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The signitiunce of the detailed balance principle and equilibrium solutions of the master equation is discussed from a 
thermodynamic point of view for isohted and isorhermai systems. Starting from e master equation for aII the time depen- 
dent degrees of freedom it is shown that the uniquenessof the equilibrium distribution as a stationary solution is ensured if 
the detailed rate constants are Manced with the aid of the distribution which maximizes the entropy subject to the thermo- 
dynamic constmiutr This procedure should precede physical assumptions which simplify the origimd master equation, 
e-g- the assumption that rapidly reboxing modes can be described by canomal distribution functions. 

1. Introduction 

In most types of molecular relaxation phenomena it is possible to distinguish between r3pidIy and slowly rekx- 
ing degrees of freedom. For example, translational and rotational relaxation of molecules in the gas phase c3n usual- 

ly be regarded as instantaneous on the time scale of vibrational relaxation. Whenever such separation to different 
time scales is justified the approach to equilibrium of the slowly relaxing modes is governed by 3 master equation 
with temperature dependent rate constants. The temperature characterizes the distribution over the rapidly relaxing 
modes. If the system is coupled to a heat bath this temperature is constant. In the more general c3se it is time de- 
pendent and reflects the instantaneous average energy content of these modes. A definite, temperature dependent, 

relationship of the same formal appearance, known commonly as the detarled balance principle, connects the for- 

ward and reverse rate constants for both isothermal and nonisothermal systems. 

The detailed balance principle is 3 consequence of the requirement that at thermodynamic equilibrium the rates 
of forward and reverse detailed processes are equai [I]. Since the equilibrium condition is uniquely determined by 

the macroscopic thermodynamic constraints so also is the detailed balance relationship. Based on this fact we shall 
argue below that the interpretation of the relation between the rate constants mentioned above 3s det3rled balanc- 
ing is valid for isothermal systems but can be (and has been) misleading for nonisothermal systems_ This distinction 
is not just semantic. Related, but more serious, misconceptions may arise with respect to the stationary, equilibrium, 
solutions of the master equation; in particular when besides the ordinary canonical constraints the equilibrium dis- 
tribution is determined by additional constraints. 

In the following we show that a proper (macroscopic) description of a molecuiar relaxation process should start 
with the following procedure: (a) A master equation is written for all the time dependent degrees of freedom. 

(b) The equilibrium distribution is determined by maximizing the system entropy subject to the appropriate ther- 
modynamic constraints. (c) The equilibrium distribution is used to determine the detailed balance relation, thereby 
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ensuring the uniqueness of the equilibrium distribution as a stationary solution- Additional assumptions (Eke in- 
stantaneous rekation of certain modes), can be made after the three basic requirements have been fuffaed. 

As an exampfe to serve us throughout the discussion we take a gas ofN diatornic molecules in voIume FC For 
the sake of concreteness it can be assumed that the initial nonequihbrium condition of the system is the result of 
vibrational excitation (e-g_ foliowing infrared laser irradiation)_ NegIecting radiative, wall and other secondary ef- 
fects the moIecuIes will reIax to a new equilibrium state via bimolecular colIisions, If the system is thermally iso- 
lated (or ‘6adiabatic’*) the new fimaI temperature will differ from the origina temperature before the excitation. 
The temperatures are equal if the system is coupled to a heat bath (“isothermal”). We shall treat in detail the adia- 
batic system and briefly the &othermaI one_ (The nature of the heat bath will not be specified; usually it is realized 
by a buffer gas in excess-? The Treanor distribution [Z] which characterizes an intermediate (“quasi-equilibrium”), 
stage in the relaxation of anharmonic oscillators wil1 aIs0 be discussed. 

2% EquiJibrium and detailed ba!ance 

The generaI form of the master equation describing a reIaxation process caused by binary coIJ.isions between 
molecules of the same kind is 

dP(a)/dr = --p bGb, [k&z, b - a’, b’)P(a) P(b) - k(Q’, b’ --f II, b) P(i) P(b’)j , (1) 
s * 

wherea represents alI the deggrees of freedom that may change during the refaxation.. The summation symbo1 
stands ako for integmtion when Q involves continuous variabIes_ p = fV/V is the gas density, P(n) is the probability 
of fmding a molecule in state of and the k’s are the rate constants_ 

The equifibrium solution off:), P&z), is the (unique) distribution function P(a) which maximizes the entropy 

f31 

S = -iVk FP@) In[P(fz)/g(a)] , (3-) 

subject to the thermodynamic constraints on the system. k is the Boltrmann constant.&), the degeneracy of cr, 
invoives density of state factors for continuous degrees of freedom. To ensure that PO(a) is the equilibrium solu- 
tion, dP&]/dt = 0, the rate constants must satisfy the detailed balance relation 

P$a) P&Y) k(Q. b + Q’_ b*j = f$,(a’) Po(br) k@*, 6’ -+ Q, b)_ (31 

We turn now to the special case of diatomic moIecuIes_ To simplify the discussion the state of 3 moIecuie wiU 
be specified by a = E, I?, (b = e; fn), where E = et + er is the sum of tnnshtion~ and rotational energies and n is the 

vibrational level_ The master equation is 

dP(e, rt)/dt = --p c 
rn.~r’~ m’ 

Jde de’ de’[k( E, n, e, nz --f i, JZ’, e’, m’) P(E. JJ) P(e, m) 

(4) 
- k(i, JZ’, e’, nz’ + E, n. e, JJz) P(E), Jz’)P(e’, nz’j] , 

where P(e, Jz) dE is the probability of fmding a molecule in vibrationf state n and translational-rotational (t/r) en- 
er,qv between E and E f de. 

Ir shouId be noticed that since in each bimolecular collision the total collision energy is conserved the detailed 
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rate constants are nonzero only when E t e f elt + etn = d +- e’ + E,* + E,.. (The rate constants contain a “built in” 
S(E.fe+E,+E,-e*-e’-E~*-~Em.)factorfl]) 

The entropy (per molecule) is given by 

X=-k? j- d~P(E,n)[P(E,n)In[t>(~,n)/~(~)], (6) 

where P(E) is the density of t/r states [3] _ 
In an isolated system the average ener,T per molecule is kept constant throughout the relaxation process. That 

is 

(7) 

where the constant A is the initiaI (as well as final) value of the average energy per mofecule E/N. (In the exampie 
of nonequilibrium created by laser excitation, E is the energy of the gas after the excitation.) 

The equilibrium distribution Po(e, n) is the one which maximizes the entropy, (61, subject to the normalization 
and energy constraints, (5) and (7) respectively. The maximization procedure is standard and yields 

Po(G n) = p(e) exp [-Me + @I IQ@)) = &~(#-j(Jz)z (~1 

PO(E) = P(d ed-&)/st@& &W = e~p(--P0~JJ)/4y(P0)~ (9) 

where Q(&) = 4~~0)~~~n) is the partition function per molecule corresponding to the final equihbrium tempera- 
ture To = (k&J-~ _ TO, the common temperature of all the degrees of freedom at t -+ 00 is uniquely determined 
rhrough 

(E + %)eq = -a In Q@(@&) = A, (10) 

where --a In Q(Po)fapo = -2 In Q(.)/a_x at x = pa. 
Using (3) (with cz = E, II) and (8) and recalling that the rate constants vanish unless e + eJ1 + e f E,?~ = E‘ i- E,~, +e’ 

+ er&, we fmd 

p(e)p(e)k(e, Q, e, em + e’, E;~‘. e’, etn,) = p(e’)p(e’W(e’, eJr,, e’. el,r~ + e, eJ1, e, eJ& ilO 
This is the basic detailed balance relation for the bimolecular relaxation process. Exactly the same expression C~LR 

be derived from microscopic considerations based on the symmetry properties of the state-to-state transition prob- 
abilities In this case (11) is known as the principle of microscopic reversibility. 

3. The reduced master equation 

The fuIl master equation, (4), and detailed balance relation, (1 l), can be simplified by assuming that t/r relaxa- 
tion is instantaneous compared to vibrational relaxation. That is, F(B) = J&e, n) de relaxes more slowIy than P(e) 
= I=P(e, II)_ This means that at every stage of the relaxation 

P(e, lr) = WWe(e) = W&J(~) exp(-W~tcp). (13) 

It should be noted that the irrstantaneous t/r temperature T= (k_P)-l which characterizes the canonical distribution 
PC(e) is time dependent, i.e. p & 0 except at t + 0 when @ = PO, see below- substitution of (12) into (4) and integra- 
tion yield 

dP(d/dt = --P m F_, PC Jt, Jn + n’, JJZ’_; @P(n)P(m) - k(n', m ' + n, in; @P(J2 ')P(m ')] - (13) 
> s 
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The, time dependent, averaged rate constants in this equation are given by 

k(n. m + n*, m’; p) =f de de dd de’ P,(e) Fe(e) k(e, n, e, m + E', n', e', nz*)- 04) 

The time dependence of this rate constant is due to the time dependence oFP in PC(e), (12). MuItipIying each p(e) 
factor in (1 I) by exp(-&)/q,(p) to get PC(e), integrating over e, e, e’, e’ and recaIl.ing that k(e, n, e, m + es’, n’, e’, m’) 
iszerofore+en +e+e, i-e’+en.i-e’+em. we find 

A rehtion of exactIy this form accounts For the detaiIed balance principIe in isotherma! systems where 0 
= cons& = IFTb and Tb is the heat bath temperature. However, while in the isothermsI case (15) is a direct result 
of the fuxl~mentaI relation (3) (see befow). its derivation for isohted systems was based on the extra assumption 
(1 Z!)- We emphasize this difference because a gene& detailed balance rektion is unique, time independent and 
should directly reflec: the equilibrium distribution- Thus, while in the isothermal case comparison of (3) and (IS) 
correctIy implies that the equihbrium distribution is 

P,(rr) = exn(-&zjl~, 0, (16) 

the identification of (i6) as the equihbrium distribution in the isolated system is erroneous_ Furthermore, this mis- 
leading conclusion may appear to be supported by the fact that direct substitution of (16) into the reduced mzster 
equation (13) (as sugested for esample in ref- [2])_ yields for any fl- dP&]/dt = 0, as if (16) was an equilibrium 
solution- This contradicts the assertion that (S), in which flo f fi(t f 00 ), is the ortry equilibrium solution- On the 
other hand, taking the time derivative of (I 6) we find 

(17) 

where <e,r) = -a In rr,/Z@_ Wence P,_(E) is a stationary solution oniy when 6 = 0 (i-e. at t -+ OJ when P = PO)- 
The resolution of this “paradox” is indeed quite simple. We shall now show that (16) should be excluded not 

only as a stationary solution btit also as a transient distribution_ This is because the reduced master equation, (13), 
does_not fully characterize the relazxation process and must be solved simultaneously with the equation for fl 

= -T/kT’_ The rate equation for p is obtained from the energy conservation constraint, (7), and the master equa- 

tion, (13)- Using 2 = <& + <G,z;,,> = 0 and (I 3) we find 

where G,J can be evahrated from (13) after nluItipIying by Ed and summing over Ii, Cir is the t/r heat capacity per 
molecule, C,"- f5/Zk)_ If at some moment the vibrational distribution was of the form (16) we would Set <$J 
= C; ibf_ From (IS) if is obvious that this due and hence (16) are absurd (except of course at f -+ - when T = 0, 

T= I/k&)_ Thus, akhough by direct substitution into the reduced master equation the canonical-like distribution 
(16) may appear as an equilibrium solution this possibility is overruled since it violates (7j and (IS). (Obviously 
df’(rr)/dr = 0 alone uoes not imply that P(c) is stationary. If this was sufficient then P(n) = 0 is also stationary.) 

An alternative proofofthe above assertions, emphasizing that the t/r distribution and the vibrational distribu- 
tion cannot be simultaneously canonical Gth the same temperature, except at t --f =, follows from (10). To simpli- 
fy the arguments we carr use, with no loss of generality, the cIassica1 expressions Q =qt4v- Using (S), (9) and (IO) 
we find d = k& + <E,>,, = ?&lo = $kTo_ If as assumed in (16) the t/r modes are Boltzmann throughout the relax- 
~tiOnifien<Q=R - S/Z@ =$&To -GIL-T_ Suppose now that P(n) is aIs0 tanonis.d with vibrational temperature 

T, = f/k& so that <E,> = X-T, =5X-T, - GkT_ Thus, as long as the relaxation process has not been terminated TV 
is Tf To xrhereas at equilibrium TV = T= To_ 
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4. Isothermal reiaxation 

If the system is coupled to a heat bath at temperature Tb = (J’c&,)-~ and t/r relaxation is instantaneous P(E) is 
given by the canonical form (16) with fl= &, = constant_ Thus, only P(H) is time dependent and the basic master 
equation is (1) with Q = n. In this case k) = -a In q&$2& = const but GzJ is time dependent, hence Gz + EJ is 
not conserved during the relaxation. The conserved quantity is the total energy of the system + heat bath. It can 
be shown (see e-g_ ref. [4]) that in this case the thermodynamic constraint defining the equilibrium state is GzJeg 
= -a In ~,(&,)/a&,_ Maximization of (2), with Q = n, subject to this constraint and the normalization condition 
ZE’(lz) = 1, yields, as expected, the canonical distnbutionP&) = exp(--&,e&&,), cf. (16). Finally, using this 
resu!t in (3) we fmd a detailed balance relation identical to (15) but with p = pS = constant. Of course, in the iso- 
thermal case (18) is identically zero and the reduced equation (13), with 0 = &,, fully describes the relaxation pro- 
cess. 

5. The Treanor distribution 

The well known Treanor distribution [2] can be regarded as rhe equlhbnum distribution of a hypothetIca sys- 
tem in which only v-v collisions cause the relaxation. (This “quasistationary“ distribution provides an approximate 
description of the vibrational populations at the end of the fast relaxation stage governed by v-v collisions_ It is ap- 
propriate only for low lying levels for which rV,, Q rbt_ ) In an isolated system relting in this fashion the nonnaliza- 
tion, (5), and the ener,v conservation, (7): constraints should be supplemented by the quanta conservation con- 
straint [2,3] 

(tz) = c JdePje, n)tz = c rzP(n) = B , 
n Lz 

(19) 

where B is the average number of -vibrationai quanta per molecule at t = 0, i.e. after the excitation. The equilibrium, 
Treanor, distribution obtains by maximizing (6) subject to (S), (7) and (19). This yields 

Po(e, ~z) = P(E) exp f--P)(E f en) - y’n] /Q@‘, 7’) =mJ’o(~)Po(~z), (m 

PO<+ = o(e) exd--P’+z,(P’). (21) 

P&z) = exp(-P’e - r’n)/cl,(p’, 7’). (22) 

where the new partition functions Q(j3’. r’) = ~&3’)s,(p’, y’) ensure the normalization ofprcbabilitres_ The 
Lagrange parameters fl’ and -y’ are determined via 

_4 =-a in &@.~')lafl'= -a In 4,@)/a$- a lnq,($, f)iaf, (23) 

B= -a in Qcp’, r')la$=-a lnq,@‘, $)/a$. (24) 

It should be noted that since 6 satisfy the two independent equations, (23) and (24), \\hile flo satisfy the single 
equation (IO), p’ f PO_ The constant A has the same value in (10) and (23). If, accidentally 0’ = PO then (24) is a 
“non-informative”, i-e_ redundant constraint_ This for example is the case when the Ievels are harmonic, E,* = rzizw. 

There is an additional important difference between the equilibrium solutions (20) and (S)_ While the latter is 
the stationary solution of the full master equation (4), the former corresponds to a modification of (4) in which 
the sum on the right hand side involves only v-v ((Iz) conserving) collisions, i.e. n + nz = rz’ + ??z’. Setting again Q 
= E, n in (3), using (20) and noting that exp[--~‘(Jz + m - n' + nz’)] = 0, we fmd that the detailed rate constants in 
the modified master equation satisfy (11); (- 4 expected, since (11) is essentially the microsccpic reversibility prin- 
ciple). 
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Assuming again that tlr rekxation is instantaneous we can employ fi I) to integrate the modified master equa- 
tion over E, e, E’ 2nd e’ and get, cf_ (13). 

dP(n)ldr = -p c 
m.d.tn’ 

6(n + rn - n* - m*)[k(n, nz + ti.m”; @P(n)P(m) - k(rt ‘, m’ + n, m; @P(n’)P (m’)] , (25) 

whcrc the 6 function ensures <n) conservation- Note that p = p(t) # 6 except at t -+ DE. From (11) and (12) it fol- 
lows that the time dependent rate constants satisfy (15). (Setting dP(,l)ldt = 0 in (25) we obtain the Iowest order 
term in the Chapman-Enskog expansion of (13) in terms of r&-v, [2] _) 

Finally, by direct substitution of the canonical-Iike distribution 

P&l = exp(--@ - Yrr)/&.f& ;y)* (26) 

it m;ay appear that (26) is a stationay solution of (25) for each momentary v&e of fi and regardfess of the value 
of-y. To show that 126) is not sn acceptable soktion we may treat y as time dependent. (This includes $ = 0 as a 
special case.) As in the passage from (16) to (I 7). derivation of (26) yields 

k,(a) = -[(E,: - (E,,})j + (12 - <H>>+] P,(n). (27) 

From this equation it is cIear that F&I) = 0 only when both b = 0 and r = 0. (The n dependence of the term in 
square brackets excIudes the possibility that the terms with 6 and + cancel out.) The resolution of the present 
“par;ldosW follows ciosely the lines of section 3_ The major argument for rejecting (26) for finite t is that a station- 
ary solution should satisfy, in addition to dP(i)/dt = 0, the rate equation for b, (18). Alternatively, the only soiu- 
tion of the form (26) which satisfy both (23) and (241 is (20) for which 9 = fl’ and 7 = 7’. 

in isothermat systems where fi = 4, = cons& the equilibrium (Tremor) d~st~butio~ is given by (20) with p’ re- 
pIaced by & and 7’ a.s evaluated from (23) with -0, instead of @‘_ 

6. Concluding remarks 

It was shown that thermodynamic considerations ensure the uniqueness of the detailed balance relation and the 
maximal axrop?; distribution 3~s the only stationary solution of the mzster equation. It was emphasized that canon- 
icz&Iike distributions which by direct substitution into a reduced master equation may appear as stationary solu- 
tion are quite often misleading because they are not consistent with the thermodynamic constraints- Particularly 
so, where onfy the reduced master equation for the sIowIy refacing modes is considered. 

\‘Ye would like to thank Professor R-D_ Levine for very helpful discussions. 
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