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In this paper we outline a simple statistical thermo-
dynamic treatment of those portions of amphiphilic-solution
phase diagrams which involve finite aggregates, l.e. iso-
tropic phases of micelles of all shapes and sizes, and
orientationally-aligned (nematic) states of rods and disks.
In accounting for the equilibrium distribution of sizes we
focus on several aspects of surfactant self-association
which have not been treated in previous theories.

(1) In the dilute-solution limit, the suspension of
micelles behaves like an ideal gas of molecules and hence
can include translational and rotational contributions as
well as the usual entropy of mixing. These "new" terms can
be shown to favor smaller aggregates (via decreased mass and
moments of inertia).

(11) At higher concentrations the solution no longer
behaves ideally, i.e. forces between the aggregates begin to
significantly affect the system free energy. In the parti-
cular case of excluded-volume interactions, it is possible
to show that these "activity"™ corrections can enchance
micellar size by easily-observable factors.

(ii1) Upon the onset of long-range orientational order
there is a coupling between growth and alignment of aniso-
tropic aggregates which results agaln in bigger micelles.
This coupling quickly becomes so strong, in fact, that the
namatic phases can be unstable against "explosion" into
hexagonal and lamellar states.

INTRODUCTION

" In this paper we want to develop a brief outline of the major
factors which determine the size and shape of micellar aggregates in
simple surfactant solutions. In doing so we shall assume that the
reader is familiar with the basic background literature on self-
assembly in amphiphilic systems, such as is presented by Tanford! in
his recent monograph and by Israelachvili et al2 in their series of
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review articles. Our emphasis will be on rod-like (prolate) aggre-
gates, although mention will be made of other micellar symmetries as
well. Details of the relevant theoretical calculations have been or
will be published elsewhere: here we concentrate instead on collecting
the key mechanisms for aggregate growth and on providing simple
physical interpretations for them.

Sections 1 and 2 describe the free-energy contributions arising
from "mixing entropy" and local geometry effects associated with
different environments in a single micelle. These ingredients are
already well-known and suffice to account for the existence of stable
but polydisperse rod-like aggregates in dilute solution. Section 3
presents a "new" contribution, arising directly from the translational
and rotational degrees of freedom corresponding to the overall micelle
being treated as a rigid body. These terms are of course familiar from
elementary statistical thermodynamics, and are treated here for the
first time as a mechanism for controlling the growth of aggregates. In
Section 4 we discuss real (vs. ideal) solution effects, i.e. the role
of forces between micelles in determining their equilibrium size
distribution. These interactions have been studied extensively within
the context of interpreting light scattering and other transport and
thermodynamic data, but not with an eye to the structure and stability
of the aggregates themselves. Finally, in Section 5, we show how the
alignment of micellar "rods" in nematic phases can further enhance
their growth in concentrated solution.

1. Local Geometry ("Intra"-Micellar Effects)

The fundamental thermodynamic'quantity of interest is the standard
chemical potential per molecule, uy, of an amphiphile in an aggregate
of size N. With UN the standard chemical potential of a spherocylindrical
("rod-like") micelle containing N molecules, say, we can write

;J'N'rod = u°N/N = (Ncap/N)ﬁgap + ((N‘Ncap)/“)ﬁgylu (1)

Here it has been implicitly assumed that the micelle behaves like a
macroscopic phase consisting of the two components "cap" and "cyl."
That is, Jiy is simply a welghted average of fieap and Yicyl, the chemical
potentials for amphiphiles in the (hemlsphericag) caps and (cylindr-
ical) body respectively. Ngzp and N-Ngoap are the corresponding numbers
of molecules in these two environments. Note that Ny, is independent
of N, being determined wholly by single-molecule geomegr ap
4m22/3y where £ and v denote the length and volume of the (hydrophobic)
"tail" of each amphiphile. A trivial rewriting of eq. (1) gives

IN,rod = Fayl * (1/N)érod (2)

where 8pnoq = Neap (Ucap - ﬁgyl) is the free energy "price™ paid for
keeping the cylinders finite, i.e. for capping the rods,

A similar analysis for disk-like aggregates leads to (for large N)

ar® a
N, disk = Upi1 + (1/N1/2)é45 k- (3)

Here the "bil" refers to the bilayer environment comprising the body of
a disk. But now, unlike the rod case, the micelle is capped by a
(hemi-toroidal) rim whose size (N.jp) 1s not independent of aggregation
number N. More explicitly, instead of having Nozp = constant

(=4nL®/ 3v) we have Npjp = Npjq(NWeN1/2 for large N. That is, 8gqjgk

in eq. (3) is a decreasing function of N which behaves as a constant
only in the asymptotic limit of large (N + =) micelles. Note that the
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1/N1/2 vs, 1/N fall-off of uy follows directly from the dimensionality
of the problem, i.e. disks "grow" in two dimensions and rods only in
one.

The fact that ﬁg, the chemical potential per molecule, decreases
monotonically with N would seem to {mply that the rod-and disk-like
micellar aggregates should grow without bound. (Only in the case where
ﬁ:bh < ﬁéyl. ﬁgil would this not be true). But the zero superscript
indicates” that only the standard contribution to the chemical potential
has been considered. One must add to this quantity the free-energy
contribution associated with the ideal-solution mixing entropy:
uﬁ-#-dﬁ + KT fnpy/p. Here py = p Xy/N is the number density of
N-aggregates (with p the total -- surfactant plus water -- number
density and Xy the mole fraction of surfactant molecules incorporated
into micelles of size N).

2. "Mixing Entropy" Contribution

We now write uy as
UN = uN/N = TN + (KT/N) 2n(Xy/N) (4)

and consider the mechanism whereby the mixing entropy term serves~§o
resist micellar growth, i.e. to offset the monotonic decrease of uy
with N.  Qualitatively it is clear that the mixing entropy term is
optimized when the fixed amount (X = IXy = total mole fraction) of
surfactant is organized into as many (hence, as small) aggregates as
possible. Accordingly, this term favors minimum--spherical--micelles
in contrast to ﬁﬁ which is optimized by growth in one- (rod) or two-
(disk) dimensions. The compromise between these competing demands
gives rise to a polydisperse distribution of aggregates in which at
least one dimension exceeds the molecular length. This balance must be
expected to depend on overall concentration X as well as on the
intramicellar "growth" parameter §. Note that & is generally on the
order of tens of kT.

More explicity, for purpose of illustration, consider the case in
which polydispersity is suppressed and we focus attention directly on
the optimal size N. That is, we put Xy = Xéy§ and ask for the value of
N which minimizes -

W= W e /MM = Hoyy + (/N ((8+kTaX) - kTaN).  (A")
It is trivial to show that the N satisfying 3uf/3N = 0 is given by
N = Xexp(s). 5

w®
N increasing with X reflects the fact that the balance between Uy and
-(kT/N)%n(N/X) is being shifted increasingly towards larger N for
bigger X. Equivalently, the loss of mixing entropy (associated with
organization of surfactant into a smaller number of larger aggregates)
becomes less important as the system becomes more concentrated.
Similarly, N increases with & because the intra micellar growth
mechanism begins to dominate in this limit.

A full treatment of the equilibrium size distribution (polydis~-
persity) shows the same effects of competition between the two terms in
eq. (4). The simplest way to see this is by invoking the law_gr mass
action appropriate to the set of “"reactions" described by NA, &= Ay.
Here Ay denotes an aggregate of size N. (A, corresponds to the monomer
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(i.e. a single amphiphile in solution] and it is assumed that N > Neap,
the minimum micelle number.) "Chemical" equilibrium is then specified
by uy = Np, which -- in conjunction with eq. (4) -- leads directly to

XN/N = X,N exp(N(u-TR)/KT). (6)

Recalling eq. (2) for {y pod. Say, we see immediately that the size
distribution is completeiy determined by the two chemical potential
differences A = (u} - ﬁ;yl) and § = Ncap(ﬁzap‘ﬁg 1). ‘A is the free
energy difference between an amphiphile in solution and one which is
packed (optimally in the cylindrical body) in a micelle. This quantity
i3 expected to determine the concentration at which aggregates become
the deminant "home" for surfactant in solution: {ndeed it is easy to
show that

XcMe = exp (-A/KT), (7

Similarly, §--the free-energy "price" paid for capping the rods--
is the controlling factor in shaping the equilibrium distribution. One
finds, for example, that

N = Iy fxy ~ (Xexp(5))1/2 (5%
as anticipated qualitatively by the crude argument leading to eq. (5).

The above results are well-known. There are in particular many
studies of how a sphere "grows" into a rod upon increasing the overall
concentration.3 Similarly the sphere to disk transition has been
extensively discussed,2, as well as the relative stability of prolate
and oblate aggregates.u From this point on, then, we concentrate on
free-energy contributions whose effects on micellar size distributions
have not previously been treated.

3. Rotational and Translational Degrees of Freedom

Recall that uﬁ is the standard chemical potential of an
N-aggregate, i.e. it is equal to -kT ln(qN/v) where qy is the partition
function of a micelle of size N. Treating the micelle as a finite
rather than macroscoplc system it is clear that--in addition to being ?
sum of cap (rim) and body §i°'s [see, for example, eq. (1) for rods]--uy
should include contributions from the overall translational and
rotational degrees of freedom. In fact, the factor from integration
over center-of-mass coordinates has been taken into account: it gives
rise to the kT &n (py/p) term, the free energy of mixing. Integra-
tions over center-of-mass momenta and overall rotational degrees of
freedom result directly in additional terms of the form

- :
Uy = KT ln(A’Np/qrot'N). (8)

Here Ay = (h?/2xNmkT)'/2 is the usual thermal (de Broglie) wavelength
associated with the N-aggregate (mass Nm), and qrot,§ is its rotational
(symmetric-top) partition function. Clearly Ay ~ N- /2. while for a
rigid rod (vs. disk) it can be shown that gnog, y ~ N7/2. Thus we can
write :

TN = uN/N = (=(6%)-KT(3/2 + 7/2)4nN)(1/N) (9)

the &* term arising from the multiplicative constants in the argument
of the logarithm in eq. (8).
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Eqs. (8) and (9) follow from treating the micellar aggregate as a
quantum mechanical "chunk" of solid. If, on the other hand, the
center-of-mass motion of the individual molecules is described
classically, the translational momenta do not contribyte. Even in this
case, however, one is left with (1nN)(1/N) terms in uy--from(lnqprot)(1/N)
~-which add to the iﬁ discussed earlier. (Their coefficlents will be
of order unity but not necessarily 7/2, say, as in eq. (9)). In general
the question of how to best treat the translational and rotational
contributions to uy is a highly complicated one which deserves further
study in its own right. 1In this connection we mention that similar
questions in the theory of nucleation clusters have still not been
completely resolved.> We note also that the role of translational/
rotational degrees of freedom in determining CMC's has been treated
several times in the past few decades.® oOur discussion of these
effects in the context of micellar growth, however, appears to be new.

It is clear from inspection of eq. (9) that these new con-
tributions to ﬂh will all serve to restrict the size of micellar
aggregates. First, §* (which can be estimated to be of the order of 10
KT) enters with a minus sign, thereby offsetting partially the +§ (1/N)
term in ﬁﬁ -- see eq. (2). Second, the (#nN)1/N terms also enter with
negative coefficients, further working against the decrease of uy with
N. In fact, these latter terms can be thought of as enhancing directly
the "braking" effect of the mixing entropy contributions discussed in
the previous section. We showed in particular there that XN = X&NN
gave rise to +(KT 2n X) (1/N) - (kT [1] an N) (1/N) terms in the mixing
free energy and that this N-dependence accounted qualitatively for the
existence of finite rods and for the variation of their size with
concentration. Now we see that the "1" in square brackets 13 augmented
by additive factors of 3/2 and 7/2 from the translational and
rotational contributions.

_ Again, a full treatment of the equilibrium size distribution
(polydispersity) confirms these simple predictions of the Xy ¥ X&\§
model. More explicitly, allowing for the "chemical reaction" (NA =
Ay) balance embodied by eq. {6), and adding the above-described uN
terms to ﬁh in the exponent, we have solved for the relative amounts of
both rod and disk micelles of different sizes.? The rod-like aggre-
gates are indeed found to be smaller and less broad;y dispersed than
predicted without the jiy contributions. Also, the disks are seen to be
more competitive in the intermediate concentration range where they
appear. Furthermore, smaller (more realistic) values of the micellar
interfacial tensjon suffice to account for the large rod-like aggre-
gates which are believed to be present in dilute solution.

b, Inter-Aggregate Interaction Effects

Up until now we have assumed that the aqueous suspension of
micelles is behaving ideally, i.e. forces between the aggregates make
no contribution to the free energy of the system. Real solution (e.g.
activity coefficient) effects have of course been extensively con-
sidered throughout the recent history of colloidal suspension theories.
In the case of micellar systems, however, we are confronted by a
fundamental complication: the interacting particles are aggregates,
and -- via molecular exchange (NA; & Ay) -- do not maintain their
integrity. Accordingly, interactions between the micelles give rise to
a new size distribution and hence to new interactions.

To illustrate this point most simply it is useful to consider
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interaggregate forces of the excluded-volume type. In this case the
free-energy term which we add to ﬁh is purely entropic, proportional to
the number of ways of packing a {XN/N} - distribution of rod~like
particles:

~r v 4
NN = BN+ (KT/N)2n(Xy/N) + Ty + (1/N)xy (10)
with

ZxN(XN/N) = ~T{packing entropy).
N (11)

This interaction free energy is, in turn, proportional to the total
excluded volume, V€X, For a sufficiently dilute system, for which the
second-virial approximation suffices to describe the effects of inter-
action, Ve€X can be expressed as

VeX = (# of pairs)veX (12)

with veX denoting the excluded volume associated with a pair of
interacting micelles. (Here we again start by suppressing polydispers-
ity via Xy & Xéjf§.) For large disks, for example, veX ~ D® where
D(>>%) is their diameter. Recall that it is the area (~ D2) of the
disks which varies linearly with aggregation number, thereby implying

D ~ N'/2, Furthermore, since (# of pairs) goes as 1/N3, it follows
that

vex  (mxN/N) ~ 1/N1/2,
disks (13)

Similarly, for large rods of length L(>>L) we have that the leading
terms in v€X go as LZ and L -- with L~N, and recalling (# of pairs)
~1/N2?, this translates into a 1/N decrease for VeéX;

(XN/N)pod ~ 1/N (14)

Note that the N- dependengg of the interaction contributions to NN
are identical to those from iy for both rods and disks. This again
follows from dimensional considerations, as seen from the above scaling
arguments (D ~ N'/2, L &~ N) which can be regarded as being analogous to
the (Npym N ~ N3/2 and Ngap N ~ N) asymptotics described earlier for
the intra micellar case. gt is clear from the monotonic decreases of
XN/N with N that the interaction free energy is lowered by growth of
the aggregates. Equivalently, the packing entropy--for a given mole
fraction X--is maximized by reorganization of surfactant into bigger
micelles: a small numbdber of large rods takes up less room than a
larger number of smaller ones (comprising the same volume fraction of
amphiphilic material) and thereby can realize a lower interaction free
energy.

The intermicellar growth mechanism described above becomes in-
creasingly important at higher concentration. In this latter regime
the virial contributions must be summed to all orders and are expected
to affect significantly the average micellar size. Using techniques
developed earlier8 for hard particle equations of state appropriate to
simple liquids (i.e. consisting of real rod-like particles rather than
molecular aggregates), we have studied the effects of intermicellar
interactions on equilibrium size distributions via systematically
better, infinite-order resummations of the virial series. In particul-
ar we have used successively higher-order, finite truncations of
expansions in powers of yy = py/(1-4) where ¢ = pvX is the (dimension-
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less) volume fraction of surfactant: recall from Section 1 that PN =

p XN/N where p is the total number density and Xy 1s the mole fraction
of amphiphile incorporated into N-aggregates. In this way we show that
the intermicellar growth mechanism illustrated above at the second-
virial level persists to all orders in the density.9

5. Growth-Alignment Coupling in Nematics

Reviewing the above discussion we have the following scenario. At
sufficiently low concentrations -- indeed up to hundreds of times Xcme
-- the micellar suspension behaves like an ideal solution of aggre-
gates. 1If ﬁ'%yl < 'ﬁ';ph, for example, the micelles will undergo a
sphere - cylinder transition, growing monotonically with concentration.
The increase in size is driven by a shifting balance between the "push"”
from ¥y and the "pull" from (kT/N)&n(Xy/N). At higher concentrations
the free energy contributions from intermicellar interactions become
non-negligible and serve to enhance the growth of aggregates. Thus,
Wwith increasing mole fraction of surfactant, the micelles become both
larger and more numerous, as is indeed observed experimentally!»2,3.
Clearly there comes a point where there is no longer sufficient packing
room for the rod-shaped aggregates. That is, they are forced to align
—-- long range orientational order (LROO) -- in order to keep out of one
another's way at high volume fraction.

To treat this alignment effect it i1s most i{llustrative to employ
the simple excluded volume picture suggested originally by Onsager in.
his theory of isotroplc + nematic transitions in simple colloidal
suspensions of rigid rod-like (macro-)molecules.!0 First we need to
generalize the second-virial interaction term, (1/N)xy, to include the
possibility of LROO. More explicitly, we replace the pair excluded
volume vyy, in

XN/N = (p/N)] veX Xy'/N' (15)
N' NN'

by

VEX —p fdQSdQ' ()N (RT)IVEX (Q,Q')
NN* NN! (1514)

where fy(Q) is the fraction of N-aggregates having orientation Q and
VNN'(8,27) is the excluded volume associated with a pair of N- and N'~
rods having orientations @ and Q'. We also need £0 add a new term oN -
to ﬁk which represents the loss of orientational entropy (per amphiph-
ile) attendant upon the alignment of an N-aggregate:

oy = (1/N))fdaty(a)in 4wfy(Q). _ (16)
Note that O = 0 for fy(Q) = 1/4w, i.e. there is no loss of
orientational entropy in the isotropic phase (for which all & are
equally likely).

The N-dependence of (1/N)yy can be easily evaluated in the case of
sufficiently long rods. In this limit the pair excluded volume can be
approximated by!

vexX & L' ¢ sind(Q,Q') (17)
NN?

where 3(8,2') is the angle between directions f and Q' and the
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alignment is sufficiently strong to express all free energies as
asymptotic expansions in an inverse LROO parameter (aN, say).

M
explicitly we can choose ore
fy(Q) ~ cosh (aycos®) (18)
where ¢ denotes the polar angle between the rod axis and a Space-f{xqd
direction. (This choice for f has the right form and symmetry for anp

orientational distribution function and will not qualitatively afrfect
any of our conclusions.) It is then straightforward to show that

IN/N & o + (1/N)y (19)

with x € ¢ in both isotropic (a = 0) and nematic (a>>1) phases and

¢, isotropic
Yo~ 1 ¢/a'/2, nematic . (194)

Thus the isotropic-phase form for (1/N)XN-—see previous section--
perseveres into the nematic state: the intramicellar growth co-
efficlent 6 is enhanced additively by an interaction contribution
which grows with concentration (volume fraction ¢).

Similarly, with the choice of f given by eq. (18) we can write
oy = (Lna)/N (20)

for a>>1. Note that both here and in egs. (19, 19A) we have suppressed
the explicit dependence of the LROO parameter a on N. The key point {s
that the orientational entropy loss oy decreases with N for large N.
From the equilibrium condition aﬁh/au = 0, for example, we find that
m?a=N2¢2 in the nematic state. Thus fna « LnN and

Oy % (LnN)/N (204)

i.e. the gy term in the free-energy iy i3 lowered by a reorganization
of the system (at fixed ¢ = pvx) into a smaller number of larger
aggregates. 1In other words, the micellized solution conspires to align
as few rods as possible. This coupling between size and LR0OO, of
course, is not possible in "ordinary" suspensions whose anisotropic
particles are constrained to maintain their integrity.

Once again, a full treatment'! of the polydisperse size distribu-
tion including properly all of the exchange equilibria (NA,& AN) leads
to the same conclusion. The average size of micelles in a nematic
phase is significantly larger than that in the isotropic phases with
which it coexists. This is because of at least three reasons: (1) the
overall concentration (X) is higher in the nematic, (2) the longer rods
partition preferentially into the LROO phase, and (3) micellar rods
tend to grow as a response to being aligned. It is this last reason
which 1s phenomenologically new and which is unique to liquid
crystallinity in surfactant systems.

6. Summary

We have discussed above the several physical considerations
("mechanisms™) which control the size of micellar aggregates in aqueous
solution. Clearly, much work remains to be done. In particular, the
contributions of flexibility'2 and biaxiality'!3 must be included in
treatments of the intramicellar free energies. Similarly, intermicell-
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ar interactions involving dispersional (attractive) and electrostatic!®
(repulsive) forces need to be considered. Also, it will be important
to provide a theoretical framework for understanding the role of
additives such as cosurfactants, alcohols and salts in determining the
preferred shapes and sizes of micellar aggregates. Finally, all of
these treatments must be extended to include the more highly-ordered,
1iquid-crystalline states such as the hexagonal (infinite-cylinder) and
jamellar (=-disk) phases. It is well-known that experimental de-
terminations of micellar shapes and sizes are fraught with fundamental
difficulties, again because the aggregates do not maintain their
integrity as one passes from one thermodynamic state to the next.
However, it is hoped that theoretical analyses of the type described
here will encourage further measurements.
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