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- Statistical models which yield rate expressions involving the asymptotic channel states are classified according to three
main characteristics: (i) The ensemble in which framework the basic statistical assumption is formulated. This assumption
states that the initial and final states of the collision are, partly or completely, independent. (ii) The “measure in phase™
associated with the product state distribution. (jii) The extent to which dynamical considerations are incorporated into the
model. In this connection the discussion will be confined to the effects of angular momentum restrictions. The diversity in
statistical models is demonstrated by comparing the product vibrational and rotational distsibutions obtained from several
models for atom-—-diatom exchange reactions. Numerical results are presented for two exoergic reactions which involve dif-
ferent mass combinations. Particular attention is paid to 2 comparison between the objectives, assumptions and the finat
expressions for product state distributions corresponding to the so called phase space theory on the one hand and the prior

(zero surprisal) limit of the information theoretic approach to molecular dynamics on the other.

1. Introduction

Many theories of molecular [1—4] and nuclear [5,
6] collisions employ (various) statistical assumptions
to describe collision processes and to predict their
outcomes. In molecular physics the main success of
these theories is in the area of large molecules where
many degrees of freedom are involved so that detailed
dynamical calculations are impractical while statistical
approximations seem reasonable (see, however, €.g.
refs. {7,8]). Since detailed calculations are difficult

.to pérform, partly due to the lack of accurate potential
energy surfaces, even for small systems, such as atom—
diatomic molecule, various statistical models were
formulated in order to account for at least some as-

- pects of the collision [9—41]. For example, the sym-
metric product angular distributions observed in certain
bimolecular reactions can be interpreted as the result
of intermediate complex formation followed by .
“statistical” breakdown probabilities {3,4,9-11,19,
27]. The statistical models are less successful in pre-
dicting, for instance, the product vibrational and
rotational energy distributions in exoergic chemical
reactions; especially in those ending with population

inversion. In such cases one may use the statistical
models as standards against which actual results can
be compared [18] or as bases for the development
of more elaborate models. In the information theoretic
approach to molecular collision dynamics [42—-72]
such standards can serve as the prior distributions
(rate constants, cross sections) used in surprisal and
entropy analyses of experimental data. When supple-
mented by appropriate dynamical constraints the
prior distributions play a major role in the predictive
scheme (synthesis) based on the maximum entropy
principle.

The central assumption of the statistical models is
that past and future with respect to the collision
event are partly or completely independent; subject to
symmetry and conservation requirements. The sym-
metry requirements refer in particular to microscopic
reversibility while the conservation rules concem the
total (center of mass) energy £, total angular momen-
tum K and the normalization of probabilities. Approxi-
mate dynamical information, e.g. on the range of
allowed angular momenta, is usualfy incorporated
into the models in order to increase their dynamical
character. The concepts of intermediate, “long lived™
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(see, e.g. refs. [1—4, 7—11]) or “strongly coupled™
[14-19], collision complexes play important 1’ ies in
various statistical theories. They serve to account for

© “quasi-equilibrium™ (“‘energy randomization”) [1-4,
7,28,33,34] or “strong coupling” [4,11,14—19]
postulates on the basis of which the neglect of corre-
lation between reactants and products can be justified.
In the traditional formulations of transition state theory
a quasi-equilibrium is assumed to exist between the
reactants and the systems crossing the activated com-
plex hypersurface (see e.g. refs. [4,7,37] ). Recent
work [36,37] (utilizing variational principles to locate
the transition hypersurface, see e.g. refs. [12,38—41])
indicates that transition state theory is appropriate

to 2 “direct”, as opposed to “complex”, reaction
mechanism, whereas the well known [14-27] phase
space theory of Light, Pechukas [14—19] and

Nikitin [29,21] (LPN) is only applicable to reactions
proceeding via the formation of long lived complexes.
This interpretation of the phase space theory is some-
what different from the one suggested in some of its
original formulations [14—19] where a strongly
coupled complex defined by the region of strong in-
teraction in configuration space rather than by its
lifetime was assumed to be formed.

To conclude this background survey it should be
mentioned that the LPN theory, to which considerable
attention will be given in the following, can be derived
as a limiting case of other statistical-dynamical ap-
proaches. For example. it can be viewed as transition
state theory for "loose complexes™ [37,41]. Also,
and this is of greater interest in the present context,
with the aid of a random phase type approximation
the phase space model can be derived through formal
assumptions on the structure of the scattering matrix
[4.11.19,22] ; similar to those made in the statistical
theory of rotational excitation [13].

The main concern of this paper is the statistical,
rather than the dynamical, aspects of statistical-
dynamical approaches to small collision systems. We
shall only consider models that lead to rate expressions
(e.g., cross sections or product state distributions)
involving the asymptotic reactant and product states,
or equivalently the phase space regions corresponding
to the asymptotic channels. Thus, many (interesting)
questions regarding, for example, the behaviour and
structure of the colliding system at intermediate -
separations, are beyond the peispectives of the present

discussion. Yet, even within the limited scope of

“gsymptotic channel statistical approaches™ there is

room for diverse, actually an infinity of, different
models.

The general purpose of this paper is to characterize
the various aspects of diversity in a systematic fashion.
Particular attention will be paid to a comparison be-
tween two familiar rate expressions. Namely, the cross
sections and related quantities obtained in the phase
space theory of Light, Pechukas and Nikitin [14-28]
and the prior distributions appeating in the informa-
tion theoretic approach developed by Levine, Bernstein
and others [42—72]. Unlike the phase space theory
the prior distributions do not contain any dynamical
information and therefore do not attempt to predict
experimental results. In fact, they are meant to re-
present the dynamically “least biased™ (or “most
random™) distributions [42--50] . As such they can
either be used as standards for entropy—surprisal anal-
yses or else as starting points in the predictive scheme
(synthesis) which constitutes another direction of the
information theoretic method. Although the LPN and
the prior distributions involve different statistical
ensembles (£, K versus E') and different measures in
phase space (*“uniform” versus “flux™), one can also
observe certain similarities. We shall elaborate upon
these differences and similarities within the general
classification framework of statistical models presented
in the following sections. Among the special models
considered, we have included an extended version
of the prior distribution which explicitly includes the
conservation of angular momentum (i.e., appropriate
to the E, K ensemble). As specific examples illustrating
the consequences of different statistical assumptions,
we have chosen the Cl + Hl = HCl +1and the H + (l,
- HCl + Cl reactions. :

Two more remarks should precede the discussion.
First, some points related to the objectives of this
paper have already been dealt with in the literature
[11,27,43,45,49-55] (to a greater or lesser extent).
In our opinion, however, no clear distinctions have
been provided. Hence the motivation for this paper.
Second, for reasons to be clarified throughout the
paper, the presentation of the various models and the
analyses of their physical significance will not be
accompanied by judgements or evaluations.

The paper is organized as follows: The basic defini-
tions and the general structure of statistical models
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are presented in the next section. Different choices of
statistical ensembles, measures in phase space and
dynamical constraints are considered in sections 3, 4
and 5, respectively and tested for two specific exam-
ples in section 6. Section 7 provides some remarks on
the derivation based on the assumption of complex
formation and the beginning of the derivation based
on formal assumptions on the S-matrix. Section 8 is
devoted to a discussion. In appendix A we list the
elementary state representations and density of state
expressions relevant to sections 2—8. Appendix B
supplements section 7 in providing the details of the
formal derivation.

2. The statistical assumptions

Many different statistical approximations are con-
sistent with the basic framework of no correlation
between reactants and products subject to symmetry
and conservation rules. Diversity is possible, and exists,
in four main respects: (1) the “ensembie”, I, within
the framework of which the assumptions are made,

(2) the “measure in phase space (or, Hilbert space)”,
m(n; I), associated with the product state, n, (3) the
extent to which dynamical considerations and infor-
mation on the potential energy surface are incorporated
into the model, (4) the absolute total value, O(T), of
various rate variables (rate constants, cross sections,
yields). We shall elaborate on these points, mainly on
the first three, using as a specific example the atom—
diatom collision

A +BC(n) > AB(n") + Clor A + BC(n")] . 68}

Here n and n’ denote the, completely (i.e.n=v,J,
my) or partially (e.g. n = v) specified, internal state
of the reactant and product diatoms. Whenever
necessary we shall use a channel symbol, &, to denote
the chemical composition, a = A + BC or AB + C. We
assume that the total collision energy does not suffice
for the formation of reaction products other than an
atom and a diatomnic molecule (e.g. ionization or
dissociation products) and that the reaction is elec-
tronically adiabatic.

Qur attention will be focused on two ensembles:
Iy =E,Kand [ =E. By T, = £ we refer to a “micro-
canonical” ensemble of collisions — all with the same
total energy E (in the c.m. system). I'; = £, K isa

more specific ensemble, I'; C I'y, representative of

* collisions with well defined total energy £ and total

angular momentum K. (Averaged, not summed, over
the 2K + 1 equivalent values of My.) The “canonical”
ensemble I'; = T, (I'y C T'3), which is a Boltzmann
superposition of microcanonical ensembles will

briefly be mentioned in section 8. To ensure consistency
with microscopic reversibility the statistical assump-
tions wili be made on quantities which are symmetric
with respect to interchanging an and a'n". These are,
for example, the averaged (elementary) state-to-
(clementary)-state transition rates w(an, o'n'; T"), the
yield function Y{(an, o'n’;T) [4,42,73] or the S and
the T matrices. Elementary states are defined in appen-
dix A. In the T'= E ensemble @ and Y are uniquely
related to each other as well as to the detailed rate
constants X(z = n'; £) and cross sections a(n > n'; £),
through eq. (2) below [4,42,49,73,74] . We now extend
these relationships in order to define k(n = n'; ") and
o(n—+n';T) for T' = E, K (for T = T see refs. [73,74,
541). The implications of this generalization are con-
sidered below. We thus write

B 1Y(n,#';T)
= po(n; D) p(n'; D) w(n, n'; T) = p(n; D)k(n = 1" T)
=u,p(n; T)o(n =+ n'";T) = u,p(n’; T) o(n’ > n;T)
=p(’; D) k(' > n;T) = p(1; T) p('; T) (', 1, T)

=n~ Y@’ m; 1), @

where the channel symbols were omitted for the sake
of brevity. In eq. (2) which is also the statement of
microscopic reversibility p(r; I') is the density of
states, including the degeneracy of n, of the reactants -
in the I" ensemble (appendix A). u,, or in full notation
U, , is the relative initial velocity

Ug n = QeI % = [2E - E, )2,

where €, is the relative translational energy, i, is the -
reduced mass of the colliding species and £, , =E,,

+E, () is the internal energy. E, is the ground state
energy in channel @ measured on a commen energy
scale for all channels. (The channel symbols will be
omitted until we arrive at sections 5 and 6.) Note that
the equalities involving ¢ are valid only when u,,, u,,.
are well defined, that is whenn=v,Jorn =v,J, m;
but not when n =v. :
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From the definitions of c(n, n'; T') and p(n; I') it
follows that :

P o E, K)p(n'; E, K)
ol nE)= ?QK D=0 E) ot B)

X o, n';E, K), 3)

where p(n; E, K)/p(n; E) is the fraction, in ' = E, of
all reactant states with total angular momentum K,
and arbitrary Mg . (Explicit expressions for w are
given in appendix B.) Similarly

Y(n,n'sE)= b QK + \)YY(n,n",E,K). @
K
Now, accardiﬁg to (2), (3)and (4)

-y = p(ﬂ;E,K) LN
o(n—>nE) ? (2K+1)-—-———p(n;E.) aln—>n ,E,(ls()),

and similarly for the rate constants. We note that (5)
differs from the conventional resolution of the cross
section into angular momentum components {4,11]

on—~>n"E)= '%,“(zml)a"(n»n';g). 6)

The difference between (5) and (8) is entirely formal
and corresponds (see section 7 and appendix B) to
using different representations of the S-matrix. How-
ever, to avoid confusion we shall base the discussion
on the yield function which besides being symmetric
is uniquely resolved, according to (4).

The basic statistical assumption, namely, that the
product state distribution P{n"; T') is independent of
the reactant state 1 can be expressed in one of the
following alternative forms

¥, n';T) = Y(u; T) Y('; T Y(T) )
=Y(m; T)P(n'; T)=P(n; 1) Y(n'; T) ®
=Y([@)P(n; T)P(n'; 1), ©)

where

P(n;T) = Y(n; D) YD), (10)

and

Y(0)=22 Yo, n';T) = 20 Y T)= 22 Y(r'sT).
nn n n' (11)

The quantities appearing in (7)—(11) have the follow-
ing significance. Y denotes the statistical approximation
of the yield function. Y(#; I") represents both the rate
of formation of the state n and the rate of its disap-
pearance. It is related to the cross section and the rate
constant via

Y(n; £) = u, p(n; E) o(n > ; )

=p(; E)k(n > ;E), (12)

where o{n - ; E) and k{n ~ ; E) are the total cross
section and rate constant for reactants in #. P(n; T) and
P(i"; ), both defined by (10), represent the overall
colfision probability of state n and the product state
distribution respectively. They are related to each other
and to the “reaction matrix” [54,35] P(n,n";T) =
Y(n, n'; TY Y(T) through

20 Pn, s T)= L P(n;T)= L P T)=1. (13)
nn' n n'

Thus, the statistical approximation (7) is equivalent to
the statement that the reaction from initial state » and
the formation of product state n’ are disjoint events, -

P, n';T )= P, n',T) = P(n; T)F(n'; T) . (14)

If a collision complex is assumed to be formed then
P(n;T) and P(n'; T') can be interpreted as the probabili-
ties for complex formation (from #) and decomposition
(into n"). Finally, recall that we have used an abbreviated
notation, omitting the channel notation a. The full
notation obtains by replacing n by o, n and 1’ by

o, n’ everywhere in (7)—(14).

3. The statistical ensemble

One of the immediate consequences of (7)—(9) or
(14) is that independent (simultaneous) statistical
assumptions in different ensembles may lead to in-
consistencies. Consider our two basic ensembles I'y
=£, K and T'; = £ and suppose the statistical assumnp-
tion (7) is made in I';. Thus

Y, ' E) = ? @K +1) P(n, 1’3 E,K)

Y&, K) ’
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where (using general notation) Y (n, n'; I'y) is the
resulting expression for the yield function in I’y when
the statistical assumption (7) is applied to the yield
function in the partial ensemble I'y. From (15) we
see that in general (except under a certain condition,
see below) ¥ (n,n'; Ty) # Y(n,n'; ; I'y) where the latter
quantity represents the yield function when the statis-
tical assumption (7) is applied directly to Y(n, n'; T'p).
Thus when stating, for example, that a chemical re-
action “behaves non-statistically” it is necessary to
specify the ensemble in which framework this behavior
is displayed. Numerical examples to illustrate the dif-
ferent results obtained from “similar” statistical assump-
tions in different ensembles are given in section 5. The
term “similar” refers to using the same type of a
measure in phase space, section 4, and the same type
of dynamical restrictions, section 5. These two factors
determine the explicit form of Y(n; T) and conse-
quently of Y(n,n"; ).

In order that both Y(n, n'; E, K) and Y(n, n'; E),
or more generally Y(n, n'; T'y) and Y(n, n'; T'y) where
'y C Ty, will fulfil the basic statlsncal requxrement
(7), it is necessary that Y(n n'sE)=Y(n,n'; ;E)or
explicitly, cf. (15)

Y(n, E) Y(n',E) _
Y(E)
Y(n; E,K) Y(n'; E, K)
Y(E, K) '
Using the general relationships [cf. (4) and (11)],

?(2K+ 1) (16)

Y1, E) = 21{3(21“ 1) Y E,K), a7)

YE)= K+ YE.K). (18)
we find that the condition for the existence of (106)
is that for every n’ {or i) and K

Y(i';E,K) _ ¥(n'; E)
YEK) YE)

The significance of (19) is that the product state dis-
tribution in I’y = £, K is independent of K. On the
other hand, if P("; £, K) depends on K the micro-
canonical yield is not strictly statistical, in the sense
that (7) is not fulfilled for [ = L. Therefore we say
that the conservation of angular momentum X intro-

Pk K) = =P(n";E). (19)
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duces correlation, or “relevance” {47—50], into

Y(n, n'; £). If K were not a conserved quantity then
we would have to write Y(nK, n'K"; £) instead of
Y(n,n'; E, K) etc., and replace every sum over K by a
double sum on K and K'. In this, hypothetical, case
(16) would trivially be satisfied. It will be shown be-
low that if (19) is fulfilled then the measures in phase
space in T') = E, K and T = E can not be of the same
type.

4. The measure in phase space

So far we have not specified the form of Y(n1; ")
which, via (7), determines the explicit expressions of
Y(n, n’; T") and related functions such as the product
state distribution P(n’; ). Being an essential com-
ponent of the statistical model Y(z; I') is usually
chosen as some “physically reasonable” function of
n in the phase space region available to the various
collision products {includirig the reactant channel).
Yet, since the term “physicaily reasonable” is not
uniquely defined the choice of this function, also
known as the “measure in phase space™ [15~-18}
may differ from one statistical model to another. We
define the measure in phase space, m(n; '), in the gen-
eral form

Y, 1) = Q(Cm(n; 1) . (20)

The, meanwhile unspecified, proportionality factor
O(T) determines the absolute valuc of the yield (rate
constants, cross sections); It does not appear in nor-
malized quantities such as P(n"; T'). The fourth respect
of diversity in statistical models mentioned in section
2 concerns the specification of Q(T), see below. We
define
M= 2m@m; T, @)
n
so that, cf. (11), ¥(I) = Q(T)M(T"). For (7) and (10)
we obtain, respectively

Y(u, n'; T) = Q(T) mer; Dym(n": T)M(T) , (i)

P';TY=m(n": T)M(T). (23)

The measures used in the information theoretic
approach (42 82[ and the phase space theory {15 27]
are. respectively
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‘mg(n; E) = p(n; E) ' ey
mnd(n;E, KY=u,p4(mE,K)=N;(m;E,K).  (25)

Here p(n; E) is the density of states of the molecular
collision system, triatomic in the case of (1), at given
Eand n. py(n; £, K) is the modified density in I" = £,
K obtained by imposing dynamical restrictions, (sec-
tioit 5) on p(n; £, K) — the density of states at given
E, K and n, see appendix A. Both mp(n; £) and
mf_d(n; E, K) have a simple physical meaning. Since
these two measures involve different statistical en-
sembles and different extents of dynamical input it
will be instructive to first generalize (24) and (25) and
only then consider their meaning. To this end we
postpone the discussion [formally, by deleting the
symbol d from (25)] -about the effects of dynamical
restrictions on p(n; I') to the next section, and define

my(a;T) = p(a; ), (26)

m(; T =u,p(n; TY =N, T) . @7

These two functions will be called, the “uniform”
{“volume™, *
respectively. In appendix A it is shown that p(r; T) is
proportional to the number of elementary states, or
equivalently to the volume in phase space, of a
(triatomic) system in internal state n in the T ensemble.
In other words, using the first measure in g statistical

model is equivalent to assuming that all elementary

states of the triatomic system are equally (or uniformly)

probable {42—52, 73]. Hence, the product state distri-
bution, (10), corresponding to (26)

Po(n'; T) = my(n'; TYM(D) = p(n'; Do), (28)

is proportional to the phase space volume occupied
by n; o(T") = Zp(n’; T"). Setting I' = £ in (28) we ab-
tain the microcanonical prior distribution [40]. The
physical reasoning for choosing (28) is that in the
absence of any information all states of the same
energy are equally probable;in analogy to the “a-
priori equal probabilities™ postulate of statistical
mechanics [75] and in accordance with the principles
of information theory {761 . The same type of argu-
ment and consequently the same type of measure,
mo,d(n; E,K)=py(n; E, K) (i.e. uniform) was as-
signed to the complex breakdown probability in -
Light’s original version of phase space theory [14],

microcanonical”)and the “flux” measures,

(see section 8). Using a different approach Eu and -
Ross [30] arrived at essentially the same conclusion.
Horie and Kasuga [35] used a uniform measure to
explain (successfully) their exgerimental results

on electron impact induced dissociation of H,0. A
uniform microcanonical measure appropriate to many
particles in a finite volume (the interaction volume)
was employed by Fermi in his statistical theory of
nuclear reactions [77] . Other authors in this field
studied the effects of angular momentum on this
measure [78].

The second measure (27), being the product of a
density (of states) and a velocity can be regarded as
the phase space “flux” of the group of trajectories
leading to (or originating in) the internal state n. It
has been shown [4,11,22] (see also appendix A), that
N, J; E, K) is the number of combinations of
orbital J, and rotational, J, angular momenta consistent
for a given J = |J] with a total angular momentum K.
Thus N(r; E, K) has a simple geometrical meaning.
When (27) is restricted to inelastic rotational transition
the choice m{J: E, K)=N(/J; E, K) leads to the
statistical theory of Bernstein et al. [13]. It should
also be noted that (27) is closely related to transition
state and RRKM theories [1-4, 7,12,20,33,38,39].
According to these theories the probability that a re-
action will lead to products in the final state n is pro-
portional to the flux of molecules, along the reaction
coordinate, in the complex region. This flux is
u*p*(n, E) = N¥(n; E) where u* is the velocity and
p* is the total density of complex states. Since there
is only one translational degree of freedom and its
density of states is proportional to 1/u¥, N¥ is the
density of internal modes. The analogy to (27) is evi--
dent.

To conclude this section we note that p(n; E, K)
and p(n; E) display different n-dependencies. Specifi-
cally, if n = v, J then p(n; E, K) = uy '« (£ — E,,}“I/2
whereas p(n; £) < u,, < (£ — E,,)/2. Hence, from (20)
and (26) it is clear that (16} or (19) are not fulfilled
for mg{(n; E) and my(n; E, K). Or, in other words, if
two uniform or two flux measures (in different
ensembles) are said to be of the same “type” then for
the fulfilment of (19), m(r:; £) and m(n; E, K) which
determine P(n1; £) and P(n; E, K), respectively, must
be of different types; as remarked at the end of the
previous section.
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5. Dynamical restrictions

The densities of states p(n; ') appearing in (26)
and (27) are defined on all phase space regions allowed
by the symmetry and conservation rules. Some of
these regions, e.g. those corresponding to very high
orbital angular momenta (impact parameters), are
not likely to affect the outcomes of real collisions.

It is therefore expected that every statistical model
will be more realistic by excluding such regions from
the definition of m{r; I"). However, by setting more
and more restrictions on the allowed phase space
regions, and moreover by assigning them difterent
weights, the statistical nature of the model is gradually
lost and one approaches a dynamical theory. Thus

in the information theoretic approach it is suggested
to choose mg(i; I") as the “dynamically least biased™
measure. The dynamical bias is incorporated in the
form of constraints into the maximum entropy
procedure [44,64—67] which finally yields, say, the
product state distribution. On the other hand in LPN
theory the dynamical restrictions are built into

me(n; £, K) [14-27). In this section we consider

the effects of such “built in™ restrictions on both the
flux and the uniform measures and the corresponding
yield functions. The discussion will be limited to
angular momentum constraints.

The simplest route to eliminating the contribution
of very large orbital angular momenta to p(s1; £) is to
postulate the existence of some maximal, energy in-
dependent, impact parameter b, so that only
<1, = kb, contribute to, say, pp(£), ct. (A.11).

In this case the “dynamically restricted™ translational
density and consequently all py(n; E) ditter from the
corresponding unrestricted densities by a constant
multiplicative factor (see appendix A) and P(n; E)
remains unchanged. On the other hand, the restriction
[ < kb, can modify p(n; £, K). Moreover, if the re-
striction is

1< kb (6) = Que/i) b, (e) (29)

where b_,(€) is a function of the translational energy
both p(n; E, K) and p(n; E) are modified. To clarify
these points let us consider more systematically the
effects of angular momentum constraints. The suitable
ensemble for their implementation is I'y = £, K. The
discussion will be brief'since the constraints are
familiar [14-27].

‘li. i I 1 ¥ T
[ R / _
200 / N -

150L

80

60

1
0 20 t 40K\ 60

Fig. 1. Geometrical interpretation of angular momentum re-
strictions. Shown are typical results for the produets in the
reaction H + Cl, — HCl + Cl. Due to the small reactant mass,
Ky is small so that K and J* are, typically, of similar magni-
tude. Consequently, for many terms in (39), i.e.. those with
J' > K the effective degeneracy N(v'J'; £, K) [cf. (31) or
(36)], is less than the normal (free rotor) degeneracy 24 + 1.
Dynamical constraints resulting from the existence of a cen-
trifugal barrier, eqs. (33) and (33), are less restrictive than the
triangle rule {31).

If all orbital angular momenta consistent with the
triangle rule

IK—J|SISK+J (30)

are allowed then the flux mea;ure, (27). is given by,
see appendix A and fig. I,

(e, v, J2 E, K) = N(a, v,J; £, K)

{21+1;. J<K
AK+1; J2K

The channel symbol, &= A + BC or AB + C, is intro-
duced now to emphasize that the meusure is different
for different channels. The uniform measure corre-
sponding to the same conditions, i.e. eq.(30), is

}=K+J_|K—Jl+1. @3
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mola, v, J; E, K) = p(a, v, J; E, K)

=N, v, T3 £, K)fug,y - (32)
The dynamical restrictions in LPN theory are on the
upper limit in (30). Specifically, it is assumed that
inelastic and reactive collisions (which involve the
formation of a “strong coupling complex™) can only
occur if the colliding species can surmount the cen-
trifugal barrier. If the location of the barrier is at an
intermolecular distance smaller than the assumed hard
sphere radius, Ry, then Ry is taken as the maximal
impact parameter, { < kRg. For a ~C/RS attractive
potential, appropriate for neutral molecules, these
restrictions imply the existence of a2 maximal impact
parameter given, in obvious notation, by

bule v, JLE)=

max {[27CY4(E ~ E,, )1 6; RS} (33)

Consequently, the range of allowed orbital angular
momienta in channel « is modified from (30) into

K - N<I<1_(&v,;E, K)=

min {K +5:8,(c. 0. J: B},

(G4
where
B v, J;E)=kyyyb (0,0, J;E)
= [2E ~ Eu))ite] V0@, 0. 33 E) . (35)

The number of partial waves / allowed by (34) is the

dynamically restricted flux measure which appears
in (25)

mf,d(a, v, J;E,K)=Ny(a,v,J;E, K)

=l o, SEK) ~K-Jl+1. (36)

Of course, mg 4 <my, fig. 1. Note that when
1 (@, v,J;E) > K +J, that is when the dynamical
restrictions are weaker than the conservation rule (30),
eq.{34) reduces to (30) and (36) to (31), as expected.
Thus (34) and (36) can be considered as general relation-
ships which yield the dynamically unrestricted expres-
stons in the limit of high values of l?n(a, v,J;E,K).
Nyle, v, J: £, K) can be viewed as the “effective
degeneracy”™ of the rotational level J. The dynamically
restricted uniform measure is given by

A. Ben-Shaul{Theory of chemical reactions

my 4(e, v, J; E, K) = p4(, v, J;E, K)

G7

The four explicit expressions (31), (32), (36) and
(37) enable us to compare the influence of different
measures in phase space, e.g. (31) versus (32), and
different extents of dynamical input, e.g. (32) versus
(37), on 1ate variables in I') = E, K. However, it is
more instructive to test these different measures in
', = E since: (a) Y(o, o'n’; E, K) and related quanti-
ties such as o', n'; £, K), as distinguished from the
corresponding functions in 'y = E, K, are not observed
experimentally. (b) We also want to compare the rate
variables resulting from the application of the statistical
assumption (7) in different ensembles. To these ends
we have to compare ¥(an, &’n'; E) and ¥(en, &’n'; E),
cf. (15). Using (15) and (20) or (22) we find

Y(an, o'n'; E) = QE) mle, n; Eym(e! s n'; E)M(E) ,
(38)

=Ny, v, 05 E, K)fu

av/ -

Y(on, on'; E) = ?(2K+1)Q(E,K) |

X m(e, n; E, K)m(a', n' E, K)IM(E, K) . (39)

In order to compare (38) and (39) we consider two
measures in I', = £ in addition to the four we already
have in £, K. The obvious choice is mg(e, n; E) and
mg(a, n; E), cf. (26) and (27). Their explicit form for
n =y, J is (see appendix A),

my(e, v, T3 E) = p(a, v, J; E)

= AFQI+ 1) E ~ o, P2, (40)
me(e, v, J; E) =u,, 1ol v, J; E)
=B+ D)E~E,, ), @n

where By = @y 2 4. Having specified the measures
m(ear; T) in (38) or (39) the absolute values of Y and
Y are fixed by Q(E) and Q(E, K). These factors also
determine the E-dependency of Y(an, &'n’; E} the
knowledge of which is necessary for calculating, say,
rate coi. 'nts in the canonical ensemble. To determine
O(E) and O£, K) one has to rely either on additional
assumptions or on additional information. e.g. experi-
mental data. In the LPN [14 21] theory the choice of
1 g(1: E, K) as the measure in phase space is accom-
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panied by the assumption Q(£, K) =1 (K <K ).
Based on dynamical considerations several authors
have derived alternative forms for Q{E, K) whick, for
example, reduce the reaction probability at high
velocities [27] . In the information theoretic approach
(40) is usually accompanied by G(E) = R(E)

X exp(—E/kT)/q(T) where g(T) is the translation
partition function of the reactants and R(E) is either

equal to mq(E), cf. (21) [53,62,63] or a constant [65].

In the numerical examples presented in the next
section we consider only normalized quantities in
I’y = E and can therefore disregard different choices
of Q(E) (or Q'(F) which appears in (42) below). For
Q(E, K) we take, similar to the phase space theory,

QE. K)= Q' EWK, —~K), “2)

where 8(x) is the step function; 8(x =0)=1,

6(x <0)=0. It should be kept in mind however that
(42) represents only one possible choice of Q(E, K).

By substituting (42) in (39) the sum over K is restricted
by the maximal total angular momentum K, whose
choice depends on the dynamical input. If as in (35)
dynamical restrictions set an upper bound to the or-
bital angular momenta the K-summation in (39) is
bounded by, cf. (35)

Ko =KS (a]: av'T)
(43)
=min{I (@, v,J;E) + J; I8(cl, v, J S E) +J'}

where o, v,J and o, v', J refer to the reactant and
product channels in (1), respectively. If, say, the
minimum in (43) obtains for the reactants then the
number of product states or equivalently the volume
of product phase space contrbuting to (39) is limited
by dynamical constraints on the entrance channel.
Unless very unusual mass combinations or very high
product levels are involved i.e. E j» = E — E , this is
typically the situation in highly exoergic chemical
reactions for which £ - £, < £ - £, cf. (35).

The upper limit (43) should be used in (39) when
the measure in phase space is of the type mg 4 or
my q. If the measure is my or my then K is essentially
unrestricted (except, formally by the radius of the
container R; K, =1, +J =1 = kR, appendix A).
In practice. as long as K, is sufficiently large. say
Ko>J L ok, > 1\':‘“, the functional dependence
of Y(on, a'n"; E), (39), on & 1, o and 1’ is not sensi-
tive to the value of K, . To verity this claim note that

for large K values mg and m are independent of K, cf.
(31) and (32), respectively. Thus, in the limit of very
high K, the terms corresponding toJ,J* €K have a
negligible contribution to (39) so that

Y dead, 0TS E) = QUEYRT + DI + 1) (44)
for the flux measure (31), and
fo(azul; V'’ E)
" 27+ 1) +1
= gy(p)—H LD +1) @)

(E"Eauf)llz(E_ Ea'u']')”z

for the uniform measure (32). The E-dependent factors
are given by

QE)~ QUEYKLIN(E) (46)

where K,zn replaces the sum Z(2K + 1) and N{E) =
Zpps @+ 1)< 2, (E —E,,). The analogous expres-
sion for Qy(E) is straightforward.

We note that both (44) and (45) fulfil (15), (16)
and (19). The physical reason for that is clear; when
large K values are allowed the effective degeneracies of
both the reactant and the product rotational levels,
cf. (31), become the normal degeneracies 2J + I and
2J' + 1. Consequently the correlation between products
and reactants due to the conservation of K is lost as
required in (19), However, as remarked at the end of
section 3 the flux (44) and uniform (45) measures in
'y = E, K do not reduce to the yield expressions
resulting from same types of measure in [', = E, com-
pare (44) with (40) and (45) with (41).

Based on the six explicit measures mg(n; £, K),
mg 4(1; E, K), me(n; £, K), me y(n: E, K), mg(it; E)
and mg(n; E) the next section is devoted to a more
detailed and specific discussion of different statistical
models.

6. Comparison of different models, examples

In order to demonstrate the variety in statistical
theories we employ the six representative models des-
cribed in the previous sections to calculate the produet
state distribution in the reactions

Cl+Hip. /)~ HCl@' . J )+ 1.
H + Cly(u.J) = HCI(w'. J) + C1.

(A7)
(48)
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The product vib-rotational distributions in these reac-
tions are known from the infrared chemiluminescence
experiments of Polanyi and’co-workers [79,80]. Since
both reactions are highly exoergic, —AE > kT, the
total reaction energy £, measured from the ground
internal state of the products, is sharply defined;
E~_AEy+E + $kT> SE where E is the activation
energy and 8E ~ kT is the width of the reactant
energy distribution. This implies that at ordinary
temperatures the measured product state distributions
are, to a good approximation, proportional to
Y(u] v'J'; E) where 3, J is the most populated internal
level [81] and £ is the average total energy; £ =~ -AE,
+E,+3kT+E; +Ej. In (47) (48)5=0,J=3and
v= 0 J =20, respectwe]y, = kT. Thus besides
comparing the various statlstlcal expressions for
Y(n, n'; E) we may test them against the experimental
results. Another reason for choosing (47), (48) is that
because of the different reactant masses in these re-
actions, H—LH and L—HH, respectively (L = light,
H = heavy), angular momentum constraints are ex-
pected to display different effects on the product
state distributions.

Using full and general notation the product vib-
rotational distribution resulting from reactants in

v,Jand total energy E=E_+E, +e=E,  +E pt+€
is
P, J' |, 0, 0,J;E)
_ Yo, Jd W, JE)
2, YuJ;d v, ] E)
v Ea’
_Yov, 050, v, IS E) (49)

Y(a,v,J:a 3 E)

where the sum extends over all product states with
Eyp<E-E, Wetake £, _g=Ey-(=0and £, =0
so that £, = ~AEj. Since in all calculations below o
and &' correspond to the ths and ths of (47) or (48)
respectively, and only one v, J =1, J level is considered,
we will usually use the shortened notation PQv’, J'; E).
The vib-rotational distributions obtained from sub-
stituting the six measures (31), (32), (36), (37), (40)
and (41) into the appropriate yield tunction, (38) or
(39), and then into (49) are listed in table 1. The vibra-
tional distribution P(v’; £) and the (conditional)
rotational distribution within v’, P(J'[v"; E) are defined

and normalized according to

PQ',J';E)=P(';E) PU'IV'; E), (50)

2 PW,JE)= 2 P(E)
vJ'ea v'Ea'

2 PYIWE)=1. 1)
J SV

Ata gwen total energy E it is more convenient to
employ the fractional variables f, = £, [E, fp = ER[E
=EfEand fy =(E - E)E=¢lE;f, +fg +f7=1.
In these variables the product state distributions
P(f,) = K(E,) dE, [df, corresponding to the first four
models in table 1, i.e. those which do not incorporate
dynamical input, are independent of the reactive sys-
tem and can be expressed in a closed form. (Except
for the weak dependence of P(f,,) on B, when the
VR rather than the RRHO model is employed.) The
variable gg is defined by [45, 72]

gr =fr/(1 - 1,). (2)
We note that for the “completely non-dynamical™
models A(gg|f,) =P(gg) = (1 - £,) P(frlf,) is in-
dependent of f,. In other words the partitioning of
the residual, non-vibrational, energy (1 — f,) among
the translational and the rotational degrees of freedom
is independent of v. This trend was observed also in
real systems [45,72,79] . The average {ractional
energies presented in table 1 correspond to the classi-
cal RRHO model where all degrees of freedom, in-
cluding the vibration, are treated as continuous varia-
ables so that forx,y=v,R, T

1 1-£
)= f FPU ) df = f f " P £ dfy( ;s

Notmg that for the four non dynamical models in
table 1

Kf)=a+1)Q-£), (54)
PlggIf,)=P(gr) =11 —gr)" !, (55)
with ¥ =2, 3/2, 1 and 1/2 respectively, we find

== = M2 =1/(y+2). (56)

In deriving (56) we have used the fact P(gglf,) =
P(gg) so that

R



351

pUv ZI‘ = £, 21 053N, “19Ad] £ * 0 paivindod isow a3 Jo

*A1aaljoadsal SUOIOEAL PUOIIS pue ISIL A1) 10] €1'T

\ 0} mSu:o%Jtcu Jjauueyd 1onpoid ay jo aaneiuasaidor ases)oyoiq ug sanjea oy g, ‘(S¢) ‘ba 93g (o

‘puuetp oy jo  Adersusdap,, oy, (q
*[¥8—18] s)o1 uo paseq (g

0€'0 8501 §T'S  0°686T (02 61'C 50°0€ €6 £'8b 0 T 1D+(r WIOH
1
- Pz 0r'o  6'%9S 9z 5T 99°1 st 7'€ I'sy 1 00 MD+H
0£'0 8501 §T'S  0°686T (9z2) 0'€ LELY 061 0'bE 0 T 1+Gr0)DH
1
810 §S°9 00'F  S'60ET 291 0'¢ 19y 091 Lz £'1¢ T €0+
(pud)  (we) () (W) (w2 ¢_01) (8 pz-01) (gwo 19 o?o: (a101/[E0%) (o101 /1eay) Jouucy
0 g X% 3m eUa Ry or % T °F  (q°P ‘uonjonay
" f
&
..m ¢ SUOLBINOIRD i) Ul pakojdid s10)oweInyg
S (
3 zoIqeL
3
$
.m. 319125 [2A9] 103L|[1950 Sfuowsel| 10301 PISi = QHY Y o
& = Yp(Y)d [ 01 Furpirodae pazijeulIoN (o
S ‘9ot [949] J030X TuireqA = YA (q
m . *1 = ¥5p (Y148)g [ 0 Suypiosot pazijewtioN (g
s
3
= sn\Pg ¢ .
@ olquHeA : 6 ) 1+ 30 T Mmmw .MMMW Pos ¢)]
] OreaseiamyPd O gifan)Po ory =
<
.D.ﬂWT\- P =X . "
a1qeuEA @irad’ g N 5 (1 + 30 mEn Py @
or'a e PN airan)Py b 98) (6 B
£ g N L T G B 1k AR O S V1 o007 ~ DU+ .00 (@€) (6%) °A W
£ £ £ Y- Ca-mila 1 (1 +.r2) 1€) 69 Y (€
L L LY -E g -mile (Mz2-1k en®F =D + 10 (ot '(8¢) °% 6]
¢ ¥ L N G S T L (43— 1)z g - DG+ 10 (1) (8¢) 4 ®
'sb. 4
(OHYY) (p (OHN) @ . e
by @8 & @ (@Tad @8y (7*.a.0d Jopout [eansHElS

sjopow [eIISNBIS
1 21qelL



32 A. Ben-Shaul/Theory of chemical reacfiohis"-

| 250p=rm—
200 /\

170

160

N(JJ=Nglo')=201 1

N (HCL-1,v's 3,0'17)
140

=

A

30

130 .

N

[=]

J -
Fig. 2. Angular momentum restrictions on the products of
reaction (47) [cf. eqs. (34) and (36) and table 2}, Since for
this reaction K is typically much larger than J* the effective
degeneracy N (J') is practically equal to the normal degener-
acy 2J” + 1, except for the very hish s (e.g. /' = 17 inuv' = 3).

The centrifugal barrier (cf. (33)), is far less important than the
triangle rule (31).

1 1-fp
)= f FrPUfR)dfg = j f FrPUp )R 0,

11
= [ [ erPler)1 —£,)PU,) dgr o,
00

=gl - £,)= [y + D] (y+ 1)i(y +2). (7)

Approximate closed form expressions can be derived
also for the “dynamically biased” distributions, models
5 and 6 in table 1. The resulting expressions are however
rather involved and a graphical presentation is more
instructive, see below. Qualitatively, if the major con-
tribution to the sums comes from high total angular
momenta, i.e. from K > J, or, equivalently if K > J',
then PD 4 is nearly equal to Pyand Peyto B, Unless
E,y ~ E the value of K, for exoerglc reactions is
ﬁxed by the reactantsie. K =y mio v B E) + Tl

(35)and (43) .

Consider now the reaction {47). For energies corre-
sponding to thermal reactants K| =4 R(CL+HL,03)
+3 =165, see table 2, which is substantlally larger
than the average typical product rotational angular
momenta, J' = 15. The restrictions are expected to
be more stringent when £ approaches E — E,,.. To-
ward this limit J' increases, K| decreases and the
relative contribution of X >J' terms also decreases.
This means that the dynamical restrictions will mainly
reduce the effective degeneracy, or equivalently, the
phase space volume of rotational levels near the energy
limit £y = E — E,,, cf. (36) and (31) and fig. 2.

A different behavior is expected in reaction (48).
Here, due to the small reduced mass of the reactants
Id and K, are small. Except for product levels near
tbe energy hmnt K., is fixed by the reactants. In our
example K| =4 (H+C12,0 ,20) +20 =46, cf . fig. 1

J
5 10 15
Tirr1r¢v. ¢ 1.1 1 T 1 1T T 1 1
Cl HUO,3)—HCU3,J *

20

N

plg

0.5~

1
0 02 04 06 o8 10
9%

Fig. 3. Product rotational energy distributions for reaction (47),
computed using the models listed in table 1 and the data of
table 2. Model (1): --——; (2): ——:(3): dashed horizontal line;

@) ——1(5): — =1 (6): ~—~—— . Dots indicate the experimental
tesults 1791 '
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Fig. 4. Product rotational energy distributions for reaction (48).

Notation as in fig. 3. Experimental results from ref. [80].

and table 2. Since J' =~ 0—40 is of the order of K,
the effective degeneracy of small J’s will also be re-
duced.

Representative rotational distributions obtained
from calculations based on the six models listed in
table 1 are shown in figs. 3 and 4 for reactions (47)
and (48), respectively. The experimental distributions
are shown for the sake of comparison. The two-fold
degeneracy of the product channel in (48), o' =
Cl + HCl, affect the computation of product state
distributions only via M(E, K) = N4(E, K) or p4(E, K)
in models 5 and 6. This fact was taken into account
by writing, in general and obvious notation, M(E, K) =
d m(c; E,K) +d,.mie; E, K), where d, is the
degeneracy (or multiplicity) of channel ¢, see table 2.

Figs. 3 and 4 confirm quantitatively that while in
(47) the dynamical restrictions modify oniy the -
population of high J's in (48) they affect, although
to a lesser extent, also low J’s. [In the, hypothetical,
extreme case of very low K, the effective degeneracy
of /' would be 1 instead of U+ 1,50 that Py 4(gg)
o:Pf(gR)I(ZJ +1)< 1 /(gR)U2 Fig. 4 indicates, as

expected, that this is not the case and high J* are more
sensitive to the angular momentum constraints. Similar
arguments hold for PO a-l The very steep rise of
PO(gR) «] /(gR)l 2 at large gR values is bounded by
the value corresponding to J'*(v') — the highest J
below the energy limit. Yet, since at a given E it might
be that for one or more v’ values Ejx,) ¥ E — E,;
the larger contribution of J"*(v) may affect not only
the rotational distribution but also the vibrational one, _
see below. These “resonance” effects will be smoothed
out by averaging over E. It is interesting that a similar
rise in the rotational distribution of OH radicals pro-
duced by electron impact dissociation of H,O was pre-
dicted and observed experimentally by Horie and
Kasuga [30]. To summarize, inspection of figs. 3 and 4
supports our earlier statement that “statistical behavior”
is a feature of the model employed and therefore not
an unambiguous concept.

At a given total energy E the volume in phase space
available to the products decreases with »'. In table 1
we see that the weights assigned to these regions are
proportional to (£ — E,,)Y with ¥ positive and of the

v

0 | 2 3 4

T T T 1

Cl+ H1{0,3) =~ HCi(v'}+1
E =340 kcal/mole

Fig. 5. Product vibrational energy distributions for.reaction (47),
computed using the models of table 1 and normalized accord-
ing to Zy P(fy) = 1. Model (1): open circles; (2): solid circles;
(3): apen squares; (4): solid squares; (5): open triangles; (6):
solid triangles. The experimental results {79], (diamonds) are
markedly different from the statistical models and indicate
population inversion.
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v
0 1 2 3 4 5 &

L I L 1 T 1 0
H+Cl,(0,20) = HCI{v))+ H
E=48.3 kcal/mole

P (fy)

Fig.6. Product vibrational enetgy distribution for reaction
(48) computed using the models of table 1. Notation as in
fig. 5. The experimental results [80] (diamonds), differ sub-
stantially from the statistical models.

order of 1. Therefore, the differences between the
various statistical vibrational distributions are less
pronounced then those in the rotational distributions,
as shown in figs. 5 and 6. The irregularity in

Po 4(v' =4)in fig. 6 is due to the “resonance” effect
mentioned above; it is not seen for Po(v ) since this
distribution was computed in the classical (/' con-
tinuous) VR model, i. Py = (E - E)2B,,

table ).

7. Alternative derivations

It has been shown that several statistical models
based on the hypothesis of intermedaite complex
formation can also be derived by appropriate formal
assumptions on the structure of the scattering matrix
[4,6,11,13,18,19,22 23] In this section and in appen-
dix B we show that our formulation and classification
of statistical models which involve both formal (e.g.
factorability of ¥) and pictorial (e.g., flux versus
uniform measures, available regions in phase space)
considerations is simply related to generalized versions
of the “formal” and “complex” derivations.

Consider first the formulation based on the assump-
tion of complex formation. (Or, compound nucleus in
nuclear reactions {5,6].) As mentioned in section 2 this
assumption accounts for the lack of correlation be-
tween products and reactants and helps to define the
phase space regions available to the reaction products.
Generalizing this approach to any I the cross section
for the process &, n = ', n', eq. (1), is written as

Gla,n~>d,n';T)=0(e,n~>c;T)Pc > a, n'; T)(58)

where the factors on the rhs of (58) represent, respec-
tively, the cross section for complex formation from
reactants in «, n and the probability of the complex
to yield products with «’n’. Summing (58) over &’'n’
and using the general relation (12) (which by (2) holds
for every I') we obtain

ale,n~>;Ty=ole,n>c;T)

= ¥(a, n; T)fuyp, pla, n;T) . (59

Similarly, multiplying by u,, o(e, #; T'), summing over
&, n and using (2), (10) and (11), we find

Pc—d,n',T)=Pd,n';T)

=Y(e, n"; D) Y(F) = mle, n'; D)/M(T) . (60)

Substitution of (59) and {(60) into (58) and then using
(2) yield the basic statistical hypozhesis (7). Thus (58)
and (7) are completely equivalent. Any assumption on
the form of a{e, n ~¢; ") or P(c > &, n"; T") can be
regarded as an assumption on the form of Y(a, n;T")

or, cf. (20), on the measure in phase space. It has to be
remembered however that the two factors on the ths

of (58), both having a simple dynamical meaning, are
related by microscopic reversibility and therefore can-
not be chosen independently.

From here on the classification of statistical models
follows along similar lines to sections 2—6. However,
we linger at this point in order to (briefly) elaborate
on the dynamical significance of the uniform and flux
meastres as well as to demonstrate the validity of the
somewhat uncommon relation (5).

If the assumption on complex formation (58) is
made in T'y = E, X then, using (12), (20), (58)—(60)
the cross section in I’y = £ is of the form
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Ha,n—>o 0 E) =
? (K +1) [ala, n; E, K)lp(ee, 13 E))

X ole,n>c;E,K)P(c ~d',n";E, K) (61a)

'm 2 (K +1)0(E, K)

X mla, n; E, K)ym(e, n'; E, K)IM(E,K). (61b)

The last result could, of course, be directly derived
from (2) and (39). Summing in (61) over ¢/n’ and
using (42) in (61b) we find

&o,n >3 E)= 23 K + Do(a, m; E, K) ple, 1, E)]
K

X ole,n—~c; E,K) (62a)

Kn

= Q'(B)[1fugy0(e, 0 E)) 2 (2K + Dmlo, 1, E,K).

(62b)

The cross sections for complex formation correspond-
ing e.g. te the “dynamical” flux and uniform measures
are obtained by substituting (36) and (37) into (62b).
After some angular momentum algebra and using the
exact expressions for p(a, n; E) and p(a, n; £, K) from
appendix A we find

d
x o ﬁIiZQ'(E)
ot P2 @
x Fye_ THQ(E)
OO,d(a: v,J > E) pa(2J+ NE - Eau.l)
I
X Z3 @21+ 1) op(E ~ By (64)

with Iﬂ, given by (35) The equations for @, of and “0
obtain by setting lm(a v,J;E) = ko by, where b
some large and energy independent impact parameter
Eq.(63) is a fundamental relation in the phase space
theory {15271, whose significance is that apart from
the degeneracy factor all partial waves contribute
equally to the cross section. The classical analogue of

this result is that the probability for complex forma-
tion from collisions with impact parameter b is propor-
tional to 2ab so that a(e, n > ¢; E) = nbfn. On the other
hand, (64) implies that the contribution of each partial
wave [ is proportional to the number of elementary
states “conjugated” to it. The classical result for the
complex formation cross section is o(e, v, J > ¢ E)

o b m/Uoy - The interpretation of this inverse velocity
dependence of the cross section (strictly so only for a
constant b, ) is less obvious than that for the flux
measure. However, its meaning becomes quite clear
when viewed as the direct result (via microscopic
reversibility) of the assumption that the probability

of the complex to form products with '’ is propor-
tional to the phase space volume associated with a'n’,

Py 4(c~ o, l_)’,-"; K)=

pale, v, J E,K) Zpd(a', VLILE K. (65)

The proof that (65) and (64) are essentially equivalent
is immediate. Also, the extension of (65) to P¢ 4, Py
and Py as well as the proof of their equivalence to -

Of 4. G and Gy, respectively, is straightforward.

The structure and properties of the § and T matrices
corresponding to several statistical models were des-
cribed by several authors [4,11.13,18,19,22,49]. It has
been shown that one of the most general parametriza-
tions of the S matrix is [11}

15;2=8,(1 ~ )+ £l Zf,, (66)

where 0 <f; <1 and | = [v,J, D The symbol { )
refers to “statistica averaging”. It involves the random
phase approximation (RPA) and associates (66) with
the additional assumption (Re ;= 0. The first term
on the rhs represents the shadow contribution to the
elastic scattering, necessary to ensure the normalization
condition E 1S; l~ 1. The similarity between (66)
and say, (7) is apparent By extending (66), or more
precisely the corresponding equation for the 7 matrix,
to general representation and normalization schemes
of the states #, one can account for the general charac-
terization of a statistical model in terms of T', 72 and Q
as was done in the previous sections. Since the proof
of this statement, although straight{orward, involves
lengthy and formal derivations, the details and the
interpretations are provided in appendix B.
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Table3d .
Partition of energy among products’ degrees of freedom 2)

Model Cl+HI(0,3) -+ HCI(v', J)) +1 H + C1,(0,20) > HCI(W', ') + C1 -

) S (fr? o Sy (fr" o

. To018 0.27 0.55 0.21 0.23 . " 046
& ©0.18) ©.27) (0.55) ©.21) (0.23) (0.46)
» B 0.22 0.31 0.47 0.25 0.30 0.45
( 0 (0.22) 031 (0.47) (0.25) (0.30) (0.45)
@ 0.27 0.36 0.37 0.32 0.32 0.36
f (0.28) - (0-36) (0.36) (0.31) (0.34) 0.35)

@ 3 0.32 0.42 0.26 043 0.36 - 0.21
0 (0.36) (0.38) {0.26) 0.39) 0.37) (0.24)
ORI 0.26 0.35 0.38 0.23 0.31 0.36
® Pygq 0.42 0.40 0.28 043 0.34 0.23

a) Calculated using the discrete form of ¥, second column in table 1, in the VR model. Values in brackets correspond to (1) {f,»
calculcated in the continuous VR model, that is J'-continuous, fourth column in table 1, (2) (FR/¢f1" as in the RRHO model;

iast column in table 1.

8. Discussion

The marked differences between the various statis-
tical models reflected by the rotational state distribu-
tions, figs. 3 and 4, are largely masked by the averaging
which yield the vibrational distributions, figs. 5 and 6
tespectively. For reactions involving more degrees of
freedom, the differences in, say, the distcibution of
energy in one vibrational mode will be even less pro-
ncunced. Considering in addition that none of the
statistical models (of which table 1 presents only a
sample) provides an accurate description of small col-
lision systems, the question whether there is one pre-
ferred or unique model is irrelevant. A more reasonable
starting point for comparing the different theories is
to consider their origins and objectives. In discussing
these aspects we shall mainly refer to the phase space
theory [15-27] (model 5 in tables 1 and 3) and the
microcanonical prior distribution (model 2) employed
in the information theory approach [42-72].

Although the final expressions for the product
state distributions (cf. tables 1 and 3) obtained by the
phase space theory and the prior limit of the informa-
tion theory approach may be quite similar there is a
rather fundamental difference in the way of processing
dynamical information by the two methods. In the
phase space theory all the available or predicted

dynamical information is built into the final statistical
expressions in one stage. On the other hand, the prior
distributions intend to represent the dynamically
“least biased” (* most ignorant™, “random”) situation.
The dynamical bias is reflected by the so-called sur-
prisal function (see below) which provides a convenient
and meaningful measure for the deviation of actual
distributions from their prior (““thermodynamic”) ex-
pectation values.

The choice of the ensemble, the measure, the
angular momentum restrictions and the weighting
function, @, in the phase space theory {14—26] (and
other statistical dynamical theories [7—13, 27—41])
is guided by dynamical considerations. In fact, the
use of the flux measure, (36), and the *“opacity
function”, (42), is a necessary consequence (via
microscopic reversibility) of the dynamical assump-
tion that all angular momenta below the cut-off, cf.
(35) and (43), contribute equally to the reactive, or
inelastic, cross section. Indeed, as mentioned in
section 4, the uniform phase space measure was used
in one of the original formulations of the phase space
theory {14], but has been replaced by the flux measure
in order to make it consistent, on microscopic revers-
ibility grounds [15], with the angular momentum
restrictions on the complex formation cross section.
Of course; if the uniform measure was retained but
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the angular momentum requirements were modified,
the result would be the (dynamically modified) prior
distrbution in the E, K ensemble, model 6.

The procedure of restricting the available phase
space regions employed in the phase space theory does
not suffice to account for extreme, but common,
phenomena such as population inversion, cf. figs. 5
and 6. It was suggested [14,73] that in such cases the
statistical models may serve as bases for comparison
with experimental results. An explicit, quantitative,
implementation of this notion is provided by the
surprisal—entropy analyses which constitute one, impor-
tant, element of the information theoretic method.
The method is, however, more general and beside
analytic means provides also algorithms for predicting
(synthesis), say, product state distribution. Since the
general approach has been extensively described
elsewhere [49,50,72] we shall only emphasize a few
points pertinent to the present discussion.

The basic quantities used in surprisal~entropy
analyses are the entropy S, or the entropy deficiency
AS, the surprisal [ and the prior distribution 20,

AS=S8;~S=1nQ— 27 P(s) In P(s)
s 67)
= _ 23 P() In[P(m)/PO(m)] = 23 P(m)i(m) =<D) .

Here, as in statistical mechanics, the s-summation ex-
tends over all the accessible elementary states (appen-
dix A) of the system of interest. The n-summation is
over groups of states; all the states in a given group
are equally probable. Thus, if the system is composed
of the atom plus the diatomic products in (1), the
total (center of mass) energy is between £ and £ +dF
and n = v then the group v contains all rotational—
translational states consistent with this specification.
The number of these states is p(n; £) dE, appendix A.
Q=3 p(n; E)dE = p(E)dE is the total number of ac-
cessible states. Hence, according to (67), PO(n) is simply
proportional to the number of states in the group n or
equivalently, to the volume in phase space occupied
by n. Qbviously, for our example g“(n) is simply the
microcanonical prior distribution Py(n) of table I
corresponding to the uniform probability Po(s) =1/Q.
. Asin ordinary statistical mechanics this is the distri-
bution which, in the classical RRHO approximation,
leads to the equipartition limit {46]; in our example
A fRdf) = 31212, cf. table 3. This form of the

prior distribution is the dynamically least biased one
if the only available information on the system is that
all collisions proceed with the same total energy £,

E +dE. Deviations from the complete microcanonical
behaviour correspond to non-zerc surprisals
—In[P(n){P%n)] or non-vanishing entropy deficiency
AS > 0. If the surprisal happens to be a linear function
of some variable, e.g. f, = E,/E, the maximum entropy
principle which is the major theoretical (analytic and
predictive) tool of the information theoretic method,
implies that f,)} is the only informative dynamical
constraint [44]. Surprisal analysis thus helps to identify
dynamical constraints. Alternatively, if the dynamical
constraints are known, the maximum entropy principle
can be employed to predict the actual distribution
P(r). In particular, when the dynamical input can be
represented in terms of the average value of the ob-
servable 4.{4) =Z P(n)A,, = const. (e.g.n=v,4,=1),
the predicted distribution will be of the canonical
form P(r) = PO(n) exp(—AA,,)/Q- As in ordinary
statistical mechanics A is a lagrangian multiplier which
can be interpreted as a generalized (reciprocal) tern-
perature parameter and @ is a normalization constant
equivalent to a partition function.

If surprisal analysis is viewed just as a convenient
quantitative measure of deviations from a “given
statistical behaviour™ any statistical-dynamical model
P(n) [or P(n)] can be used as a prior reference. Con-
sidering as specific examples the product vibrational
distributions in (47) and (48) this means that one can
compute different surprisals corresponding, say, to the
different models of tables I,

Iw) = -n[PE)/F@)] -

Figs. 7 and 8 show the results of these surprisal analyses.
Due to the apparent similarities between the vibrational
distributions of the six statistical models, the surprisals
are also similar. They are nearly linear for the Cl + HI
reaction indicating that {f,} is the most important con-
straint and non-linear in the H + Cl; reaction indicating
that either (f,}is not a relevant (informative) constraint
or that there is at least one additional constraint beside
{f,) [64b, 66, 67].

Among the various distributions which can serve as
a reference for surprisal analysis there is only one which
maximizes the entropy S (minimizes AS), (67), in the
limit of no constraints. For experimental situations
where only the total collision energy is known, this is

(68)
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- Fig. 7. Surprisal analysis for reaction (47) using ag reference-
prior distributions P2(f) the six models of table L. I(f;)
~In[P(F)PP(f})] where P(f,) is the experimental [79] dis-
tribution. Notation as in fig. 5. The near linearity of the
surprisal implies that (f}) is the main informative dynamical
constraint. ’

the uniform-microcanonical distribution employed

in most of the applications of the information theory
method. Thus, when surprisal analysis is regarded as
one component in the general statistical-information
theoretic approach, there is a unique prior distribution
defined by the a-priori known (asymptotic, boundary)
conditions on the system. In statistical mechanics
these conditions are known as the external parameters
of the ensemble [75]. The choice of the ensemble, in
our case I'y = £ or I'; = E, K, should be consistent
with these conditions. If experiments could be per-
formed with angular momentum selected reagents,
then the appropriate prior distribution should be the
uniform one in the ' = £, K ensemble. The actual
functions in each E, X shell should be computed by
maximizing the entropy corresponding to all states
consistent with £, £ subject to whichever constraints
that can be identified. Quantities such as cross sections
or rate constants in I' = £ can then be calculated by

properly superposing [this requires a weighting function

O(E, K)] dil the possible £, K components. An analo-

F{fy)

4k H=Cl, (020) =~HCI{v) +C1 ]

-4 i
-5 t L | 1
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Fig. 8. Surprisal analysis for reaction (48). Notation as in

fig. 7. The non-linear behaviour of the surprisal indicates that
{f}) is either not the only dynamical constraint, or, that (f

is not the appropriate constraint. Note that explicit considera-
tion of angular momentum restrictions does not significantly
alter the surprisal curve.

gous procedure has been employed to calculate quanti-
ties in the thermal (canonical) ensembles I'; = 7, i.e.

by superposing the contributions from different

energy shells I’y = £ [53,62,63] . If, however, angular
momentum components cannot be resolved the in-
formation theoretic route to handle angular momentum
restrictions is to express them, if possible, in the form
of constraints which would modify the microcanonical
prior distribution to a canonical-type distribution. This

procedure has been recently applied with considerable
success [64b,66,67].

Finally, it should be noted that the prior distribu-
tions which maximize the entropy are the ones which
provide the link between the microscopic (single
isolated collisions) and macroscopic (relaxation,
thermodynamic functions) characteristics of a disequili-
brium molecular system and its approach to equili-
brium [68-72].
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9. Concluding remarks

An attempt was made to emphasize that statistical
behaviour, mainly in small collision systems, can be
differently interpreted. Various models can be formu-
lated within the framework of different statistical
ensembles using different measures in phase space and
incorporating different extents of dynamical informa-
tion. Some of the more common models were for-
mulated for predictive purposes but can also be used
on a comparative basis. The prior distributions of the
information theory approach combines these aspects.
They can be used as a reference for measuring devia-
tions from microcanonical behaviour or as zero-order
expressions to be supplemented and modified by dy-
namical constraints. The unambiguous prior distribu-
tion is the one which maximizes the appropriately
defined entropy function of the system. Once the
boundary conditions (external parameters) defining
the accessible states of the system are known, the
entropy or, in the information theoretic langauge, the
information content is aiso uniquely defined. One .
may still argue which are the external parameters
defining a general collision system. However, this non-
trivial, interesting — and still not entirely solved ~
question is beyond the rather descriptive and didactic
scope of the present paper.
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Appendix A: Elementary states and state densities

Elementary states [5] of a free particle (or of a
particle in a box or a sphere) are the solutions of the
Schrodinger equation normalized on the momerntum
scale. As distinguished from, say, states normalized
on the energy scale, the elementary states have 2 uni-
form density in the classical phase space (equal to
1/h3 for a structureless particle in a three-dimensional

volume). In this appendix we list the elementary states
in the plane wave, spherical wave and total angular
momentum representations. This procedure is essential
for evaluating the density of states factors p(n; T') ap-
pearing in the text. The beginning of the derivation is
based on ref. [85].

The plane wave solutions of the Schrodinger
equation for a particle in a cubic box of volume ¥ are,
in obvious notation,

X = (rlly = V= 2exp(ik - 1), (A.D

with k quantized according to &, = Qa/V i 3)nx. ny
=0, 1,32 .. etc., corresponding to (translational)
energy quantization € = h2k22u = Qa2njuv 3)

X (n2+ nd+n2). Each iy, ny, 0, (08 Ky, Ky, ez, or
Px+ Py D23 D =Tk) combination is an elementary state
occupying a volume of 43 in the classical phase space
Cnyppn, ¢k~ 3 fdpdr=h=3V [ dp). The number
of these states per unit translational energy and unit
volume, that is, the density of translational states is

given by

pr@= QPR e P =g (a2)

The quantization of momentum and energy of a
particle in a spherical volume, V = 2R3, obtains
from the boundary conditions on the spherical wave
solutions

Xt m (> 0, 0) = ajykn) Y{* (6, ¢) , (A3)

where a is a (k-dependent. see below) normalization
constant. From the boundary condition j(kR) =0 we
get, for/ €kR,

kR =k,R=nu +1af2 . (A4j

The translational energy € =712k%[2y is independent
of m. Every set i, [, m or equivalently &,,, /, m re-
presents an elementary state in the spherical wave
representation. From the normalization condition

(k", i mlkl'l’ U, m"y= 8&’“.&;181,1'5:"."1' ) (A.S)
it follows that the normalization constant in (A.3) is
a=(2/R)V2k,,. The elementary states in the plane
wave and the spherical wave representations are related
by

K= T3 kg domd ey 1, milK" (A6)

klam

where
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Uy Ll K'Y= 8y, po(anf VI GRYV

X (- YE) . (A7)
Hence
iy = E(4n/V”’)k-1( RV
Nl
X A(~DYPE) X . 6. ) . (A8)

which, using the addition theorem, reduces to the more
familiar form

exp(ik+r)= ; [47(21 + 1)} 112

X,k Yk 7). (A.9)

To compute the density of states in the &, /, m represen-
tation we first evaluate pp(€) the density of radial states
(per unit length), i.e. those associated with &,

Rog(€) = (Infde),,, = (0n[ok) (ok/2¢)

= (R/m) u/hk = R (uf26)"2 . (A.10)

This is the usual expression for d one-dimensional
density of states. It should be noted however that in
deriving (A.10) we have used the asymptotic solutions
(A4).1f I~ kR then py(€) will depend on 7 and R.
The total, three-dimensional, density of states obtains
from (A.10) by summing over [ and m.

In
pr(e)V =R 2 pg(e) = Rog(e) 221 +1)

=Rog (&), = V32l n® (A1)

where, in order to regain (A.2), we set I, =kR, the
highest possible angular momentum of a particle
(with e =7i2k2{211) in a sphere of radius R. Obviously,
in applications to collision problems, /;, is constrained
to much lower values than kR as, for example, in

eq. (35). Note however that the e dependence of
py(€) is unchanged if we chose I, = kb, where

b, <R is some maximal impact parameter. It should
be noticed that the numerical factors in (A.2) and
{A.11) are somewhat different (Puox/Psphere = 1-5)-
The difterence is due to: (i) The use of the asymp-
totic solutions (A.4) (the roots of j,(kr) are denser
when ! = kR). (ii) The different shapes of the volume,

(iii) The neglect of higher order terms in approximating
the sum over 7 in (A.11) by an integral {86].

The normalization of elementary states and the
state densities for the atom-diatom (center of mass)
system obtain by extending the free (structureless)
particle results above. We consider three elementary
state representations: (a) |k, k,,, k,, v,J, mp), (b)
{k, 1, my, v,J, mp and (c) |1k, K, M, I, J, v). The plane
wave, a, and spherical wave, b, representations are
refated according to (A.7). The former is related to
the total angular momentum representation, c, via

lk,v,J,mp= 2 g12%-1
JIM I

XDK"”(k)[k KM, 10,0, (A.12)
where, f = 8112R/ Vand
Dy J(k) Z)(Jm SR YR . (A13)

The appearance of the 1/k factor in (A.12) is due to
using elementary states i.e. states normalized on the
momentum scale, More familiar is the expansion in
terms of states normalized on the energy scale for
which [4,85]

v, J,mp= | Z) DKm’(k)IE K.M,1LJ0. (A14)

The density of states of an atom—diatom system
with a total energy £ when the internal state of the
diatomic molecule is specitied by n =v,J or v, 0r J is
given by

o )= 22 gopr(E ~Ey), (A15)
s&n
where s=u,J, my and g; =2J + 1. Hence
o, J; E)= (2] + 1)pp(E - Ey)
=42+ )[E-E,-BJU+ D12,  (A16)
piE)= Lo, S E) S A E- )P, @a17)

where in deriving the second equality in (A.17) the

sum over J was replaced by an integral; 4, = é B)At

varies very slowly with v; it is a constant in the rigid

rotor approximation, B, = B,. :
1f both internal and orbual quantum numbers
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specify the state of the triatomic system then pg (€)
and not py(€) contributes to the state density. Hence

p0.J, EY= (2 + )2+ Dpg(E - By).  (A18)

Eq.(A.16) is regained by using (A.11) and summing
over/, '
!

0, 55 E) 27 pv, ], 1, EY = (2 + 1) pr(E ~ B,
1=0 (A.19)

where, as in (A.11), [, = kR. Dynamical constraints
of the kind of (34) can be imposed to restrict the
summation over /.

For a triatomic system with given v, J, E and K the

2

relevant density of state function (averaged, not summed,

over the 2K + 1 equally probable values of Mg, the
projection of K) is

o(v, J; E, K) = ; o(v,J, 1 E, K)

B 3 N ¢/ .30
CK+1) 7 @+1HI+1)

pQ. J, E)

= 2 oplE - )= W2e 2 E - E NV T

= (frhuu,-)_llv(v, S E,KY=u N, J,E, K) .
(A20)

In these equations the primed summation symbols
indicate that [ is confined to the region allowed by
the triangle rule |K — J| <I<|K +J|. Note that in
the second equality in (A.20), which can be viewed
-as the definition of p(v, J, [; E, K), the factor

(2K + 1)J(2J + 1)(2! + 1) is the fraction of J,/ com-
bination consistent with K (but irrespective of My).
The third and fourth equalities follow from the use
of (A.18) and (A.10) respectively. Finally, u,; =
RE-ENM 12 is.the velocity and Mv, J; E, K)
is the number of  values consistent with v, J, E and
K, fig. 1. Explicitly,

=K+J~-|K-J]+1.

(A.21)

_ 2K+1, K<J
N@,J.E.K)=
27+1; JLK

This quantity can be regarded as the “effective
rotational degeneracy” of the diatomic molecule in
the triatomic system with total angular momentum K.

As mentioned with respect to (A.18) dynamical con-
straints can be imposed on the I-summation in (A.20)
with a consequent reduction of the effective rotational
degeneracy (section 4, fig. 1). The quantity

J*u,E)
N@.E,K)= J}_:O} N, J;E,K), (A22)

where Ejpug, gy S E — E, is the highest rotational
energy below E — E,, is the number of allowed /, !
combinations at given v, E, K. [In sections 3 and 4 we
absorb the factor (7f1)~! into Q(E, K) and identity ¥
with , eq. (A.20).] Because of the J dependence of
the velocity u,; in (A.20), ¥ (u: E, K) is not simply
related to

J*(w.B)

pE,K)= 24 p(,J;E K).
J=0

(A.23)

Finally we note that by definition

o E)= 231 p(u,J;E,K)
KMy
Km
= 23 QK+ 1)o@, JE,K) -

K=0
Ifasin (A.11) I, = kR > J (J is aiways bounded via
E;<E - E,, k=u,j), then the contribution of
K <J terms to (A.24) is negligible and K, ={,. Sub-
stituting (A.20) and (A.21) into (A.24) we obtain, as
expected, egs. (A.16) or (A.19).

(A.24)

Appendix B

In this appendix we derive the statistical models
through formal assumptions on the $ and T matrices.
It will be shown that the classification of models in
terms of T, m and @ can be related to the quantum
mechanical representation and normalization schemes
within the framework of which the T matrix is assumed
to be a constant. In addition to product energy distri-
bution we will briefly consider also angular distribu-
tions.

Using the notation of appendix A we first list the
basic definitions and relationships. Absorbing again
the channel symbol e into n (1 =a, v, J, my), the
state to state transition rate, the difterential cross
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section and the detailed _(iﬁcluding angle variables)
- yield function are given, respectively, by [4]

Wik, n'k'y= (71r/h)l(nkmnk)\2 SE g — Enx)s

| (B.1)
doluk 'k’ EYd'= (x2 k%) p(n; E) ol E)

X Knk\ Ik (B.2)
;r.l Y(nk. 'K, E) = p(nk; E) (hk/) dofdk’

= kp(n: E) o' EYSnKI Tin'KI (B3)

where k= k, k; p(nk; E) = p(n; E)/4n. In (B.2) and
(B.3) the T matrix connects momentum (elementary)
states on the energy shell, thatis E=E,; =E, ...

The momentum states are related to the energy states,

i.e. the states normalized on the energy scale, via
|Enk) = [p(nl&; E)] 2k

= [p(n; EYf4n] Y2 |nk) . (B4)

The T matrices on the energy shell in these two re-
presentations are related to the § matrix through

kISIHEY = 8,50k ~ &)

— 00 E)otr's Y2 TR Ky (B5)
=8, Bk — k') — 20ink|T(EN 'K , (B:6)
where (iKIT(E) 0k = (EnKITIEn'K). Hence,
YOk, 'k’ E)= Qn)2KnkiTE ) n'k ) (B.7)
= kIS 1R — 8,,8(k ~ &)? (B.8)

where in {B.7) and henceforth the k! factor will be
absorbed into Y. The normalization of S is

fak 2‘3 KnklSInEN2 =1 . (B9)

Since the angu[ar dependence of all quantities in
(B.1)—(B.9) is through K-k mtegranon of these
equatwns over k' yields for, say, o(n ~n'; E) and
Y(n > n'". £) the same expressions as in (B.1)-(B.9)
with the k, &’ notation omitted.

We now generalize (B.8) to any specification of
the quantum state / and any shell (ensemble) T, that -
is

i‘Y(‘f,z;r') iS-—6,,IZ‘(2ﬂ)2IT.,(E7!2 @0y

Based on _(66) and the assumption (ReS,-,-) =0the - -
generalized statistical approximation for (B.10) reads

YE1T)=(XGAD=8; 448D @®.11)

=8,2~1) +fif1/ ?f, |

Henceforth, to simplify the expressions we will con-
sider only / - j # 1 transitions. Setting

=BTy = QMm@ T), (B.12)
we find (for i #%j)
Y(i, 7, T) = QY mE; Dym(j; TYM(T) , (B.13)

with M(T) = Zm(i; T). Note that toensure 0 < £ < |
-it is necessary that 1/Q(T) > max {m(i; T’)}. Eq. (66)
supplemented by (B.10)—(B. 12) is thus equivalent to
(22) or (D).
We first apply (B.10)~(B.13) to i =n, k=av,J,
myk and I' = E. If, in analogy, to (26) and (27) we
choose

fo(ﬂ’;; E)/QO(E) = mo(nle; E)

= plnk; ) = p(n; )4, (B.14)
filnk; E)Qy(E) = my(nk; £) = u, pink; E)
=u, 0 EYda = N(n; E)fdn (B.15)
then
Yok, w'&'; E) = [Qg(E)@m)2) pln; E) pe's EM(E)
(B.16)
i”'fozré. n'k'; £) = [Qe(E)(4m)?| N(n; EYN(n'; E)N(E).
(8.17)

Both (B.16) and (B.17) predict completely uniform
(in space) angular distributions. Namely, all final
angles K are equivalent as in the case of hard sphere
collisions. Integration over the angles yields our pre- °
vious expressions for Y(n, n';E). Companson of (B.3)
and (B.16) indicates that (B.14) is equivalent to the
assumption that the T matrix on the I'; = E shell ex- -
pressed in terms of elementary states in the plane
wave representation is a constant '
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, I(nlelﬁ'k')Iz =¢,00(EVpE)=Fy(E), (B.18).
or, ¢f. (B.7)
KRkITE)RKN = ¢y [Q(EVREN] ols E) ple; E) »
: (B.19)

where ¢; =4aZ and ¢, = 64n. ,

From (B.1)-(B.3), (B.16) and (B.18) we realize
again that the (elementary) state-to-state transition
rate corresponding to the uniform measure is indepen-
dent of the initial and final states and is only a function
of I'= E. The flux expression, (B.17), results from (B.3)
by setting

Knk\T1n'k % = ¢ [QUENNEN untty ,

or, from (B.7) via -

KnkITE)n kN2 = ¢ [QLEYN(E)| N(n; E)N(n'; E) .
: (B.21)

To formulate the statistical hypothesisin T =E, K
we transform the S and T matrices from the plane
wave jufm k) representation to the total angular
momentum representation (VKM L/k). Using (A.14)
and the RPA, we find

Y(nk, n'k'; E) = }p(n; E) p(n'; E)

X 23K +1) 20" @2 DEI (g2

(B.20)

Krr

X (0kk )Y IIKH TR )W KT (B.22)

=4p(n; E)o(n'; E)

X T3k + 1) 210 P10l e

X KWITCE, K)o (B.23)

My g

- ” t ﬁ[K’
= 230K+ 2D

P10 )12

X KwIISKYITY = 8,08 1581
where n =v,J, m;. We have used
(WKIKMg |\ TWJKTK Mgy

(8.24)

= WHITEN T KD S e Bgypg

and

WIIKM \T(EY v JTK My )
= (ulllT(E, K)lu'fl‘)SKK'SMKMK' .

Applying (B.10)~(B.13)to i=w/land ' = E, K we
find

Pk, 'k’ E) = %3(21( +DQE,K)
M 2 M t o,
X g)u),{{f R @ P

Xmly,J,IE,KymQy',J',I'; E, K)M(E, K) (B.25)

First we note that irrespective of the choice of
m(ul; E, K) the angular distribution is symmetric
around 6 = 7/2. This is usually interpreted as an indi-
cation for complex formation [4,9] . Note that this
symmetric distribution differs from the completely
uniform (in 4, §) distributions (B.16) and (B.17) re-
sulting from application of the statistical assumption
in I'= E. Integrating over the angles and summing
over ! and I' in (B.25) we obtain

f’(n, n';E)= % (2K + DNO(E, K)

X m(v,J;E, K)m@',J'; E,K)/M(E.K), (B.26)
where
(v, J:E, K) = LI‘_)m(u, JLE.K). (827)

Restricting the / summation b ; the triangle rule or by
dynamical constraints we abtain respectively the
*“dynamics free” and “dynamically biased” measures
in E, K. Using (A.18) and (A.20) we find that the
uniform anf flux measures are given, in complete
analogy to sections 3—6, by

fO(U:J: I;Ev K)/Q[](E‘- K)':MD(UrJ’];Es K)

=p(UyJ1 I;Ea K)sz(E—EuJ)! (8'28)
[, ] LE, K)OHE, K) = mdv.J, ; E, K)
=N, JLLEK)=u pp(E~E). (B.29)

Note that since pp & I/u,.; (B.29) is a constant.
Similarly, cf. (A.20) and (B.27)

Jo L ER)QWE. K = my(v. S E.K)

=pln.J. I K), (B.300
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[0, L E, K)QHE, K) = mi(v, J; E, K)

=N@,J,L,E, K). (B.31)
The dynamical measures fj 4, ft 4 are obtained by
restricting the ! summatxons over (B.28) and (B.29)
respectively.

To evaluate Y, either (B.28) should be substituted
into (B.25) or (B.30) into (B.26). Similarly for Yf we
substitute (B.29) into (B.25) or (B.31) into (B.26).
The forms of the T matrices in (B 22) and (B.23)
feading to 70 and Yf are: (@) for ¥,

KaTRI T W K N =

=¢1 [Qy(E. K) p(E, K)) = Fy(E, K), (8.32)

which means that the assumption leading to Y is that
the 7' matrix on the I'y = £, X shell expressed in terms
of elementary states in the total angular momentum
representation is a constant. The same assumption
expressed in terms of states normalized on the energy
scaleis -

KwT(E, KTTH = 3 [Qo(E, K)/p(E, K)]
X p({;, JLE,K)o(W, ), I EK)

{b) for '}‘:’f
KWIKITCOW T K2

(B.33)

=c, [QHE, K)IN(E, K)] uyyuy p » (B.34)

or

KWHTE, KW = e [OHE, K)IN(E, K)]
Xyt pp(u, 4, L E, K) pQ', J', I E, K)

=F(EK). (B.33)

Hence, the assumption leading to 7} is that the T
matrix on [’y = £, K expressed in terms of states
normalized on the energy scale is constant.

To summarize, every statistical mode] can be
derived by assuming that an appropriate T matrix is
a constant. In particular, the uniform models corre-
spond to constant matrices in elementary state re-
presentations. From the models considered above

¥y, cf. (B.17) and (B.21), is somewhat exceptional
since i1s appropriate constant T-matrix does not in-

volve one of the familiar représentétxons Inkyor:
]Enk) but, rather the uncommon representation -
-1/21n1:> [N(n; )] ~Y2(nk), of. (B. 21).
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