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Effect of Interaggregate Forces on the Size Distribution of Micelles 
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The size distributions of given shapes of micelles, in aqueous solutions of soap molecules, are believed to be 
determined primarily by amphiphile geometry and hydrophobicity. Accordingly, direct forces between the 
aggregates have generally been neglected. In the present paper we extend the Onsager-McMillan-Mayer theory 
of dilute colloidal suspensions to allow for the exchange of molecules between aggregates. By so doing we are 
able to describe the effects of intermicelle interactions on the size distribution of aggregates. We conclude, 
from simple excluded volume considerations, that these effects depend upon the shape of micelle involved, 
e.g., they are more important for “disks” than for ‘rods“. It is also possible, with the same formalism, to treat 
the effects of interaggregate forces on the formation of orientationally ordered (nematic) phases. 

Introduction 
The effects of particle size and shape on the thermo- 

dynamic properties of colloidal solutions, particularly the 
role of hard-core (excluded volume) interactions as the 
driving force for long-range orientational ordering, were 
studied by Onsager some 30 years ago.’ His theory was 
formulated for a fixed (“frozen”) size distribution of par- 
ticles of a given shape, e.g., rods or disks. In this Letter 
we extend and apply some aspects of Onsager’s theory to 
the case where the particles are (not rigid bodies but 
rather) aggregates of many molecules; molecules, or groups 
of them, can detach from one aggregate and join another. 
The size and shape distributions of the aggregates are 
determined accordingly by a chemical-like equilibrium 
condition. Interaggregate interactions, especially a t  high 
concentrations, may affect the size distribution and play 
a role in determining the thermodynamically preferred 
shapes, This coupling between the stabilization of 
many-molecule aggregates and the interactions between 
them is our concern in this Letter. 

The above question is of particular interest for under- 
standing the thermodynamics of aqueous solutions of am- 
phiphile (”soap”) molecules.2 Due to hydrophobic in- 
teractions the amphiphile molecules assemble into aggre- 
gates of various shapes (e.g., spherical, rodlike, or disklike 
micelles). Packing constraints implied by the geometrical 
properties of the amphiphilic molecules seem to play the 
major role in determining the preferred micellar  shape^.^ 
A t  low concentrations the size distribution is mainly con- 
trolled by the overall concentration and by the binding 
forces between the molecules within the aggregates. In- 
teractions between aggregates are expected to be important 
only a t  higher concentrations, where they may affect the 
size distribution and play a role (together with other fac- 
tors, such as curvature effects) in determining the ther- 
modynamically preferred shape. Such interactions are 
particularly important near the isotropic-nematic phase 
transition, where orientational ordering of anisotropic 
micelles is observed over a limited range of c~ncentration.~ 

Interaggregate interactions have not been considered 
previously in models for the self-assembly of amphiphile 
molecules. The discussion below, based largely on the 
theories of Onsager’ and McMillan-Mayer,6 is intended 
as a first step in this direction. As such, we shall keep it 
as simple as possible. In particular we shall limit it to the 
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leading (“second virial”) correction to dilute solution 
theory. Also, following Onsager we shall only treat hard- 
core (excluded volume) interactions. Furthermore, we shall 
consider only isotropic (as opposed to orientationally or- 
dered) solutions. Finally, we shall discuss the effects of 
interactions on the size distribution, but not on the relative 
stability of different shapes. 

The Chemical Potential and Size Distribution 
Consider an aqueous solution of N amphiphile molecules 

at volume V and temperature T. The molecules assemble 
into aggregates of different sizes. We assume that all 
aggregates have the same shape, e.g., rods or plates. Let 
n, denote the number of aggregates made up from s 
molecules (“s aggregate”). Then 

(1) 

where N ,  = sn, is the number of molecules incorporated 
into s aggregates. The system is in a state of chemical 
equilibrium with respect to the passage of molecules be- 
tween aggregates. Thus, if A, denotes an s aggregate, all 
chemical reactions of the form 

N = Csn, = C N ,  
S t l  stl 

SA, --t rA, (2) 
are in equilibrium. (Note that, via linear combination, this 
set includes processes like A, A,, + A’, etc.) Therefore, 
the chemical potential per molecule, jis = pJs, must be the 
same in all aggregates, Le., ji, must be independent of s: 

E ,  = f i r  = P’ (3) 

The chemical potential is given by 

(4) 
where ps = n,/ V is the number density of s aggregates. The 
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the particles. We consider these contributions for two 
special but common cases, rodlike and disklike micelles. 

Rodlike Micelles. Model calculations3 suggest that 
rodlike micelles are spherocylinders (cylinders capped by 
hemispheres at both ends) whose diameter, d ,  is somewhat 
larger than twice the length of the constituent amphiphile 
molecules. Even at low and moderate concentrations these 
micelles are polydisperse in size with (1,) >> d;  1, denotes 
the length of the cylindrical part of an s aggregate. As first 
shown by Onsager’ for two spherocylinders of the same 
diameter d and cylindrical parts of lengths 1, and 1, 

-&(s,r) = (47r/3)d3 + rd2(1, + 1,) + (n/2)dl, lr  
= (a/2)dl,lr (l,,l, >> d )  (8) 

The last equality in (8) is valid only for a system con- 
taining predominantly long rods, (1,) >> d .  In this case 
most of the molecules comprising an s aggregate lie in the 
cylindrical part, so that rdl ,  a,+ where a. is the average 
area per head group in the aggregate. Thus 1, 0: s. But, 
according to (6) and the last line of (8), xs is independent 
of s if 1, 0: s. Hence +,, N 1 and excluded volume inter- 
actions are expected to have very little effect (via the 
neglected terms in (8)) on the size distribution of a poly- 
disperse system of long rods. 

More explicitly, as far as excluded volume effects are 
concerned, the free energy corresponding to n, rodlike 
aggregates of length 1, (>> d )  is the same as that of a 
system containing 2n, aggregates of length lJ2. This is 
because for 1, >> d ,  the excluded volume per s aggregate 
is proportional to I ,  (0: s )  while the overall contribution 
to the free energy should be multiplied by the number of 
s aggregates (0: l/s). This argument can be generalized 
to arbitrary variations in the size distribution. 

Disklike Micelles. Packing considerations suggest that 
disklike micelles have the shape of a very flat cylinder with 
a hemicylindrical rim surrounding its edges.3 The flat part 
of the disk is a bilayer of amphiphile molecules, so that 
its width, h, is again about twice the molecular length. We 
consider a polydisperse mixture of large disklike micelles, 
i.e., ( d , )  >> h, where d, is the diameter of an s-disklike 
aggregate. Then the major contribution to &(s,r) is due 
to the interaction between the flat parts of the disk. For 
two particles with d,, d ,  >> h we have’ 

-&(s,r) N ( ~ / 4 ) ~ d , d , ( d ,  + d,) = K(sr’iz + rs1/2) (9) 

where the second line follows from the fact that d, a s ’ / ~ .  
More precisely ~ ( d , / 2 ) ~  = a0(s/2); thus d ,  = (2a0/r)1/2s1/2 
and the proportionality constant in (9) is K = (~/32)’/~a:/~. 

(10) 
where a and b are constants independent of s, with b = 
kTK. Using (10) in (5) we find that the activity quotient 
+,, is given by 

Substituting (9) into (6) and using (1) we obtain 
xs = a + b(N/V)/s1i2 

+,, = eXp[K(N/V)(Sr1/2 - r ~ ’ / ~ ) ]  (11) 

From this result it follows directly then that +sr > 1 for 
s > r. That is, excluded volume effects favor the formation 
of larger disklike aggregates. Furthermore, these effects 
can be significant, i.e., +sr >> 1. 

As an example, consider +,p/2 corresponding to A, + 
2A,/z. From (11) we have that +,+j2 = exp[~(N/V)(a,+)~/~]  
where c = (~ /32) ’ /~(1 /d2  - 1/2) S 1. But the t~tal volume 
fraction of amphiphile molecules is y - N(a&/2)/V, 
where h (about twice the molecular length) is the width 
of each disk. Thus +,c12 = e x p [ c ’ y ( ~ ~ ) ~ / ~ / a & ]  with c’ - 
1. But ( q , ~ ) l / ~ / h  >> 1 since s >> 1 and ( ~ g ) l / ~ / h  >> 1. 
Hence, even at relatively small total amphiphile concen- 

standard chemical potential p: depends on the properties 
of an isolated s aggregate in the ~ o l v e n t . ~ - ~  The second 
term involves the usual “entropy of mixing”, and the last 
term accounts for interaggregate interactions. = (kT/s) 
In ys where y, is the activity coefficient of an s aggregate. 
(As p = Cp, -. 0, y, - 1 and - 0.) Combining ( 3 )  and 
(4)  we obtain the density quotient corresponding to (2): 

E KsrVsr 
(5) 

Here Ks,O is the equilibrium constant of (2) for highly dilute 
solutions. The quotient of activity coefficients, I),, = 
(y$/ (y,)‘, measures the effects of interaggregate interac- 
tions. +,, > 1 for s > r means that the interactions favor 
the formation of larger aggregates. (Note that the size 
distribution, defined either as n,/Cn, or as N,/CN, ,  is 
determined by (5) and (l).) 

The leading term in the expansion of xs = (kT / s )  In ys 
as a power series in the aggregate densities is given by 

xs = -(kT/S)CPl(s,r)p, (6) 
r 

where &(s,r) is the cluster integral’s5 

Here fr, is the Mayer function, and w, is the potential of 
mean force acting between an r and an s aggregate in the 
solution. The integrations are over the translational and 
orientational coordinates of the aggregates. From (5) and 
(6) we note that if &(s,r) 0: s then +sr = 1 and interag- 
gregate interactions will have no effect on the size dis- 
tribution. 

As mentioned above we shall only consider hard-core 
(hc) interactions. Thus w, = w,? where w,? = 0 for 
configurations where the two aggregates do not touch each 
other and w,? = 03 when they overlap. Correspondingly 
f,, = 0 and -1 for the nonoverlapping and overlapping 
configurations, respectively. Consequently &(s,r) < 0 and 
X ,  > 0. The precise value of the integral in (7) depends 
on the size and shape of the particles; -&(s,r) is the 
(orientational) average of the volume excluded to the s 
aggregate by the r aggregate (or vice versa). (In this paper 
we shall consider only isotropic systems where all orien- 
tations are equally likely.) 

Excluded Volume Effects 
The amphiphile molecules in the aggregates are arranged 

such that their polar (or ionic) headgroups face the aqueous 
solution while their alkyl chains form a liquidlike hydro- 
carbon phase in the interior of the aggregates. Packing 
considerations then imply that there is some large, m >> 
1, lower limit on the number of molecules per aggregah2p3 
This corresponds to (p: - pm0)/kT >> 1 for s < m-see 
eq 5 for K,:. I t  can be argued further that for s > m it 
is reasonable to write p> = pmo + a/@ where p (-1) de- 
pends on the shape of the aggregates. The size distribution 
then depends on a, p ,  and the overall concentration of 
amphiphiles, N /  V. At  low concentration the N /  V de- 
pendence enters through the translational entropy terms 
(kT In p,)  in p,, cf. (4). At higher concentrations the in- 
teraction term in (4) ,  xs, introduces an additional density 
dependence. With hard-core repulsions as the only in- 
teractions, % can be interpreted as a translational entropy 
contribution resulting from the finite volume occupied by 
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tration (y << l), +s+-12 may be significant. 
An analysis of the type presented above can be easily 

applied to the case of spherical micelles. However, this 
case is of less interest since geometric packing considera- 
tions require that the size distribution is nearly mono- 
disperse, i.e., even small variations in the number of 
molecules per micelle imply a change of shape. 

Discussion and Summary 
The micellar aggregates formed in soap solutions usually 

have well-defined shapes due to the relatively strong 
binding between the molecules comprising them. These 
clusterings are accounted for by the p: term in the chem- 
ical potential, cf. (4) and (5). Interaggregate interactions 
represent perturbations whose effects on the self-assembly 
mechanism depends on the relative magnitudes of % and 
p:. (Note the analogy to the problem of interacting 
“physical clusters” in classical nucleation In 
particular the effects on the size distribution of aggregates 
of a given shape depend on the relative magnitudes of the 
s dependent contributions to and ji:. is often of the 
form p: = pmo + akT/sP where p depends on the shape;3 
e.g., for rods p = 1 while for disklike micelles p = 1/2. The 
parameter a measures (in units of k T )  the difference be- 
tween the average binding energies of molecules in the 
hemispherical caps and cylindrical parts, respectively, of 
a spherocylindrical aggregate. Based on model calculations 
using (4) without the xs term, and comparisons to some 
available experimental data, it has been concluded3 that 
a is typically -10. If this is indeed the case then inter- 
aggregate interactions are expected to be of significance 
in determining the size distribution only a t  high concen- 
trations. 

More explicitly, recall from eq 10 that for disks the s 
dependent part of is b(N/  V)/s’I2, or a2/2(N/V)kT/s ‘ /2  
= [ 2 ( ~ ~ ’ / ~ / h ) y ] k T / s ’ / ~ .  This is to be compared with the 
s dependent part of 80: [ a ] k T / ~ ’ / ~ .  Since y 1 for all 
concentrations, and 2u:I2/h 5 1, [ 2 ( ~ : / ~ / h ) y ]  will be small 
compared to a if needed a is as large as 10. It follows from 
eq 5, where Po and x contribute additively to In (p$/ (p$,  
that interaction effects will make only small corrections 
to the size distribution. This is not inconsistent with the 
possibility discussed earlier that +8r >> 1. It simply means 
that the “equilibrium constant” K,:, see eq 5, is still larger 
than tar, i.e., Ks: >> +8r >> 1. 

Even if a > 1 and interaggregate interactions have little 
effect on the size distribution, they may still play a decisive 
role in discriminating between different shapes. Suppose, 
for example, that two micellar shapes have nearly (but not 
exactly) the same p> values. Since xs is concentration 
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dependent the micellar shape which was less stable at the 
lower concentration can have a lower chemical potential 
as the concentration ( N /  V) is increased. In this connection 
it should be mentioned that relatively secondary effects, 
e.g., those associated with the different curvatures of 
different shapes, have been argued to be important in 
determining the thermodynamically most stable shape.3d 

At  high enough concentrations, interaggregate interac- 
tions become the driving force for the transition from an 
isotropic to an ordered solution of micelles. A variety of 
such order-disorder transitions has been observed in 
aqueous surfactant systems. Depending upon the precise 
conditions of concentration and temperature, lyotropic 
nematic phases are found4 which are uniaxial with positive 
or negative character, or biaxial (many lamellar and other 
kinds of positionally ordered phases are also seen). To 
study the properties of these systems one must generalize 
the chemical potential jis to allow explicitly for an aniso- 
tropic distribution of aggregate orientations. Also, the 
Onsager-McMillan-Mayer virial expansion must be 
abandoned in favor of a representation which involves 
summing the density to all orders (see, for example, the 
y expansion proposed in earlier work’ on the statistical 
thermodynamics of neat liquid crystals). Note that in the 
case of nematic ordering our primary concern is no longer 
with the effects of intermicelle interactions on the size 
distribution, as reflected by the s dependent part of %, but 
rather with the total (s dependent and independent) 
contribution of xS. Finally, it is interesting to extend the 
above considerations to include the effects of different 
shapes coexisting in a single soap solution and the role of 
interaggregate forces on their relative stability. For ex- 
ample, in the case of coexisting “rods” and “plates”, these 
forces probably account for the biaxial properties observed 
in potassium laurate systems.4b In thermotropic (neat 
liquid) samples of rod-plate mixtures, biaxiality can be 
explained8 by invoking interactions between the prolate 
and oblate axially symmetric particles. In the lyotropic 
soap solutions, on the other hand, the interacting aniso- 
tropic particles do not maintain their integrity. Instead, 
as described above, they change their size (and shape) with 
concentration and temperature. Also there is often present 
more than one amphiphilic species (e.g., decanol is added 
to potassium laurate4), 90 that real chemical mixture effects 
must be treated. These phenomena are presently under 
study. 
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