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When a semiflexible chain molecule is subjected to an anistropic solvent, e.g., leads to a partial elongation and
alignment of the molecule. The ordering of the CC bonds as a funciton of position along the chain was treated
in an earlier communication by solving a lattice version of the rotational isomer state model in the presence of
an external field. In the present paper, we extend this approach to the explicit calculation of solvent-induced
size and anisotropy effects. Specifically, we determine the increase in (Z2>!? as a function of chain
conformation (i.e., gauche vs trans) energy ¢ and of monomer—solvent coupling strength f. Here <Z2>'? is the
root-mean-square value of the Z component of the end-to-end vector for an N-bond molecule (the space-fixed
Z axis being taken to lie along the nematic direction). The elongation of the molecule is described in terms of
the deformation of a sphere with radius R, = (3¢Z3)_)"'? into an ellipsoid of revolution with eccentricity

determined by (Z >/, ..

I. INTRODUCTION

Estimation of the size of a semiflexible chain molecule
constitutes a classic problem in polymer physics. A
quantitative measure of the size is most commonly taken
to be {r%)'/2, the rms end-to-end distance of the N-
monomer chain, Long-range excluded volume effects
give rise in general! to a N3/5-dependence for {(r})!/2.

In a “theta solvent, " however, the N dependence is
somewhat weaker, characteristic of an “ideal” chain

rht/=cIN'/?, I.1)

Here I is the monomer length and C is a constant (on
the order of unity) which reflects the short-range inter-
ferences between monomers.

N>»>1,

For a “random flight” chain, e.g., where each mono-
mer orientation is perfectly uncorrelated with its neigh-
bors, C=1. For a “freely rotating” chain, where the
valence angle is fixed at 8, C= (1 —cos68/1+ cos@)'/?,
When in addition, the value of each dihedral angle ¢ is
governed by a single hindered rotation potential

c- (.1_:_0_0_5_9>“2<MM>“2 _

1+ cos#@ 1-{cos¢)

Finally, when the bond rotations become dependent on
one another, as say in the rotational isomer state (RIS)
model® described below, C must in general be computed
numerically.

In an isotropic solvent, of course, {r%)= 3(Z%)= 3(x%)
= 3(Y§,). In an orientationally ordered solvent, on the
other hand, the semiflexible chain will be distorted from
spherical symmetry. With a uniaxial liquid crystal
(e.g., nematic) host, e.g., we have

(z3)!*
s >1
B (ZN>m field ’

i.e., the molecule will be stretched along the preferred
(here Z) direction.* This is reminiscent of the bond or-

(1. 2)

¥Work supported in part by NSF Grant #CHES80-24270.

YOn Sabbatical leave from the Department of Physical Chem-
istry and the Fritz Haber Institute for Molecular Dynamics,
The Hebrew University, Jerusalem, 91904 Israel.

®)Camille and Henry Dreyfus Foundation Teacher-Scholar.

J. Chem. Phys. 78(6), Part I, 15 March 1983

0021-9606/83/064303-06$2.10

dering induced in substituent alkyl chains in neat liquid
crystals.® Similar, but more complicated, distortions
occur in nematic polymers® and in model membranes’
where hydrocarbon tails are squeezed by neighbors
whose heads are anchored to the same interface,

In a recent communication® we presented a molecular
theory of the ordering of a semiflexible chain molecule
by a liquid crystalline host. We used a simplified ver-
sion of the RIS model in the presence of an external
field to solve exactly for the individual bond order pa-
rameters as a function of position along the chain,

The monomers at the ends of the molecule were found to
be less ordered than those “inside,” in agreement with
experiment® and with intuitive expectations—each inside
bond can be aligned not only by the nematic solvent but
also by its neighbors, The “external field” (solvent)-
induced angular correlations between pairs of mono-
mers are found to persist over distances only a few
times the “spacing” 1.

In the present paper, we extend our treatment of the
RIS model in a field to the case of radial correlations.
Specifically, we compute the induced anisotropy g
=(Z% Y /(Z%)} 3} for reasonable values of “field” (mono-
mer-nematic coupling) strength £, and internal con-
formational (gauche relative to trans) energy €. By
labeling each possible monomer “state” (orientation)
in terms of a space-fixed diamond lattice direction—
rather than by a dihedral angle defined with respect to
the plane of the previous two-—we can avoid the trans-
formation matrices which are commonly used® %1 to
propagate an RIS chain conformation. The only matrix
which appears is an array of Boltzmann factors which is
the direct generalization of the familiar “transfer ma-
trix” from spin Ising problems. ! nth-nearest-neighbor
effects are treated by partitioning the chain into over-
lapping groups of » monomers, thereby allowing the total
conformational energy to be written exactly as a sum
of interactions between first-nearest-neighbor » mers.
The usual “pentane effect, ”® e. g, , is fully accounted for
in Sec. II by dividing the chain into trimer sequences.
From the singlet- and pair-trimer distribution func-
tions, in the presence of a nematic field, we can solve
directly for the size and anisotropy of the molecule; this
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is demonstrated in Sec. III and a brief discussion of the
results is given in Sec. IV.

ll. SINGLET- AND PAIR-DISTRIBUTION FUNCTIONS

To describe the semiflexible alkyl chains, we consider
the three-state RIS model in which the main-chain C-C-
C angle 8 is tetrahedral and each C~C monomer (bond)
makes a dihedral angle ¢ of 0° (“#rans”) or +120°
(+gauche) with respect to the plane of the previous two.
Accordingly, each allowed conformation corresponds
to a random walk on the diamond lattice. This is no
longer true of course, if 8 and ¢ are chosen to be
anything other than tetrahedral and +120°. But it is
useful to forsake here the chemical fine structure (e.g.,
6% Xigtrar @ #+120°) and focus instead on the qualita-
tive physics of the situation. All of the monomers in an
arbitrary conformation are constrained to lie along one
of the four space-fixed diamond lattice directions,
labeled 1, 2, 3, and 4 in Fig. 1—we choose 1 and 2 to
lie as shown in the laboratory yz plane, and 3 and 4 to
lie in the xy plane. Each possible chain conformation
is defined by specifying an ordered sequence of mono-
mer states (lattice directions) my, m,,..., my, where
m; =1, 2, 3, or 4 and N= total number of C-C bonds.

The three-state rotational isomer model commonly
includes short-range monomer—monomer interactions
which involve first-, second-, and third-nearest neigh-
bors. More explicitly, each time we add a C—C bond
which is gauche (dihedral angle of +120° with respect
to theplane of the previous two, we add ¢ (~% keal/
mol for polyethylene) to the chain conformational ener-
gy. (The energy associated with a frans bond is taken
to be zero.) These second-nearest-neighbor interactions
are trivial to handle because they lead to a total N-mono-
mer energy which is a sum of independent contributions
(¢ from +120° and 0 from 0°) from each of the bonds
i=3 -~ N. With only these effects included, we would
have

c=<1-coso>“2(1+ cos ))”2

1+cos# 1-{cos¢)

in Eq. (I.1). But this situation is significantly com-
plicated by the pentane effect,®i.e., by third-nearest-
neighbor interactions which effectively exclude the
possibility of successive gauche bonds of opposite sign.
(These local configurations involve steric hindrances
which are large compared to 27 at room temperature. )
This effect can be treated exactly by expressing the total
chain energy as a sum of nearest-neighbor interactions
between overlapping trimers.

Since there are only four lattice directions (1, 2, 3, 4),
and since no one of these monomer states can directly
repeat itself, we need “only” allow for 4x3x3= 36 tri-
mer states, More explicitly, f, =m,, my,, m;,, de-
notes the state of the ith trimer ({=1,2,...,N~2; re-
call that N is the total number of monomers) and m,
(=1,2,3, or 4) describes the state of the ith mono-
mer. An arbitrary conformation of the chain is specified
accordingly by an ordered sequence of overlapping trimer
states: ¢4, f,...,1%y.3. The total conformation energy
can then be written in the form

Ben-Shaul, Rabin, and Gelbart: Stretching of alkyl chains

FIG. 1. The dark lines sug-
gest part of a typical polyethy-
lene conformation, the dashed
lines showing the CH’s (or
CD’s). The nematic field lies
along the space-fixed Z axis.
1, 2, 3, and 4 refer to the four
diamond lattice directions along
which the CC bonds can lie; 3
and 4 lie in the space-fixed xy
plane, while 1 and 2 are in the
zy plane,

N-3

Eo(t) = Eo(tl) + ; [Eo(t“1) + I(tp tul)] s

(I1. 1)

where ¢(f) = 0 if ¢ corresponds to the trans state of the
trimer, and g,(?) = ¢ if the trimer is in the + or — gauche
state; I(¢, ) = p if the successive trimers are both
gauche and of opposite sign, and I = 0 otherwise. Since
p>¢ and ¢= kT, it is convenient to take p—~ <, That is,
Eq. (I.1) is simply a sum of trans (0) and gauche (e)
energies, with pentane effect configurations excluded.
Each time we add a monomer—say the ¢ + 3rd—we add
an energy ¢y(f,, 1) = 0 or ¢ after first checking that we do
not have ¢, t,;= tgauche, Fgauche.

Consider now a nematic environment which exerts an
aligning field on the above polymer chain. This field
is of the “P,(cos$,, ,)»” rather than the usual “Py(cos 9,,,‘), ”
type—it is the monomer’s axially symmetric polarizabil-
ity temsor, rather than its permanent dipole moment
vector, which is “grabbed” by the orientationally ordered
solvent. Accordingly, we add to Eq. (II. 1) a term

N-
V(t, N = vle, N+ ‘Zj vty 1,1) » (11.2)
where
U(tu1,f) = =f[Pylcosb,, ) + 3] (1. 2A)
and
vy(ty,f) = ~f[Py(cos 6,,)
+ Py(C0S 6,y) + Py(cos b)) + 2] . (11. 2B)

Here P,(x) = 3x% — 1 is the second Legendre polynomial
and 8, is the angle between the ith monomer (lying
along the lattice direction m,) and the nematic field
(taken to lie along the laboratory Z axis—see Fig. 1).
f= Ay, where A is the monomer-solvent coupling
strength and 7 is the nematic’s “P,” order parameter.
Finally, the term } in square brackets in Eq. (II.2A) is
introduced so that v = —f for trimer states whose third
monomer has a Z component while v= 0 otherwise.
Note that Py(cos#8,,) = 3{(=4%) for m=1, 2 (3,4). Similarly,
the term £ in Eq, (II. 2B) assures that v, = —f, - 2f, or
— 3f according to whether the first trimer contains one,
two, or three monomers in state “1” or “2.”
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From the above we have, for the chain energy in the
presence of a field,

N-3
Et,f) = et /) + Z; &ty b (. 3)
fo
where
et 1) = eolty) + vy(ty, 1) (11. 34)
and
Ql(tp t‘.l) = €0(t“1) + U(tkl) +I(t‘, t“1) . (II. 3B)

The probability of an arbitrary conformation t is then

given by (here g = 1/kT as usual)
1

P(tyf) = "Q_ exD[‘ﬁE(t’f)] ’ (H. 4A)

where @ = 3, exp[-BE(t)] is the corresponding partition

function. Defining now the trimer transfer matrix
elements

W(tu ti.l: f) = exp[-ﬁfl(tp tiob f)] (II. SA)
and the “end” -trimer weights
g(t,f) = exp[-Bes(t1, N] (I1. 5B)

it follows trivially that the joint probability (1. 4A)
can be written in the form

N-3
1 1
P(t) = 5 expl-pE®)]= 5 glty) g Wity ty) -

(I1. 4B)
The matrix W and vector g are written out in Appendix
A,

In writing Eq. (II. 3) for the total energy, we have
suppressed the explicit dependence of the internal
{trans—gauche) energies on the nature of the ordering
field. This is in keeping with our qualitative level of
description: our aim is to provide a simple, quasi-
analytical theory of the stretching of semiflexible chains
in anisotropic environments. Accordingly, the absolute
magnitudes of the relevant energies are less important
than their relative values (e.g., Be vs gf, as compared
to unity, etc.). Similarly, by asserting a directly ad-
ditive form for ¢; and ¢,—Eqs. (I.3A) and (II. 3B)—we
have oversimplified the interactions between solute and
solvent. More explicitly, the nematic order of the host
can be significantly distorted by the dissolved chains.
This coupling leads to self-consistency effects which
are of special importance for determining the structure
of nematic polymers® and bilayer membranes.” These

intriguing details are neglected in the present discussion,

as we focus on the more gross features of alkyl chain
stretching by nematic fields,

Summing the Boltzmann factor in Eq. (I.4B) over
all states of all trimers gives the partition function (%,
~u, é" 2= U) ’

38
Q= 2. gl Ww¥u,v),
u,pml
where W¥-3(x, v) denotes the u, vth element of the N-3rd
power of the matrix W. Similarly, the single-trimer
distribution is obtained by summing the joint probability
in Eq. (II. 4B) over all states of all trimers but the ith;

(I1. 4C)

for 2<{=<N -3, say, we have
38

PP) = % > W i, NWH iy, v)

R3]

(I1. 6A)

probability of finding the ith trimer in
the state (= 1-36), 2<i=N-3,

The corresponding single-monomer distribution is given
by

P =3 By

probability of finding the ith

monomer in the state a(1-4), 00 B

where the prime restricts the summation to those trimer
states in which the first monomer is in state a. Finally
the pair trimer—trimer distribution is (for 2<i<N-3
and 1<k=N-=3-1i)

36
P s)= = 20 o) Wiu, nWr, ) WH24-4s, 1)

Q u,pmi
(1. 74)
from which it follows that the corresponding monomer—-
monomey correlations are given by

ﬂ?&u(a, b) = 2' Z" 4:Lk(r’ s) ,

where the double prime restricts the summation to those
trimer states in which the first monomer is in state b.

(I1. 7B)

Similar expressions obtain for the singlet and pair
distributions involving trimers qf the end of the chain.
More explicitly we have

g
P () = Blaln) = 5 gt i: WY,y (LL8)
and (1sk<N-3),
P u(r,s) = %g(r) W7, s) ?32 WH-34(s )
= Pithanalr,s) . . 9)

The corresponding monomer distribution functions are

given by summations identical to those in Eqs. (II. 6B)

and (II. TB), with i~ 1; see Appendix B for details.

1ll. CALCULATION OF SIZE AND ANISOTROPY
Consider the quantity

N
Zy = ;21 z,(a) (1. 1B)
the Z component of the end-to-end vector.
Z,(a) = 1 cos 8,(a) (1. 2B)

is the projection (onto the space-fixed Z axis—see Fig,
1) of the ith bond vector, L(a);a=1,2,3,...,4 de-
scribes the state of the bond—1, must lie along one of
the four diamond lattice directions, as shown in Fig. 1,
Then the mean of the square of the Z component of the
end-to-end vector is given by

ZhH=123) ; 2 3 cos6(a) cos 8(B) P (a, ) ,
i [] [
(. 2)
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FIG. 2. All-irans (fully stretched, F — ») n-alkane, depicted
here for an even number (N) of C—C bonds. Z,, the Z compo-
nent of the end-to-end vector, is simply given by N(3)1/2.

where P{7(a, b), defined by Eq. (Il. 7B), is the prob-
ability of finding the ith bond (monomer) in state ¢ and
the jth in b,

Note that the bonds in states “3” and “4” make no con-
tribution to Zy —the directions 3 and 4 both lie in the
space-fixed xy plane and hence give cos 9i(3) =0
=cos@,(4). The direction cosines associated with
states 1 and 2, on the other hand, are + or —(2)!/2—
according to whether the corresponding bond vectors
point up (+) or down(-), respectively. From the topology
of the diamond lattice, it follows further that

P14, 1) = P2, 24 = 0= PiP(1%,27) (I 34)
for j~i=o0dd, and that
PiP(14,17) = P7(28, ) = 0= P{'(14, 29 (IL.3B)

for j—i=even. Here 1* refers to a bond lying along the
direction “1” and pointing “up,” and so on. Finally,
since P{™(1*) = PA™(1°) and P{™(2*) = P\™(27), we are
free to compute our statistics using only 1* and 2,

i.e., we can confine ourselves to one of the two diamond
sublattices. It is then straightforward to show that

Eq. (III.2) can be rewritten exactly as

N
(Z3)=41? ; (1)

N_N-i
41220 20 [P, 1 - P, 2], @)
where
+1, k=even
x (%) = {-1 , k=odd.

Here we have used the additional identities
P"(a,b) = ™ (@5, , Fi™(1,2) = Pi"(2,1),
and
P71, = P2, 2) .

In the following section we evaluate (Z%) for some
physically interesting choices of N (number of mono-
mers), G =exp(—e/kT) (gauche energy), and
F=exp(f/kT) (monomer~solvent coupling strength).
First, though, it is illustrative to consider a couple
of limiting situations for which these evaluations become
analytically possible: (i) G=1 and F=1. Here we have
the discrete (lattice) version of the freely rotating chain,
in zevo field. It follows that

Bm() =4

and

Ben-Shaul, Rabin, and Gelbart: Stretching of alky! chains

Pn(1,1) = Pin)(1,2) = £

for j~i>1. (For j=i+ 1, all of the above pair func~
tions vanish identically.) But then from Eq, (III. 4) we
have that
2\ _ 1

(Zg)= =3 G
consistent with the (#})!/?= CIN'/?, C=1 result quoted
in the Introduction for a field-free, freely rotating
chain. (ii) F~e, Here, in infinitely strong field,
every monomer must have its maximum z projection.
Accordingly,

P(im)(l) = %

and

= P™(2)

, forj—i=even

1
2

m) =
P, 1) {o, j—i=odd,

0, forj-i=even
m) =
P§'1(1,2) {%, j=i=odd .

It follows from Eq, (III. 4) that

1
<ZN)|F-°Q_ l2—+_l ZE
i=1 i
_4,N _8,,NN-1 1
=3ligr3l 3 2
- % 12N | (1. 5)

This result for {Z%) is consistent with the trigonometric
fact displayed in Fig. 2

(Z3)|p e = [2Zx(all trans) P = [(2)V/2IN]? .

1V. NUMERICAL RESULTS AND DISCUSSION

From Eqs. (II.4), (II.6B), and (II. 7B) for p""’(a)
and P{™), (a, ), it is clear that an evaluation of (Z,,)
follows from tabulation of the singlet- and pair-trimer
distributions PA’(r), 1=i=N~2, and P{¥}, (r,s), 1=
<=N~-2and 1=k=<N-3~-i. These latter functions are
given in turn by Eqs. (II. 6A), (II,7A), (I.8), and (II.9),
in terms of the components of the matrix W and the vec-
tor g.

In our earlier communication we presented bond
orientational order parameters for the case N=1, in
order to compare our theoretical results against the
extensive data on octane provided by Samulski’s experi-
ments? (n-CgDyy dissolved in the nematic solvent “Merck
Phase 5”). Accordingly, we have evaluated (Z%) here
for N="7. Our results are shown in TableI for G
= 0,435 (the standard choice of gauche energy) and for
various values of F. These results can be interpreted
as follows:

Consider first the case of zero field (f=0; F=1). The
end-to-end vector ry is then isotropically distributed,
with 3(Z%) = 3(X2)= 3(¥%)=(r2)=R3= CI’N. That is, the
semiflexible alkyl chain can be visualized as a sphere
with radius
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TABLE 1. N is the number of “monomers”
(C~C bonds), G =exp(—e€/kT) is the dimen-
sionless gauche energy, and F =exp(f/kT)
is the dimensionless nematic field strength.
{Z}) is the mean of the square of the Z
component of the end-to-end vector and [

~1.533 A is the C—C bond length.
N=17
G=0.435
(ZP /1 (ZBy e/ (Z%)
F=1.0 7.3 1.0
1.5 10.9 1.5
2,0 14.9 2.1
2.5 16.6 2.3
20 30.6 4.2
w0 EN2=32.7 4.5

Ry= V3 (Z:)Li= v3(1.31)1/%(1=1.53 A) 7.2} .

We now turn on the nematic field (F=1-F>1) and as-
sume that the Ry sphere is deformed, without change of
volume, into an ellipsoid of revolution with semiaxes
a and b(>q). Denote the acentricity 1 = (a?/b% by y.

For such a body, it is easy to evaluate the average of
the square of the Z componentof a point on its surface.
More explicitly, taking the center of the ellipsoid to lie
at the origin of our previously chosen space-fixed co-
ordinate system, we have that
Z2 _ ft 16 sin6 fZl'd [Z(a ]2 1 _ 2fl d x2
(2%)= , dosmé J  de g =a , Hioe
(Iv.1)
Here Z(8¢) = a’cos8/1 —y cos®8 is the Z component of
an arbitrary point on the ellipsoid surface [(x* + %)/
a’]+ (2%/b% = 1, located at the spherical polar angles
8, ¢.

Writing the integral in Eq. (IV.1) as k(y), and as-

sociating (Z%) with (Z})p, we have

(Z3)e = d*hly) . av.?2

But from the constancy of the molecular volume we can
write

Via,y) ettivaota ™ Vigg) aphere > (1v.3)
i.e.,

$7a’b=41R]
or, by using

b=a/(1-y)"?,

(Z&)pag = d° ﬁm‘ . (Iv.4)

Finally, dividing Eq. (IV.2) by Eq. (IV.4), we have

Zy) _ _1/3
%—253—0 3(1-9)"nly) .

Note that the above equation is satisfied in zero field
for y = 0, since (Z})~(Z%), and hly) ~ [X*dx=1. That
is, the chain is described by a sphere of radius Ry = a
=b. For F>1, Eq. (IV.5) must be solved numerically
to give the molecular acentricity associated with a given

(Iv.5)

semiflexibility G and nematic coupling strength F. For
F=1.5, e.g., we have (Z})/(Z%), ~1.5 and y ~0. 83(a/b
~0.41). For F=2.0, (Z1)/(Z%) ~2.1 and y ~0. 94; this
corresponds to the “stretching” of an Ry ~17.2 A spheri-
cal octane into an ¢ ~3.8, b~15,3 A ellipsoid.

The values of F considered above are of interest for
several reasons, First, in our previous communication
we showed how the singlet- and pair-monomer distribu-
tion functions could be used to calculate the individual
bond alignments. We found in particular that our theo-
retical plots of TI?D vs i compared well with experiment
for F values in the range 2-3. Here, 5§ = (Py(cos §$P)),
where 6$° describes the angle between the nematic direc-
tion and the CD bond on the ith carbon in n~CgDy4;
P,(cos6) is the second Legendre polynomial, and (. ..)
denotes a conformational average. Furthermore,
F~2-3 is consistent with an independent estimate of the
nematic coupling strength made by Marcelja in his study
of the orientational ordering of alkyl chains present as
substituents in neat liquid crystals, Finally, with
F ~2-3 we find that the lesser ellipsoidal dimension
is given by ¢ <3.8 A, i.e., the semiflexible molecule is
“squeezed” much as it would be by a cylindrical tube
whose radius is 3.8 A+ 30, ~4.6 A. Here o, ~1.6 A
is a distance of closest approach for two carbons.
r=~4.6 A is indeed the radial dimension estimated by
Samulski in his semiflexible-chain-in-a-repulsive-
tube modeling of observed bond alighment. In any case,
the quantitative details of our present calculations are
of less interest than the emergent qualifative picture of
molecular deformation in an anisotropic field.

APPENDIX A: TRANSFER MATRIX W AND
“END"” WEIGHTS ¢

Since ¢; and ¢;,; each run over the full set of 36 trimer
states (see below), the matrix W defined by Eq. (II. 5A)
is 36 x36. But only 84 out of its 1,296 elements are non-
zero. More explicitly, consider the following enumera-
tion of trimer states ¢, = mm;, ym;,, with i=(1,2,...,
N=-2), t=(1,2,...,36) and m= (1,2, 3, 4):

=121 10=212 19= 312 28 = 412
2=123 11= 213 20= 313 29 =413
3=124 12= 214 21=314 30=414
4=131 13=231 22= 321 31=421
5=132 14= 232 23= 323 32= 423
6=134 15= 234 24=324 33=424
7=141 16 = 241 25= 341 34 =431
8= 142 17= 242 26 = 342 35= 432
9= 143 18 =243 27= 343 36= 434

What are the nonzero matrix elements of the form
W(1,9)? Since 1= 121, ¢ must clearly have its first two
monomers in the states 2 and 1. Thus, ¢ must be 10
= 212, 11= 213, or 12= 214, A similar argument holds
for each of W(2, 1), W(3,4#),...,W(36,f). That is, be-
cause of overlapping of the successive trimers, the
state abc can only be followed by bcd # ¢; otherwise
€/(t;, t,,y) is infinite and the associated W, ,,,—see Eq.
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(II. 5A) —is identically zero. With 36 abc’s and only
three bed # ¢’s for each of these, there can be at most
36 x3 = 108 nonzero W(t,, t,;)’s. In addition, 24 of these
108 vanish because of the pentane effect, i.e., each
gauche t;—24 of the 36 trimer states—can only be fol-
lowed by two (rather than three) #,;. Consider,e.g.,
the gauche trimer state 2= 123, It can be followed by
14 = 232 and 15= 234 but not by 13 = 231, since t,, ¢,
=2, 13 would involve the local conformation 1231 and
hence an energy p >e¢.

Recalling the definitions F=exp(f/#T) and G = exp(~¢/
ET), it is then clear that each nonzero matrix element
W(t;, £,,1) has the form F*G*: k=0 or 1, according to
whether #,,, = m,,, my,2, my,3 15 trans or gauche; and

n=10rm,,=1or 2, and n= 0 otherwise. Hence,

w(i,10)=F w(l,11)=¢G w(1,12)=¢G
W(2,14)=F w(2,15)=¢G
w3,1M=F w(3,18)=¢G

w(4,19) = FG w(4,20)=1 W(4,21) =

P =2 PP, 1sisN-2,
rel

9
P(i’,“i)ok(l’l)=z Z Ps,tzok(r,s)’ 15i$N—3
3 =1 s21-9
{10-18] l<=k<N-2-i,

and

]
t)
m(1,1) =2, Z P
1 1 s=1,4,7,13,16,22,25,31, 4
£5,8,10,14,17,19,26,28,36 1

o7, 8) ,

This takes care of all

Pymx(1,1) = EP§2(7), r=1,4,1T,

€23 r 5,8

and

Pl 2)—ZPI(V.2(T), r=1,2,3.

tN-1,M E101928]

1See, for example, H. Yamakawa, Modern Theory of Polymer
Solutions (Harper and Row, New York, 1971}, Chap. 3.
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wi{5,23)=1 w(5,24)=G

and so on.

Similarly, g(#) has the form F¥G* where M is the
number of 1 or 2 monomers in the first trimer, and

L =1 for gauche states (L= 0 otherwise). Thus,
g(1)=F® g(2) = FG g(3)= F’G
g4 =F g(5) = F'G g(6) = FG
and so on.

APPENDIX B: SINGLET AND PAIR DISTRIBUTIONS

Equations (II.64), (II.7A), (II. 8), and (1. 9) define the
singlet- and pair-frimer distributions

PP,

and

forall 1={=N-2

P lr,s), foralllsi<N-3, 1=sksN-2-i.

The singlet- and pair-monomer distributions then fol-

low from Egs. (II. 6B) and (II. 7B). More explicitly, we
have

Yo () =Pm() ,

9
1={=N-3
r=l  $:10-12,19-21,28-30

[1-3,22-24,31-331

1=i=N-3.

D efori=1~N-3andi+k=i+1=N. There remain only

i,N(l’ 1) »
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