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Abstract

The efficiency of molecular lasers is known to be enhanced when certain relaxation
processes (which dissipate some energy) are allowed to take place. We consider a
thermodynamic interpretation of such observations with special applications to
chemical lasers operating in the limits of slow and fast rotational relaxation.
Specifically it is shown that kinetic coupling schemes which reflect the hierarchy

of rate processes in a nonequilibrium molecular system can be expressed as thermo-
dynamic constraints on the internal state distribution function. The lower the number
of constraints the higher is the work which can be extracted from the nonequilibrium
populations. The lower laser efficiency in the absence of rotational relaxation is due
to the existence of an isolating constraint on the vib-rotational populations of the
lasing molecules.

Introduction

Experiments [1, 2] and aumerical simulations [3] show that the efficiency of a
chemical laser is significantly enhanced in the presence of a buffer gas. A kinetic
interpretation [4] (the ‘funnel effect’ [1], see below) invoking a competition between
stimulated emission and the (pressure dependent) rotational relaxation is available.
The purpose of this paper is to offer a corresponding thermodynamic interpretation.
The discussion illustrates the general approach to systems in molecular disequilibrium
[5, 6] which is based on the maximal entropy formalism [7]. The increase of the
laser efficiency with the buffer gas pressure is shown to reflect the additional work
which is available from a system when a constraint is removed.

The constraints which are introduced in the discussion of thermodynamic work
processes [8—10] are typically macroscopic (e. g. pistons, catalysts). A novel feature
of the present discussion is that work is obtained by the removal of a molecular (i. e.
1 kinetic or mechanistic) constraint. Specifically, the constraints to be discussed are
conditions on the distribution of the molecules over their internal energy levels.
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In a laser system the work is extracted as light which due to its spectral characteristics
(well collimated beam over a very narrow frequency range) can be regarded as
thermodynamic work [11].

Section 1 is a discussion of the work available upon (partial) removal of the con-
straints on the system. The maximal entropy formalism enables us to introduce

the molecular constraints in a simple fashion and to demonstrate their role not only
analytically but also in a graphic fashion. A particular feature of the discussion is

that it is not limited to systems coupled to a heat bath [12]. The particular constraints
which are removed due to the presence of a buffer gas are formulated in section 2,
which applies the point of view of section 1 to the physical system of interest.

On the microscopic level we are concerned with the following physical picture. A
fast chemical reaction creates a disequilibrium population of molecules in their
vibrational and rotational states. In the low pressure regime lasing is possible on
any allowed' molecular line for which there is an excess population in the upper
state. Laser emission depletes the upper state and hence terminates when the popula-
tions in the upper and lower state become equal (or, in practice, when the excess in
the upper state falls below the threshold density required by losses etc [2, 4D.
Collisional processes (whose rate is proportional to the pressure) are too slow as
compared to the rate of laser emission in order to drain the upper state or to feed
the lower state. The entire system acts as a collection of independent two-level
systems. For each molecular laser line the sum of the populations in the upper and
lower states is constant (on the time scale of interest).

As the pressure is increased, collisional relaxation begins to take place. The critical
observation here is that rotational energy transfer is several orders of magnitude
more effecient than vibrational energy transfer [1, 13]. Hence rotational relaxation
can but vibrational relaxation typically cannot compete with the (unimolecular)
lasing process [1]. In the limit where rotational energy transfer is quite efficient any
depletion of an upper state due to lasing? is immediately restored by the collisional
process and any excess of the lower state is immediately removed. The net result of
this “cooperative” lasing mechanism is an efficient draining of the population of the
upper vibrational state into the lower one.

The low pressure constraint that on any lasing line the total population (sum of

upper and lower states) must be constant is thus removed in the higher pressure
regime.

In the limit of strong rotational coupling the rotational distribution is thermalised
throughout the lasing. Thus,

P(v,J) = P(v) (2] + 1) exp[— BBI(J + D)]/Qro(B) , (n

! Dipole selection rules limit the allowed transitions. In lasers using diatomic molecules the

important transitions occur on the P-branch lines connecting the vibrotational levels, (v, J — 1)
to (v— 1, J). Here v and J are the vibrational and the angular quantum number respectively.

It is important to note that lasing occurs on the strongest (‘Highest gain’ {1, 2]) line. During
the lasing process, this line gradually shifts towards higher J’s, see below.
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where T = (RB)! is equal to the translational temperature. For simplicity we have
used here the rigid rotor level scheme and B is the rotational constant. The necessary
lasing condition, i. e. population inversion,®

P(v, ] —D/QRI—D>P(v—1,D/2I+ 1), (2)
now reads
I>@28B) ! ¢n[P(v— 1)/P(V)]. 3

Lasing starts on the line with the highest inversion (more precisely highest gain)
corresponding to the initial population P(v). Generally this is one of the low lying

¥’s. The fast rotational relaxation transfers molecules into v, J — 1 and from v — 1, ]
while preserving the Boltzmann shape of the rotational distributions and preventing
“hole burning”. The upper vibrational population is thus homogeneously drained
(funnelled [1]) into the lower one through the highest gain transition. As P(v— 1)/P(v)
increases in this process the lasing is gradually shifted to higher J’s as implied by

(3). Since J is unlimited, lasing can still go on even when P(v — 1)/P(v) < 1. In
practice, lasing terminates at some high J determined by the requirement for threshold
inversion [2, 4]. Yet the draining of the upper level due to the cooperation (strong
coupling) between the rotational levels is very efficient.

In the low pressure region collisional relaxation is negligible and the population

P(v, J) is affected only by the stimulated emission. Thus, molecules can be exchanged
only between (v, J — 1) and (v — 1, J) and the different lines form distinct groups.
Here the lasing terminates when every line reaches, individually, an equality in (2)

so that lasing terminates when P(v)/P(v— 1) ~ 1; as opposed to the strong coupling
case. The passage to the strong coupling limit is formally achieved by removing the
constraints on population exchange between the different rotational states of the
same vibrational manifold.

1. Work

Discussion of work processes for systems in disequilibrium is conveniently formulated
using the maximal entropy formalism [5, 6, 12]. Our first purpose is to relate this
point of view to the “energy picture’ [8], which is more common in equilibrium
thermodynamics. In doing so we shall also introduce our notation and invoke the
distinction between the allowed and excluded regions in the mean or internal

energy E-entropy S plane which is fundamental to our subsequent discussion.

Our primary concern is with systems in internal molecular disequilibrium where
upon spontaneous removal of the constraints the relaxation towards equilibrium
is predominately collisional. We shall thus assume that the system is spatially homo-
genous, dilute and that the time scale of interest is sufficiently coarse that collisions

3 P(v, ] — 1) is the population in the 2(J — 1) + 1 = 2J — 1 fold degenerate (v, J — 1) vibrotational
level. The population per quantum state is P(v, J — 1)/(2J — 1). Population inversion requires
inversion between gquantum states, [2].
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are instantaneous. A complete microscopic characterisation of the system is then
provided by the number of molecules in each of the different internal energy states.
One can thus consider a distribution function P(n, t) specifying the fraction of all
molecules in the internal energy level n (of degeneracy g,,) at the time t.

A macroscopic characterisation of the state of the system is provided by specifying
the value of m “constraints”

(A =2 A.(n) P(n, t), r=1,...,m, (4)
n
which together with the normalisation
1={A) =2 P(n, t), (5)
n

suffice to determine P(n, t). In (4), A,(n) is the magnitude of the property A, in the
n’th level. Unless n is comparable to the number of levels which are significantly
populated, the m + 1 constraints, (4) and (5) do not suffice, in themselves, to

specify a unique distribution function P(n, t). It is here that one invokes the principle
of maximum entropy [6] by selecting P(n, t) as that distribution which satisfies the
m + 1 constraints and whose entropy*

S[n] =—R Z P(n, t) &n[P(n, t)/g,] (6)

is maximal. Provided that the (m + 1) constraints are linearly independent and that
their values are consistent (i. e. there is at least one distribution which satisfies (4)

and (5)) the maximum problem has a unique solution [14]. Another important feature
of the solution is that the addition of constraints can never cause the entropy to
increase. Intuitively this is obvious. Addingconstraints can only further restrict the
range of contending distributions and hence the entopy will at most not change®

and otherwise will decline. Finally, one notes that the entropy is a convex function

of the constraints [14], i. e. for any P(n, t) that satisfies the m + 1 constraint condi-
tions we have

92S[n]/a (A2 <0, (7N

where the inequality is strict when the constraints are linearly independent.

The three properties of the maximum entropy procedure are summarised graphically
in the top row of Figure | where E is the mean energy (per mole) of the system

E=ZE,P(n,t). (8)

4 Equation (6) is the entropy for one mole. Since, by assumption, the gas is dilute and the
collisions are uncorrelated, the single molecule distribution function sufficies to describe the
system. However, the system consists of N molecules rather than of a single one.

This happens when the additional constraint is “non-informative” [6, 151, i. e. when it does not
help to specify the macroscopic state.
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Given the value of E, there is a unique maximal value of S shown as the solid line.
Moreover, the solid line is convex (cp. (7)). Finally, if additional constraints are
present then, for a given value of E, the value of S can only go down. In the S-E
plane, the solid line is the boundary between the allowed and excluded states of the
system. A given (S, E) point can only be on or below the solid line. It is not
possible to find a macroscopic state which is subject to the constraints whose
entropy exceeds the boundary line. The physical significance of this boundary is
made clear by equilibrium thermodynamics. The normalised distribution of
maximal entropy subject only to a given value of the energy is, of course, the
equilibrium (‘canonical’) thermal distribution. The slope of the S-E curve is then
a measure of the temperature®

dS/0E = 1/T =R, 9

and the condition that the distribution be normalised determines the partition
function

Q=2Zg,exp(—BE,). (10)

The sum over levels in (10) may converge even if § is negative (e. g. if there are only
a finite number of levels), in which case the S-E curve can have a maximum (upper
left case in Fig. 1). If the sum (10) converges only for positive 8 (e. g. if the spectrum
is unbounded from above) then the S-E curve is monotonic (upper right case in

Fig. 1).

S S

Fig. 1: Maximal entropy curves in the entropy S (upper row) and mean or internal energy E

(bottom row) representations for systems with bounded (left column) and unbounded
(right column) spectrum. In the S representation every E, S point on the solid curve is
obtained by maximizing S subject to the value of E while in the E representation every

E, S point on the curve corresponds to the extremal E for a given S (where for the negative
temperature region, R = 0S/0E <0, of systems with bounded spectrum, the extremum is
a maximum). The allowed region of nonequilibrium E, S points lies on the concave side of
the solid curves,

5 We use the term temperature in a generalized sense as the (inverse) magnitude of the Lagrange
parameter (cp. (11)) conjugate to the energy. The letter k denotes Boltzmann’s constant.
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An alternative macroscopic description and one that is well suited towards the
discussion of work processes in an isolated system regards the energy E as a function
of the entropy S and other macroscopic variables. This is sometimes known as “the
energy picture” [8]. We now show that the tranformation from the entropy to the
energy picture is not limited to systems in thermal equilibrium but can be carried
out in general.

Assume the energy to be taken as the first (i. e. r = 1) constraint. The problem of
seeking an extremum of the entropy subject to m + 1 constraints can be formulated
as seeking the unconstrained extremum of the Lagrangian

L=S[n]—M;— DM —REE— 2 A A(AD. (1n
r=2

Here the m + 1 coefficients (Ay, 8, A;5 1 = 2, .. ., m) are parameters whose values
are to be determined by the condition that at the extremum the distribution is
consistent with the values of the constraints. One can show that the procedure leads
not only to an extremum but indeed to a maximum for the entropy [6, 14]. Say
now that L is divided by Rf. The result (¢p. (11)) is just a Lagrangian for seeking
an extremum of the energy subject to the given value of the entropy and the other
m constraints (normalisation and (A>, r = 2, .. ., m). This is the characterisation

of the macroscopic state in the energy picture. The only difference is that the
extremum is not necessarily a minimum. It will be a minimum if (as is typically the
case for macroscopic systems) § > 0. It is a maximum if § <O0.

The formal equivalence between the entropy and the energy pictures is also shown
in Fig. 1. The E-S plots in the bottom row are obtained by simple rotation from
those in the top row. As in the entropy picture, the line is the boundary between
the allowed and excluded macroscopic states. When § > 0, the equilibrium E-S line
is concave.

Work processes in an isolated system are shown schematically in Figure 2. As in
Figure 1 the solid E-S curve corresponds to the situation where no other constraints
(apart from normalisation) are present. If additional constraints do apply, the
system is characterised by some point (e. g. E;, S;) within the allowed region. If now
some of these additional constraints are removed, part of the energy of the macro-
scopic state can be extracted as work. If the entropy is unchanged, then say E;, §;

is a possible final macroscopic state. Removing additional constraints (at constant
entropy) enables the energy to drop even further untill, when all constraints are
removed, it reaches E¢. For the given value of S;, E; — E¢ is the maximal work that
can be extracted from the system. If the entropy does increase, less work is
available.

By regarding every allowed macroscopic state of the system as a state of maximal
entropy subject to constraints one obtains a statistical mechanical description of
work processes also for systems not in thermal equilibrium. (The corresponding
thermodynamic description is well known {9, 10, 16]). Within such a formulation,
equilibrium is the state where the constraints are the (additive) time-independent
constants of the motion. There are however time-dependent constants of the
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Fig. 2: Work processes in an isolated system of molecules with bounded (left) and unbounded
(right) spectrum. The solid lines represent the equilibrium mean or internal energy
E-entropy S locus. The broken lines are maximal entropy curves in the presence of
additional constraints; the larger the number of constraints the lower is the value of S for
a given E. Removal of constraints enables the system to convert part of its energy into
work. In the regions of positive temperature, 9S/0E > 0, the maximal work, e. g. E; — E; is

obtained in an isentropic process, S; = S;. Less work is available in an irreversible process
S; > S;
j it

motion.” By maximizing the entropy subject to such constraints one obtains exact
solutions of the Liouville equation which describe non-equilibrium situations. An
explicit construction principle for such observables has been described, [17].

The graphical considerations of Fig. 2 can be cast in quantitative terms by recognizing
that every point in the allowed region is determined as the solution of an extremum
problem. Assume we vary the energy but keep all the other (A,)’s constant. For each
energy we determine the maximal entropy. The locus of E-S pairs determined in this
fashion is shown as a broken line in Fig. 2. (The solid line is, of course, a particular
example of a broken line.) Now, let one or more constraints be dropped and the
procedure repeated. This generates another broken line which is everywhere exterior
to the previous broken line, (imagine Fig. 2 in the entropy picture). The solid line is
exterior to all the broken lines.

Let P;(n) be the distribution of maximal entropy subject to the value E; of the
energy and to additional constraints. The distribution P;(n) (cp. Fig. 2) differs from
P,(n) in that its energy is lower and some among the constraints on P;(n) are no
longer operative for P;(n). However, by construction, all of the constraints on P;(n)
are also valid for P;(n). In other words in going from i to j we have only removed?
(but have not added) constraints.

As a distribution of maximal entropy P;(n) is necessarily of the functional form

P,(n) = g, exp[— E()/RT — = N A,(n)]/Q;, (12)
r=2

These are observables which depend explicitly on time but whose average values are time-inde-
pendent.

It is important to note that the quantitative argument (eq. (13)) below requires that those
constraints which remain do not chauge their value,
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where only the constraints on the state j are present explicitly in the exponent in
(12). Consider now the following transformations of the entropy deficiency [6, 12],
DS[P; IP;1, where (12) is used in the final stage®

DS[P;IP;] =R z Pi(n) &n[P;(n)/P;j(n)]
=R >§ Pi(n) &n[Pi(n)/g, ]
—R E} P;(n) &n[P;(n)/g, ]
—R % [Pi(n) — P;(n)] &n[P;(n)/g,]
= S;[n] — S;[n]
+ R [P(m) = B [FE) + 2 N AL — Q]
=Si[n]— S;[n] — RB’ E E(n) [Pj(n) — P;(n)]
= AS — AE/T! . (13)

Only those constraints on P;(n) whose values for P;(n) and P;(n) are different appear
in the final answer. Of course, this result follows from our initial stipulation that
apart from the energy and the entropy, all other constraints on P;(n) are equally
valid for P;(n). If, in addition S;[n] = S;[n], we get

DS[P;!|P;] = — AE/T’ . (14)

Since — AE is the maximal work available (Fig. 2) it follows that TjDS[PiIPj] is the
maximal work even if the system is isolated and not coupled to a heat bath. More-
over, for the conditions in Fig. 2 we have

Ei—E¢ =(E; — Ej) + (E; —Ep)
:TfDS[Pllpf]
=TI DS[P;|P;] + T DS[P;IP;] . (15)

2. Lasing

In this section we explicitly introduce the constraints which are removed by
collisional relaxation and consider the additional work made available by their
removal. To simplify the algebra we shall assume that lasing occurs only on P-branch

° Since DS > 0, [6, 12], it follows that for a positive T, the maximal work is obtained when
AS=0.
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Fig. 3: Stages in the time evolution of the vib-rotational distribution function during the lasing
process in the limits of slow (upper pannel) and fast (lower pannel) rotational relaxation.
(I...just after threshold, II. . . during lasing, III . .. at the end of the pulse). In the limit
of fast rotational relaxation the lasing line is an isolated subsystem; lasing occurs independ-
ently on each line and terminates upon equalization of the upper and lower populations.
In the limit of fast rotational relaxation lasing occurs only on the highest gain line. The
effective rotational energy transfer enables the system to lase on high J-lines thereby
allowing a very efficient draining of the upper vibrational manifold and consequently high
laser efficiency.

lines and that only two vibrational manifolds take part, as is shown in Fig. 3. (This
is the case for example in the Cl + HBr — Br -+ HCI chemical laser [3]). Under such
conditions one can easily establish a unique correspondence between the internal
energy labels (v and J) of diatomic molecules and the possible lines in the P-branch
(v,J—1—=v—1,J). Since the lasing is between only two vibrational manifolds,
specifying the final rotational state J uniquely assigns the line. Specifying the
vibrational quantum number v uniquely assigns the upper or lower state of the
transition. Thus, while one often resolves the internal state distribution P(v, I) as

P(v,J) =PJIv) P(v), (16)

i e. a distribution of J states within a given vibrational manifold times the vibrational
distribution, here we prefer the equivalent but complementary resolution

P(u, K) = P(ulK) P(K) . (17)

In (17) we use the same convention as in Fig. 3,

P(X)=Pu, K— 1) +Pu—1,K) (18)
and
Pv, K—1/PXK) u=v
PulK) = (19)
P(v—1, K)/P(K) u=v—1l.
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P(K) is thus the sum of the population in both the upper and lower states of the
given P-branch line and hence is the quantity that is constrained in the low pressure
limit. P(K) can clearly (cp. (18)) be expressed as an average over the internal state
distribution

PK)Y=A=2ZAc(v, D PV, 1), 20)
v J

Ag(v, D=8(v—uw)6(J—K—1)
+o6(v—1—u)d(J—K). 2D
The low pressure constraint is thus that the magnitude {Ag), K =1, 2, ... is specified

to be equal to that value of P(K) which is characteristic of the nascent (i. e. strictly
unrelaxed) products of the chemical reaction.

In Section 1 we have argued that removal of a constraint enables the system to
perform work. The proof was based on the unique (and maximum) solution of the
extremum entropy problem. Here one can identify explicitly the origin of the increase
in the entropy due to the removal of the constraint. The reason is that the expression
of the constraints (A’ in the form (20) enables us to state that in the low pressure
regime (and over the time interval of interest) the distribution P(K) is unchanging.

Corresponding to the resolution (17) one has a similar form for the degeneracy
gu, K)y=g(v, ) =21+ 1
=g(ulK) gX), (22)
where g(K) =[2(J — 1)+ 1]+ [2] + 1] = 4], s0 that
QI—1D/4] u=v
gulK) =
QI+ 1)4] u=v—1. (23)

The entropy of the internal state distribution P(v, J) can thus be written as
S{v,J] =—R EJ P(v, J) &n[P(v, /(2] + 1)]
=—R KZ P(u, K) n[P(u, K)/g(u, K)]
=—R E P(K) &n[P(K)/g(K)]
—R E P(K) £ P(ulK) @n[P(ulK)/g(ulK)]

= S[K] + S[ulK] = S[u, K]. (24)

The first term in (24) is not allowed to vary in the low pressure regime. The proce-
dure of seeking the distribution P(v, J) for which S[v, J] is maximal (subject to
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energy and other, if any, constraints) is equivalent to seeking the distribution P(u, K)
for which S[u, K] is maximal (subject to the same constraints). In the low pressure
regime P(K) = const. is a constraint, for all K’s. As the pressure is increased, this
constraint is removed (by collision induced population transfer). For a given E, the
maximal value of S may be higher in the higher pressure regime since both P(ulX)
and P(K) are allowed to vary. Conversely, for a given S, the minimal value of E

will be lower (cp. Fig. 2) and more work is available.

Additional insight into the role of rotational energy transfer is provided by regarding
the entire (isolated) system as a sum of two parts: the internal degrees of freedom
of the lasing molecules and a heat bath provided by the translational motion.
Coupling between the two is provided by binary collisions and hence is absent in the
low pressure regime. In the limit of effective rotational relaxation the coupling is
strong enough to ensure that at all times the rotational states are in thermal equi-
librium at the temperature of the heat bath [18].

The coupling of the lasing system and heat bath implies that the entropy of the
lasing system may decrease during lasing provided that there is a corresponding
increase in the entropy of the bath [11, 19], Fig. 4. As is evident from the figure,
the more the entropy of the lasing system can decrease the more work is available.
A quantitative entropy balance for a chemical laser in the strong rotational coupling
regime can be obtained as follows [19]: The rotational state population is main-
tained unchanged by the collision. The only change is thus in the vibrational state
population P(v). Now in a v = v — 1 transition the relations hold:

OE = hcwéP (25)
6S = — Rn[P(v)/P(v—1)] 6P . (26)

Here 6P is the decrease in P(v) (and the increase in P(v— 1)) and w is the vibration
frequency. Consider now the P-branch transition v, J — 1 —v — 1, J. The laser light

E Lasing system E Bath

Fig. 4: Changes in the energy and entropy of the lasing system and the heat bath during lasing
in the limit of strong rotational coupling. The entropy decrease of the system associated
with lasing under partial vibrational inversion, (P(v)/P(v — 1) < 1), e. g. 68 in the transition
i—j, is compensated for by a corresponding entropy increase of the bath
88y, = 86Q/T = — 88S. The difference W =— 8E — 6Q appears as laser radiation.
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has a frequency hvy = hw — 2BIJ. The balance of the energy (6E — hvp ) appears
as heat in the bath. For this we have

&S, = (2BJ/T) 6P (27)
where T is the temperature of the heat bath (Fig. 4). The condition

8S + 6S, >0
or

2BJ/T + Ren[P(v)/P(v—1)] =0 (28)

is the familiar condition for chemical lasing [19], cp. (3).

Two additional insights are provided by (28). First note that even for P(v)/P(v— 1)
quite below unity, lasing is still possible for a sufficiently high J. This is the reason

for the gradual shift of the lasing line towards higher J’s [1 —3]. (Ultimately, lasing
terminates due to the absolute concentrations falling below the loss level [4].) Second,
the loss of chemical energy as heat is 2BJ. As the heat bath temperature increases,
lasing occurs at a higher J (cp. (28)) and hence less energy is extracted as laser light.
The efficiency improves upon cooling of the laser [1, 21].

3. Concluding remarks

The maximal work which can be obtained from a nonequilibrium molecular system
has been discussed in terms of the number and character of the constraints on the
molecular level populations. The constraints reflect the relative time scales of the
relaxation and work producing processes governing the time evolution of the system.
In chemical lasers based on vib-rotational transitions the major factor influencing
the amount of work (laser light) which can be extracted from the system is the ratio
between the rates of rotational relaxation and stimulated emission. When this ratio
is large a constraint on the molecular distribution function is removed and the laser
operates more efficiently.

It is important to note that all the considerations of this paper refer to the maximal
and not the actual work obtained from nonequilibrium systems. The latter depends
not only on the constraints but also on the rates of the loss processes which compete
with the work producing mechanism. Thus, in chemical lasers vibrational relaxation
and cavity losses compete with the stimulated emission and lead to irreversible
entropy and heat production. However, time-dependent kinetic and thermodynamic
analyses [20, 21] indicate that the major factors influencing the laser efficiency are
the constraints implied by the kinetic scheme. Finally, it should be noted that the
classification of rate processes as useful (e. g. rotational relaxation) and useless or
dissipative (e. g. vibrational relaxation) depends on the form of thermodynamic work
generated by the system. For example, while rotational relaxation enhances the
stimulated emission in lasers operating on vibrational transitions it is, clearly, a
process which should be avoided in lasers operating on pure rotational transitions.
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