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Statistical models which yield rate expressions involving the asymptotic channel states are classified according to thiee 
main characteristics: (i) The ensemble in which framework the basic statistical assumption is formulated. This assumption 
states that the initial and final states of the collision are, partly or completely, independent. (ii) The “measure in phase” 
associated with the product state distriiution. (iii) The extent to which dynamicat considerations are incorporated into the 
&deI. In this connection the discussion wih be confmed to the effects of angular momentum restrictions. The diversity in 
statistical models is demonstrated by comparing the product vibrational and rotational distributions obtained from several 
models for atom-diatom exchange reactions. Numerical results are presented for two cxoergic reactions which involve dif- 
ferent mass combinations. Particular attention is paid to a comparison between the objectives, assumptions and the final 
expressions for product state distributions corresponding to the so called phase space theory on the one hand and the prior 
(zero surprisal) limit of the information theoretic approach to moIecular dynamics on the other. 

I. Introduction 

Many theories of molecular [l-4] and nuclear [.5, 
61 collisions employ (various) statistical assumptions 
to describe collision processes and to predict their 
outcomes. In molecular physics the main success of 
these theories is in the area of large molecules where 
many degrees of freedom are involved so that .detailed 
dynamical calculations are impractical while statistical 
approximations seem reasonable (see, however, e.g. 
refs; [7,8]). Since detailed calculations are difficult 
to pitfo~rm, partly due to .#te lack of accumte potential 
energy surfaces, even for small systems, such as atom- 
diatomic molecule, various statistical models were 
formulated in order to account for at least some as- 
pects of the coilision [g-41]. For example, the sym- 
metric product angular distributions observed in certain 
bimolecular reactions can be interpreted as the result 
of intermediate complex formation followed by 
“statistical” breakdown probabilities [3,4,9-I 1,19, 
271. The statistical models are less successful in pre- 
dicting, for instance, the product vibrational and 
rotational energy distributions in exoergic chemical 
reactions; especially in those ending with population 

inversion. In such cases one may use the statistical 
models as standards against which actual results can 
be compared [ 181 or as bases for the development 
of more elaborate models. In the information theoretic 
approach to molecular collision dynamics [42--721 
such standards can serve as the prior distributions 
(rate constants, cross sections) used in surprisal and 
entropy analyses of experimental data. When supple- 
mented by appropriate dynamical constraints the 
prior distributions play a major role in the predictive 
scheme (synthesis) based on the maximum entropy 
principle. 

The central assumption of the statistical models is 
that past and future with respect to the collision 
event are partly or completely independent; subject to 
symmetry and conservation requirements. The sym- 
metry requirements refer in particular to microscopic 
reversibility while the conservation rules concern the 
total (center of mass) energy E, total angular momen- 
tum K and the normalization of probabilities. Approxi- 
mate dynamical information, e.g. on the range of 
allowed anguIar momenta, is usually incorporated 
into the mod& in order to increase their dynamical 
character. The concepts of intermediate, “long lived” 
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(see, e.g. refs. [I-4, 7-1 I ] ) or “strongly coupled”. 
[ 14-191, collision complexes play important r’ resin 
various statistical theories. They serve to account for 
“quasi-equilibrium” (‘energy randomization”) [l-d, 
7,18,33,34] or “strong coupling” [4,11,14-191 
postulates on the basis of which the neglect of corre- 
lation between reactants and products can be justified. 
In the traditional formulations of transition state theory 
a quasi-equilibrium is assumed to exist between the 
reactants and the systems crossing the activated com- 
pies hypersurface (see e.g. refs. [4,7,37] ). Recent 
work [36,37j (utilizing variational principles to locate 
the transition hypersurfacc, see e.g. refs. [12,38-411) 
indicates that transition state theory is appropriate 
to a “direct”, as opposed to “complex”. reaction 
mechanism, whereas the well known [ 14-271 phase 
space theory of’light, Pechukas [14-191 and 
Nikitin 129,211 (LPN) is only applicable to reactions 
proceeding-via the formation of long lived complexes. 
This interpretation of the phase space theory is some- 
what different from the one suggested in some of its 
original formulations [14-191 where a strongly 
coupled complex defined by the region of strong in- 
teraction in configuration space rather than by its 
lifetime was assumed to be formed. 

To conclude this background survey it should be 
mentioned that the LPN theory, to which considerable 
attention will be given in the following, can be derived 
as a limiting case of other statistical-dynamical ap- 
proaches. For example. it can be viewed as transition 
state theory for “loose complexes” [37,41]. Also, 
and this is of greater interest in the present context, 
with the aid of a random phase type approximation 
the phase space model can be derived through formal 
assumptions on the structure of the scattering matrix 
[4.11,19,1-21: similar to those made in the statistical 
theory of rotational excitation [ 131. 

The main concern of this paper is the statistical, 
rather than the dynamical, aspects of statistical- 
dynamical approaches to small collision systems. We 
shall only consider models that lead to rate expressions 
(e.g., cross sections or product state distributions) 
involving the asymptotic reactant and product states, 
or equivalently the phase space regions corresponding 
to the asymptotic channels_ Thus, many (interesting) 
questions regarding, for example, the behaviour and 
structure of the colliding system at intermediate. 
separationscare beyond the perspectives of the present 

discussion. Yet, even within the limited scope of 
“asymptotic channel statistical approaches” there is 
room for diverse, actually an infinity of, different 
models. 

The general purpose of this paper’is to characterize 
the various aspects of diversity in a systematic fashion. 
Particular attention will be paid to a comparison be- 
tween two familiar rate expressions. Namely, the cross 
sections and related quantities obtained in the phase 
space theory of Light, Pechukas and Nikitin [ 14-281 
and the prior distributions appearing in the informa- 
tion theoretic approach developed by Levine, Bernstein 
and others [42-723. Unlike the phase space theory 
the prior distributions do not contain any dynamical 
information and therefore do not attempt to predict 
experimental results. In fact, they are meant to re- 
present the dynamically “least biased” (or “most 
random”) distributions [42-501. As such they can 
either be used as standards for entropy-surprisal anal- 
yses or else as starting points in the predictive scheme 
(synthesis) which constitutes another direction of the 
information theoretic method. Although the LPN and 
the prior distributions involve different statistical 
ensembles (E, K versus E) and different measures in 
phase space (“uniform” versus “flux”), one can also 
observe certain similarities. We shall elaborate upon 
these differences and similarities within the general 
classification framework of statistical models presented 
in the following sections. Among the special models 
considered, we have included an extended version 
OF the prior distribution which explicitly includes the 
conservation of angular momentum (i.e., appropriate 
to the E, K ensemble). As specific examples illustrating 
the consequences of different statistical assumptions, 
we have chosen the Cl + HI + HCI + I and the H f Cl2 
+ HCl t Cl reactions. 

Two more remarks should precede the discussion. 
First, some points related to the objectives of this 
paper have already been dealt with in the literature 
[ 11,27,43,45,49-551 (to a greater or lesser extent). 
In our opinion, however, no clear distinctions have 
been provided. Hence the motivation for this paper. 
Second, for reasons to be clarified throughout the 
paper, the presentation of the various models and the 
analyses of their physical significance will not be 
accompanied by judgements or evaluations. 

The paper is organized as follows: The basic defini- 
tions and the general structure of statistical models 
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are presented in the next section. Different choices of 
statistical ensembles, measures in phase space and 
dynamical constraints are considered in sections 3,4 
and 5, respectively and tested for two specific exam- 
ples in section 6. Section 7 provides some remarks on 
the derivation based on the assumption of complex 
formation and the beginning of the derivation based 
on formal assumptions on the S-matrix. Section 8 is 
devoted to a discussion. In appendix A we list the 
elementary state representations and density of state 
expressions relevant to sections 2-8. Appendix B 
supplements section 7 in providing the details of the 
formal derivation. 

2. The statistical assumptions 

Many different statistical approximations are con- 
sistent with the basic framework of no correlation 
between reactants and products subject to symmetry 
and conservation rules. Diversity is possible, and exists, 
in four main respects: (1) the “ensemble”, r, within 
the framework of which the assumptions are made, 
(2) the “measure in phase space (or, Hilbert space)“, 
m(n; I’), associated with the product state, n, (3) the 
extent to which dynamical considerations and infor- 
mation on the potential energy surface are incorporated 
into the model, (4) the absolute total value, Q(r), of 
various rate variables (rate constants, cross sections, 
yields). We shall elaborate on these points, mainly on 
the first three, using as a specific example the atom- 
diatom collision 

A t BC(n) + AB(n’) + C[or A f BC(n’)] . (1) 

Here n and n’ denote the, completely (i.e. n = u, J, 
mJ) or partially (e.g. n = u) specified, internal state 
of the reactant and product diatoms. Whenever 
necessary we shall use a channel symbol, [Y, to denote 
the chemical composition, LY = A + BC or AB + C. We 
assume that the total collision energy does not suffice 
for the formation of reaction products other than an 
atom and a diatomic molecule (e.g. ionization or 
dissociation products) and that the reaction is elec- 
tronicalIy adiabatic. 

Our attention will be focused on two ensembles: 
rl = E, K.and r2 = E. By Cz = E we refer to a “micro- 
canonical” ensemble of collisions - all with the same 
total energy E (ii the cm. system). f’t = E, K is a 

more specific ensemble, I’t C I‘,, representative of 
collisions with well defined total energy E and total 
angular momentum K. (Averaged, not summed, over 
the 2K f I equivalent values of MK.)-The “canonical” 
ensemble I’3 = T, (r2 C lY3), which is a Boltzmann 
superposition of microcanonical ensembles will 
briefly be mentioned in section 8. To ensure consistency 
with microscopic reversibility the statistical assump- 
tions will be made on quantities which are symmetric 
with respect to interchanging cuz and cu’n’. These are, 
for example, the averaged (elementary) state-to- 
(elementary)-state transition rates W(oliz, cu’n’; r-1, the 
yield function I’(twz, cu’n’; I’) [4,42,73] or the S and 
the T matrices. Elementary states are defined in appen- 
dix A. In the I’ = E ensemble fi and Y are uniquely 
related to each other as well as to the detailed rate 
constants k(n + n’; E) and cross sections o(n + 12’; E), 
through eq. (2) below [4,42,49,73,74] . We now extend 
these relationships in order to define k(n + n’; r) and 
u(n+n’;r)forI’=E,K(forr=Tseerefs.[73,74, 
541). The implications of this generaIization are con-. 
sidered below. We thus write 

k-t I+, n’; r) 

= ~(12; r)p(ti; r)W(i2, H’; r) = p(tz; r)k(t2 4; r) 

= ~,,p(lt; r)o(t2 --f 12’; r) = u~~~P(~z’; r) o(t2’ -+n; r) 

= p(d; r) k(z2’ + tz; r) = ~(12; r) p(z2’; r) wg, TV, r) 

= h-l qzi; ~7; r) , (2) 

where the channel symbols were omitted for the sake 
of brevity. In eq. (2) which is also the statement of 
microscopic reversibility p(rz; C) is the density of 
states, including the degeneracy of n, of the reactants 
in the l? ensemble (appendix A). rllr or in full notation 
U a,n is the relative initial velocity 

U qn =NJJl,) II2 = [2(E - E&/pa] ‘I2 , 

where ea is the relative translational energy, jam is the 
reduced mass of the colliding species and Elr,,* = Ea 
t E,(u) is the internal energy. E, is the ground state 
energy in channel CL measured on a common energy 
scale for all channeIs. (The channel symbols will be 
omitted until we arrive at sections 5 and 6.) Note that 
the equalities involving u are valid only when u,, u,. 
are well defied, that is when n = u, J or n = u, J, MZJ 
but not when n = u. 
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From the definitions of O(n, n’; f’) and p(n; l?) it 
follows that 

X W(n, n’; E, K) , (3) 
where p(n; E, K)/p(n; E) is the fraction, in J? = E, of 
all reactant states with total angular momentum K, 
and arbitrary MK. (Explicit expressions for 0 are 
given in appendix B.) Similarly 

Y(n,n’;E)= $ (UC+1)Y(n,n’;E,K). (4) 

Now, accarding to (2) (3) and (4) 

and similarly for the rate constants. We note that (S) 
differs from the conventional resolution ofthe cross 
section into angular momentum components [4,1 I] 

c@-+n’;E)= ?(2fM)oK(&;E). (6) 

The difference between (5) and (6) is entirely formal 
and corresponds (see section 7 and appendix B) to 
using different representations of the S-matrix. How- 
ever, to avoid confusion we shall base the discussion 
on the yield function which besides being symmetric 
is uniquely resolved, according to (4). 

The basic statistical assumption, namely, that the 
product state distribution p(n’; I’) is independent of 
the reactant state n can he expressed in one of the 
following alternative forms 

‘vy(n, n’ ; r) = r(n; r) r(i; r)/ Y(r) (7) 

=Y(n;r)~(fi’; r)=P(n;r)Y(d;r) @I 

= Y(r)p(n;r)P(n';r), (9) 

where 

fly; r) = Y(n; r)w(r) , 
and 

(W 

Y(r)=nq, qn,iI’;r)= F we)= G w;r). 
> 01) 

The quantities appearing in (7)-(11) have the follow. 
5- 

ing significance. Y denotes the statistical approximation 
of the yield function. Y(n; r) represents both the.rate 
of formation of the state n and the rate of its disap- 
pearance. It is related to the cross section and the rate 
constant via 

=p@;E)k(n-,;E) 7 (12) 
where o(n + ; A’) and k(n + ; E) are the total cross 
section and rate constant for reactants in n. p(n; S’) and 
p(n’; I‘), both defined by (lo), represent the overall 
collision probability of state n and the product state 
distribution respectively. They are related to each other 
and to the “reaction matrix” [54,55] P(n, n’; I’) = 
Y(n, n’; I?)/Y(lJ through 

~P(ndr)= Fp(n;r)= $iP(n’;r)= 1 , (13) 

Thus, the statistical approximation (7) is equivalent to 
the statement that the reaction from initial state n and 
the formation of product state n’ are disjoint events, 

fin, n’; r ) = P(n, n’; I?) = P(n; r)F(n’; r) . 04) 

If a collision complex is assumed to bk formed then 
p(n; I’) and p(n’; I’) can be interpreted as the probabili- 
ties for complex formation (from n) and decomposition 
(into n’). Finally, recall that we have used an abbreviated 
notation, omitting the channel notation 01. The full 
notation obtains by replacing R by CT, n and n’ by 
or’, n’ everywhere in (7)-(14). 

3. The statistical ensemble 

One of the immediate consequences of (7)-(o) or 
(14) is that independent (simultaneous) statistical 
assumptions in different ensembles may lead to in- 
consistencies. Consider our two basic ensembles rI 
= E, K and I’2 =E and suppose the statistical assump- 
tion (7) is made in rl. Thus 

&n,n’;E)= ~(X+l)&r,n’;E,K) 



A. Ben-Shaul/nxory of chemica! reactions 34s 

where (using general notation) ?(zz, n’; I’z) is the 
resulting expression for the yield function in I?:! when 
the statistical assumption (7) is applied to the yield 
function in the partial ensemble I’l. From (15) we 
see that in g$neral (except under a certain condition, 
see below) P(zz, n’; r2) + ?(zz, n’; f’z) where the latter 
quantity represents the yield function when the statis- 
tical assumption (7) is applied directly to Y(zz, n’; l?z). 
Thus when stating, for example, that a chemical re- 
action “behaves non-statistically” it is necessary to 
specify the ensemble in which framework this behavior 
is displayed. Numerical examples to illustrate the dif- 
ferent results obtained from “similar” statistical assump 
tions in different ensembles are given in section 5. The 
term “similar” refers to using the same type of a 
measure in phase space, section 4, and the same type 
of dynamical restrictions, section 5. These two factors 
determine the explicit form of Y(zz; F) and conse- 
quently of Y(rz, n’; I?). 

In order that both Y(zz, n’; E, K) and Y(zz, n’; E), 
or more generally Y(rz, n’; r,) and Y(zz, n’; l??) where 
rl C r2, will fulfil the $asic statistic+ requirement, 
(7) it is necessary that Y(zz, n’; E) = Y(n, iz’;_E) or 
explicitly, cf. (IS) 

WE) Y(n’:JS)= 
Y(E) 

c QK * 1 ) y(lz; -5 K) Y(rz’; E, K) 
K W,K) * (16) 

Using the general relationships [cf. (4) and (1 l)] , 

Y(zz;E)= F(XC+ 1) Y(zz;E,K), (17) 

Y(E)= pt 1) Y(E,K). (18) 

we tind that the condition for the existence of (1 G) 
is that for every zz’ (or IL) and K 

P(n’; L, K) = Y(zz’;K K) - YCY _P($;E) . 
y(E, K) 

(19) 

The significance of (19) is that the product state dis- 
tribution in I‘, = E, K is independent of K. On the 
other hand, if P(zz’; E, K) depends on K the znicro- 
canonical yield is not strictly statistical, in the sense 
that (7) is not Mfilled for f’ = 1;. Therefore WC say 
that the comcrvalio~i ofazipulur mo~i~c~uunz K inrro- 

duces correlation, or “relevance” [47--SO], into 
Y(n, n’; E). If K were not a conserved quantity then 
we would have to write Y(& n’K’; E) instead of 
Y(n. zz’; E, K) etc., and replace every sum over K by a 
double sum on K and K’. In this, hypothetical, case 
(16) would trivially be satisfied. It will be shdwn be- 
low that if (19) is fulfilled then the measures in phase 
space in J?t =I?, K and J?z= E can not be of the same 
type. 

4. The measure in phase space 

So far we have not specified the form of Y(n; r) 
w&ich, via (7), determines the explicit expressions of 
Y(n, n’; l?) and related functions such as the product 
state distribution P(zz’; I’). Being an essential com- 
ponent of the statistical model Y(n; f’) is usually 
chosen as some “physically reasonable” function of 
zz in the phase space region available to the various 
collision products (including the reactant channel)_ 
Yet, since the term “physically reasonable” is not 
uniquely defined the choice of this function, also 
known as the “measure in phase space” [15-181. 
may differ from one statistical model to another. We 
define the measure in phase space, oz(rz; r), in the gen- 
eral form 

Y(tz; r) = Q(r)m(zz; r) . 00) 

The, meanwhile unspecified, proportionality factor 
Q(l’) determines the absolute value 01’ the yield (rate 
constants, cross sections); It does not appear in nor- 
malized quantities such as P(zz’; T’). The fourth respect 
of diversity in statistical znodels mentioned in section 
2 concerns the specification of Q(r). see below. We 
de tine 

M(r)= T;;~~z(K r-1, (21) 

so that, cf.(l I), Y(f) = Q(r)M(f’). For (7)and (!O) 
we obtain, respectively 
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i&E) = p(n;E) 

mf,&; E, K) = unp&; E, K) = N&z; E, K) . (25) 

Here p(n; E) is the density of states of the molecular 
collision system, triatomic in the case of (l), at given 
E and n. pd(n; E, K) is the modified density in r = E, 
K obtained by imposing dynamical restrictions, (sec- 
tion 5) on p(n; E, K) - the density of states at given 
E, K and n, see appendix A. Both m&z; E) and 
m&z; E, K) have a simple physical meaning. Since 
these two measures involve different statistical en- 
sembles and different extents of dynamical input it 
will be instructive to first generalize (24) and (25) and 
only then consider their meaning. To this end we 
postpone the discussion [formally, by deleting the 
symbol d from (25)] about the effects of dynamical 
restrictions on p(n; lY) to the next section, and define 

m&r; f) = P(& 0, (26) 

m&z; r) = U&Z; r) = N(n; r) . cw 

These two functions will be called, the “uniform” 
(“volume , ‘* “microcanonica!“) and the ‘Ylux” measures, 
respectively. In appendix A it is shown that p(n; f’) is 
proportional to the number of elementary states, or 
equivalently to the volume in phase space, of a 
(triatomic) system in internal state n in the I? ensemble. 
in other words, using the first measure in a statistical 
model is equivalent to assuming that all eZemen&v 
states of the triatomic system are equally (or uniformly) 
probable [42-52,73]_ Hence, the product state distri- 
bution, (IO), corresponding to (26) 

P&Z’; r) = ITZ~(IZ’; r)/hqr) = p(12’; r)/p(r) , (28) 

is proportional to the phase space volume occupied 
by n; p(r) = zlp(n’; I’). Setting r = E in (28) we ob- 
tain the microcanonical prior distribution [40]. The 
physical reasoning for choosing (28) is that in the 
absence of any information al! states of the same 
energy are equally probable; in analogy to the “a- 
priori equal probabilities” postulate of statistical 
mechanics [75] and in accordance with the principles 
of information theory [76]. The same type of argu- 
ment and consequently the same type of measure, 
m,,d(n; E, K) f pd(fi; E, K) (i.e. uniform) was as- 
signed to the complex breakdown probability in. 
Light’s original version of phase space theory [ 141, 

(see section 8). Using a different approach Eu and 
Ross [30] arrived at essentially the same conclusion. 
Horie and Kasuga [35] used a uniform measure to 
explain (successfully) their exRerimentaI results 
on electron impact induced dissociation of H,O. A 
uniform microcanonical measure appropriate to many 
particles in a finite volume (the interaction volume) 
was employed by Fermi in his statistical theory of 
nuclear reactions [77]. Other authors in this field 
studied the effects of angular momentum on this 
measure [78]. 

The second measure (27), being the product of a 
density (of states) and a velocity can be regarded as 
the phase space “flux” of the group of trajectories 
leading to (or originating in) the internal state n. It 
has been shown [4,11,22] (see also appendix A), that 
~W(LJ, J; E, K) is the number of combinations of 
orbital 1, and rotational,& angular momenta consistent 
for a given J = !JI with a total angular momentum K. 
Thus N(n; E, K) has a simple geometrical meaning. 
When (27) is restricted to inelastic rotational transition 
the choice nzfiJ; E, K) = N(J; E, K) leads to the 
statistical theory of Bernstein et a!. [13]. It should 
also be noted that (27) is closely related to transition 
state and RRKM theories [l-4,7,12,20,33,38,39]. 
According to these theories the probability that a re- 
action will lead to products in the final state n is pro- 
portional to the flux of molecules, along the reaction 
coordinate, in the complex region. This flux is 
u*p*(n, E) = N*(n; E) where u* is the velocity and 
p* is the total density of complex states. Since there 
is only one translational degree of freedom and its 
density of states is proportional to l/u*, N” is the 
density of internal modes. The analogy to (27) is evi-. 
dent. 

To conclude this section we note that p(n; E, K) 
and p(n; E) display different n-dependencies. Specifi- 
cally, if n = u, J then p(n; E, K) 0: ~&‘a: (E - EJ1’* 
whereas p(n; E) 0: u, a (E - E,)~*. Hence, from (20) 
and (26) it is clear that (16) or (19) are not fulfilled 
for m&;E) and m&z; E, K). Or, in other words, if 
two uniform or two flux measures (in different 
ensembles) are said to be of the same “type” then for 
the fulfilment of (19), m(n;E) and m(n; E, K) which 
determine fin; E) and p(n; E, IQ, respectively, must 
be of different types; as remarked at the end of the 
previous section. 
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5. Dynamical restrictions 

The densities of states p(n; r) appearing in (26) 
and (27) are defined on all phase space regions allowed 
by the symmetry and conservation rules. Some of 
these regions, e.g. those corresponding to very high 
orbital angular momenta (impact parameters), are 
not likely to affect the outcomes of real collisions. 
It is therefore expected that every statistical model 
will be more realistic by excluding such regions from 
the definition of nzb; I’). However, by setting more 
and more restrictions on the allowed phase space 
regions, and moreover by assigning them different 
weights, the statistical nature of the model is gradually 
lost and one approaches a dynamical theory. Thus 
in the information theoretic approach it is suggested 
to choose m&z; I’) as the “dynamically least biased” 
measure. The dynamical bias is incorporated in the 
form of constraints into the maximum entropy 
procedure [44,64-671 which finally yields, say, the 
product state distribution. On the other hand in LPN 
theory the dynamical restrictions are built into 
m&z; E, K) [ 14-271. In this section we consider 
the effects of such “built in” restrictions on both the 
flux and the uniform measures and the corresponding 
yield functions. The discussion will be limited to 
angular momentum constraints. 

The simplest route to eliminating the contribution 
of very large orbital angular momenta to p(n; E) is to 
postulate the existence of some maximal, energy in- 
dependent, impact parameter b,, so that only 
I < I, = kb, contribute to, say, p-&5), cf. (A. 11). 
In this case the “dynamically restricted” translational 
density and consequently all p&z; E) differ from the 
corresponding unrestricted densities by a constant 
multiplicative factor (see appendix A) and P(rr; E) 
remains unchanged. On the other hand, the restriction 
[< kb, can modify p(n; E, K). Moreover, if the re- 
striction is 

ldkb (~)=(~p&l’Zb m - me* ( ) (29) 

where b,(e) is a function of the translational energy 
both p(rz; E, K) and p(rz; E) are moditied. To clarify 
these points let us consider more systematically the 
effects of angular momentum constraints. The suitable 
ensemble for their implementation is r, = E, K. The 
discussion will be briefsince the constraints are 
familiar [ 14-27]- 

J’- 
Fig. 1. Geometrical interpretation 0fangA-11 momentum re- 
strictions. Sho\vn are typical results for the products in the 
reaction H f Cl, - f ICI + Cl. Due to the small reacfam mass, 
Km is small so that K and J’ are, typically, of similar m;lgni- 
rude. Consequently, [or many terms in (39), i.e.. those with 
J’ > K the effective degeneracy N(u’J’; ~5, K) [cf. (31) or 
(36)], is less than the normal (free rotor) degeneracy ?.I’ f 1. 
Dynamical constraints resulting from rhe esisrence of 2 crn- 
trifugal barrier, eqs. (33) and (35), arc less restrictive than the 
triangle rule (31). 

If all orbital angular momenta consistent with the 
triangle rule 

IK-JI<l<K+J (30) 

are allowed then the ilux measure, (27). is given by, 
see appendix A and fig. I, 

nt&Y, u, J; E, R) = IV(cr, v, J; E, R) 

= 1;:::; :=:i =h’+J-IK-JI+l. (31) 

The channel symbol, (Y = A f SC or AB f C, is intro- 
duced now to emphasize that the measure is different 
for different channels. The uniform measure corre- 
sponding to the same conditions, i.e. eq. (30) is 
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m&x, v, J; E, K) = p(& v, J; E, K) mg,&, u, J; E, K) z Pd(@$ u, J; E, Ii? 

= N(o, v, J; E, K)/u& - (32) 

The dynamical restrictions in LPN theory are on the 
upper limit in (30). Specifically, it is assumed that 
inelastic and reactive collisions (which involve the 
formation of a “strong coupling complex”) can only 
occur if the colliding species can surmount the cen- 
trifugal barrier. If the location of the barrier is at an 
intermolecular distance smaller than the assumed hard 
sphere radius, Ro, then R. is taken as the maximal 
impact parameter, I<kRo+ For a -C/R6 attractive 
potential, appropriate for neutral molecules, these 
restrictions imply the existence of a maximal impact 
parameter given, in obvious notation, by 

b,(or, n, J; E) = 

maxI[27(?/4(E - E,,,J)] 1’6;$) . (33) 

Consequently, the range of allowed orbital angular 
momenta in channel (Y is modified from (30) into 

IK-Jl~~~l,(o,u,J;E,K)= 

rnin~i&P,(~.u,J;E)], (34) 

where 

= Ndh v, k E, K)b,,J - (37) 

The four explicjt expressions (31), (32), (36) and 
(37) enable us to compare the influence of different 
measures in phase space, e.g. (3 1) versus (32), and 
different extents of dynamical input, e.g. (32) versus 
(37), on rate variables in I?1 = E, K. However, it is 
more instructive to test these different measures in 
f12 = E since: (a) Y(om, dn’; E, K) and related quanti- 
ties such as P(o’, n’; E, K), as distinguished from the 
corresponding functions in 1;12 = E, K, are not observed 
experimentally. (b) We also want to compare the rate 
variables resulting from the application of the statistical 
assumption (7) in different ensembles. T_o these ends 
we have to compare &vr, dn’; E) and Y(~vz, or’n’; E), 
cf. (15). Using (15) and (20) or (22) we find 

&r, cr’n’; E) = Q(E)m@, n; E)m(cw’, n’; E)/M(E) , 
(38) 

&r,&z’;E)= ?(2K+ l)Q(E,K) 

= w - E,,J)!&I %,(ff, 0, 4 E) - (35) 

The number of partial waves I allowed by (34) is the 
dynamically restricted flux measure which appears 
in (25) 

X ttr(ol, n; E, K)m(a’, n’; E, K)/M(E, K) . (39) 
In order to cornpore (38) and (39) we consider two 

measures in P2 = E in addition to the four we already 
have in E, K. The obvious choice is m&t, n; E) and 
m&, rz; E), cf. (26) and (27). Their explicit form for 
n = u, J is (see appendix A), 

zAq(2J+ I)@- E,,,,)“‘, (40) 

rnf (01, u, J; E) = u,,JP(~, v, & E) 

=I&,v,J;E,K)-IK-Jl+l. (36) 

Of course, mf d < mf, fig. 1. Note that when 
~(cx, v, J; E) 5 K + J, that is when the dynamical 
restrictions are weaker than the conservation rule (30), 
eq. (34) reduces to (30) and (36) to (31), as expected. 
Thus (34) and (36) can be considered as general relation- 
ships which yield the dynamically unrestricted expres- 
sions in the limit of high values of p,(oz, u, J; E, K). 
.N&, v, I: E, K) can be viewed as the “effective 
degeneracy” of the rotational level J. The dynamically 
restricted uniform measure is given by 

= BQT(2J + 1) @ - E,,& , (41) 

where B, = (~/P~)“~AT. Having specified the measures 
m_(wr; F) in (38) or (39) the absolute values of Qand 
Y are fixed by Q(E) and Q(E, K). These factors also 
determine the E-dependency of Y(cun, ct’n’; E) the 
knowledge of which is necessary for calculating, say, 
rate tour. ,nts in the canonical ensemble. To determine 
Q(E) and (L(I:. K) one has to rely either on additional 
assumptions or on additional information. e.g. cspcri- 
mental data. In the LPN 114 111 tlwor~- IIIC clruicr: 01’ 
n?fd(rr; E, K) as the mc;Isurc in phase space is accom- 
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panied by the assumption Q(E, K) = 1 (K <K,,,). 
Based on dynamical considerations several authors 
have derived alternative forms for Q(E, K) which, for 
example, reduce the reaction probability at high 
velocities [27]. In the information theoretic approach 
(40) is usually accompanied by Q(E) = RQ 
X exp(-E/kZ’j/q(T) where q(T) is the translation 
partition function of the reactants and R(E) is either 
equal to m&j, cf. (21) [53,62,63] or a constant [65]. 

In the numerical examples presented in the next 
section we consider only normalized quantities in 
T2 = E and can therefore disregard different choices 
of Q(E) (or Q’(E) which appears in (42) below). For 
Q(E, Kj we take, similar to the phase space theory, 

Q(E, K) = Q’GMK, - Kj , (42) 

where e(x) is the step function: 0(x > 0) = 1, 
0(x < 0) = 0. It should be kept in mind however that 
(42) represents only one possible choice of Q(E, K). 
By substituting (42) in (39) the sum over K is restricted 
by the maximal total angular momentum K, whose 
choice depends on the dynamical input. If as in (35) 
dynamical restrictions set an upper bound to the or- 
bital angular momenta the K-summation in (39) is 
bounded by, cf. (35) 

K, = Kd,Cti: dv’J’) 
(43) 

=min{P,(~,u,J;E)+J;P,(a’,v’,J’;E)+J’} 

where p: v, .I and d, u’, J’ refer to the reactant and 
product channels in (I), respectively. If, say, the 
minimum in (43) obtains for the reactants then the 
number of product states or equivalently the volume 
of product phase space contributing to (39) is limited 
by dynamical constraints on the entrance channel. 
Unless very unusual mass combinations or very high 
product levels are involved i.e. E,~J. = E - E,, this is 
typically the situation in highly exoergic chemical 
reactions for which E - E, <E - Ea,, cf. (35). 

The upper limit (43) should be used in (39) when 
the measure in phase space is of the type ~n,-,~ or 
M&d. If the measure is “‘0 or nzf then K is essentially 
unrestricted (except, formally by the radius of the 
container R; K,,, = !,,, + J % 1,, = kR, appendix A)_ 
In practice. as long as K,,, is sufriciently large. say 
K,,,? J. .I’ or K,,, 2 L;;,, llic luoclional dcpcndence 
of Y(w, Q'H':E). (39), on (Y. IL LI’ and II’ is not sensi- 
tive to the value of K,,,. To verify this claim note that 

for large K values mf and rng are independent of K, cf. 
(3 1) and (32), respectively. Thus, in the limit of very 
high K, the terms corresponding-to J, J <K have a 
negligible contribution to (39) so that 

? t-&I, $u’J’; E) = Q;(E) (25 t 1 j (U + 1 j (44) 

for the flux measure (3 I), and 

?&uI; a’v’J’; E) 

= Q;(a 
(2J t 1)(2J’ f 1) 

(E-EatJ)1’2(E-E 112 (45) 
CX’V’J ) 

for the uniform measure (32). The E-dependent factors 
are given by 

(46) 
where Kk replaces the sum Z(2K f 1) and N(E) = 
X,,,(U f 1) a YZ@ v(E - Eau). The analogous expres- 
sion for Q#j is striightforward. 

We note that both (44) and (45) fulfil (t5), (16) 
and (19). The physical reason for that is clear; when 
large K values are allowed the effective degeneracies of 
both the reactant and the product rotational levels, 
cf. (3 l), become the normal degeneracies 21+ I and 
2J’ t 1. Consequently the correlation between products 
and reactants due to the conservation of K is lost as 
required in (19), However, as remarked at the end of 
section 3 the flux (44) and uniform (45) measures in 
I’, = E, K do not reduce to the yield expressions 
resulting from same types of measure in r2 = E, com- 
pare (44) with (40) and (45) with (41). 

Based on the six explicit measures no&; E, K), 
q&z; E, K), rqfrt; E, K), q-&z; E, K), nzo(~z; E) 
and m&z; E) the nest section is devoted to a more 
detailed and specific discussion of different statistical 
models. 

6. Comparison of different models, examples 

In order 10 dermnstrste Ibe variety in sratistical 
theories we employ the six represcntativc models des- 
cribed in the previous sections tu calculate Ibe producl 
state tlisiributioa in the reactions 

Cl f HI(LJ. J) -+ f fa(v’, J’) + I . (471 

11~Cl~~v.I~-,IiCl~v’.J’~tC1. id 1 
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The product vib-rotational distributions in these reac- 
tionshre knotin from the infrared chemiluminescence 
experiments of Polanyi a&co-workers [79,80]. Since 
both reactions are highly exoergic, -AEo P kT, the 
total reactidn energy E, measured from the ground 
internal state of the products, is sharply defined; 
E== -MO +E-, + gkT3 SEwhere E, is the activation 
energy and SE = kT is the width of the reactant 
energy distribution. This implies that at ordinary 
temperatures the measured product state distributions 
are, io a good approximation, proportional to 
Y(CJ, u’s; E) where 6, j is the most populated internal 
level [S 1 ] and E is the average total ene.cgy_; E = --MO 
+ E, +-:X-T + E, + Ej. In (47), (48) e = 0, J = 3 and 
Ij = 0, J = 20, respectively, Ej = kT. Thus besides 
comparing the various statistical expressions for 
Y(n, n’; E) we may test them against the experimental 
results. Another reason for choosing (47), (48) is that 
because of the different reactant masses in these re- 
actions, H-LH and L-HH, respectively (L = light, 
H = heavy), angular momentum constraints are ex- 
pected to display different effects on the product 
state distributions. 

Using full and general notation the product vib- 
rotational distribution resulting from reactants in 
u, J and total energy E = E, t EvJ t E = E,, t EuaJ, t E’ 
is 

flu’, 1’1 o[‘, a, u, J; E) 

Y(cY, u, J; Q’. v’, J’; E) 
Ma, u, J; a’, u!, I’; E) 

= Y(a, u, J; 01’. v’, J’; E) 
Y(cr,v,~cYorl;E) 

where the sum extends over all product states with 
E urJ’ QE - E,. We take E,,, =E,.=o =O and E,. =0 
so that E, = -A&o. Since in all calculations below OL 
and Q!’ correspond to the Ihs and rhs of (47) or (48) 
respectively, and only one u, J= ti, J level is considered, 
we will usually use the shortened notation P(u’, J’; E). 

The vib-rotational distributions obtained from sub- 
stituting the six measures (31), (32), (36), (37), (40) 
and (41) into the appropriate yield function, (38) or 
(39), and then into (49) are listed in table 1. The vibra- 
tional distribution P(u’; E) and the (conditional) 
rotational distribution within v’, P(J’I u’;‘E) are defined 

and normalized according to 

p(u’,J’;E) =f(lI’;E)P(J’Iu’;E), m 

c 
U’J’ECY’ 

P(u’, $; E) = “c, P(v'; Ej 

= c f’(J’lv’;E)=l. 
J’Ea’,v’ 

At a given total energy E it is more convenient to 
employ the fractional variablesf, = E,/E, fR = ER/E 
=EJIEandfT=(E-E~)/E’=~/E;f,tfR+fT=l. 
In these variables the product state distributions 
p(f,) = P(E,) d&/d& corresponding to the first four 
models in table 1, i.e. those which do not incorporate 
dynamical input, are independent of the reactive sys- 
tem and can be expressed in a closed form. (Except 
for the weak dependence of P(& j on Bus when the 
VR iather than the RRHO model is employed.) The 
variable gK is defined by [45,72] 

gR =&/(I -f,) . 69 

We note that for the “completely non-dynamical” 
models P(&lfv) =p(gR) = (1 -fU)p(fRlf,) is in- 
dependent off,. In other words the partitioning of 
the residual, non-vibrational, energy (1 - jJ among 
the translational and the rotational degrees of freedom 
is independent of v. This trend was observed also in 
real systems [45,72,79]. The average fractional 
energies presented in table 1 correspond to the classi- 
cal RRHO model where all degrees of freedom, in- 
cluding the vibration, are treated as continuous varia- 
ables so that for x,y = v, R, T 

Noting that for the four non dynamical models in 
table 1 

p(fv)=(r+ I)(1 -f”Y 7 (54) 

P(&?RIfj=P(&)=dl -gR)'-' ” 3 (55) 

with y = 2,3/2, 1 and l/2 respectively, we find 

(f,, = (fR> = (1 - (fT))/2 = l/(7 + 2) . (56) 

In deriving (56) we have used the fact P(gRl&) = 
p(&) SO that 

:, 
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IO 20 30 
Jq 

Fig. 2. Angular momentum restrictions on the products of 
reaction (47) [cf. eqs. (34) and (36) and table 21. Since foe 
this reaction K is typically much larger than J’ the effective 
degeneracy A’&‘) is practically equal to the normal degener- 
acy u’ + 1, except for the very hi J’s (e.g. J’ = 17 in u’ = 3). 
The centrifugal barrier (cf. (33)), is ku less important than the 
triangle rule (31). 

1 1 
= 

ss gRP(&& - f,)p(f,) dgR dr, 
00 

= (gR) (1 - f”) = UK~ l 111 (r + 1 M-Y + 2) . (57) 

Approximate cIosed form expressions can be derived 
also for the “dynamically biased” distributions, models 
5 and 6 in table 1. The resulting expressions are however 
rather involved and a gtaphical presentation is more 
instructive, see below. Qualitatively, if the major con- 
tribution to the sums comes from high total angular 
mome$a, i.e. from K > J, or_, equivalently if Km > J’, 
then I’, d, is nearly equal’to PO and P,,, to Pp Unless 
E vt~’ *‘E he value of K, for exoergic reactions is 
fixed by the reactants i.e. K,, = I:(&, u. J; E) +.I. cf. 

(35) and (43). 
Consider now the reaction (47). For energies corre- 

sponding to thermal reactants Km = Zi(Cl + HI, 0,3) 
+ 3 = 165, see table 2, which is substantially larger 
than the average typical product rotational angular 
momenta, J’ = 15. The restrictions are expected to 
be more stringent when ./.Yr approaches E - I?,,. To- 
ward this limit J’ increases, Km decreases and the 
relative contribution of K >J’ terms also decreases_ 
This means that the dynamical restrictions will mainly 
reduce the effective degeneracy, or equivalently, the 
phase space volume of rotational levels near the energy 
limit EJt = E - E,,, cf. (36) and (31) and fig. 2. 

A different behavior is expected in reaction (48). 
Here, due to the small reduced mass of the reactants 
1: and R, are small. Except for product levels near 
the energy limit Km is f%ed by the reactants. In our 
example Km = I;(H t Cl,, 0,20) + 20 = 46, cf. fig. I 

Fig. 3. Product rotational energy distributions for reaction (47). 
computed using the models listed in table 1 and the data of 
table 2. Model (1): ---; (2): -: (3): dashed horizontal line; 
(4): --m-:(S): -I-; (6): --.--. Dots indicate the expcrhncntal 
results 179). 
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J’ 
5 IO 15 20 25 30 
I 11,‘,1,1,‘1 ,,,,,I,, I, , I , 

H*C1,~0,2O~-HC1~2,~*Cl 
I 

\ 
0 I. I I 1 1 , I I 

0 0.2 0.4 0.6 0.6 IO 

al 

Fig.4. Product rotational energy distriiutions for reaction (48). 
Notation as in fig. 3. Experimental results from ref. [SO]. 

and table 2. Since J’ = O-40 is of the order of Km, 
the effective degeneracy of smaliJ’s will also be re- 
duced. 

Representative rotational distributions obtained 
from calculations based on the six models listed in 
table 1 are shown in figs. 3 and 4 for reactions (47) 
and (48) respectively. The experimental distributions 
are shown for the sake of comparison. The two-fold 
degeneracy of the product channel in (48), a’ = 
Cl + HCl, affect the computation of product state 
distributions only viaM(E, K) = N&?, K) or &j(& K) 
in models 5 and 6. This fact was taken into account 
by writing, in general and obvious notation, M(E, K) = 
d,m(or; E, K) t d,, m(ol’: E, K), where d, is the 
degeneracy (or multiplicity) of channel LY, see table 2. 

Figs. 3 acid 4 confirm quantitatively that while in 
(47) the dynamical restrictions modify oniy the . 
population of high J’s in (48) they affect, although 
to a lesser extent, also low J’s. [In the, hypothetical, 
extreme case of very low Km the effective dzgeneracy 
ofJ’ would be 1 instead of U’ + 1, so that Pfd(gk) 
0: ?f(gk)@J’ + 1) a 1/(g#2. Fig. 4 indicat& as 

expected, that this is not the case and high I’ are more 
sensitive to the anguiar momentum constraints. Similar 
arguments hold for Pr-, d.1 The very steep rise of 
&(&,) a l/(&) II2 ai large gk values is bounded by ’ 
the value corresponding to J’*(u’) - the highest J’ 
below the energy limit. Yet, since at a given E it might 
be that for one or more U’ values EJ~*cUj = E - E,. 
the larger contribution of J’*(u) may affect not only 
the rotational distribution but also the vibrational one, _ 
see below. These “resonance” effects will be smoothed 
out by averaging over E. It is interesting that a similar 
rise in the rotational distribution of OH radicals pro- 
duced by electron impact dissociation of Hz0 was pre- 
dicted and observed experimentally by Horie and 
Kasuga [30]. To summarize, inspection of figs. 3 and 4 
supports our earlier statement that “statistical behavior” 
is a feature of the model employed and therefore not 
an unambiguous concept. 

At a given total energy E the volume in phase space 
available to the products decreases with v’. In table 1 
we see that the weights assigned to these regions are 
proportional to (E - E,,)v -with y positive and of the 

f,* 
Fig. 5. Product vibrational energy distrfbutions for.rcaction (47). 
computed using the models of table 1 and normalized accord- 
ing to X,,* P(f,.) = 1. Model (1): open circles; (2): solid circles: 
(3): open squares; (4): solid squares; (5): open triangles; (6): 
solid triangles. The experimental results [791, (diamonds) are 
markedly different from the statistical models and indicate 
population inversion. 
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H*‘&(O,201 -HCl(v’)+ H 
E = 48.3 kcollmole 

0 02 0.4 0.6 0.6 1.0 

f”’ 

Fig..6. Product vibrational energy distribution for reaction 
(48) computed using the models of table 1. Notation as in 
fig. 5. The experimental results [SO] (diamonds), differ sub- 
stantially from the statistical models. 

order of 1. Therefore, the differences between the 
various statistical vibrational distributions are less 
pronounced then those in the rotational distributions, 
g shown in figs. 5 and 6. The irregularity in 
PO d(u’ = 4) in’fig. 6 is due to the “rgonance” effect 
mdntioned above; it is not seen for P&J’) since this 
distribution was computed in the classical (J’ con- 
tinuous) VR model, i.e. ?,,(u’) 0: (E - E,.)‘/*/E,, 
table I. 

7. Alternative derivations 

It has been shown that several statistical models 
based on the hypothesis of intermedaite complex 
formation can also-be derived by appropriate formal 
assumptions on the structure of the scattering matrix 
[4,6,11,13,18,19,22,23]. In this section and in appen- 
dix B we show that our formulation and classification 
ofstatistical models which involve both forma1 (e.g. 
factorability of Y) and pictorial (e.g., flux versus 
uniform measures, available regions in phase space) 
consider&ions is simply related to generalized versions 
of the “formal” and “complex” derivations. 

Consider first the formulation based on the assump- 
tion of complex formation. (Or, compound nucleus in 
nuclear reactions [5,6] _) As mentioned in section 2 this 
assumption accounts for the lack of correlation be- 
tween products and reactants and helps to defme the 
phase space regions available to the reaction products. 
Generalizing this approach to any r the cross section 
for the process 01, n + 01’, n’, eq. (I), is written as 

ij(& n + or’, 12’; r) = rJ(CY, n 4 c; I?)@ 4 a’, n’; ?ip3) 

where the factors on the rhs of (58) represent, respec- 
tively, the cross section for complex formation from 
reactants in CL, n and the probability of the complex 
to yield products with CY’~‘. Summing (58) over or’n’ 
and using the general Kelation (12) (which by (2) holds 
for every I’) we obtain 

= yb, n ; r)han P(CG n ; r) - (59) 

Similarly, multiplying by uQnp(ol, n; I’), summing over 
cr, n and using (2), (IO) and (1 I), we find 

P(c~$,n’,r)=Pku’,n’;r) 
= Y(cx’, d; ryqr) = m(oi, n’; ryiqrj . 030) 

Substitution of (59) and (60) into (58) and then using 
(2) yield the basic statistical hypothesis (7). Thus (58) 
and (7) are completely equivalent. Any assumption on 
the form of ~~(01, n + c; I’) or p(c 4 a’, n’; I’) can be 
regarded as an assumption on the form of Y(LY, n; r) 
or, cf. (20), on the measure in phase space. It has to be 
remembered however that the two factors on the rhs 
of (58), both having a simple dynamical meaning, are 
related by microscopic reversibility and therefore can- 
not be chosen independently. 

From here on the classification of statistical models 
follows along similar lines to sections 2-6. However, 
we linger at this point in order to (briefly) elaborate 
on the dynamical significance of the uniform and flux 
measures as well as to demonstrate the validity of the 
somewhat uncommon relation (5). 

If the assumption on complex formation (58) is 
made in rl = E, K then, using (12), (20), (58)-(60) 
the cross section in I’, = E is of the form 
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X u(cr, n + c; E, K)P(c -+ a’, 12’; E, K) (6la) 

X m(cr, n; E, K) ~z(cY’, n’; E, K)/M(E, K) . (61b) 

The last result could, of course, be directly derived 
from (2) and (39). Summing in (61) over o’n’ and 
using (42) in (61 b) we find 

&, n * c;E) = z (2K + l)[p(or, a; E, K)lp(or, n, E)] 
K 

x a(a, n+cc;E.K) 

Km 

(62a) 

. . 
= Q’(E)[ l/u,,,~(cr,rz: E)] KTo (2K + I)m(a,n;,E,K). 

(62b) 

The cross sections for complex formation correspond- 
ing e.g. tr the “dynamical” ‘flux and uniform measures 
are obtained by substituting (36) and (37) into (62b). 
After some angular momentum algebra and using the 
exact expressions for p(cu, n; E) and p(cr, n; E, K) from 
appendix A we find 

,d 

‘m 

x g (21+ 1) &(E - &J) 9 WI 

with I$ given by (35). The equations for gt and go 
obtain by setting &a, u, J; E) = kav~bm where b, is 
some large and energy independent impact parameter. 
Eq. (63) is a fundamental relation in the phase space 
theory [ 15-271, whose significance is that apart from 
the degeneracy factor all partial waves contribute 
equally to the cross section. The classical analogue of 

this result is that the probability for complex forma- 
tion from collisions with impact parameter b is propor- 
tional to 2nb so that O(CY, II -f c; E) = rbk. On the other 
hand, (64) implies that the contribution of each partial 
wave I is proportional to the number of elementary 
states “conjugated” to it. The classical result for the 
complex formation cross section is u(a; u, J --f c; E) 
0~ &!,,/u~J. The interpretation of this inverse velocity 
dependence of the cross section (strictly so only for a 
constant b,) is less obvious than that for the fiux 
measure. However, its meaning becomes quite clear 
when viewed as the direct result (via microscopic 
reversibility) of the assumption that the probability 
of the complex to form products with olh’ is propor- 
tional to the phase space.volume associated with o’rz’, 

p,,d(c + Or’, u’, J’; K) = 

,,&‘, U’, J’; f?, K)/ c &,(i, LJ’, .!‘; _I?, R) . (65) 

The proof that (65) and (64) are essentially equivalent 
is immediate. Also, the extension of (65) to pf,d, PO 
and P, as well as the proof of their equivalence to 
&d. co and ;;f, respectively, is straightforward. 

The structure and properties of the S and T matrices 
corresponding to several statistical models were des- 
cribed by several authors [4,11.13,18,19,22,49]. It has 
been shown that one of the most general parametriza- 
tions of the S matrix is [ 1 l] 

where 0 <fi < 1 and 10 = Iv, J, I). The symbol ( 1 
refers to “statistica averaging”. It involves the random 
phase approximation (RPA) and associates (66) with 
the additional assumption (Re S$= 0. The first term 
on the rhs represents the shadow contribution to the 
elastic scattering, necessary to ensure the normalization 
condition “j tSijfZ = 1. The similarity between (66) 
and say, (7), is apparent. By extending (66). or more 
precise!y the corresponding equation for the T matrix, 
to general representation and normalization schemes 
of the states i, one can account for the general charac- 
terization of a statistical model in terms of r, TV and Q 
as was done in the previous sections. Since the proof 
of this statement, although straightforward, involves 
lengthy and formal derivations, the details and the 
interpretations are provided in appendix B. 
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Table3 
Partition of energy among products’ degrees of freedoma) 

Model 

(1) & 

Cl + HI (0,3) -. HCI(u’. J’) + 1 H + C1,(0,20) -)I HCl(o’, J’) + Cl 

Cf”J ‘fR” (fT’) (fur) (fR’) (fT*) 
- 0.18 0.27 0.55 0.21 0.23 0.46 

(0.18) (0.27) (0.55) (0.21) (0.23) (0.46) 

(2) PO 0.22 0.31 0.47 0.25 0.30 0.45 
(0.22) (0.31) (0.47) (0.25) (0.30) (0.45) 

(3) Ff 0.27 0.36 0.37 0.32 0.32 0.36 
(0.28) (0.36) (0.36) (0.31) (0.34) (0.35) 

(4) Fo 0.32 0.42 0.26 0.43 0.36 0.21 
(0.36) (0.38) (0.26) (0.39) (0.37) (0.24) 

(‘) . if,d 0.26 0.35 0.38 0.33 0.31 0.36 

(6) po.d 0.42 0.40 0.28 0.43 0.34 0.23 

a) Calcoiated using the discrete form of Y,‘second column in table 1, in the VR model. Values in brackets correspond to (1) (f,J 
calculcated in the continuous VR model, that is J’-continuous, fourth column in table 1, (2) (fR9/@9 as in the RRHO model; 
last column in table 1. 

8. Di&ssion 

The maiked differences between the various statis- 
tical models reflected by the rotational state distribu- 
tions, figs. 3 and 4, are largely masked by the averaging 
which yield the vibrational distributions, figs. 5 and 6 
respectively. For reactions involving more degrees of 
freedom, the differences in, say, the distribution of 
energy in one vibrational mode will be even less pro- 
noilnced. Considering in addition that none of the 
statistical models (of which table 1 presents only a 
sample) provides an accurate description of small col- 
lision systems, the question whether there is one pre- 
ferred or unique model is irrelevant. A more reasonable 
starting point for comparing the different theories is 
to consider their origins and objectives. In discussing 
these aspects we shall mainly refer to the phase space 
theory [lS--271 (model 5 in tables 1 and 3) and the 
microcanonical prior distribution (model 2) employed 
in the information theory approach [42-721. 

Although the fmal expressions for the product 
state distributions (cf. tables 1 and 3) obtained by the 
phase space theory and the prior limit of the informa- 
tion theory approach may be quite similar there is a 
rather fundamental difference in the way of processing 
dynamical information by the two methods. In the 
phase space theory all the available or predicted 

dynamical information is built into the ‘final statistical 
expressions in one stage. On the other hand, the prior 
distributions intend to represent the dynamically 
“least biased” (,‘ most ignorant”, “random”) situation. 
The dynamical bias is reflected by th; so-called sur- 
prisal function (see below) which provides a convenient 
and meaningful measure for the deviation of actual 
distributions from their prior (“thermodynamic”) ex- 
pectation values. 

The choice of the ensemble, the measure, the 
angular momentum restrictions and the weighting 
function, Q, in the phase space theory 114-261 (and 
other statistical dynamical theories [7-13,27-41]) 
is guided by dynamical considerations. In fact, the 
use of the flux measure, (36), and the “opacity 
function”, (42), is a necessary consequence (via 
microscopic reversibility) of the dynamical assump- 
tion that all angular momenta below the cut-off, cf. 
(35) and (43), contribute equally to the reactive, or 
inelastic, cross section. Indeed, as mentioned in 
section 4, the uniform phase space measure was used 
in one of the original formulations of the phase space 
theory [ 141, but has been replaced by the flux measure 
in order to make it consistent, on microscopic revecs- 
ibility grounds [ 151, with the angular momentum 
restrictions on the complex formation cross section. 
Of course; if the uniform measure was retained but 
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the angular momentum requirements were modified, 
the iesult would be the (dynamically modified) prior 
distribution in the E, K ensemble, model 6. 

The procedure of restricting the available phase 
space regions employed in the phase space theory does 
not suffice to account for extreme, but common, 
phenomena such as population inversion, cf. figs. 5 

and 6. It was suggested [ 14,731 that in such cases the 
statistical models may serve as bases for comparison 
with experimental results. An explicit, quantitative, 
implementation of this notion is provided by the 
surprisal-entropy analyses which constitute one, impor- 
tant, element of the information theoretic method. 
The method is, however, more general and beside 
analytic means provides also algorithms for predicting 
(synthesis), say, product state distribution. Since the 
general approach has been extensively described 
elsewhere [49,50,72] we shall only emphasize a few 
points pertinent to the present discussion. 

The basic quantities used in surprisal-entropy 
analyses are the entropy S, or the entropy deficiency 
AS, the surprisal I and the prior distribution @‘, 

AS=So-S=lnfi-- CP(s)lnP(s) 

= - c P(n) In[P(fr~,P(n)] = Cp(n)1(rr) = LY) 

Here, as in statistical mechanics, the s-summation ex- 
tends over all the accessible elementary states (appen- 
dix A) of the system of interest. The n-summation is 
over groups of states; all the states in a given group 
are equally probable. Thus, if the system is composed 
of the atom plus the diatomic products in (l), the 
total (center of mass) energy is between E and E + dE 
and n = u then the group IJ contains all rotational- 
translational states consisfent with this specification. 
The number of these states is p(n; E) dE, appendix A. 
R = Z p(n; E) dE = &5Y) dE is the total number of ac- 
cessible states. Hence, according to (67), PO(n) is simply 
proportional to the number of states in the group n or 
equivalently, to the volume in phase space occupied 
by n. Obviously, for our example p(n) is simply the 
microcanonical prior distribution Fe(n) of table i 
corresponding to the uniform probability P’(s) = l/a. 
As in ordinary statistical mechanics this is the distri- 
bution wh.ich, in the classical RRHO approximation, 
leads to the equipartition limit [46] ; in our example 
(fT):(fR):(f”)=3:2:2, cf. table 3. This form of the 

prior distribution is the dynamically least biased one 
if the only available information on the system is that 
all collisions proceed with the same total energy E, 
E t dE. Deviations from the complete microcanonical 
behaviour correspond to non-zero surprisals 
-In [P(n)/PO(n)] or non-vanishing entropy deficiency 
AS > 0. If the surprisal happens to be a linear function 
of some variable, e.g.f, = E,/E, the maximum entropy 
principle which is the major theoretical (analytic and 
predictive) tool of the information theoretic method, 
implies that (f;> is the only informative dynamical 
constraint [44]. Surprisal analysis thus helps to identify 
dynamical constraints. Alternatively, if the dynamical 
constraints are known, the maximum entropy principle 
can be employed to predict the actual distribution 
p(n). In particular, when the dynamical input can be 
represented in terms of the average value of the ob- 
servable A. 01> =Z;P(~Z)A,~ = const.(e.g.,z=u,A,=f,), 
the predicted distribution will be of the canonical 
form P(n) =P”(n) exp(-X4,)/Q. As in ordinary 
statistical mechanics X is a lagrangian multiplier which 
can be interpreted as a generaIized (reciprocal) tem- 
perature parameter and Q is a normalization constant 
equivalent to a partition function. 

If surprisal analysis is viewed just as a convenient 
quantitative measure of deviations from a “@en . 
s_tatisticalbehaviour” any statistical-dynamical model 
P(n) [or p(n)] can be used as a prior reference. Con- 
sidering as specific examples the product vibrational 
distributions in (47) and (48) this means that one can 
compute different surprisals corresponding, say, to the 
different models of tables 1, 

&I) = -1n [P(u)&“)] . 033) 

Figs. 7 and 8 show the results of these surprisal analyses. 
Due to the apparent similarities between the vibrational 
distributions of the six statistical models, the surprisais 
are also similar. They are nearIy linear for the Cl + HI 
reaction indicating that (fv) is the most important con- 
straint and non-linear in the H + Cl, reaction indicating 
that either (f,> is not a relevant (informative) constraint 
or that there is at least one additional constraint beside 
Cf,> [64b, 66,671. 

Among the various distributions which can serve as 
a reference for surprisal analysis there is only one which 
maximizes the entropy S (minimizes AS), (67), in the 
limit of no constraints. For experimental situations 
where only the total collision energy is known, this is 
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0 I 2 3 4 

CI‘HI(O;JbHCl(V’)’ 1 

Fig, 7. Surprisal analysis for reaction (47) using a&reference Fig. 8. Surprisal analysis for reaction (48). Notation as in 
prior distriiutionsPO(f,) the six models of table 1. I(f,J) 
-In[P(fu)/Po~u)] where P(fu) is the experimental [ 79 1 dis- 

fig. 7. The non-linear behaviour of the surprisal indicates that 
0 is either not the only dynamical constraint, or, that C&‘J 

tribution. Notation as in fig_ 5. The near linearity of the is not the appropriate constraint. Note that explicit considera- 
surpriul implies that (&‘J is the main informative dynamical tion of angular momentum restrictions does not significantly 
constraint. alter the surprisal curve. 

the uniform-microcanonical distribution employed 
in most of the applications of the information theory 
method. Thus, when surprisal analysis is regarded as 
one component in the general statistical-information 
theoretic approach, there is a unique prior distribution 
defined by the a-priori known (asymptotic, boundary) 
conditions on the system. In statistical mechanics 
these conditions are known as the external parameters 
of the ensemble [75]. The choice of the ensemble, in 
our case r2 = E or rl = E, K, should be consistent 
with these conditions. If experiments could be per- 
formed with angular momentum selected reagents, 
then the ap‘Jropriate prior distribution should be the 
uniform one in the r = E, K ensemble. The actual 
functions in each E, A’ shell should be computed by 
maximizing the entropy corresponding to all states 
consistent with E, X subject to whichever constraints 
that can be identified. Quantities such as cross sections 
or rate constants in r = E car! then be calculated by 
properly superposing [this requires a weighting function 
Q(E, K)] &I the possible E, K components. An analo- 

,I 2 3 4 5 6 
I I I 1 I I1 

-3 H-Q (0,20)-HCIWI +CI 

gous procedure has been employed to calculate quanti- 
ties in the thermal (canonical) ensembles r3 = T, i.e. 
by superposing the contributions from different 
energy shells r2 = E [53,62,63]. If, however, angular 
momentum components cannot be resolved the in- 
formation theoretic route to handle angular momentum 
restrictions is to express them, if possible, in the form 
of constraints which would modify the microcanonical 
prior distribution to a canonical-type distribution. This 
procedure has been recently applied with considerable 
SUCCESS [64b,66,67] _ 

Finally, it should be noted that the prior distribu- 
tions which maximize the entropy are the ones which 
provide the link between the microscopic (single 
isolated collisions) and macroscopic (relaxation, 
thermodynamic functions) characteristics of a disequili- 
brium molecular system and its approach to equili- 
brium [68-721. 
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9. Concluding remarks 

An attempt was made to emphasize that statistical 
behaviour, mainly in small collision systems, can be 
differently interpreted. Various models can be formu- 
lated within the framework of different statistical 
ensembles using different measures in phase space and 
incorporating different extents of dynamical informa- 
tion. Some of the more common models were for- 
mulated for predictive purposes but can also be used 
on a comparative basis. The prior distributions of the 
information theory approach combines these aspects. 
They can be used as a reference for measuring devia- 
tions from microcanonical behaviour or as zero-order 
expressions to be supplemented and modified by dy- 
namical constraints. The unambiguous prior distribu- 
tion is the one which maximizes the appropriately 
deSned entropy function of the system. Once the 
boundary conditions (external parameters) defining 
the accessible states of the system are known, the 
entropy or, in the information theoretic langauge, the 
information content is also uniquely defined. One. 
may still argue which are the external parameters 
defining a general collision system. However, this non- 
trivial, interesting - and still not entirely solved - 
question is beyond the rather’descriptive and didactic 
scope of the present paper. 
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Appendix A: Elementary states andstate densities 

Elementary states [ 51 of a free particle (or of a 
particle in a box or a sphere) are the solutions of the 
Schriidinger equation normalized on the momentum 
scale..As distinguished from, say, states normalized 
on the energy scale, the elementary states have a uni- 
form density in the classical phase space (equal to 
l/h3 for a structureless particle in a three-dimensional 

volume). In this appendix we list the elementary states 
in the plane wave, spherical wave and total angular 
momentum representations. This procedure is essential 
for evaluating the density of states factors p(~; r) ap- 
pearing in the text. The beginning of the derivation is 
based on ref. [SS] _ 

The plane wave solutions of the Schriidinger 
equation for a particIe in a cubic box of volume V are, 
in obvious notation, 

I = (t/k) = V-‘lzexp(ik - r) , (A-1) 
/l/3 with k quantized according to k, = (2nlL )n,, “2X 

=O, *I, +2 . . . etc., corresponding to (translational) 
energy quantization f = @k”/Z!p = (21~~@1pV~~~) 
X (nz + 12; -t 11:). Each n,, !I_,,, II, (or k,, k.,,, kZ, or 
p*, + p,;p =I&) combination is an elementary state 
occupying a volume of fr3 in the classical phase space 

(&,,rr,Ql, * he3 J dp dr = tr-3 V J dp). The number 
of these states per unit translational energy and unit 
volume, that is, the density of translational states is 
given by 

J+(f) = (2 1/2,2fi3)-lp3/2,1/2 =,+1/l _ (A-2) 

The quantization of momentum and energy of a 
particle in a spherical volume, V= $rR3, obtains 
from the boundary conditions on the spherical wave 
solutions 

Xk,f,& 074) = 4&W Y;“C~~ 9) , (A.3) 

where a is a &-dependent. see below) normalization 
constant. From the boundary condition j#R) = 0 we 
get, for IekR, 

kR = k,,R = nn f h-r/2 . (A.4) 

The translational energy E = fi7-kZ/2p is indepeudent 
of nz. Every set II, l, M or equivalently k,,, I, m re- 
presents an elementary state in the spherical wave 
representation. From the normalization condition 

U$, [, mlk;l, I’, ??I’) = sn-, k;,S@,, .,,,* , (A-5) 

it follows that the normalization constant in (A3) is 
a = (2/R)“2k,t. l-l le e ementary states in the plane 1 
wave and the spherical wave representations are related 

by 

I/r’) = I, ;,, I$,, I, 1)2) (k,,, [, nllk’) t 
-W 

where 

(A.6) 
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-1 1 (k,, i,mlk’)= ~5~,,,~~(47r/I+)k (?R) I/2 

X (-#r";'(C) . (‘4.7) 

Hence 

x (-if Y;” (k’) x/&, (r. e, !$J) , (A.81 

which, using the addition theorem, reduces to the more 
familiar form 

exp(i * f) = F [4n(21 f I)] l/1 

X i&(x-‘) Y;(i * i’, . (A.91 

To compute the density of states in the k, I, )n represen- 
tation we first evaluate pR(e) the density of radial states 
(per unit length), i.e. those associated with k, 

RP~(E) = (atziaE))l,,,l = (arz/ak) (ak/aE) 

= (R/s) p/h’k = (R/n&) (p/‘7~)“~ . (A.10) 

This is the usual expression for ri one-dimensional 
density of states. It should be noted however that in 
deriving (A.10) we have used the asymptotic solutions 
(A.4). If I = kR then pK(e) will depend on I and R. 
The total, three-dimensional,.density of states obtains 
from (A.10) by summing over I and tn. 

= Rp,(& = V(3fijiT4) ~3W21tt3 , (A-11) 

where, in order to regain (A.?), we set I, = kR, the 
highest possible angular momentum of a particle 
(with e =ti’k”/?,p) in a sphere of radius R. Obviously, 
in applications to collision problems, I, is constrained 
to much lower values than kR as, for example: in 
eq. (35). Note however that the E dependence of 
&E) is unchanged if we chose I, = kb, where 
b, <R is some maximal impact parameter. It should 
be noticed that the numerical factors in (A?-) and 
(A.1 1) are somewhat different &,ox/~m,,ere * 1.5). 
The difference is due to: (i) The use of the asymp- 
totic solutions (A.4) (the roots ofj,(ku) are denser 
when 1~ kR). (ii) The different shapes of the volume. 

(iii) The neglect of higher order terms in approximating 
the sum over I in (A.1 1) by an integral [86]. 

.The normalization of elementary states and the 
state densities for the atom-diatom (center of mass) 
system obtain by extending the free (structureless) 
particle results above. We consider three elementary 
state representations: (a) I&, 5, k,, u,J, mn$, (b) 
I k, I, ml, u, J, rn$ and (c) I k, K, M, I, J, u>. The plane 
wave, a, and spherical wave, b, representations are 
related according to (A.7). The former is related to 
the total angular momentum representation, c, via 

lk, u, J, ?nJ> = g e1’2k-’ 

X D$(i)lk, K, M, Z, J, v) , 

where, 0 E 8n2R/V and 

(A.12) 

D;,$(i) = $Jtn~lm,lJlKM~ Y,?(i) . (A.13) 

The appearance of the l/k factor in (A.12) is due to 
using elementary states i.e. stat& normalized on the 
momentum scale. Mote familiar is the expansion in 
terms of states normalized on the energy scale for 
which [4,85] 

Ik,u.J,m~~=~~~~~~(I;)IE,K.M,i,J,v~. (A.14) 

The density of states of an atom-diatom system 
with a total energy E when the internal state of the 
diatomic molecule is speci tied by II= u, J or u, or J is 
given by 

P(& E) = sz” L?SPT(E -&I , 

where s = u, J, ?n J and g, = W t 1. Hence 

P(& J; E) = (W + 1 )P# - EdI 

(A.15) 

=A~(2J+l)[E-E,-B,J(J+ l)]“‘, (A.16) 

p(u; E) = 5: p(u, J; E) =:A# - E”)3’2 , (A.17) 

where in deriving the second equality in (A.17) the 
sum over J was replaced by an integral; A, = ($B& 
varies very slowly with u; it is a constant in the rigid 
rotor approximation, 8, =B,. 

If both internal and orbital quantum numbers 
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specify the state of the triatomic system then pR(f) 
and not pT(rz) contributes to the state density. Hence 

p(u,J,I;E)=(W+1)(2Z+l)pR(E-Ed). (A.18) 

Eq. (A-16) is regained by using (A.1 1) and summing 
over /, 

where, as in (A.1 I), I, =kR. Dynamical constraints 
of the kind of (34) can be imposed to restrict the 
summation over 1. 

For a triatomic system with given u, J, E and K the 
relevant density of state function (averaged, not summed, 
over the 2K c I equally probable values ofM~, the 
projection of K) is 

P(U, J; E, K) = 7’ p(u, J, I; E, K) 

= (zhJ1fl(u, J; E, K) = tt$N(v, J; E, K) . 
(A.20) 

In these equations the primed summation symbols 
indicate that 1 is confined to the region allowed by 
the triangle rule (K - JI < 1 G IK +JI. Note that in 
the second equality in (A.20), which can be viewed 

‘as the definition of p(u, J, I; E, K), the factor 
(2K + I)/(21 f 1)(2f + 1) is the fraction of J, 1 com- 
bination consistent with K (but irrespective of MK). 
The third and fourth equalities follow from the use 
of (A.18) and (A.lO) respectively. Finally’, ud = 
[2(E - &&4 “2 is.the velocity and E(u, & 15, K) 
is the number of I values consistent with u, J. E and 
K, fig. 1. Explicitly, 

This quantity can be regarded as the “effective 
rotational degeneracy” of the diatomic molecule in 
the triatomic system with total angular momentum K. 

As mentioned with’respect to (A.18) dynamical con- 
straints can be imposed on the I-summation in (A.201 
with aconsequent reduction of the effective rotational 
degeneracy (section 4, fig. 1). The quantity 

J*(u,.F) 
A$: E, K) = Jzj @J, J; E, K) , (AX) 

where EJ*(v,t3 SE - E, is the highest rotational 
energy below E - E”;, is the number of allowed /, I 
combinations at given u, E, K. [In sections 3 and 4 we 
absorb the factor (nfi)-l into fJ(E‘, K) and identity iv 
with IV, eq. (A.20).1 Because of the J dependence of 
the velocity Q in (AZO), fq (u: El K) is not simplg 
related to 

Finaliy we note that by definition 

(A.24) 

If as in (A. I 1) Z, = kR S J (J is aiways bounded via 
EJ Q E - E,, k a: uuJ), then the contribution of 
K <J terms to (A.24) is negligible and K,, = I,,. Sub- 
stituting (A.20) and (ALI) into (A.23) we obtain, as 
expected, eqs. (A.16) or (A.19). 

Appendix B 

In this appendix we derive the statistical models 
through formal assumptions on the S and T matrices. 
It will be shown that the classification of models in 
terms of r, nz and Q can be related to the quantum 
mechanical representation and normalization schemes 
within the framework of which the T matrix is assumed 
to be a constant. In addition to product energy distri- 
bution we will brietly consider also angular distribu- 
tions. 

Using the notation of appendix A we first list the 
basic definitions and relationships. Absorbing again 
the channel symbol CI into II (a = (IL, u,Jl !I~J), the 
state to state transition rate, the differential cross 
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section and the detailed (ikluding angle variables) 
yield function am given, respectively, by [4) 

w(ik, n’k’) = (3$i)l<nk\iln’k’,12 6(E,,k - Ener) , 
(B.1) 

y(i,j; rj = is, - bij12 = (27T)*1Ti(E)12 : (B.10) 

Based 6n (66) and the assumption (ReS$ F 0 the 
generalized statistical approximation,for (B.10) reads 

F(i, j; r) = ( Y(i, i; I-? = sii + (I$jl2) (B.11) 

X ihk\Tln’k’$ , 

h-l Y(nk. n’r;‘, E) = p(nk; E) @k/p) do/di’ 

(8.2) 

= $p(rz; E> p(n’; E)lGzkl Tln’k’)l’ ) (B.3) 

where k = k, h; p(ni; fi’) = p(tz; E)147r. In (8.2) and 
(B.3) the T matrix connects momentum (elementary) 
states on the energy shell, that is E= Enk = li~pk~_ 
The momentum states are related to the energy states, 
i.e. the states normalized on the energy scale, via 

iE&) = [p(ri; E)] “‘Ink> 

Henceforth, to simplify the expressions we.will con- 
sider only i +jfi transitions. Setting 

fi =f(i; r) = Q(r)m(i; r) , (B-12) 

we find (for i + j) 

T(i,j; r)= Q(l?)m(i; !Z)m(j; F)/M(l?) , (B.13) 

with M(r) = %r(i; I’). Note that to ensure 0 -<fi < I 
-it is necessary that llQ(I’) > max{m(i; r)}. Eq. (66) 
supplemented by (B.IO)-(B.12) is thus equivalent to 
(22) or (7). 

= [p(rt; E)/4n] 1/I Ink) . (B-4) 

The T matrices on the energy shell in these two re- 
presentations are related to the S matrix through 

tiMI’& = 6&_5(k - I’) 

we first apply (B.IO)-(B.13) to i = n, k = CL, u, J, 
nrJk and I’ = E. If, in analogy, to (26) and (27) we 
choose 

fo(nkE)/Qo(E) =m,,(&;E) 

‘iI - f &I; E)p(tz’; E)) “*(,k171n’k’> (B.5) 

= 6,,& - 2) - 2irii(nklz-(~~ln’~) t @-6) 

where (&IT(E)ln’k> = (EnklTjlBz’$). Hence, 

Y(&, r1w; E) = (2n)‘I(rrrilT(E)I11’~)~2 (8.7) 

= I~f&lSIrr’k.- 6,,,.6(1; - $)I’ , 03.8) 

where in (9.7) and henceforth the !k’ factor will be 
absoibed into Y. The normalization of S is 

= p(ni; E) = p(n; E)/4n , (B.14) 

= U,,P(K E)/4n E N(n; E)l4n 

then 

(9.15) 

F&k. n’i’; fC) = [Q#)/(47~)*] A@; E)Iv(n’; L’)/N(E). 

s= & ~<nl;lsln’l;‘,l2 = I . 
11’ (B-9) 

Since the angular dependence of all quantities in 
(B.l)-(B.9) is through i’ -i integration of these 
equations over ic’ yields for, say, o(n 4~1’; E) and 
Y(n + n’:_E] the same expressions as in (B.i)-(B.9) 
with the k, k’ notation omitted. 

We now generalize (B.8) to any specification of 
the quantum state i and any she11 (ensemble) r, that 
is 

(B.17) 

Both (B.16) and (9.17) predict completely uniform 
(in space) angular distributions. Namely, all final 
angles 2 are equivalent as in the case of hard sphere 
collisions. integration over the angles yields our pre- 
vious expressions for y(n, n’; 15’). Comparison of (B.3) 
and (B.16) indicates that (B.14) iS equivalent to the 
assumption that the T matrix on the rI = E shell ex- 
pressed in terms of elementary states in the plane 
wave representation is a constant 
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WKMK IT(E)1 u’J’l’K’MK 1) IWTln’k’~12 = c,Qo(E)/p(E) =Fo(E) ) (B.18) 

or, cf. (B;7) 

I~k@pm2 = C&j(E)IP(E)I P(C E) p(n’; a 3 
(B.19) 

Applying (B-10)-(B.13) to i = ull and I’ = E, K we 
find 

where cl = 4n2 and c2 = 64k. 
From (B.l)-(B.3) (B-16) and (B.18) we realize 

again that the (elementary) state-to-state transition 
rate corresponding to the uniform measure is indepen- 
dent of the initia! and final states and is only a function 
of r = E. The flux expression, (B.17) results from (B.3) 
by setting- 

IwclTln’k’)12 = Cl [QflE)/N(E)] u,u,,v , 

or, from (B.7) via 

(B.20) 

l&lT(E)ln’~)12 = c2 [Qf(E)/N(E)]Iv(n; E)N(n’; E) . 
(B.21) 

To formulate the statistical hypothesis in I’ = E, K 
we transform the S and T matrices from the plane 
wave ldrn~k) representation to the total angular 
momentum representation IuK%&k). Us’ing (A.14) 
and the RPA, we find 

X m(u, J, I; E, K)m(u’, J’, I’; E, K)/M(E, K) .(B.25) 

First we note that irrespective of the choice of 
m(G, E, K) the angular distribution is symmetric 
around 6 = rr/2. This is usually interpreted as an indi- 
cation for complex formation [4,9]. Note that this 
symmetric distribution differs from the completely 
uniform (in 0, $I) distributions (B.16) and (B-17) re- 
sulting from application of the statistical assumption 
in T’ = E. Integrating over the angles and summing 
over I and 1’ in (B.25) we obtain 

?(n, n’; E) = F (2K + t)Q(E, K) 

X nz(u, J; E, K)n2(u’, 1’; E, K)/M(E, K) , 

where 

nt(u, J; i, R) = 7 m(v, J. I: E. AC) . (B-27) 

Restricting the 1 summation b:; the triangle rule or by 
dyrurmical constrainrs we ohr;rin respectively the 
“dynamics free” and “dynamically biased” measures 
in E. K. Using (A.lS) and (A.20) we find that the 
imit’orm anf flux measures ate given, in complete 
analogy to sections 3-6, by 

fo(u,f,I;E,K)tQ,(E,K)=M,(u,J,I; E,R) 

=~(u,J,I;E,K)=P~(E-E~), (B.28) 

f-h J, I; E, G/Q&E, K) = m,h J, I; E, K) 

= N(u, J, I: E, K) = uU,pK(E - .EbJ) . (B.29) 

Note that since PR a: I/z~,~ (B.39) is a ~~n~ta!~l. 
Similarly. cf. (A.20) and (B.27) 

~JU.J:~.K)/Q(,(I~. K) =q,(u.J:/:: A’) 
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(B.26) 
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= N(v, J, I; E, K) . (B.3 1) 

The dynamical measuresf&,ff,,d are obtained by 
restricting the 1 summations over (B-28) and (8.29) 
respectively. 

To evaluate F. &her (B.28) should be substituted 
into (B.25) or (B.30) into (B.26). Similarly for Ff we 
substitute (B.29) into (B.25) or (B.31) into (B.26). 
The forms sf the T_matrices in (BG22) and (B.23) 
leading to PO and Y, are: (a) for Y, 

I<urkrlT{~)lu’J’k’~‘)l2 = 

= Cl [Q&, K)I L4.6 a = F&c m , (B.32) 

which means that the assumption leading to p. is that 
the T matrix on the !?, = E, K shell expressed in terms 
of elementary states in the total angular momentum 
representation is a constant. The same assumption 
expressed in terms of states normalized on the energy 
scale is 

(B.33) 

= cl [Q&K WW, K)l u” J$‘J’ 7 (B.34) 

or 

ICUr&‘-(C, K)Iu’J’l’)12 = c2 [Q&E, K)/A’(E, K)] 

X u~Ju~~~&J, J, I; E, K)p(u’, J’, I’; E, K) 

= Ff(E, K) . (B.35) 

Hence, the assumption leading to PC is that the T 
matrix on I‘, = E, K expressed in terms of states 
normalized on the energy scale is constant. 

To summarize, every statistical model can be 
derived by assuming that an appropriate T matti is 
a constant. In particular, the uniform models corre- 
spond to canstant matrices in elementary state re- 
presentations. From the models considered above 
‘Yf, cl. 0.17) and (B.21), is somewhat exceptional 
since its appropriate constant T-matrix does not in- 

volve one of the familiar representations ink} or 
Ifi’nh but, rather the uncommon representation 
zf;;l’%zk) = [A@; E)] -*‘21&, cf. (B.21). 

References 

[I] H. Eyring, D. Henderson, B.J. Stover and EM. EyrinE, 
Statistic31 mechanics and dynamics (Wiley, New York, 
1964). 

[ 21 O.K. Rice, Statistical mechanics, thermodynamics and 
kinetics (Freeman, San Francisco, 1967). 

[3] R.D. Levine and R.B. Bernstein, Molecular reaction 
dynamics (Clarendon Press, Oxford, 1973). 

[4] R.D. Levine, Quantum mechanics of molecular rate 
processes (Clarendon Press, Oxford, 1969). 

[S] J.M. Blatt and V.F. Weisskopf, Theoretical nuclear 
physics (Wiley, New York, 19.52). 

[6] J-R. Taylor, Scattering theory (Wiley, New York, 1972). 
[7J R.A. Marcus, Discussions Faraday Sot. 55 (1973) 9, 

and references therein. 
[8] J.M. Parson, K. Shobatake, Y.T. Lee and S.A. Rice, 

Discussions Faraday Sot. 55 (1973) 344, and references 
therein. 

[9] D.R. Herschbach, Discussions Faraday Sot. 33 (1962) 
149. 

[IO] D.L. King and D.R. Herschbach, Discussions Faraday 
sot. 55 (1973) 331. 

[ll] W.H. Miller, J. Chem. Phys. 52 (1970) 543. 
[12] J. Keck, J. Chem. Phys. 29 (1958) 410; Advan. Chem. 

Phys. 13 (1967) 85. 
[ 131 R.B. Bernstein, A. Dalgarno, H. Massey and LC. Percival, 

Proc. Roy. Sot. A274 (1963) 427. 
[14] J.C. Light, J. Chem. Phys. 40 (1964) 3221. 
[ 15 ] P. Pechukas and J.C. Light, J. Chem. Phys. 42 (1965) 

3281. 
[ 161 P. Pechukas. J.C. Light and C. Rankin, J. Chem. Phys. 

44 (1966) 794. 
[ 171 J. Lin and J.C. Light, J. Chem. Phys. 4.5 (1966) 2545. 
[ 181 J.C. Light, Discussions Faraday Sot. 44 (1967) 14. 
[ 191 R.A. ‘Xhite and J.C. Light. J. Chem. Phys. 55 (1971) 

379. 
(201 E.E. Nikitin.Weor. Expt. Chem. USSR 1 (1965) 83, 

275. 
1211 F.1:. Nikitin and L. Yu. Rusin. Khimiya Vysokikh 

Eric,. ‘i 9 (1975) 124. 
1221 D.G. 1, lhlnr and A. Kuppermann, J. Phys. Chem. 73 

(1969) 1722. 
(231 D.C. Fullerton and T.1:. Moran. Chcm. Phys. Lctrcrs 10 

(1971) 626. 
(241 W.H. Won:. Can. J. Chcm. 50 (1972) 633. 
[25] D.G.Truhlar. J. Chcm. Phys. 51 (1969)4617;54 (1971) 

2635;56 (1972) 1481. 
1261 J.R. Krenosand J.C.Tully, J. Chcm. Pbys. 62 11975) 

420. 



A. Een+Shaul/lEeory of chemical reactions 365 

1271 D.G.Ttuhlar, J. Am. Chem. Sac. 97 (1975) 6310, and 1591 R.G. Shortridge and M.C. Lin, J. Chem. Phys. 64 (1976) 
references therein. 4076. 

(281 R.A. Marcus, J. Chem. Phys. 45 (1966) 2630. 
(29) S.A. Safron, N.D. Weinstein, D.R. Herschbach and 

J.C. Tully, Chem. Phys. Letters 12 (1972) 564. 
[30] B.C. Eu and J. Ross, I. Chem. Phys. 44 (1966) 2467. 
[31] T.F. George and J. Ross, J. Chem. Phys. 56 (1972) 

5786. 

1601 R.E. WVyatt,Chem. Phys. Letters 33 (1975) 201. 
161) R.K. Nesbet, Chem. Phys. Letters42 (1976) 197. 
(621 M. Rubinson and J.I. Steinfeld, Chem. Phys. 4 (1974) 

467. 
[631 I. Procaccie and R.D. Levine, J. Chem. Phys. 63 (1975) 

4261;64 (1975) 808. 
[ 32) D.A. Case and D.R. Herschbach, (a) Mol. Phys. 30 

(1975) 1537; (b) I. Chem. Phys. 64 (1976) 4212. 
[33] R.A. Marcus, J. Chem. Whys. 45 (1966) 2138. 
[341 C.E. Klots, (a) J. Chem. Phys. 41(1964) 117; 01) J. 

Phys. Chem. 7.5 (1971) 1526; (c) 2. Naturforsch. 27 
(1972) 553. 

[64J (a) A. Kafri, E. Poilak, R. Kosloff and RD. Levine, 
Chem. Phys. Letters 33 (1975) 201; 
(b) H.J. Korsch and R.D. Levine, to be published. 

[65] H. Kaplan and R.D. Levine, Chem. Phyr 18 (1976) 203. 
(661 J.N.L. Connor, W. Jakubetz and J. Man& Chem. Phys. 

17 (1976) 451. 
1351 T. Horie and T. Kasuga, J. Chem. Phys. 40 (1964) 1683. 
136) W.H. Miller, J. C&em. Phys. 65 (1976) 2216. 
137) P. Pechukas, in: Dynamics of molecular collisions, ed. 

W.H. Miller (Plenum Press, New York, 1976) ch. 6, and 
references therein. 

[38] D.L. Bunker and M. Pattengii, J. Chem. Phys. 48 
(1968) 772. 

1391 M. Quack and J. Tree, Eer. Bunsenges, Physik. Chem. 
78 (1974) 240. 

167) (a) A. Kafri, R. Kosloff and R.D. Levine, Astrophys. J., 
to be published; 
@) A. Kafri and R. Kosloff, Chem. Phys., to be published. 

[68] R.D. Levine and 0. Kafri, (a) Chem. Phys. Letters 27 
(1974) 175; @) Chem. Phys. 6 (1975) 426; 
(c) A. Ben-Shaul, hiol. Phys. 27 (1974) 1585; 
(d) A. Ben-Shaul, 0. Kafri and R.D. Levine, Chem. Phys. 
10 (1975) 367. 

1401 J.B. Henderson, J. Chem. Phys. 58 (1973) 4684. 
[41] F.H. Mies, 1. Chem. Phys. 51 (1969) 787,798. 
[42I R.B. Bernstein and R.D. Levine, I. Chem. Phys. 57 

(1972) 434. 

1691 R.D. Levine, Chem. Phys. Letters 39 (1976) 205. 
[70] I. Procaccia, Y. Shiioni and R.D. Levine, J_ Chem. 

Phys. 65 (1976) 3284. 

[43] A. Ben-Shaul, R.D. Levine and R.B. Bernstein. (a) J. 
Chem. Phys. 57 (1972) 5427; (b) 61 (1975) 4937. 

(441 G.L. Hofacker and R.D. Levine, Chem. Phys. Letters 
15 (197’) 165. 

14.51 R.D. Levine, B.R. Johnson and R.B. Bernstein, Chem. 
Phys. Letters I9 (1973) I. 

[46 1 A. Ben-Shaul, Chem. Phys. I (1973) 244. 
147) R.D. Levine and R.B. Bernstein, Discussions Faraday 

sot. 55 (1973) 100. 

[7I 1 R.D. Levine, J. Chem. Phys. 65 (1976) 3302. 
[721 RD. Levine and A. Ben-Shaul, in: Chemical and bio- 

chemical applications of lasers, Vol. 2, ed. C.B. Moore 
(Academic Press, New York, 1977). 

[73] J.L. Kinsey, J. Chem. Phys. (i971) 1206. 
[74] J.C. Light, J. Rossand K.E. Shuller, in: Kinetic processes 

in gases and plasmas, ed. A.R. Hochstrim (Academic Press, 
New York, 1965). 

1481 C. Rebick, R.D. Levine and R.B. Bernstein, J. Chem. 
Phys. 60 (1974) 4977. 

(491 R.B. Bernstein and R.D. Levine, Advan. Atom. Mol. 
Phys. 11 (1974) 215. 

[751 (a) R.C. Tolman, The principles of statisrical mechanics 
(Oxford Univ. Press, London, 19381: 
(b) LD. Landau and E.M. Lifshitz, Statistical physics 
(Pergamon, Oxford, 1968); 
(c) R. Rcif. Stnti*li<:tl :tnd thcrrnal physics (McCnw-Hill, 
New York. 19651. 

[50] RD. Levine and R.B. Bernstein, in: Dynamics of 
molecular collisions, ed.W.H. Miller (Plenum Press, 
New York, 1976) ch. 7. 

(511 A. Ben-Shaul and G.L. Mofacker, in: Handbook nT 
chemical lasers. eds. R.W.F. Gtosg and .l.l:. Dot1 
(V&y, Nea York, 1976) cl;. 10. 

I521 A. lWri.(‘hwl. Phys.‘13 (1976) 309. 
(53 1 ILL). Levine and J. Manz, J. Chem. Phys. 63 (1975) 

4280. 
[WI K Kaplan, R.D. Levine and J. Manz, (a) Chem. Phys. 

12 (1976)447;(b) Mol. Phyr 31 (1976) 1765. 
(551 E. Pollak. Ph.D. Thesis, The Hebrew University (1976). 
(561 bI.f. Berry, J. Chcm. Phys. 59 (1973) 6229. 
157 1 U.J. Bogan and D.W. Sctscr, J. Chcm. Phps. 64 (1976) 

586. 

(761 (a) C.E. Shannon and W. Wwcr. The mathematical 
theory ol’comnmnicnfion (Univ. Illinois Press, Urbana, 
1949); 
lb) L. Brillouin, Science and information theory 
(Academic Press, New York, 1956); 
(c) ES. Jaynes, in: Starisrical physics, ed. K.W. Ford 
(Benjamin, New York, 1963). 

[77] E. Fermi, Prop. Theoret. Phys. I (1950) 570. 
(781 (2) 2. Koba, Nuovo Ciiento 18 (1961) 608; 

(b) T. Ericson, Nuovo Cimento 21 (1961) 605: 
(c) 1:. Cerculus, Nuovo Cimento 22 (1961) 958: 
(d) II. Satz, Fortschr. Physik II (1963) 445. 

1791 1X11. Maylotte. J.C. Polanyi and E.U. Woodall, J. Chrm. 
Phys. 57 (1972) 1547. 



366 .: A. Ben.ShPul/Theory ofchemi~lreae~onr ‘,-. ..’ .. 
: 

(821 J.O. H&chfeIdw, C.iT Curtiss and R.B. Bird, Molecular Vol. 1. Spectra of diitomic molecules (Van Nostrand, 
theory of gases and Iiquids (Wiley, New York, 1967). Princeton, 1950). 

[83] H. Matgenau and N.R. Kestner.Theory of intermolecular 1851 M.L. Goldberga and KM. Watson, Collision theory 
forces (Pergamon, Oxford, 1969). Wiley, New York, 1964). 

I [&I 1 G. Henberg, Molecular spectra and molecular structure, [86 J P.M.. Morse and H. Feshbach, Methods of theoretical 
physics (McGraw-l-Iii, New York, 1953). 


