr. o), GR)
0 M
E)= of dEr T T PEQ) By +E, + E )] €2)

The square bracket on the Lh.s. of (C.1) serve to denote the summation variables; they do not contain functional
arguments, The density of states factor p(Er, v,J) results from the continuous character of the translational mo-
tion. It is given by [7, 32]

p(ET’ Uf’) = (21 + l) pT(ET)r (C'3)
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where
pT(ET) = (2”2 ﬂ2ﬁ3)—l u3/2 E_l[]l (C.4)

is the density of translational states (per unit volume) corresponding to the relative atom—diatom motion with
reduced mass p. [For reactants p = ug = mampc/(my + mpe), dp = mpap + e [(mpg +mc).]
When the three types of motion are not coupled to each other we have

P(E1,v,0) = P(Ex) P(v) P(J). (C.5)
Hence, the entropy and the energy can be written as sums of three independent contributions [8}

S=S[Eg] +Sp] +5W1, (C.6)

SIEr) = — R [ 4By P(Eq) In [P(ET) o7 (B, €7

S[v] =— R 22 PQ) In P(v), (C.8)

S =—R ‘JE/P(J) In [PUY/2T + D]. (€9)

and similarly

EY=(ED +(E) +{Ep. (C.10)
In fact, due to the v-dependency of E;(v), there is always some coupling between the vibrational and rotational
motions; i.e., P(J) in (C.5) should be replaced by P(Jlv), and S[J] in (C.6,9) by S[/lv](see below). However,
this coupling has only a minor effect on the rotational entropy and energy. Thus, while in all computations (A.1)
was used for E,,, we have sometimes taken £ (v) = B;J(J + 1), where B;; is an averaged rotational constant (see
below).

When tle total (triatomic) energy E is sharply defined (as in stage 2, below), it is more convenient to employ
the representation

P(E,vJ) = P(E) P(WIE) = P(E) P(VIE) PUIVE), (C.11)
where P(uIE) and P(J[uE) are conditional pdf’s normalized according to (A.7) and (A.12), respectively. The en-
tropy is expressed now as ’

v* J'w)
S=SIEvJ} =-R [dE @0 1?;(7, PEw D pEv,D], (C.12)

where p(E,v,J) is identical, apart from the notation, to p(E-,v,J). It should be noted that both representations of

S lead to identical results; this will be shown explicitly for the nascent products.
The density of states can be factorized into [7,8}

o(E,v,J) = p(E) Po(WIE) = p(E) Py(uIEWPG(NE), (€13)

where

v J
AE) =20 20 plEpJ). (C.14)
v=0J=0

Py(WIE), etc., are normalized (conditional) density of states functions whose definitions follow from (C.13) and
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(C.14). From (C.3), (C.4), (C.13) and (C.14), we obtain

Po(v,JIE)=N(2J +1) [E - E, — E,;(v)] /2, (C.15)
where N is a normalization factor (in the RRHO approximation N = 15 h2c2w.B/4E5/2). Similarly
J*w)
PoIE) = 23 Po(wIE) (C.16)
v* -1
~(E-E)? B! ( Z()) (E-EN 8] ‘) .17
=~ (5/2)hcw, (E - E, )2 ES, (C.18)
and
PoUIvE) = po(uI|E)Po(uiE) = N'(E ~ E, — E;)) P I(E - E,)%2, (C.19)

where (C.17) and (C.19) result from treating J as a continuous variable while (C.18) is the (classical) RRHO ap-
proximation where we take B, = B, and integrate instead of summing over v. (Note that.dv = dE [hicw,.) Po(VIE)
and Py(wWIE) are recognized as the pre-exponential factors in (39) or (A.6) and (26) or (A.11) respectively. Sub-
stitution of (C.11) and (C.13) into (C.12) yields

S[E,vJ] =S[E] +SVE] + SPWE], (C.20)
where

SIE} = —R [ dE P(E) In [P(EY/o(E)], can

SWIE] = [4E PEYSIVIE) = ~R [4E PEY LS PIE) In [POIEVPAIEN] (C.22)

SYWE] = [ dE P(E) % PQIE) SIJIVE)

] J*
=—R [dE HE) f&o PQIE) E PUIE) In [PUIWE)/Pg (JWE)] . (C.23)

It can be shown that S[E] = 0 while S[vlE] <0 and S{/IvE] < 0. Only if P(V|E) = Py(vlE) we have S[ulE] = 0.
This is the case of a microcanonical distribution at any given E. Since in a state of thermal equilibrium every small
energy shell is microcanonically populated, then S{uvlE] = 0. Similarly S[JIvE] = 0 only when P(JIvE) = Py(JIvE).
The non-negative (zero only at equilibrium) quantities S{v|E] and S{J/IuE] provide measures of deviation from
equilibrium, they are called ‘entropy deficiencies’ [7,14,32].

We turn now to an explicit treatment of each stage of the cycles.

C.1. Thermal reactants

In this stage every degree of freedom is separately in equilibrium with the heat bath. Although the representa-
tion P(E,v,J) with (C.5)—(C.10) is convenient we shall first consider the P(E,v,J) representation to prepare the
way for the next stage.

We consider exoergic reactions and choose a common energy scale for reactants and products, with its zero at
the ground vibrational level of the products.
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The total energy distribution P(E), in (C.11), is canonical

Pr(E) = pr(E) exp {~ E/RT)/Qx, (C.24)
where
prlE) =0, for £ — E, — E,(u) < AD,,
= UZ; (I + 1) prg [E- ADg —E, —E[v)],  otherwise, (C.25)

where R symbolizes ‘Reactnats’. ADj > O is the exoergicity of the reaction (‘zero point to zero point’ difference)
and Qg is the partition function. py g denotes the Jensity of translational states of the reactants.

Qr= f PR(F) exp (— E/RT) dE = exp (— ADy/RT) Q1 R @y ROR R - (C.26)
0

The Q@ factors in the last equation are the partition functions for the (relative) translational motion of A + BC (per
unit volume), the rotation of BC and the vibration of BC, respectively.

Qrr = f dE prg (E1) exp (— E/RT) = (ugRT/21h2)*12, (c.27)
0

QrRr ™ ?(Zl + 1) exp (— Ej/RT} = RT[hcBg, (C.28)

Qur = 2 exp (— E,/RT)= [1 —exp(— hcwy /[RT)] -1, (C.29)

The expressions on the r.h.s. of (C.28) and (C.29) correspond to the RR and HO approximations, respectively.
By and wg stand for the rotational constant and the vibrational frequency of the reactant molecule.
As mentioned before, in equilibrium, P(WIE) = Py(wW/|E), hence S[w/|E] = 0 and it is easily seen that

S(EwJ| =S[E] =UDT + R 1n Qg = (&) +ERY+E ) + ADG)T + R[~ADG/RT +In (Q1 g Qg g Q) r)!
=S[£r] +Sfu] + S, (C.30)
where S{E1] =T +R In 01, etc. The resolution P(ET,v.J0) = P(ET) P(v) P(J) will also yield (C.30).
Since in thermal equilibrium
SiEr) = SY] > Slv) (C.31)

we can ignore the vibrational contribution to the entropy of the thermal reactants.

In the subsequent stages, however, the changes in the vibrational entropy are the most relevant ones, and will
not be neglected.

For the energy of the reactants we have

(E)=~ AD, +1RT, (C32)

where the average vibrational energy of the reactants was neglected (among all the molecules involved in reactions
I—-V1 only CO and CS have non-negligible vibrational energies at ordinary temperatures).
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C.2. Nascent products

Since the total energy is conserved in the reaction, the nascent products will have the same total energy as that
of the reactive reactants. (The reactive reactants are those which can pass over the activation barrier.) Thus, A£E)
of the nascent products is determined, in principle, not only by AE) of the thermal reactants but also by the re-
action rate constant k(£). However, for highly exoergic reactions with low activation barriers, (like reactions I-V¥)
which take place at ordinary temperatures we have £, € AD =~ E and it can be assumed that P(E) of the reactive
reactants is sharply (with respect to £) peaked at £ = ADj + E + 3% RT. Making the additional assumption that the
shape of P(E) of the reactive reactants (and therefore also P(E) of the nascent products) is similar to that of the
thermal reactants, we obtain

PW(E)=Pg(E- E)), (C.33)
with Pp (£) given by (C.24), (N denotes “Nascent’). Hence

SNIE] = =R [ dE Py(E) In [Py(E)pp(E)]

0 (C.34)
=—R f dE PR(E - E))In [PR(E - E))pr(E - E)D} +R f dE P (£ ~ £,) In [op(E)/pgtE - EDL.
0 0

Changing variables from £ - £, to £ and noting that Pp(£) = 0 for £ < ADy, it is easily verified that the first term
is simply SR [£], the entropy of the thermal reactants.

The second term represents the entropy increase due to the fact that on the product side 1., and therefore the
density of states, is much larger. This second integral can be evaluated numerically. However, since Py (E) is nar-
row (its spread in £ is about RT) and pp(£) changes only slowly with E, the integral can be approximated by the
average value of the integrand. (The two procedures were numerically compared and good agreement was obtained.)
Since at ordinary temperatures the vibration of the reactants is essentially v = 0 then Py (E) « E312 exp (— E/RT),
and (E) = § RT. Thus, replacing the integral by the value of the integrand at £ = AD + £, + $RT yields finally

SNIE] = SR[E} + R In [pp(E)/pgr(ADgy +3RT)
= SR [E] + R In [(up/ug )32 (Br/Bp)(2/5 hewp) ES NG RT3, (C.35)

We have used here (C.14) (in the RRHO approximation), for pp (£ is large), and (C.25) for pp (only v=0is
populated).

An additional, negative, contribution to S[E,v,J] of the nascent products comes from the entropy deficiency
S[WIE]. This can be further decomposed into S[vlE] +S{JIvE]. All the reactions studied here can be characterized
by product vibrational and rotational distributions of the form of (A.6) and (A.11), respectively [7,12,17,27].(The
only exception is the unknown product rotational distribution in reaction VI for which we take (A.11) with 05 =0.)
Taking into account that the width of Pyy(£) is much smaller than £ we obtain

S[UIE] =~ STulE) = Ay + N {EY/E. _(C.36)
Similarly
SVIWE]} = SWE)= 0y +0y ESE - E). €37

Note that {f,) = (E)/E, is the average fraction of reaction encrgy which appears as product vibrational energy. For
reactions I-VI(E )/E =~ 0.7 and -\, = 5-8,
To summarize, Sy [EvJ] is the sum of the terms on the Lh.s. of (C.35), (C.36) and (C.37).
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The average energy of the nascent product is
En~A8Dg+E, +3RT. (C.38)

C.3. Lasing products

At this stage the translational and rotational motions have already been relaxed to the buffer gas temperature
but the vibrational motion is still non relaxed, i.e., P(v) is given by (A.6). We use now the resolution (C.5) with

P(Ey) = pp(ET) exp (- E4/RT)[Qy, (C.39)
PJ) = (2T + 1) exp (— Bz J(J + 1)/JRT)/QR, (C.40)

where Bj; is the averaged vibrational constant. In the calculations U was taken as the most populated vibrational
level. (From this point on we shail only deal with the products and the symbol P will be omitted.)
The entropy of the lasing products is

Sy =S[Eg] +S[v] +S[J], (c.41)
with

S[Ep] =EP/T+RIn@r=3R +R In @y, (C.42)

S} =¢ERNT+RInQg =R +RInQg, (C.43)

S[v] = -R ‘_430 P(v) In P(). (C.44)

Note that since S[v] and Sfvl£] are different quantities, S[v} is not given now by (C.36). (Furthermore S[vlE£] <0
while Sjv} >0.)
The average energy of the lasing products is given by

Ey SEDHEPHE) (C.45)
=$RT+(E). (C.46)
Note that (£,) > RT, for the lasing products.

C. 4. Post lasing products

Due to funneling, lasing does not terminate when all P(v) are equal. Ignoring V—R,T relaxation and spontaneous
emission, the post lasing vibrational distribution (P(E'p), P(J) are thermal) is determined by the cavity (Schawlow—
Townes) threshold condition, We employed here an approximation suggested elsewhere {17]. There, it was as-
sumed that at the end of the laser pulse

Pv)=C o, a<1,C0=(1 —a)/(1 —a¥**1), (C.47)

where v* is the highest v populated initially by the reaction. Note that if a < 1, P(v) is, to a very good approxima-
tion, 2 Boltzmann distribution

P)=a"(l —a) (C.48)
with an effective vibrational temperature 7', defined by
a=exp (— hcw, /RT,). (C.49)
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Following [17] we assumed a = 0.1 for reactions I~V For the 0 + CS - CO + S reaction we have simply taken
a = 0.82, so that (£} — Ep, )fEp = 0.38, which is the efficiency reported for the CO laser in [33).

It should be emphasized that the post lasing stage is somewhat artificial, since towards the end of the pulse,
vibrational relaxation is always significant.

C.5. Thermal products

In this stage the vibrational distribution joins the rotational and translational modes and is at equilibrium at
the buffer gas temperature 7. (P(v) is given by (C.48) and (C.49) with T, = T.) For T= 300 K both S{v] and
(£ are negligible and we take

ST =S[ET) +S[.]] ='§R +RIn QTQR’ (C.SO)
Ep ~3RT, (C.51)

where Q- is the partition function of the relative translational motion of AB + C and Qy is the rotational parti-
tion function of AB.

C.6. Heated products

The heated products stage corresponds to the maximum entropy distribution discussed in section 2. Namely, a
canonical distribution whose average energy is equal to that of the nascent products. Two kinds of *heated pro-
duct’ distributions are considered in fig. I | and the tables.

In the first place a distribution describing the hypothetical situation where all the product. degrees of freedom
{except the three associated with the center of mass motion of AB + C), are in thermal equilibrium at a temperature
T*. The value of T* is determined by the requirement that the average energy of the ‘heated products’ will equal
that of the nascent products (excluding the center of mass energy). Using (C.38) and the HO model we find

Epx =Dy +E, +SRT =3RT™ + licwp exp (~ Ilch/RT*)/[l — exp (— hcwp/R 1. (C.52)

Since 7* is generally of the order of 103~10% K, i.e., icwp = RT ™, the vibrational contributions to the energy
and the entropy cannot be neglected.
The entropy of this stage is given by

Spx =R + RIn Qp(T™) Qp(T™) + RCEYT* — RIn [1 — exp (~ hcwp/RT], (C.53)

where O(T™) and Qg(T ™) are given by (C.27) and (C.28), respectively with up, Bp and T* instead of ug , By and
T, respectively. (€ ) is equal to the second term in (C.53).

Note that the situation described in this stage cannot be achieved experimentally, because the center-of-mass
motion cannot be kept at the lower temperature T. However, as was emphasized in section 2 Sy« and Ey¢ pro-
vide useful bounds on the efficiency of chemical lasers. In fact, we may also consider a more realistic process by
allowing the center of mass motion to exchange energy with the relative and internal motions of AB + C. In this
case the average energy of the heated products, including the center of mass energy, will equal that of the nascent
product, i.e.,

Ex =ADg + E, +4RT= ART +hcwp exp (— hewp/RT)[1 — exp (— hewp/RT)) (C.54)

where, to account for the center of mass energy, ¥ RT and 3RT were added to the Lh.s. and r.hus. of (C.52), re-
spectively.
The entropy of these heated products is the sum of (C.53) with T* replaced by 7* and

Sg(cm)=3R +R1n O (D). (C.55)
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where Q. is an ordinary translational partition functions of a mass m =, + mp + mc. As the bounds on
the efficiency associated with S+ are more significant than those associated with Sq , we have shown S5 only
in fig. 11. For all other reactions only S+ was computed.
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