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The significance of the detailed balance principle and equilibrium solutions of the master equation is discussed from a
thermodynamic point of view for isolated and isothermal systems. Starting from a master equation for all the time depen-
dent degrees of freedom it is shown that the uniquenessof the equilibrium distribution as a stationary solution is ensured if
the detailed rate constants are balanced with the aid of the distribution which maximizes the entropy subject to the thermo-
dynamic constraints. This procedure should precede physical assumptions which simplify the ariginal master equation,
¢.g. the assumption that rapidly relaxing modes can be described by canonical distribution functions.

1. Introduction

In most types of molecular relaxation phenomena it is possible to distinguish between rapidly and slowly relax-
ing degrees of freedom. For example, translational and rotational relaxation of molecules in the gas phase can usual-
ly be regarded as instantaneous on the time scale of vibrational relaxation. Whenever such separation to different
time scales is justified the approach to equilibrium of the slowly relaxing modes is governed by a master equation
with temperature dependent rate constants. The temperature characterizes the distribution over the rapidly relaxing
modes. If the system is coupled to a heat bath this temperature is constant. In the more general case it is time de-
pendent and reflects the instantaneous average energy content of these modes. A definite, temperature dependent,
relationship of the same formal appearance, known commonly as the detailed balance principle, connects the for-
ward and reverse rate constants for both isothermal and nonisothermal systems.

The detailed balance principle is a consequence of the requirement that at thermodynamic equilibrium the rates
of forward and reverse detailed processes are equal [1]. Since the equilibrium condition is uniquely determined by
the macroscopic thermodynamic constraints so also is the detailed balance relationship. Based on this fact we shall
argue below that the interpretation of the relation between the rate constants mentioned above as detailed balanc-
ing is valid for isothermal systems but can be (and has been) misleading for nonisothermal systems. This distinction
is not just semantic. Related, but more serious, misconceptions may arise with respect to the stationary, equilibrium,
solutions of the master equation; in particular when besides the ordinary canonical constraints the equilibrium dis-
tribution is determined by additional constraints.

In the following we show that a proper (macroscopic) description of a molecular relaxation process should start
with the following procedure: (a) A master equation is written for all the time dependent degrees of freedom.

(b) The equilibrium distribution is determined by maximizing the system entropy subject to the appropriate ther-
modynamic constraints. (¢) The equilibrium distribution is used to determine the detailed balance relation, thereby
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ensuring the uniqueness of the equilibrium distribution as a stationary sclution. Additional assumptions (like in-
stantaneous relaxation of certain modes), can be made after the three basic requirements have been fulfilled.

As an example to serve us throughout the discussion we take a gas of V diatomic molecules in volume V. For
the sake of concreteness it can be assumed that the initial nonequilibrium condition of the system is the result of
vibrational excitation (e.g. following infrared laser irradiation). Neglecting radiative, wall and other secondary ef-
fects the molecules will relax to a new equilibrium state via bimolecular collisions. If the system is thermally iso-
Iated (or “adiabatic”) the new final temperature will differ from the original temperature before the excitation.
The temnperatures are equal if the system is coupled to a heat bath (“isothermal’). We shall treat in detail the adia-
batic system and briefly the isothermal one. (The nature of the heat bath will not be specified; usually it is realized
by a buffer gas in excess.} The Treanor distribution [2] which characterizes an intermediate (*quasi-equilibrium™),
stage in the relaxation of anharmonic oscillators will also be discussed.

2. Equilibrium and detailed balance

The general form of the master equation describing a relaxation process eaused by binary collisions between
molecules of the same kind is

dP@Idr=—p 27 [k(a,b~a".b')Pla) P(b) - K(a’, b’ >a, b) P(a) PG, (1)

where a represents all the degrees of freedom that may change during the relaxation. The summation symbol
stands also for integration when # involves continuous variables. p = N/V is the gas density, P(g) is the probability
of finding a molecule in state 2 and the £’s are the rate constants.

The equilibrium solution of (1), Pg(a), is the (unique) distribution function P{&) which maximizes the entropy

131

§=—Nk 22 P(g) n[P(@)lg(a)], (3]
a

subject to the thermodynamic constraints on the system. & is the Boltzmann constant. g{a), the degeneracy of a,

involves density of state factors for continuous degrees of freedom. To ensure that Py(a) is the equilibrium solu-
tion, dPpla)/dt = 0, the rate constants must satisfy the detailed balance relation

Pyla) Po(b) k(a, b ~a’, by = Py(a') Py(b") k(a', b" > a. b). €3}

We turn now to the special case of diatomic molecules. To simplify the discussion the state of a molecule will
be specified by @ = €, 12, (b = e; m), where € = €, + €_ is the sum of translational and rotational energies and n is the
vibrational level. The master equation is

dP(e, n)[dt=—p Z) . f de de’ de'[k(e, n,e,m =+ €', n', &', m") P(e.n) P(e, m)
m o, m

@)

— k(e ', e',m > e, n e, m) P(e, n"yP(', mN)],

where P(g, 1) de is the probability of finding a molecule in vibrational state n and translational—rotational (t/r) en-
ergy between € and € + de,

2 fPEe.mde=22P0) = [P(e)de=1. )
n n

It should be noticed that since in each bimolecular collision the total collision energy is conserved the detailed
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rate constants are nonzero only when € te +¢, +¢,, =€ +e' +¢, +¢,,. (The rate constants contain a “built in”
L 7
S(etete, te, —€ —e — ¢, —~¢,,) factor {1].)
The entropy (per molecule) is given by

=2 [ aep(e. Pt n) n[P(e, mip)], )

where p(€) is the density of t/r states [3].
In an isolated system the average energy per molecule is kept constant throughout the relaxation process. That

is
(€+ey= 2:;" S dePe.n)e+e) =4, @

where the constant 4 is the initial (as well as final) value of the average energy per molecule E/N. (In the example
of nonequilibrium created by laser excitation, F is the energy of the gas after the excitation.)

The equilibrium distribution Py(e, n) is the one which maximizes the entropy, (6), subject to the normalization
and energy constraints, (5) and (7) respectively. The maximization procedure is standard and yields

Py(e, n) = p(e) exp[—By(e + €,)1 /Q(Bg) = Py () Py(11), ®)
P, o(€) = p(e) exp(—ﬁoe)/qt(ﬁo), B o(”) = exP(—ﬁoen_)/qv(Bo), ®)

where Q(8p) = 9,(8g)q,(8p) is the partition function per molecule corresponding to the final equilibrium tempera-
ture Ty = (kBg) L. T, the common temperature of all the degrees of freedom at # - oo is uniqueiy determined
through

(€ +€,)eq = —3 In O(Bg)/3Bp = A, (10)

where —3 In Q(B8y)/0fp = —d In Q(x)/dx at x = .

Using (3) (with @ = €, n) and (8) and recalling that the rate constants vanish unless € + ¢, te te,, =€ +¢, +e'
+ &, we find
p(e)p(e)k{e, en: €, enz - 6’) 6)1'! e': e}n') = p(e')p(e')k(e', 6}3'3 e': 6"1' —>E€, 6", €, e,n)' (l 1)

This is the basic detailed balance relation for the bimolecular relaxation process. Exactly the same expression can
be derived from microscopic considerations based on the symmetry properties of the state-to-state transition prob-
abilittes. In this case {11) is known as the principle of microscopic reversibility.

3. The reduced master equation

The full master equation, (4), and detailed balance relation, (11), can be simplified by assuming that t/r relaxa-
tion is instantaneous compared to vibrational relaxation. That is, P(31) = [ P(e, n) de relaxes more slowly than P(¢€)
= ZP(e, n). This means that at every stage of the relaxation

P(e, n) = P(n)P(€) = P(n) p(€) exp(—Pe)/q,(B). (12)
It should be noted that the instantaneous t/r temperature 7'= (kf)~! which characterizes the canonical distribution
P(€) is time dependent, i.e. 8 % 0 except at £ > oo when g = §,, see below. Substitution of {(12) into (4) and integra-
tion yield

dP(n)/dt=—p Z} , [KGr, m >, m'; B)P(2)P(m) — k(n', 2" —> 11, m; BYP(n")P(m")] . (13)

w
~3
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The, time dependent, averaged rate constants in this equation are given by
k(n,m—>n',m";g)= f dedede’ de' P(e) P(e)k(e.n,e,m =€, n", e, m'). 149

The time dependence of this rate constant is due to the time dependence of gin P.(€), (12). Multiplying each p(e)
factor in (11) by exp(—ﬂe)/qt(ﬁ) to get P.(€), integrating over €, e, €', €' and recalling that k(e, n,e,m—>€",n",e’,m")
iszeroforete, tete, +€ +e¢, +e te, wefind

exp[—B(e, + €, )1 k(z, m—~>n', m"; B) = exp[—B(€,, + €, k(n', m’' = n, m; B). (15)

A relation of exactly this form accounts for the detailed balance principle in isothermal systems where 8
= const = 1/kTy, and Ty, is the heat bath temperature. However, while in the isothermal case (15) is a direct result
of the fundamental relation (3) (see below), its derivation for isolated systems was based on the extra assumption
(12). We emphasize this difference because a general detailed balance relation is unique, time independent and
should directly reflect the equilibrium distribution. Thus, while in the isothermal case comparison of (3) and (15)
correctly implies that the equilibrium distribution is

P(11) = exp{—fe,,)a. (B). (16)

the identification of (16) as the equilibrium distribution in the isolated system is erroneous. Furthermore, this mis-
leading conclusion may appear to be supported by the fact that direct substitution of (16) into the reduced master
equation (13) (as suggested for example in ref. [2]), yields for any B, dP_(m)/dt = 0, as if (16) was an equilibrium
solution. This contradicts the assertion that (8), in which Bg 5= B(t # =), is the only equilibrium solution. On the
other hand, taking the time derivative of (16) we find

Py =—(e,, — (e, NBP.(»), an

where {¢,) = —3 In ¢,/38. Hence P (n) is a stationary solution only when B=0(e.atr—>o whenf= Bo)-

The resolution of this “paradox™ is indeed quite simple. We shall now show that (16) shouid be excluded not
only as a stationary solution but also as a transient distribution. This is because the reduced master equation, (13),
does not fully characterize the relaxation process and must be solved simultaneously with the equation for
= -T[LT—- The rate equation for § is obtained from the energy conservation constraint, (7), and the master equa-
tion, (13). Using A = (&) + (¢ ) = 0 and (12) we find

7= —(HCIXED. a8

where (€,) can be evaluated from (13) after multiplying by ¢,, and summing over ». CI¥ is the t/r heat capacity per
molecule, CF = (5/2k&). If at some moment the vibrational chstnbunon was of the form (16) we would get (e )
=L by From {18) it is obvious that this value and hence (16) are absurd (except of course at 7 — oo when 7" =0,
T= !IAﬁo) Thus, although by direct substitution into the reduced master equation the canonical-like distribution
{16) may appear as an equilibrium solution this possibility is overruled since it violates (7} and (18). (Obviously
dP(n)fdr = 0 alone woses not imply that P(z) is stationary. If this was sufficient then P(n) = O is also stationary.)

An alternative proof of the above assertions, emphasizing that the t/r distribution and the vibrational distribu-
tion cannot be simultaneously canonical with the same temperature, except at £ = oo, follows from (10). To simpli-
fy the arguments we can use, with no loss of generality, the ciassical expressions Q = g,4,. Using (8), (9) and (10)
we find A= (e)eq +<{g, ) = 7['760 = —ATO_ If as assumed in {16) the t/r modes are Boltzmann throughout the relax-
zlion then (g} =1 — 31_3 = ——&T ——LT. Suppose now that P(2) is also canonical with vibrational temperature

= 1/RB, so that (¢, ) =&kT, = -&TO ——RT Thus, as long as the relaxation process has not been terminated 7T,

?’ T*—:ﬁ Ty whereasat ethbrmm T, = T= Ty-
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4. Isothermal relaxation

If the system is coupled to a heat bath at temperature 7, = (A8;,)~! and t/r relaxation is instantaneous P(€) is
given by the canonical form (16) with 8= 8, = constant. Thus, only P(») is time dependent and the basic master
equation is (1) with 2 = n. In this case {€) = —3 In q,(8,)/36;, = const but {e,) is time dependent, hence (e + ¢} is
not conserved during the relaxation. The conserved quantity is the total energy of the system + heat bath. It can
be shown (see e.g. ref. [4]) that in this case the thermodynamic constraint defining the equilibrium state is (€, nleq
= -3 In q,(8,,)/98;,. Maximization of (2), with a = i, subject to this constraint and the normalization condition

ZP(n) = 1, yields, as expected, the canonical distribution Po(1) = exp(—By€,)/q,(Bp). cf- (16). Finally, using this
result in (3) we find a detailed balance relation identical to (15) but with § = 8, = constant. Of course, in the iso-
thermal case (18) is identically zero and the reduced equation (13), with § = ,,, fully describes the relaxation pro-
cess.

5. The Treanor distribution

The well known Treanor distribution [2] can be regarded as the equilibrium distribution of a hypothetical sys-
tem in which only v—v collisions cause the relaxation. (This “quasistationary™ distribution provides an approximate
description of the vibrational populations at the end of the fast relaxation stage governed by v—v collisions. It is ap-
propriate only for low lying levels for which 7,, €7, ,.) In an isolated system relaxing in this fashion the normaliza-
tion, (5), and the energy conservation, (7). constraints should be supplemented by the quanta conservation con-

straint [2,3]
{my = 2 f deP{e, m)n= 27 nP(n) =B, (19)
n ”n

where B is the average number of vibrationai quanta per molecule at r = 0, i.e. after the excitation. The equilibrium,
Treanor, distribution obtains by maximizing (6) subject to (5), (7) and (19). This vields

Py(e, n) = p(e) exp[—B'(e +€,) — Yn1/Q@', ¥) =Py(e) Py(n), elo)}
Py(e) = p(e) exp(—B'e)fqg,(8), 1)
Py(n) = exp(—B'e — ¥'m)lg (8", 7). (22)

where the new partition functions O(8', v) = q.(8 q,(8', 7') ensure the normalization of prebabilities. The
Lagrange parameters 8’ and " are determined via

=—31In 0", ¥)/3f = -3 In g,(8)/3F" — 3 In g, (8", Y)/3Y', (23)

B=-3In Q@ 7)oy =—3lnq,@, v)3Y. (24)

it should be noted that since §’ satisfy the two independent equations, (23) and (24), while §; satisfy the single
equation (10), 8’ # 3. The constant 4 has the same value in (10) and (23). If; accidentally ' = §; then (24) isa
“non-informative”, i.e. redundant constraint. This for example is the case when the levels are harmonic, €,, = nfic.
There is an additional important difference between the equlibrium solutions (20) and (8). While the latter is
the stationary solution of the full master equation (4), the former corresponds to a modification of (4) in which
the sum on the right hand side involves only v—v ({1} conserving) collisions, i.e. 7 + m =n' + m'". Setting again 4
= ¢, n in (3), using (20) and noting that exp[—y'(@2 + m — n" + m')] =0, we find that the detailed rate constants in
the modified master equation satisfy (11); (as expected, since (11) is essentially the microscopic reversibility prin-
ciple).
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Assuming again that t/r relaxation is instantaneous we can employ (11) to integrate the modified master equa-
tion over €, €, € and e’ and get, cf. (13),

dP(mfdr=—p E S tm—n' - mYk(n,m~> o', m"; B)P(@) P(m) — k (2", m" > n, m; B)P(n")P(n")] , (25)
n,rn .1t
where the 8 function ensures {n) conservation. Note that 8 = g(¢) = 8’ except at £ -> ==. From (11) and (12) it fol-
lows that the time dependent rate constants satisfv (15). (Setting dP(1)/dt = 0 in (25) we obtain the lowest order
term in the Chapman—Enskog expansion of (13) in terms of 7. /7, [2].)
Finally, by direct substitution of the canonical-like distribution

P () = expl—fe — y)a (B. 7). (26)

it may appear that (26) is a stationary solution of {25) for each momentary value of 8 and regardless of the value
of v. To show that {26) is not an acceptable solution we may treat 7 as time dependent. {This includesy=0asa
special case ) As in the passage from (16) to (17), derivation of (26) yields

P (n)=—[(e, — (N8 + (n — (7] P(n). @7

From this equation it is clear that Pc(n) =0 only when bothﬁ =0 and 7y = 0. (The # dependence of the term in
square brackets excludes the possibility that the terms with § and ¥ cancel out.) The resolution of the present
“paradox” follows closely the lines of section 3. The major argument for rejecting (26) for finite 7 is that a station-
ary solution should satisfy, in addition to dP(;)/d¢ = 0, the rate equation for 3, (18). Alternatively, the only solu-
tion of the form (26} which satisfy both (23) and (24) is (20) for which §=g"and y=v".

In isothermal systems where § = 3, = const, the equilibrium (Treanor) distribution is given by (20) with ' re-
placed by f, and 7" as evaluated from (24) with 8, instead of §.

6. Concluding remarks

It was shown that thermodynamic considerations ensure the uniqueness of the detailed balance relation and the
maximal entropy distribution as the only stationary solution of the master equation. It was emphasized that canon-
ical-like distributions which by direct substitution into a reduced master equation may appear as stationary solu-
tion are quite often misleading because they are not consistent with the thermodynamic constraints. Particularly
so, where only the reduced master equation for the slowly relaxing modes is considered.
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