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Micellar Growth Due to Interaggregate Interactions 
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In a recent Letter we sketched a theory which takes into account the leading, second-virial corrections to ideal solution behavior 
in micellar suspensions. Allowing for excluded volume interactions between aggregates, we showed how the chemical potential 
of a soap molecule is modified by intermicellar packing entropy and how this can lead to enhancement of average size. In 
the present communication we generalize this idea to (arbitrarily) high concentrations and provide numerical estimates for 
the case of spherocylindrical rods. For overall soap concentrations more than two orders of magnitude above the cmc, the 
average aggregation number is shown to be significantly increased by intermicelle interactions of the excluded-volume type. 

I. Introduction 
Micellization phenomena in dilute soap solutions have attracted 

renewed interest in recent years.’ Apart from differences in detail, 
most workers agree on the nature of the microphase separation 
which occurs a t  the “critical micelle concentration” (cmc). The 
aggregates initially formed are spherical, often “growing” into rods 
and/or disks as the overall concentration of soap molecules is 
increased further. Controversy remains as to whether the “natural” 
shape is prolate,2 or ~ b l a t e , ~  or both.4 But common to all 
thermodynamic analyses is the supposition that the suspension 
of micelles behaves as an ideal s o l ~ t i o n . ~  

In a recent Letter6 we suggested the importance of taking into 
account the leading corrections to ideal solution behavior. We 
introduced there the notion of intermicellar contributions to the 
chemical potential of an aggregate and discussed the effects of 
these terms on the size distributions of large rods and disks. In 
the present paper, we provide a more quantitative study of these 
effects, applicable to arbitrary size and concentration of micelles. 
We find that, at overall concentrations more than two orders of 
magnitude higher than the cmc, average aggregation numbers are 
significantly enhanced by intermicelle forces of the excluded 
volume type: the interaction free energy (packing entropy) is 
minimized (maximized) by reorganization of the soap molecules 
into a smaller number of larger aggregates. 

To illustrate this point most simply we outline in section I1 the 
elementary ideas involved in treating the leading, second-virial 
corrections to ideal solution behavior in micellar suspensions. 
Generalization to higher concentrations and numerical estimates 
are presented in sections I11 and IV, respectively, for the case of 
rodlike aggregates interacting via excluded volume forces. We 
discuss these results in the context of our earlier phenomenological 
arguments, recent experiments, and possibilities for further the- 
oretical study. 

11. Excluded Volume Analysis: Low Concentration 
For a rodlike micelle (e.g., right-circular cylinder plus half- 

spherical caps) containing s molecules we write (in units of k T )  
1 1 PS fi,  = pao + -CY + - In - + xs 

Po 
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for the chemical potential per surfactant. The first two terms 
comprise the standard chemical potential’ contributions: Eom is 
the free energy of an amphiphile in the cylindrical part of the 
aggregate, and CY is proportional (via m )  to the difference between 
pao and the chemical potential of a molecule in the spherical caps. 
s is assumed to exceed m = 4d3 /3u l ,  the aggregation number 
of a spherical (“minimum”) micelle of radius I ;  ul is the volume 
of a single molecule. The third term in (1 )  describes the ideal 
solution “entropy of mixing”: p, = p X , ( l / s ) ,  where X, is the 
fraction of soap molecules incorporated into s aggregates and p 
(po)  is the total (water) number density ( p  5 po for dilute solu- 
tions). Finally, xs includes the corrections to ideal solution be- 
havior arising from intermicelle forces. 

In the second-virial approximation, and allowing only for steric 
(“hard-core”) interactions, we have6 

where v,, is the pair-excluded volume associated with s and r 
aggregates. (The “B2” superscript refers to the second-virial level 
of approximation.) In Appendix A we provide explicit expressions 
for pao and a in terms of surfactant-water interfacial tension 7,  
the optimum area per head group ao, the single molecule volume 
u l ,  and the cylinder radius I .  We also show there that 

( 3 )  

with both xoB2 and x*B2 on the order of the volume fraction pqX, 
X = CJ, being the total concentration of soap. From the re- 

~~ 
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quirement of chemical equilibrium 
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(4) 
PI 

Po 
P S  = pI = p l o  + In - + x1 s 2 m 

( p I  = pxl ,  where x I  is the monomer mole fraction), it follows that 
the micellar size distribution is given by 

Gelbart et al. 

Here 

A* exp(p10 - pmo) exp xOB2 (5a) 

a* I + X*B2 (5b) 

and 

Note that eq 5 has the same form as the “usual”, ideal-solution, 
size distribution for rcdlike aggregated A* -A exp(p10 - pmo) 
and a* - a as the amphiphilic volume fraction pvlX becomes 
negligible compared to unity. (Recall that both xOBl and x*B2 are 
O(pvlX) whereas both plo - pmo and a are O( lo).) It is instructive, 
in fact, to return to eq 1 and rewrite it in the ideal solution form 

1 1 P s  p, = pmo* + -a* + - In - 
S s Po 

where pmO* = pmo + xlB2 - xOB2 (and a* = a + x*, as before). 
As is well-appreciated, the “energy” term ( l / s ) a *  drives the 
micelles to be as big as possible: a is proportional (via m )  to pa: 
- pmo, and hence increasing s &e., “growing”) lowers p, by de- 
creasing the relative number of amphiphiles in the “high-energy” 
caps. This growth would continue to lower the micellar free energy 
without bound were it not for the price paid in the entropy-of- 
mixing term. 

More explicitly, suppose for the moment that we neglect all 
of the polydispersity details implied by the size distribution (5), 
and consider instead a monodisperse suspension of N aggregates. 
Then, assuming a negligible monomer concentration, we can put 
X,  N X6s,N and write (neglecting In p / p o )  

for the free energy of the micellar solution per amphiphile. ( N  
can be thought of as an average aggregation number 3.) Note 
that In ( N / x )  > 0 since N >> 1 and X << 1; furthermore the 
coefficient In ( N / X )  increases with N .  Thus, eq 6 tells us that 
pN first decreases with N ,  and then increases for N > = X 
exp(a* + 1 ) .  That is, the solution free energy is minimized for 
an average aggregation number (W) which increases with both 
X and a*, The fact that In ( N / X )  decreases with X means that 
the “entropy-of-mixing” term becomes less important at higher 
concentrations. Furthermore, its minus sign causes it to work 
against the (positive) “growth” coeffcient a*. That is, the mixing 
entropy arrests the rod growth induced by the cap/cyl chemical 
potential difference (a), with this “braking” effect weakening at  
higher concentrations. 

Of course, we should take into account all of the polydispersity 
effects, as described below. The idea of the crude analysis offered 
above is just to expose the way in which micellar size increases 
with concentration even in the absence of interactions. Recall 
that eq 1 and the approximate eq 6 retain their same form in the 
pu,X - 0 limit; we simply need to drop the *’s from all quantities. 
A more careful analysis, i.e., dealing directly with the asymptotics 
of eq 1, leads to 3 - ( X  exp a*)lJ2 rather than the N+ - X exp 
a* from above. In any case, we have average aggregation numbers 
increasing with X and a*, and a* increasing further with X due 
to interaction effects. 

The fact that micellar growth is enhanced by interactions can 
be appreciated via rather simple “scaling” arguments. Again, to 

simplify things, we consider a monodisperse suspension of N 
aggregates. Let there be n N  of them in a volume large enough 
so that the second-virial approximation is adequate. Then the 
total excluded volume is given by 

(7) 

where uNb’ is the volume excluded to one N aggregate by another. 
For spherocyclinders with N >> m8 

U N ~  N !mul[ 3 (E)’  + 6( x)] (7a) 

Thus uN,N increases significantly slower than p, even for N l m  
as large as 100 (i.e. for length-to-width ratios as large as 65). That 
is, for reasonable values of N the linear (-N) term in uNb’ remains 
important; since (nN)’  goes exactly as 1 /p, the total excluded 
volume I/cx decreases with N as 1 / N .  Accordingly, the interaction 
free energy is lowered upon reorganization of the fixed amount 
(X )  of soap into larger aggregates. 

For N / m  - a, of course, uNb’ - fl and Px becomes inde- 
pendent of rod size. This was the limit considered in our earlier 
Letter: in which we concluded that-within the second-virial 
approximation-the growth of large rods is not affected by their 
excluded volume interactions. Keeping only the term in uN8, 
then, leads to ~ * ~ 2  - 0 and hence to a* - a, i.e., no micellar 
growth beyond that due to the “internal” (intraaggregate) “energy” 
(pNo) term. Note that even in the large rod ( N / m  - m) limit, 
x o B 2  does not vanish identically; instead, xOB2 - pulX. But it is 
easy to show from eq 5 for the size distribution { p s / p o J  that the 
weight average aggregation number jw = C s 2 p s / x s p s  depends 
on X and a* only-not on A*. Similarly, as discussed earlier,6 
the “equilibrium constant” 

- (XS / s) 

,, ( x , / r ) S  
K E-- 

exp[-a*(r - s)] - exp[-a(r - s)] = K,I~+ 

also becomes independent of A*-and hence of interaction 
effects-in the large rod limit. 

For large disks, on the other hand, K,, remains dependent on 
overall concentration even as s,r - a. In the language of the 
monodisperse case treated above, this is because uN8 goes as N3/* 
for large disks-rather than like p, as for rods. Recall that* u$p 
= O(D3),  where D is the disk diameter, and that D2 - area - 
N .  This is to be compared with u t  = O(Lz) ,  where L is the rod 
length, and L - N .  

Thus the excluded volume correction xN goes as N3I2/M = 
l / N 1 / *  for disks and as N / f l  = 1/N for rods (see the O(N) term 
in (7a)). Just as in the 1/N112 and 1 / N  contributions to the 
intramicellar pN0’s2, these power laws follow from the two- vs. 
one-dimensional growths associated with disks and rods. 

With polydispersity included, these scaling arguments are only 
a little less straightforward, as shown earlier.6 In any event, as 
suggested above and demonstrated explicitly below, the effects 
of interactions on the size of small micelles in concentrated so- 
lutions have little to do with the N-asymptotic behavior cited here 
for dilute systems. 

111. Packing Entropy Effects at Higher Concentration 
The preceding discussion, based on eq 1 with only second-virial 

corrections included in xs, is of course only valid at low concen- 
trations. More explicitly, we have shown that the effect of the 
pair-excluded-volume contributions is primarily to add an inter- 
micellar term to the “growth” parameter a: a - a + x*, where 
x* = O(pulX). Thus the average aggregation number is increased 
approximately by a factor of (exp x * ) ’ / ~  = O(exp ( v / 2 ) )  where 
v = pu,X. For volume fractions up to a few per cent-above which 
higher-order virial corrections contribute (see below)-it follows 

r,s>>m 

(8) L. Onsager, Ann. N.Y. Acad. Sci., 51, 627 (1949). 
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that micellar sizes are enhanced by at most a few percent. 
To describe the real solution effects through arbitrarily high 

concentration (Le., v no longer much less than unity) it becomes 
necessary to avoid the virial expansion, or-equivalently-to sum 
it to all orders. In our earlier work on thermotropic liquid crystals: 
specifically in our efforts to generalize the Onsager theorys of the 
isotropic - nematic transition to liquid densities, we have shownI0 
that it is possible to obtain systematically better infinite-order 
resummations of the virial series by considering successively 
higher-order truncations of an expansion in (not the density p s  
but) the new variable 

P s  =- P s  

1 - POlX 
y =  

1 - E u , p ,  
I 

(Here u, = ru] is the volume of an r aggregate.) Thus, instead 
of (see eq 1) 

1 Ps 

s Po 
p, = p: + - In - + xs 

we write 

The ”chemical” equilibrium condition f is  = pl  then leads again 
to a size distribution (compare with eq 5): 

In Appendix B we derive explicit expressions for xl - xs using 
the y representation of the thermodynamic functions.I0 We show 
in particular that a three-term (“y3”) truncation for the pressure 
gives 

S(X1b) - x,”’) N SX0Y’ - X*Y3 (10) 
where xo and x* are explicit functions only of the first three and 
two moments, respectively, of the micellar size distribution: 

and 

with 

Substituting from (10) into (9) gives-again, compare with eq 
5- 

with 

A’ = exp(pI0 - neo) exp xoY’ = A exp x O Y 3  

and 
(yf = (y + X * Y 3  

(9’) 

(9) W. M. Gelbart, J .  Phys. Chem., 86, 4298 (1982). and references 

(10) B. Barboy and W. M. Gelbart, J .  Star. Phys. 22, 709 (1979). 
contained therein. 
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Figure 1. We plot here the weight-average aggregation number (Sw) vs. 
total mole fraction (X )  of soap. The dashed curve shows the behavior 
for an ideal solution of micelles, whereas the solid curve includes effects 
of excluded volume interactions through third-order in the y expansion. 

Equivalently, and more suggestively for the numerical analysis 
which follows, we write 

YS 
P o  
- = B ( c ) f  

where 

B = exp[-cu - x*Y’(v,i.)] 

C =  PO) exp[pI0 - Lo + X O ~ ~ ( Y , ~ , ~ ) ]  (12b) 

a and pmo are determined by y, ao, 1, and u,-as in the preceding 
section-according to eq A.1.4 and A.1.6-7. Similarly, x*Y3, x,j” 
are known for arbitrary v, P, 7 (see eq BlOa,b) as soon as these 
same parameters (y, ao, I, u,;  implying m and hence a,, a2, a,) 
are specified. 

IV. Results and Discussion 

a value for C. This implies both ? and 9 via 

(12a) 

and 

To obtain the size distributions bs/po], we start by choosing 

where the In(C)’s are defined by In(C) = ~rt , , , r“Cr.  The relation 
(definition-see eq 1 l a  and 12) 

v = POB(V,P)Io(C) (14) 

is then solved iteratively for Y, from which eq 12b yields y , :  the 
size distribution follows immediately from eq 12a,b. In this way 
we generate Iys /po) ’s -  and hence S’s-for different values of X 
= ( Y P / P o ) ( l  -3. 

Typical results are shown in Figure 1, for the choice3 

y = 1/20 k T / A 2  

a. = 5 5  RZ 
I = 12 A 

01 = 360 A’ 
klo  = 15 kT 

p o  = 0.033/A3 

(hence m = 20 and pmo = 4.9 ki“).  The solid curve shows the 
weight average aggregation number 
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vs. concentration X ,  in they, level of approximation outlined above; 
it describes the effect of excluded-volume interactions between 
micelles on the mean size. The dashed curve was obtained by 
repeating the same calculation, but with “ p  = 0”, Le., neglecting 
all interaggregate forces; more explicitly it is what we would find 
by setting ys, y1 - p(x,/s), px, and xOJ”, x * Y )  - 0 in eq 12a,b. 

We note several points of interest in Figure 1: 
(i) The cmc for this system occurs at X N 8 X (Le., X,,, 

= 0 on the scale of our figure). 
(ii) Interactions between micelles begin to have nonnegligible 

effect on Sw (greater than 20%, say) only for X >, 8 X lo-). 
(iii) Sw is enhanced (by these excluded-volume forces) by as 

much as a factor of three at X 
From (i) and (ii) we conclude that the effect of interaggregate 

repulsions on micellar size distributions can indeed be neglected 
for concentrations up to two orders of magnitude above the cmc. 
This vindicates the usual analyses of static and dynamic light 
scattering experiments which are confined to X/Xcm,  5 100. 
Missel et al.,” for example, study SDS at concentrations varying 
from 3 to 185 times the cmc, for different temperatures and salt 
contents; their integrated intensities (average aggregation numbers 
S )  and hydrodynamic radii (rod lengths L)  are interpreted via an 
intramicellar growth theory which neglects the effect of nonideal 
solution behavior on the distribution (X,/s\ of micelle sizes. Corti 
and Degiorgioiz have reported quasielastic light scattering data 
for SDS under comparable conditions of temperature, salt, and 
mole fraction of soap (X/X,,, 5 100). They account for the 
concentration dependence of the apparent molecular weight M 
(-S) and diffusion coefficient D (-l/L) by considering the 
corrections to M and D due to interparticle interactions, rather 
than by allowing actual growth of the aggregates; the size of the 
rodlike micelles is still assumed to be independent of the forces 
between them. Similarly, Cheng and Gularil) have treated both 
the ideal-solution description of micellar growth and the interacting 
particle model for static scattering and translational diffusion, 
to account for the variation with concentration of the integrated 
intensities and hydrodynamic radii in  aqueous solutions of SDBS 
and NaC1-again, though, the size distributions are determined 
wholly by the intraaggregate chemical potential. 

Observations (ii) and (iii) indicate, on the other hand, that for 
higher mole fractions of amphiphile the measured properties of 
soap solutions can no longer be analyzed in terms of theories which 
neglect the effect of intermicelle forces on aggregation size. X 
N 0.035, for example, corresponds to a volume fraction 
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X 
v pu,x  = 

? + ( l - $ X  ui 

of ~ 3 0 %  in the case of SDS (u l  = vSDS = 360 A3 and uo = UH,O 
= 30 A3). This is precisely the concentration range characterizing 
the isotropic (1) solution in equilibrium with nematic (N: 
“discotic” and “calamatic”) phases of SDS/decanol/waterL4 and 
many other systems showing lyotropic liquid cry~ta1linity.l~ In 
these cases a theory of micellar size must properly include the 
effects of interaggregate forces, to all orders in the density. 
Furthermore, the two-phase (1 /N) coexistence leads to a pref- 
erential partitioning of the larger rods into the nematic solution. 
This “fractionation” effect, intrinsic to polydisperse systems, is 
complicated by the fact that the particles involved do not maintain 
their integrity, their size distribution being determined instead 
by the chemical equilibria treated earlier. To describe micellar 
growth at the 1 - N transition, then, it is necessary to couple 
the self-assembly and long-range orientational ordering in a fully 

(11) P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y .  Young, and M. C. 
Carey, J .  Phys. Chem., 84, 1044 (1980). 

(12) M. Corti and V .  Degiorgio, J .  Phys. Chem., 85, 711 (1981). 
(13) D. C. H.  Cheng and E. Gulari, J .  Colloid Inferface Sci., 90, 410 

(1982). 
(14) Y .  Hendrikx and J. Charvolin, J .  Phys., 42, 1427 (1981). 
(15) G. J. T. Tiddy, Phys. Rep., 57, 1 (1980). 

self-consistent way, Le., to satisfy simultaneously the conditions 
of chemical and phase equilibria. We are presently attempting 
to do so by extending they theory outlined above to the nematic 
state. 

We close with a few remarks about the effects of intermicellar 
attractions on the size of rods in the isotropic phase. Let uSr(7,, 
T,) denote the potential energy of attraction between s and r 
aggregates described by the (positional and angular) coordinates 
7S and 7,. Then, in the spirit of the generalized van der Waals 
t h e ~ r y , ~  we rewrite eq 1*  as 

where 

The Boltzmann factor in the integrand vanishes for 7,, T, such 
that the s and r rods overlap, and is unity otherwise; accordingly, 
it defines the mean field Wz(s,r) as an unweighted average of the 
attraction U J T ~ , T , )  over all “allowed” configurations. 

To proceed with a crude qualitative analysis we assume that 
the integral in (17) is dominated by configurations in which the 
rodlike particles are “crossed” (“perpendicular”). We note further 
that the corresponding dispersion energy U, is negligible whenever 
the particles are separated by more than a few A and that oth- 
erwise it is slowly varying. Let 5 denote this “maximum 
separation” distance and let -ti be the average attraction. Then 
it follows that the mean field (17) can be approximated by 

Wz(s,r) -n[u(L,,I + t; L,, 1 + 5)  - u(Ls,l;Lr,l)] (18) 

where v(L,,I;L,f) is the pair excluded volume u, given by eq A.2.2 
and u(L,,I+c L,l+{) is the same but with the rod-radius I replaced 
by I + 5. 

With a similar approximation for W2( 1 ,r) it is straightforward 
to show that the corrections (arising from attractions) to X*-see 
eq 10 and B.10.8-have a sign opposite to those from excluded- 
volume repulsions. But for { on the order of a few A and for P 
= O(kT) ,  we find Swvs. X plots which are qualitatively the same 
as that shown in Figure 1. Clearly, however, a more careful 
analysis is required to properly investigate the possibility that 
macroscopic dispersion interactions might overwhelm the size 
enhancement described above for forces of the excluded-volume 
type. At the same time, the effects of rodflexibility on the intra- 
and intermicellar growth mechanisms must also be considered. 
Finally, in the spirit of Onsager? the role of counterion layers (or 
more generally, the screened Coulomb repulsions) can be included 
by appropriately “padding” the excluded-volume dimensions. 
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Appendix A 

For a spherocylindrical rod we have 
(1) Size Dependence of Chemical Potential for Single Micelles. 

(A.I.1) 

where “cyl” and “cap” refer to the right-circular cylindrical bcdy 
and the half-spherical caps, respectively. jio(a) is the free energy 
of a surfactant with micellar head group area a; as discussed often 
e l s e ~ h e r e ~ - ~  it can be approximated by 
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X = CJs is defined in the text, and ( I / r )  by 2 

po(a)  = 2yao + ya( 1 - 5) (A.1.2) 

From the requirement that the hydrophobic core be completely 
filled by the hydrocarbon chains (“tails”), straightforward sur- 
face/volume ratios g i ~ e ~ - ~  

acyl = 2u1/l and acap = 3u1/l (A.1.3) 

Allowing for intermediate optimization of head-group packing 
(between “cyl” and “bilayer”-abil = ul/l-ideals) we write4 

01 (A.1.4) a, ~ ( 1  + y )  

Finally, recognizing that sCyl s - sap where ssp = rn = 4d3/3vI  
is the minimum micelle aggregation number, it follows directly 
from substitution of (A1.2-1.4) into (Al.1) that p> has the form 
of eq 1 in the text: 

(A.1.5) 
1 p; = E-0 + -a 
S 

with 

and 

(A. 1.7) 

( 2 )  Second- Mrial Micellar-Interaction Correction. From eq 
2 in the text we can write 

Since rn >> 1 and XI << Zr tm(Xr / r )  in all micellized solutions 
of interest, we drop the first term in the last line of equation above. 
The sr-pair excluded volume is known6V8 to have the form 

32 
3 

us, = -s13 + 4sl2(LS + L,) + rlL,Lr (A.2.2) 

where L, is the rod-length of a s-spherocylindrical aggregate of 
radius 1 

(d2)L,  = (s - m)ui (A.2.3) 

(Note that use of (A.2.3) in (A.2.2), with s = r = Ngives directly 
eq 7a in the text; the length to width ratio, L,/21 + 1, is given 
by 2/3(s/m + 1/2)). Substituting (A.2.2) and (A.2.3) for v,, in 
the second term of (A.2,1), and recognizing that u i J  N ru,, leads 
to 

(XI - XAB2 = 
8 1 4 1  8 1  EXr - -E-xr - - -EXr - - -EXr - 4 “E!xr] 

r z m  3 r 3 rn 3 s  3 s  r - 
(A.2.4) 

or 
1 - xs)Bz = x0B2 - -X*B2 (A.2.5) 
S 

as in eq 3 of the text, with 

and 

Appendix B 

form for the chemical potential of an s aggregate: 
y3  Micellar Interaction Correction. Consider the y expansion 

(B.1) 

From the definition given by Barboy and GelbartIo-i.e., the 
isotropic-phase limit of their general eq 18-we have 

SX,@) uJ’ + 2CCSryr + ~ ~ C C C , , I Y ~ Y I  + ... (B.2) 

Here us, the volume of the sth hard-“particle” species, corresponds 
in the present case to sv,, the volume of an aggregate containing 
s molecules. The pressure P is given bylo 

Y5 

Po 
sp, F,  = F> + In - i- sxs@) 

r I I ’  

P = C Y r  + C C c r , ~ r y ,  + ... (B.3) 
r r r‘  

and the 2“s bylo 

(B.4) 
01 

2 
C,, = B,, - - ( u  + r? 

and 

Bsr, - (2/3)ul(cs# + c5,r + cr,s) - (1 / 3 ) u 1 2 ( s r  + sr’ + rr’) 
(B.4b) 

Br, and Bsr, are the usualI6 second and third virial coefficients 
for a multicomponent mixture. For example, Er, for hard particles 
is equal to (1/2)vr, where vr, is the r-r’pair excluded volume 
discussed in the text. 

In writing eq B.2-B.3 we have implicitly anticipated that terms 
Ob3) in the chemical potential are not of qualitative importance. 
Indeed, in our earlier work9-l0 we demonstrated directly that this 
level of approximation (“~3”) leads to pressure equations of state 
for monodisperse hard particles which are accurate to within a 
few percent over the full liquid (and gas) range. In the case of 
spheres, for example, y 3  gives1’ exactly the same result as that 
obtained from analytic solutions to the Percus-Yevick’* and scaled 
particle theories;I9 for anisotropic particles (“dumbells”, sphero- 
cyclinders, fused spheres, etc. ...) y3 agreesi7 closely with full Monte 
Carlo simulations of the pressure. 

The sums in eq B.2-B.3 run over the values r = 1 (monomer) 
and r I rn (minimum micelle). It is easy to show, however, that 
the r = 1 contributions are negligible compared to the r 1 rn terms: 
this follows directly from the fact that vir' << u,, ( r  1 m) and 
that XI << Zrzm(Xr / r )  for concentrations (A“) sufficiently above 
the micellization threshold (XCmc). We can then write xs@) in the 
form (using relations (B.4a-B.4b) for the Cs): 

c s r ?  = 

u13 sxs@) = -0,Pv + --P2v2 + 2 C B,,y, - 2u, B,/y,y,  + 2 r t m  r , r 3 m  

(3/2) C Bsr+YrY, (B.5) 
r,rl>m 

where the moments v and f are defined by eq 1 la-b in the text. 
It remains only to introduce expressions for the second and third 

virial coefficients appropriate to hard spherocylinders. For B,, 
the well-known result of Onsagera (see eq A.2.2.) gives 

2B,, = alsr + a2(s + r )  + a3 (B.6) 
where a,, a2, and a3 are 4/3(u,/m), ‘ / 3 ~ l ,  and 1/3mu,, respectively. 
For the third virial coefficient, we use 
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Bsr, N (64/3)L,L,L,13 + 10(4/3~1~)~  (B.7) 

The first term in (B.7) corresponds to the asymptotic ( L  >> 1 )  
result suggested by StraleyZ0 for rods whose length L greatly 
exceeds their radius I ;  the second term is the hard-sphere (L - 
0) result for 83.21 The length L, can be expressed simply-see 
eq A.2.3-as L, = ( U ~ ~ / S I ~ ) ( S  - m), and similarly for L, and L,. 

An expression identical with (B.5) but with s - 1 can be written 
for x1W), the "real solution" correction to the chemical potential 
p l  of a monomer. We need only choose a form for the second 
and third virial coefficients in the case where one of the particles 
is the monomer. For u l r  it is natural to take the volume of an 
r aggregate 

281, = u, = rv, (B.8) 

'/,Cur + u+)Br,  (B.9) 

while for the three-body excluded volume we write 

It follows immediately from eq B.5-B.9 that the difference x1 - 
xs can be expressed as in eq 10 of the text, with 

32 VI - 
* 3 1 3  2 
- u I 3 ( i  - m)2  + - [a l r2 i  +az(7 + 9) + a 3 i ]  

and 
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- 32 mul3(i  - m ) 2  - y ~ ~ l ~ /  (B.lOb) 
* 3 1 3  

Note that, in the limit where Cp,p, s pulX v << 1, Le., where 
the volume fraction of soap is small compared to unity, y ,  - ps( 1 + p v l X ) ,  v l p v  - pu,X + O(v2) ,  and u l v  - pv,X( l / r )  + O(v2) .  
Then, neglecting the O(u2) terms in eq IOa,b, we have 

xo N -.(a2 + alp) = pvlX(-;( 8 1  ;) - i:) (B.lla) 

and 

x* N -v(u,i - azi - a3) = p v l X ( i  + !m(!-)) (B.llb) 

Recognizing that Y,/PO = (P , /P~)@'~"  and cYI/~o)s = ( ~ ~ / ~ ~ ) s e " ~ l ~ ,  
eq 3, 5 ,  and A.2.5a,b are seen to be identical with eq 9, 10, and 
B.l la,b. That is, the second virial approximation falls out nat- 
urally as the low-volume fraction limit of the y theory. 

In the above analyses we have, for purpose of simplicity, ne- 
glected all the r = s = 1 contributions to xsBz (see Appendix A.2) 
and ~ b )  (Appendix B). We have checked, however, that retaining 
them leads to only negligible changes in the calculated 3, vs. X 
plots. Similarly, we have approximated 28,, by u, = rvl, whereas 
in fact it is easy to show that 28,, - rul is itself on the order of 
rvl. But, again, allowing for this correction changes imperceptibly 
the calculated dependence of average micellar size on overall soap 
concentration. 

Hydrogen Isotope Exchange between Fluoroform and Water. 5. Equilibrium Deuterium 
Distribution. The 2mperature Dependence of a' 
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A knowledge of the equilibrium deuterium distribution between water and fluoroform is useful for design of the redeuteration 
stage of a heavy water production process based on IR laser-activated decomposition of CF3D in excess CF3H. The first 
measured fractionation factor data are presented for the temperature range 70-130 "C. The deuterium is favored in the 
fluoroform (a = 1.139 at 130 OC, 1.215 at 70 OC, and 1.287 at 25 O C  (extrapolated)). These values are approximately 
10-20% higher than various reported theoretical estimates calculated by using isotopic reduced partition function ratios based 
on molecular vibrational frequencies (with harmonic oscillator approximation). AHo = -1.23 kJ/mol was calculated from 
the temperature dependence of In a. 

Introduction 
deuterium isotope separation process based on laser-ac- 

tivated selective dissociation of CF,D molecules in the presence 
of a large excess of CF,H will include a stage for catalyzed 
redeuteration of the dedeted fluoroform bv contact with an 

in the design of such a process stage is the isotopic fractionation 
factor, a, for equilibrium distribution of deuterium between 
gaseous fluoroform and liquid water (eq 1); a is defined by eq 
2.' Values of a have been measured over the temperature range 
70-130 O C .  

inexpensive deuterium soirce like water.z" An important element u = ZKq 
CF3H + HOD 7' CF,D + HOH (1) 
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