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The thermodynamic and kinetic characteristics of vibrational relaxation of
diatomic molecules are studied using HF gas as a model system. The
non-linear master equation governing the relaxation is solved numerically
using a comprehensive set of exponential gap rate constants. The results
indicate a two-stage relaxation mechanism. A very fast V-V dominated
stage leading to an intermediate quasi-equilibrium distribution which
depends only on the initial mean number of vibrational quanta. During this
stage the vibrational distribution can be described as a superposition of the
initial and intermediate distributions. A second, very slow, V-T' dominated
stage ultimately brings the system to complete equilibrium with the heat
bath. The relaxation is characterized microscopically by the time evolution
of the vibrational distribution and macroscopically by the evolution of the
moments. The bridge between the two levels of analysis is provided by the
maximal entropy procedure. It is shown that the entropy deficiency is the
only convex function which decays monotonically to equilibrium irrespective
of the order of the relaxation mechanism. Using the maximal entropy form
of the distribution it is shown that two moments, i.e. two macroscopic ob-
servables, suffice to describe the distribution during the first stage while only
a single moment is required to describe the final approach to equilibrium.
During the intermediate stage more than two moments may be required.

1. INTRODUCTION

A relaxation process is characterized at the microscopic level by the time
evolution of the population distribution. For a fairly wide class of problems
this evolution is governed by linear master equations and in a number of special
cases, e.g. harmonic oscillators coupled to a heat bath, it is even possible to obtain
closed analytical solutions [1]. More generally though, exact solutions are not
possible and one must resort to approximate schemes or numerical methods.

Recently the information theoretic characterization of (Markovian) relaxation
processes has been discussed [2] and its use as a practical means of analysing
such processes (when governed by a linear master equation) has been de-
monstrated [3]. The central idea is to use macroscopic properties of the system,
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i.e. bulk averages, provided they correspond to independent (‘informative’)
observables, as constraints in a maximal entropy procedure to determine the
relaxing population distribution. There are good reasons to justify the use
of this procedure. For example, of the many convex functions that decay
monotonically with the approach to equilibrium, and hence could be used to
characterize the relaxation process, it is only the ‘ entropy deficiency ’ (its rate
of decay is called the rate of entropy production) that satisfies essential ‘ addi-
tivity > or ‘ grouping ’ conditions [4, 5]. Further, it may be shown that, of all
possible distributions consistent with the observed data, the maximal entropy
distribution gives a lower bound for this rate [2]. Throughout this paper the
term entropy refers exclusively to the information theoretic entropy (see [2—41).

There are many processes, however, that are governed not by linear master
equations but by non-linear master equations. These non-linear processes are
of particular significance, for example, in molecular lasers. Here, fast vibra-
tional-vibrational (V-V) transfer processes can, due to anharmonicity, cause
rapid pumping up to inverted quasi-equilibrium distributions before the slower
vibrational-translational (V-T) processes take over [6, 7]. Unfortunately,
non-linear master equations are considerably less amenable to analytic investiga-
tion than their linear counterparts and can normally only be solved by approxi-
mation or numerical techniques. Obviously, then, alternative methods need to
be investigated and, in view of its success for linear processes, the maximal
entropy procedure is a likely candidate. Once again it is important to de-
monstrate the validity of such a procedure. In the next section we show that
for non-linear master equations (unlike linear ones) the only convex function
that has a definite rate of decay is the entropy deficiency. This result de-
monstrates that the entropy is a suitable, if not the only quantity with which to
characterize the relaxation process. (Since the definite rate of entropy produc-
tion can be interpreted as the generalized second law of thermodynamics, it
seems eminently suitable to characterize the process with a quantity that satisfies
this condition!) :

In § 3 we give a detailed examination, with numerical examples, of the relaxa-
tion of a (dilute) gas of HF molecules. First we solve the relevant (non-linear)
master equation numerically using a comprehensive set of exponential-gap
[8, 9] state-to-state rate constants. These results illustrate general features of
the process, e.g. effect of initial distribution, fast pumping to a quasi-equilibrium
distribution and subsequent relaxation etc., as well as the time dependence of
the moments (bulk observables). In §4 we then go on to show how entropy
provides a convenient characterization of the process and that the maximal en-
tropy distribution, determined with only a small number of constraints, accu-
rately reproduces (albeit phenomenologically at this stage) the evolving popula-
tion distribution.

2. ENTROPY AND MACROSCOPIC DISEQUILIBRIUM

A linear master equation [1]
dP(n, t)[dt= Y A(n, m)P(m, t)

specifies the time evolution of the population P(n, t) in state n at time ¢. For
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convenience in later manipulations we rewrite it as a discrete equation over a
short time interval Af,

P(n, t+ At)= Y I(n|m)P(m, t). (2.1)
The II(n|m) give the probability that a system in state m will be found after At

in state n. For At sufficiently small [1] H(n|m)=3, , + A(n, m)At and, in
order to conserve probability

Y (n|m)=1. (2.2)
The stationary distribution P%#) is unchanged by the passage of time, i.e.
P(n)= Y I(n|m)P%m). (2.3)

There are many functions of the form

-y 2]

which, for distributions governed by a linear master equation, satisfy —dE/dt >0
provided only that the function ¢=¢(x) is convex (i.e. 0% ¢/0x2>0). This
result is obtained in the form of the inequality [10]

s o [352)- g 25552)

by using the property that the mean of a convex function is greater than or equal
to the function of the mean, i.e.

($(*)av > H({XDav ), (2.6)

where the averaging is over any set of (normalized) probabilities. If the convex
function is taken to be the entropy, ie. ¢(x)=xInx, then (2.4) defines the
entropy deficiency

AS= ¥ Pn) };f(’f(’nt)) In [1;(;’(7:))] = 3 P(n, 1) In [Z;(f(’nt))} 2.7)

(2.5)

and its rate of change, the rate of entropy production, has a definite sign
—dAS|dt>0. However, purely from this point of view, as mentioned in the
introduction, there is nothing to distinguish our choice of the entropy as a means
of characterizing the approach to equilibrium, from any other convex function.
It is distinguished, though, by its additivity properties which, as we shall see,
are of particular significance when we examine the evolution of functions of the
form (2.4) for processes governed by non-linear master equations.
We write the stochastic equation for non-linear processes in the form
P(r,t+At)y= Y I(rs|mn)P(m, t)P(n, t), (2.8)

s, mn

where the transition probabilities satisfy the conservation condition

; (rs|mn)=1. (2.9)

M.P. 1x
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The stationary distributions are defined in the same way as in equation (2.3), 1.e.

Pry= Y T(rs|mn)Po(m)P(n). (2.10)

s, m,n

Our aim is to see which functions of the form (2.4) still have a definite rate of
decay. For this purpose it is convenient to reduce equation (2.8) by summing
over one less index. This then gives a non-linear equation of the form

P(r, t+ At)P(s, t+ At)y= Y. Il(rs|mn)P(m, t)P(n, t). (2.11)

m, n

Notice that we write a product of distributions on both sides of the equation ;
this is to maintain its stochastic (or Markov) form and is consistent with its
stationary form which must be

Po(r)PYs)= Y TI(r, s|mn)PO(m)P%n). (2.12)

m, n

We consider the convex function of the form
_ P(m, t)P(n, t)

and average it over the quantities II(rs|mn)P%m)P%n)/P%r)P%s) which, as
can be seen from equation (2.12), can be regarded as a set of normalized proba-
bilities, i.e.

PO(m)P(n)

";n H(rs|mn) PPG) 1. (2.14)

Using the property of convex functions given in equation (2.6) we have

PO(m)POn) | [ P(m, )P(n, t)
X, Heslmm) —gaeypas) ‘*S[ B(m) P(n) ]

2({)[ Y (rs|mn) %t—))———gg—)—t—):l, (2.15)

m, n

which, by (2.8) becomes

3, TPyt | |

> PYr)P(s)¢ [P 4 t;é?:iig“(‘;; - At)], 2.16)

summing over r and s and using the conservation condition (2.9) we obtain

|:P(m, t)P(n, t):|
Pm)P(n)

Y, Po(m)Po(n)$

m, n

> ¥ P(r)PYs) [P r, f;;f(j;f;gz;; +At)] (2.17)

This is our basic result for a general convex function (of the form (2.4)) with
distributions governed by a non-linear equation. This result can easily be
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generalized to processes of any order (molecularity). Thus for the stochastic
equation of order s

P, t+ A= Y (ny ny, ..., nglmy, my, ..., mg)x [ P(m;, t), (2.18)
i=1

we obtain the inequality

3, frees] 117

P(m,, t+ At)

> m,z N ilill Po(m,)d [ iljl —PW] (2.19)

As it stands, our result is not very useful since it only relates products of distribu-
tions at earlier and later times. We do not obtain the simple result (2.5) that
we have for linear processes. However, in the case of the entropy (¢(x)=x In x)

we can go further. Considering for simplicity the bimolecular process, equation
(2.17) becomes

Y. P(m, t)P(n, t)In {:

mn

P(m, t)P(n, t)]

P(m) Po(n)
> ¥, Plr, t+ADP(s, t+A0) In [P . ’;ngiﬁg; + At)} (2.20)

and the unique additivity properties of the logarithmic function can now be
exploited. Noting the normalization condition ZP(m t)=1, equation (2.18)
reduces immediately to

Y, P(m, 1) In [P(O( )} Y, P, 1+ A1) In [i”;a%)—@} (2.21)

and hence we obtain the rate of entropy production

dAS
——>0. (2.22)

Thus we see that the entropy deficiency has a definite rate of decay independent
of the molecularity of the process; a result which stems from the unique
additivity properties of the entropy. Furthermore, at equilibrium AS cor-
responds to the appropriate thermodynamic potential which, in the case of a
closed system coupled to a heat bath, is the Helmholtz free energy. We add
that if one merely wished to obtain the rate of entropy production (2.22) without
considering convex functions in general, an alternative derivation is possible
starting from the master equation corresponding to (2.8). This is shown in
the Appendix.

3. VIBRATIONAL RELAXATION

We now investigate the relaxation of HF molecules in the presence of a
buffer gas (heat bath) at 300 K. The rotational and translational (R-T)
processes are assumed to be sufficiently rapid for these degrees of freedom to be

1x2
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considered in equilibrium with the heat bath. The remaining processes fall
into two main categories. These are the V-V processes by which vibrational
quanta are transferred between molecules, i.e.

HF(n) + HF(m) ~HF(n + Av) + HF(m — Av) (3.1)

and V-T processes in which vibrational quanta are lost to (or gained from) the
heat bath, i.e.

HF(n) + HF(m) ~HF(n + Av) + HF(m — Av') (3.2)

where Av s Av’. We assume that although the buffer gas (e.g. Ar) is an efficient
agent for R-T processes it is inefficient for vibrational relaxation and we there-
fore neglect V=T processes of the form HF(n)+ Ar -HF(m)+ Ar. The vibra-
tional energy levels of HF are anharmonic and taken to be Morse oscillator

levels, i.e.
E,=(n+Hhow—(n+1)?fwx, (3.3)

where for the frequency and anharmonicity we take the values w=4138-7 cm™!
and x,=0-0218 respectively [11]. Because of the anharmonicity the V-V
processes are ‘ off resonance ’ and a small amount of energy, the energy defect,
is lost (or gained) to (or from) the heat bath. Thus, unlike V-V processes
between harmonic oscillators, the mean vibrational energy is no longer a con-
served quantity ; only the mean number of quanta is conserved [6, 7]. Further-
more, due to the anharmonicity, the V-V processes that excite quanta, e.g.

2HF(n) ~HF(n— 1)+ HF(n+1),

are exothermic (this may be easily verified using equation (3.3)) and hence
thermodynamically preferred. Thus for V-V processes the trend is towards
population inversion in contrast to the V-"T' processes which favour de-excitation.
It is the competition between these two opposing trends that leads to many of
the characteristic features of the relaxation process.

3.1. Master equation and rate constants

We study the relaxation process by means of the non-linear master equation

dP‘(;;’ t): Y. {k(r, se<m, n)P(m, t)P(n. t) — k(m, n<r, s)P(r, t)P(s, t)}. (3.4)

The rate constants k(r, s«m, n) for which r+s=m+n correspond to V-V
processes whereas we define V-T processes as all those for which »+ s m+n.
We also mention that in this master equation the rate constants have been
multiplied by the total molecular density N since the populations P(r, ) are
defined as N(r, t)/N where N(r, t) is the (time dependent) density of molecules
in state 7.

In order to solve equation (3.4) we need all the state-to-state rate constants.
We use the exponential gap form [12]

k(r, s—m, n)=Ak%r, s—m, n) exp (— A|E,,+E,—E,—E/|[kT)  (3.5)

where k%(r, s<m, n) is the prior rate constant (computed on the basis that all
quantum states are equally accessible) which increases with increasing energy
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defect AE=E,,+E,—E,—E,, A is a normalization factor and A a measure of
the deviation of k from k° 'The rate constants k have an obvious temperature
dependence but it should also be remembered that 4 and &° are also temperature
dependent.

A detailed description of this type of rate constant, and a means of evaluating
(synthesizing) the parameters A and A is given elsewhere [12]. For our study
we normalize the rate constants such that %(0, 0«1, 0) has its experimental
value of 1-0x 1012 cm?® mol—1s~! at 300 K and set A equal to 0-5. Rate con-
stants computed in this way with similar values of A have been shown to compare
quite well with the available experimental results for the first few levels of HF
[13, 14]. In all calculations the total HF density was taken as N=5-35x
10-8 mol cm=3 (1 torr, 300 K).

For low quantum numbers the V-V processes have much smaller energy
defects and hence larger rate constants than the corresponding V-T processes.
However, as the quantum numbers involved become larger the V-V energy
defect increases and the V-T energy defect decreases. Eventually a crossing
point, which will be temperature dependent, is reached after which it is the V-'T
rate constants that become dominant. In figure 1 we plot series of V-V and
V-T rate constants which clearly illustrate this point.
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Figure 1. Series of V-V and V-T rate constants at 300 K. The rate constants are com-
puted according to the exponential gap formula (3.5).

In order to keep our computations down to realistic proportions we include
only the first 11 vibrational levels (=0 to 10). We retain all pairs of transitions
n+mer+s such that either the forward, k(n, m —7, s) or the reverse, k(r, s —>
n, m) rate constants are greater than or equal to k(1, 0 -0, 0) =102 cm® mol~* s™*
This still leaves us with over 300 (pairs of) rate constants including a number
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corresponding to multiple (An= +2, +3, +4) quantum transitions, of the types
(3.1) and (3.2). The role of the multiple V-V rate constants is discussed in
§ 3.2. Obviously, with a non-linear master equation, the number of rate con-
stants increases enormously with the number of levels included.

The master equation was solved by direct numerical integration using a
modified version of the 6th order Gear Hybrid, predictor-corrector, method.

3.2. Population evolution

We choose the initial distributions (which might have been formed, for
example, by a pulse of radiation) to have a specified mean number of vibrational

quanta, i.e.
{nyy= Y, nP(n, 0). (3.6)

In figures 2, 3, 4 we show the relaxation of three different distributions all with
{nyp=2. We immediately see that in a very short time (about 0-3 ps) relative
to the total relaxation time all initial distributions relax to virtually the same
intermediate distribution (figures 2 (d), 3 (d), 4 (d)) which then develops more
slowly and, quite obviously, independently of the initial distribution. The fact
that the initial distributions in figures 3 and 4 are rather unphysical only serves
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Figures 2, 3 and 4. Time evolution of the populations for different initial distributions
having the same initial mean quantum numbers <{n),=2. Times are (for all
figures) : a=000, 6=0-02, ¢=0-10, d=0-31, e=1-01, f=2-02 us. The broken
line in figure 2 (d) corresponds to a computation including only single quantum
jump V-V rate constants,
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to emphasize this point. The intermediate distribution, although not displaying
strong population inversion shows a distinct smearing out of the distribution.
The time scale for the first relaxation stage can be interpreted as follows :
the lifetime of a vibrational level due to the V-V processes can be estimated as
7~ 1/kN where k is the sum of all rate constants involving the given vibrational
quantum numbers. On the average in our calculation each level participates in
about 20 V-V processes while ky_y~ 10 cm® mol~1s™! and N=~5 x 10-8 mol
em™3, hence 7~ 10-7s,

In figure 2 (d) we have also marked the distribution that was obtained when
including only single quantum jump (Az= +1) V-V rate constants in the
master equation. To date, most computations have only included these rate
constants [15, 16, 17] and we therefore investigated the effect of the multiple
jump ones. Our general conclusion was that if only single jump rate constants
are included, although all the basic features are still demonstrated, the degree of
population inversion tended to be greater. We always included all multiple
jump V-V rate constants of significant value in our calculations.

10
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Figure 5. Intermediate quasi-equilibrium distributions observed for population evolution
starting with different {n),, ¥ is the estimated time of attainment (in ps).

We also performed computations for initial distributions with mean quantum
number (n),=3 and {(n)y=1. Again the same general phenomena observed
for (n)y=2 were also apparent. We found, however, that the lower the initial
number of quanta the longer it took to attain a first common intermediate
distribution. In figure 5 we show the intermediate distributions obtained for
{(ndy=1, 2 and 3 with the approximate times of attainment. The reason why a
distribution with a larger (n), should relax more quickly may simply be due to
the fact that at higher quantum numbers more and more processes with larger
rate constants (see figure 1) come into play.

Quite clearly, then, the relaxation process can be divided into two stages ;
a very fast V-V dominated stage giving rise to a quasi-equilibrium intermediate
distribution and then a very much slower, V-T dominated relaxation process.
The only important feature of the initial distribution seems to be the (mean)
number of quanta, the precise form being apparently unimportant. The markedly
different roles of the V-V and V-T processes and their different time scales
can be illustrated quite strikingly by solving the master equation with either
only V-V rate constants or only V-T rate constants included. This is shown
in figure 6 which can be compared directly with figure 2 where all rate constants
have been included. An additional feature of interest is that, in the case of V-V
rate constants only, a population inversion or up-pumping process [6, 18] is
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Figure 6. Time evolution of the populations with initial distribution as in figure 2 (a).
Full line : V-V rate constants only. Broken line: V-T rate constants only.

starting to develop (figures 6 (e) and 6 (f)) that would in fact ultimately lead to
dissociation (see §4.2). However, it is precisely here that the V=T processes
come into play and make this exceedingly inefficient.

In view of the very fast nature of the V-V stage there is the possibility of
considerable differences in the observed initial vibrational distribution for a
given experiment carried out under different conditions, e.g. measurement of
the initial CO distribution in the highly exothermic chemical laser reaction

0+CS—>CO+S [19].

3.3. Superposition

In a number of relaxation processes where the energy defect is small com-
pared with AT it has been found that the evolving population distribution can be
represented as a linear superposition of initial and final distributions. For
example, in cases of rotational relaxation [20] (which is a knear process) the
rotational distribution was found to be well fitted by the form

P(J, t)=PYJ)+[P(J, 0)—PJ)] exp (—t/7), (3.7)

where P(J, 0) is the initial (or nascent) distribution and P°(J) the final equi-
librium distribution. A similar type of superposition was also found to give a
good fit to the observed results of the vibrational relaxation of CO [7]. How-
ever, for this non-linear process the superposition was of the form

P(n, t)=P(n, t*)+ [P(n, 0) — P(n, t*)] exp (—t/7), (3.8)

where P(n, t*) is not the final equilibrium distribution but the distribution
obtained when the V-V (but not the V-T) processes had reached equilibrium,
i.e. a quasi-equilibrium intermediate distribution of the type discussed in the
previous section.

Accordingly, we tried to fit our numerical results for the first, V-V dominated,
stage of the relaxation of HF with a superposition of the form (3.8). We chose
P(n, 0) to be of the form shown in figure 2 (a) ({n)>,=2) and hence took t*=
0-31 us (see figure 2(d)). In practice, the computation was performed by
taking a fixed value of r (which gives a measure of the relaxation time of the
V-V process) and just fitted the final distribution P(n, #*). We found that the
fitting was not very sensitive to the value of = and for a wide range of values
(771=10-0 to 20-0 us™!) we obtained good results. In figure 7 we compare the
exact, master equation results with the superposition (3.8) for r1=14-0 us1.
For the larger times the agreement is remarkably good.

Superpositions of the type described imply that the system retains a memory
of the initial distribution during the relaxation process. Our results have shown
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Figure 7. Comparison of exact population evolution (full line) with superposition model,
equation (3.8) (broken line) for the first stage of the relaxation process (time in ps).
Initial distribution as in figure 2 (¢). In figure 7 (¢) the two results are graphically
indistinguishable (times in pus).

that beyond #* the system apparently relaxes quite independently of P(#n, 0)
and hence we cannot expect the superposition to hold beyond this time. This
is not too surprising since now the relaxation is dominated by a different
mechanism, namely the (large energy defect) V=T processes.

3.4. Evolution of the moments

So far we have only discussed the behaviour of microscopic quantities (the
populations) and we now turn to the behaviour of macroscopic quantities,
namely the moments. We consider the vibrational energy moments

CE#)y= L E,' P(n, ) (3.9)
and the moments of vibrational quanta

(1) = X niP(n, 1) (3.10)

The first three of both are plotted (logarithmic ordinate for compaction) in
figure 8. A number of interesting features are apparent. In the first stage of
the process the second and third moments of both the energy and quantum
number show a rapid increase. At much longer times they all decay in roughly
the same manner. This is also true of the first moments but their early behaviour
is very different. The energy actually shows almost pure exponential decay
whereas the mean quantum number displays a different behaviour. If the first
stage was a pure V-V process then {(n(¢)> should be constant; this actually
appears to be approximately the case for the first few collisions.

In the last section we saw that the first stage of the relaxation could be fitted
by a simple superposition (3.8). Hence all moments ({M(2))) can easily be
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Figure 8. (a) Time evolution of the first three energy moments; <(Eit))>, i=1, 2, 3.
At early times the first moment {E(z)) has almost pure exponential decay (time in ps).
(b) Time evolution of the first three moments of vibrational quanta; <#(¢)),
i=1,2,3.

shown to relax in the following pure exponential manner
(M(2)p = CM(e*)) + [<M(0)> — <M(2%))] exp (—2/7), (3.11)

where (M(0)> and (M(¢*)) are the initial and quasi-equilibrium values of the
moments respectively. If M(¢*) is greater than M(0), as was found to be the
case for the second and third moments, then (M(¢)> will increase from =0 to
t=t*; otherwise it will decay. Although these general features are approxi-
mately displayed in figure 8 it is clear that the superposition cannot be the whole
story. This is especially born out by the behaviour of the first moments. The
almost pure exponential decay of (E(#))> would strongly support. the super-
position model but the different behaviour of (n(z)> could equally well contradict
it!

The behaviour of the moments, or more generally the macroscopic observ-
ables, is of central importance in obtaining the maximal entropy distributions.
This is described in the following section.

4. ENTROPY

We now turn to the use of entropy as a means of characterizing certain
features of the relaxation process described in the previous sections.

4.1. Entropy deficiency and vibrational entropy

In figure 9 we plot the entropy deficiency (2.7) as a function of time for the
relaxation processes corresponding to figure 2. As expected, AS shows a
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Figure 9. 'Time dependence of the entropy deficiency (left ordinate) and of the vibrational
entropy (right ordinate) for population evolution with initial distribution as in
figure 2 (@). 'The maximum in S corresponds to the smearing out of the population
around figure 2 (d) (time in us).

smooth monotonic decrease with the approach to equilibrium. Plots such as
this are common to the relaxation of all the initial distributions examined.
In contrast to the entropy deficiency, the entropy of the vibrational distribu-
tion S= — Y P(n, t) In P(n, t) (as opposed to the entropy of the whole system,
n

heat bath plus sub-system) does not necessarily have to display monotonic
behaviour. In figure 9 we plot S as a function of time for the population
evolution corresponding to figure 2. The sharp initial rise in S reflects the
increase in entropy as the well ordered initial distribution (figure 2 (@)) relaxes
to the smeared out intermediate distribution (figure 2 (d)). However, beyond
this point the entropy then starts to decrease as the distribution narrows down
towards the final equilibrium distribution. If one notes that the equilibrium
distribution takes the form

Po(n)=0exp (- E,/RT), (4.1)

where Q is the partition function and T the (bath) temperature, then the entropy
can be expressed in the following form :

S=— Y P(n, t)In P(n, 1),

= - n, t) In Pln )1 _ n, t)— P%n)] In P(n
— - 2P0 n| o |- BP0 =P 10 PG

- % PO(n) In PO(n),

= —AS+£T [CE(2)> — <E(0)>]+ S,, (4.2)

where S, is the entropy of the equilibrium distribution, AS the entropy deficiency
and the term 1/RT[<E(2)> — (E(o0)>] represents the amount of entropy trans-
ferred to the heat bath. 'This equation enables us to represent AS in the form

1
AS =1 AE—(S—S,). (4.3)



154 M. Tabor et al.

The second law of thermodynamics requires that AS>0 and hence we must
always have AEzkT(S—S,). If we now consider just the first stage of the
relaxation process and let S, represent the entropy of the quasi-equilibrium
distribution we can deduce the following. In certain cases of strong population
inversion we may have S> S, (as opposed to our case where S < .S;) and hence
more entropy must be transferred to the heat bath to ensure AS>0. We can
now see that this is facilitated by having a lower temperature 7. Hence we can
draw the general conclusion that the lower the bath temperature the greater the
possible population inversion.

4.2. The maximal entropy distribution

Finally we examine the maximal entropy procedure as a means of reproducing
the evolving population distribution. It has been shown that this procedure
is of a variational type and that the maximal entropy distribution will converge
monotonically to the exact one as more and more (independent) constraints are
included [2, 3]. Clearly the procedure will be most useful when one can obtain
accurate results using the least number of constraints. Hence our aim is to
find those constraints that contain the most information pertinent to the relaxa-
tion process.

The results of § 3.4 show that the behaviour of the moments (E,(¢)> and
{n(t)) reflect quite a few features of the relaxation process and particularly the
early V-V stage. Accordingly, as a first attempt to find a suitable maximal
entropy distribution we maximize the entropy S= — Y P(n, t) In P(n, t) subject

to the constraints {(E,(¢)> and {n(¢)>. This standard procedure yields
P(n, t)=0"Yexp [— A()E, — A(t)n], (4.4)

where A; and A, are time dependent Lagrange multipliers and Q the (time
dependent) partition function. The precise behaviour of A,(#) and Ay(z) will
depend on the behaviour of the corresponding moments but we do know the
asymptotic behaviour, i.e.

M(E)=UET and A(t)=0 (t->o0), (4.5)

where T is the bath temperature. The distribution (4.4) resembles that sug-

gested by Treanor et al. [6] to describe the quasi-stationary state that would be

obtained for a pure V-V relaxation process. However, in our case we are

interested in obtaining the form of the distribution function that is valid through-

out the entire relaxation process and not just the quasi-stationary distribution.
Returning to the distribution (4.4) we can rewrite it in the form

P(n, t)= 07" exp [ N(t)(E,—E,°) — A(1)E,°], (4.6)
where E,;O is the harmonic oscillator energy level,
E=n+3hw, and  Ay(t)=[A(2) + A(2)/fiw].

Since E,<E,° we see that for sufficiently large A, (depending, of course, on
the behaviour of A;) P(n, t) can display strong (in fact diverging) population
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inversion. Note that in the limit of zero anharmonicity (4.4) reduces to the
canonically invariant form [1]

P(n, t)= 07 exp [- L())E,°] ;
the multiplier Ay() has vanished since () is no longer an informative moment,
now being (trivially) linearly dependent on (E,°». Although the two-para-
meter distribution (4.4) may be adequate at short times it will break down at
large ones since it fails to take into account the de-excitation of higher vibrational
levels by the V-T processes. Clearly additional constraints are required. One
might consider trying {»#*t)> but this is not informative since it is linearly de-
pendent on <E,> and {(n) (see equation (3.3)). We can, however, use {E, *¢)>
and in figures 10 and 11 we compare the exact distribution at a number of times
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Pint)| ---plan=q" eiEnran
03
02 O\, b ",
ol BN S
00 s N

ila 1=010 I'b =03l

PO | -Plog=aleMEn-ran NaEq
3

0 2 4 6 8 5
vibrational quantum number n

Figures 10 and 11. Comparison of exact (full line) distributions with two (figure 10)
and three (figure 11) constraints maximal entropy distributions (broken line) at a
number of times (us). The third constraint is almost linearly dependent on the
previous ones (cf. [21] for the definition of linear dependence and its implications).

with the maximal entropy distributions using <{E,(t)> and (z), and <{E,(f)),
{n(t)> and (E,%(t)> as constraints. It can be seen that the three-parameter
distribution gives a good fit to the exact one for all times shown. As expected,
the two-parameter distribution, although adequate at very short times, is par-
ticularly poor at longer times. Clearly though, other combinations of con-
straints are possible. We also compared (not shown) the exact distributions
with those using (E,(#)> and (E,¥(t)> and <E,(t)), {(E,Xt)> and <{E,*t))> as
constraints. The latter distribution gives excellent results and one must con-
clude that this combination of constraints contains more information than the
other three-parameter distribution tried. This is perhaps not surprising since
the combination {E,>, <(E,%> and <{E,*)> implicitly contains information about
all vibrational moments up to {(#%) whereas {(E,>, (n) and {E,%) only includes
terms up to {(n*>. However, our results should be considered as phenomeno-
logical at this stage and we have simply shown that the evolving population
distribution can be accurately fitted with a three-parameter distribution. Our
choice of constraints has been guided by physical intuition but we cannot tell
at this stage whether there are other combinations of constraints that would be
more informative and hence give even better results. Finally, we mention that
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the numerical determination of the Lagrange multipliers was carried out by
means of a recently devised linear programming technique [21].

4.3. Constraints

The previous discussion clearly identified the procedure that is still missing
in the maximal entropy formalism. One needs to be able to identify the con-
straints directly without computing the probabilities first. For the time
evolution under the Liouville equation this procedure has already been imple-
mented [22]. It is thus possible to obtain an exact solution of the Liouville
equation via the maximal entropy formalism. Work is in progress on deriving
corresponding results for the master equation. Until such results are available,
the role of the maximal entropy formalism is either that of providing a compact
expressions for the populations or that of inducing the most likely (or most
conservative or least biased) population distribution subject to given average
values of a few constraints (which, by themselves, do not suffice to determine
uniquely the distribution). The procedure that is still missing specifies a set
of constraints whose average values, when used in the maximal entropy formalism,
determine an exact solution of the master equation.

5. CONCLUDING REMARKS

We have investigated the vibrational relaxation of diatomic molecules in a
heat bath by direct numerical integration of the master equation, using a compre-
hensive set of exponential gap state-to-state rate constants. 'The anharmonicity
of the energy levels gives rise to a number of interesting features ; principally,
that the relaxation process can be divided into two stages : first, a very fast up-
pumping stage dominated by V-V exchange collisions which leads to a type of
quasi-equilibrium intermediate distribution and secondly, a very much slower
V-T dominated stage during which the intermediate distribution relaxes towards
thermal equilibrium. This second stage appears to be quite independent of the
precise form of the initial distribution. The first stage can be fitted quite well
by a linear superposition of the initial and quasi-equilibrium distributions.
The evolution of the moments of energy and vibrational quanta reflect the
various stages of the relaxation process. We then proceeded to show how
entropy can be used to characterize the relaxation process. The entropy
deficiency displays a smooth monotonic decay with the approach to equilibrium.
On the other hand, the entropy of the relaxing subsystem need not display
monotonic decay and, indeed, varies according to the relative ordering of the
evolving population distribution. The maximal entropy distribution was used
to describe the evolving population distribution. Although a two-constraint
distribution provided an adequate fit to the V-V dominated stages of the relaxa-
tion it was found necessary to add at least a third constraint to account for later,
V-T dominated, stages of the process.

Although further numerical work would be of interest; e.g. to consider the
effect of changes of temperature and other parameters, more theoretical work is
called for. At the kinetic level it is of great practical importance to devise
models that will explain the transition from V-V dominated to V-T dominated
collisions and hence predict the degree of possible population inversion. At
the thermodynamic level it is important to devise criteria for selecting the most
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informative constraints in order to obtain the most accurate maximal entropy
distributions.

We may also point out that the procedures outlined here for computing vibra-
tional state populations evolving in time subject to V-V and V-T relaxation
may be of great utility in numerical modelling of chemical lasers [23]. In these
models, a great deal of computational effort is expended in calculating state-to-
state rate constants and in solving non-linear master equations of the type of
equation (3.4). We suggest that incorporation of explicit expressions for
d P(n)/dt would greatly reduce the time required for these modelling calculations.
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APPENDIX
It is a simple matter to show [1] the equivalence between the stochastic
equation

P(r,t+At)= Y, Il(rs|mn)P(m, t)P(n, t) (A1)

s, mn

and the non-linear master equation

dpg’ D_ S {k(r, sm, n)P(m, £)P(n, )— k(m, n<r, \P(r, }P(s, £)}. (A 2)

The state-to-state rate constants k(r, s«m, n) satisfy the condition of detailed
balance with the equilibrium distributions, i.e.

k(r, s —m, n)PYm)P%n)="Fk(m, ner, s)PYr)P%s). (A3)

Using this condition the master equation (A 2) can be rewritten in the following
form

dP(r, t) o oo [P(m, )P(n, 8)  P(r, )P(s, )
o L, Ko semmPm)P (”)[ Pom)PYn) PO )Ps) } a4

We wish to find the rate of entropy production —dAS/dt, i.e.

_Z%*E:_%;p(r,t)ln[ig(:] de” [1;(:(’;))], (A 5)

¥

which we write in the ‘ symmetrized ’ form

dAS dP(r, t) P(r, t) dP(s, t) P(s, t)
e [ E | e 5
CwdP(m, 1) [P(m, 1) dP (n, t) (n, 1)
R IR o[ i | 40

)M-\
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By using the master (A 4) we can reduce (A 6) to

dAS o mor s [Pm, )P(n, 2)  P(r, 1)P(s, 1)
g Tk L KesemmPomP (”)[ PO\ Po(n)  Po(r)PY(s) ]

o [Her]n e ]} e

and since (x—y)(In x—In y) >0 we have the desired result

dAS
———=0. A
7 (A8)
An interesting difference between this derivation and the more general one
described in § 2 is that here it is necessary to invoke the detailed balance condi-
tion (A 3).
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