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The role of adsorbate lateral interactions in surface reaction kinetics is studied for bimolecular reactions A+ B-+AB.One reac- 
tant (A) tends to aggregate into islands, B is mobile and AB is a rapidly desorbing product. A model combining Monte Carlo 
dynamics for the slow processes (A-aggregation and AB-formation) and an appropriately modified quasichemical approximation 
for the fast ones (B-redistribution) is used to calculate reaction rates. Reaction desorption spectra and activation energies are 
calculated for different initial conditions and adsorbate lateral interactions. 

1. Introduction 

Interest in the effects of adsorbate lateral interac- 
tions and aggregation (islanding) on surface kinetic 
processes in chemisorbed systems is growing rapidly. 
Finite metastable adsorbate islands are formed when 
lateral interactions are strong enough to favor for- 
mation of ordered overlayers, but the experimental 
time scale is too short for complete phase separation 
[ 11. Monte Carlo (MC) simulations reveal that the 
long-lived islands often exhibit indented boundaries 
and non-simple area-perimeter ratios [2,3]. If 
another reactant is co-adsorbed between (and possi- 
bly within) the islands, complicated kinetic behav- 
ior is expected depending on initial conditions, 
interaction parameters, diffusion and reaction rates. 
A well-known system exhibiting such complex 
behavior is 0(a)+CO(a)+C02(g) (a=adsorbed, 
g=gas) on metal surfaces [4,5]. 

Information on reaction kinetics is readily obtained 
from temperature programmed reaction spectros- 
copy (TPRS) provided the reactant distribution is 
random [ 61. Complications due to lateral interac- 
tions have been examined using equilibrium lattice 
gas models [ 7,8]. However these are inadequate if 
adspecies are aggregated in (non-equilibrium) 
islands. Alternatively, rate equations have been 

derived assumign highly idealized island patterns [ 91. 
Rate equations have also been proposed to account 
for lateral interactions and different mobilities of the 
adsorbed reagents but without explicitly accounting 
for phase separation and islanding [ lo]. Several 
recent MC studies have examined the role of island- 
ing in chemisorbed systems. Hood et al. [ 111 have 
demonstrated the effects of aggregation on thermal 
desorption spectra in a system containing a single 
species (2N+N2 on Ru( 001); a related problem is 
dealt with in ref. [ 121). Other MC models deal with 
aggregation due to selective reaction in steady state 
systems, in which the adsorbates do not diffuse on 
the surface [ 131. 

We have previously studied the effects of island 
formation by one adsorbate (during a disor- 
der-order phase transition) on the kinetics of bimo- 
lecular surface reactions using MC dynamics for all 
kinetic processes, for constant temperature [ 31. 
Extending this procedure to varying temperature 
conditions, such as in TPRS experiments, and for 
arbitrary lateral interactions wl, (i, i= A, B) often 
implies prohibitively long computational times. One 
of our major objectives in this Letter is to demon- 
strate that in most cases of interest the modeling pro- 
cedure can be greatly simplified by applying the 
(“expensive”) MC dynamics only for the slow proc- 
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esses (A-aggregation and AB-formation). On the 
other hand, the fast ones, in our case the redistribu- 
tion of the highly mobile species B among the A- 
islands, can be accounted for by appropriately mod- 
ified equilibrium lattice gas models, e.g. the quasi- 
chemical approximation (QCA). In this Letter we 
briefly describe our combined MC QCA approach 
and apply it to calculate thermal desorption spectra 
for different initial conditions and various lateral 
interaction parameters wl,. We also comment on the 
derivation of the modified QCA (to be published in 
more detail elsewhere). 

2. Kinetic model 

Consider a bimolecular reaction A( a) + B (a) -+ 
AB(g) in which one reactant, A, shows a strong 
aggregation tendency and slow diffusion, the other, 
B, is relatively mobile, and AB is a rapidly desorbing 
product. Explicitly, we assume that for temperatures 
where reaction occurs rg < rR,rA where rA (7,) iS the 
diffusion time (reciprocal jump frequency) of A (B) 
and rR is the reaction time of an AB-pair. The system 
is modeled as a lattice gas mixture with nearest 
neighbor (nn) lateral interactions w,, (ij=AA, BB, 
AB). The applicability of our approach is intimately 
related to the hierarchy of time scales, zB 4 7& 'c~: 

Because of the fast diffusion of B-atoms their distri- 
bution on the surface, {B), is instantaneously equili- 
brated following any change in the configuration of 
A-atoms, {A}, due to reaction, migration or desorp- 
tion. We calculate {B} by a modified version of the 
quasi-chemical approximation (QCA) [ 141. On the 
other hand, the slow processes - A-diffusion (and 
aggregation) and AB-formation-desorption - which 
modify the (non-equilibrium) {A} are modeled by 
MC dynamics. All simulations have been performed 
on a 500 x 500 square lattice with periodic boundary 
conditions. The present “MC QCA” approach saves 
MC modeling of B-diffusion, which for rR% TV 
requires many MC steps per reactive event and is 
therefore computationally expensive, especially for 
arbitrary w,, and changing T. 

Fig. 1. A 100 x 100 slab of the 500~ 500 lattice showing typical 
island pattern after 500 MCS, w,,/kT,= - 2.5, 0,=0.2. Larger 
but similarly ramified islands for higher 0 are shown e.g. in ref. 

131. 

more detail: (i) At t= 0 A-atoms are adsorbed with 
initial coverage /32 on a surface at temperature TA. 
The initial {A} is assumed random. Subsequent hop- 
ping of As between adjacent lattice sites is modeled 
by conserved (Kawasaki) MC dynamics (see e.g. refs. 
[ 2,3]). We assume attractive AA-interactions, 
wAA = - 2 kcal/mole, which corresponds to a critical 
lattice gas temperature T, x 570 K [ 14 1. Thus for all 
T, well below T, the A-atoms tend to irreversibly 
aggregate in 1 x 1 ordered domains. ( T, = 400 K in 
the simulations.) Aggregation times are conveni- 
ently measured in MC steps (MCS) corresponding 
to one attempted jump per particle [ 2,3]. After 
x 1000 MCS most As are aggregated and further 
island growth slows down drastically. The islands 
characterizing this long-lived stage appear as in fig. 
1. (ii) At t= tD we reset T= To, adsorb B and start a 
linear temperature sweep: T(t) = To +/3( t - tD). We 
typically use To= 250 K (at which reaction is negli- 
gible) and B = 10 K/s. A-migration during the reac- 
tion period is neglected (i.e. rA$ rR % rg). Similarly 
we ignore non-reactive desorption of A and B. Reac- 
tion can only occur between A and B on nn-sites. 

Our reaction scheme consists of two distinct stages: The reaction rate R= -dt?,ldt= -/3 de,/dT is 
(i) A-adsorption and aggregation (0 < t < t,,); (ii) B- calculated as follows. Given the instantaneous val- 
adsorption, diffusion and reaction with A ( t 2 t,,). In ues {A}, &,, and T, we use the modified QCA - see 
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Fig. 2. An example demonstrating the calculation of q(A,, T) 
using the modified QCLA. 0 =A-atoms (in islands), 0 =B- 
atoms, x =vacant sites. The potentially reactive (A,B,), pair is 
designated by a heavy solid line. Three AA-, one AB- and two BO- 
bonds determine s. In this case P(B,, sl A,,,) nP,(A, B) P,(B, 
B) P,(B, 0) P,(B, 0) andE,=3w,+wa,, see text. 

below - to compute P(B,, s IAm), the conditional 
probability that if site m is occupied by A, a nn-site 
n will be occupied by B and the “neighborhood” of 
thepairiss.s=k,I,k’,I’ (<3)wherek,Z(k’,Z’)are, 
respectively, the numbers of A- and B-neighbors of 
A,,, (B,), see fig. 2. We use qO( T) = vR exp( - E,IkT) 
for the reaction probability per unit time of an iso- 
lated AB-pair. The corresponding probability for an 
(A,B,), pair is taken as qS( T) = qo( T) exp( yEJkT), 
where ES= kw,+ (I+ k’) WA, + 1’ WBB is the interac- 
tion energy of the pair with its neighbors. y is a cou- 
pling parameter measuring the excess activation 
energy due to lateral interactions, which may be 
related to the properties (“tightness”) of the transi- 
tion state of the reactive AB-pair [ 81. In the results 
below we use y = 1 or y = 0 and E. = 24 kcal/mole. vR, 
typically = lOI s-‘, only sets the reaction time scale. 

The reaction probability per unit time of A,,, is 

q(A,, T) 

=vR Fs WL sI&,J exp[ - PO -yEJW 

(1) 

and the total rate (per site) is 

R=-@,=M-’ c&W&A) q(A,, T) , 
m 

(2) 

where 6( m, A) = 1 if site m is occupied by A and 0 
otherwise, and M is the lattice size. Note that 
Zg( B,s 1 A,,,) =P( B, 1 A,) is the probability of site n 
being occupied by B. Because of lateral interactions 
P(B,]A,), hence R, depend on {A}, wi,, T, and I!& 

even if y =O. This dependence accounts for local 
concentration effects which may affect R even in the 
absence of the (direct) “energetic effect” associated 
with ES (e.g. if y = 0). It is easily verified that when 
all wu=O (random A, B) weobtain R=zq,( T) 0AeB, 
where z is the lattice coordination number. The MC 
procedure for calculating R is simple: T is increased 
in small intervals AT ( s 1 K) such that r( m, 
T) = [q(A,, T)/qo( T)] AT4 1 for all A,,,. Each A,,, 
reacts with B (and desorbs as AB) with probability 
r( m, T) and the rate is calculated by (2). At the end 
of the AT interval the new {A} is recorded, 
T-*T+A~T,~B~~~-A~B~~~~A~~=A~A,P(BI,SIA~) 
is calculated for the new {A), 8 and T, etc. 

3. The modified quasichemical approximation 

The QCA is often used to calculate thermody- 
namic properties and/or (lattice) distribution func- 
tions for equilibrium systems [ 141. It may be derived 
starting with the assumption that the probability 
P( iI,..., iM) of a given lattice configuration is propor- 
tional to the product of pair (“bond”) probabilities 
P( ik, ir) over all lattice bonds [ 31. For an A, B mix- 
ture ik= A, B, 0 (0 = vacancy). The P( i, j) are deter- 
mined by minimizing the free energy functional 
F= I$‘( i, j)[ w,,+ kT In P( i, j)] subject to particle 
conservation constraints. This yields the P( i,j) which 
can be used to compute R for A+B+AB [3,7,8], 
provided both A and B are equilibrated throughout 
the reaction (i.e. if T*, rg e rR). In our modified QCA 
the instantaneous {A} and the pattern of AA-bonds 
is imposed as a boundary condition, and the QCA is 
applied only to {B}, i.e. the distribution of B among 
the sites not occupied by A. Probabilities are assigned 
to the remaining (“non AA”) nn-bonds which are 
classified as edge bonds whose occupation probabil- 
ities are P, (A, j) withj= 0 or B, and bulk bonds, with 
Pb( i,j) and i, j=O or B. Now the average free energy 
per bond (not including AA-bonds) is written as 
F=fiJe+ffl,, with f, and fb denoting the fraction of 
edge and bulk bonds, respectively, and F, and Fb the 
free energy associated with P,( A, j) and Pb( i, j). The 
P,( a= e, b) are determined by minimizing F subject 
to B-atom conservation and depend on {A} via va}, 
T,eB/(l-eA),WAB,andW,,.TheP(B,,sIA,)in(l) 

are (appropriately normalized) products of Pus, fig. 2. 
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4. Results and discussion 

Fig. 3 shows several representative TPR spectra 
(TPRS), i.e. R versus T curves, calculated by the MC 
QCA model. We use Q= (w,, wAB, was; y) with w, 
in kcal/mole to specify the interaction parameters and 
C= (@, 0:; tp) for the initial conditions, tD in MCS. 
Fig. 3A also shows, for comparison, two spectra for 
limiting cases: (a) Random A, B distributions and 
WijEO which (for f3:=@) give R=4vRexp[-Ed 
kT] 02. In this well-known case R is symmetrical 
around a peak temperature TP= T,( vR, E,-,, O”) [ 61. 
For our parameters T,, k: 350 K. (b) Equilibrium {A} 
and {B} throughout the reaction (rA, rB4rR), cal- 
culatedfor 52=( -2,O, 0; l), C=(O.2,0.2; 0) using 
the ordinary QCA for A, B mixtures [ 81 (see also 
ref. [ 3 ] ) . Here the likelihood for AA-pairs decreases 
with (IA, hence with time. Thus the activation energy 
E,, - see below - is predicted to decrease monotoni- 
cally to E. (see fig. 4). The other two TPRS in fig. 
3A demonstrate the role of islanding. For t,=O {A} 
is random. Here isolated As react rapidly yielding the 
first peak. The higher T peak is due to As initially 
associated in small clusters (primarily doublets at this 
0,) which react more slowly, with E,- Eo- w,, 
( y = 1). Reaction turns doublets to (rapidly react- 

32 

24 

Fig. 4. Coverage dependent E.. All curves for 0: = 0: = 0.2, Y = 1: 
0 WAA- --2,w4x=wnn=0,tu=O;Aasabovebuttr,=5000;--- 
ordinary QCA for w,= -2, w~a= wxx=O. (All w,, in kcaV 
mole, tD in MC’S) 

ing) singlets, etc., hence the sharp termination of 
reaction. When tD= 5000 most As are initially incor- 
porated in islands. Those at island perimeters are 

300 350 400 450 350 400 450 350 400 450 500 

Temperature/K 

Fig. 3. Representative TPRS for B = 10 K s- I. (A) All curves for 0: = 0: = 0.2, wAs - - wnn = 0 and, except curve (a), w, = - 2 k&mole 
and y = 1. (a) Random A, B and w,, = 0. (b) Ordinary QCA for A, B mixture. (c) MC QCA, tD = 0 MCS. (d) MC QCA, to = 5000 MCS. 
All following spectra are for MC QCA tD= 5000 MCS. (B) All curves for 0”,=0.2, 0:=0.5, with s1= (We, wan, w,,n; y) given by (a) 
(-2, -l,O;O), (b) (-2, l,O;O), (c) (-2, 1, 0; l), (d) (-2, 0,o; l), (e) (-2, -1,O; 1). (C) Inallcurves0~=~“,=0.2, to=5000 
MCS;Ris(a) (-2,0, -l;O), (b) (-2,0, l;O), (c) (-2,0, -1; l),(d) (-2,0, 1; 1). 
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potentially reactive but, since w, < 0, involve higher 
E, hence considerably higher Tp. As reaction pro- 
ceeds the islands become smoother, smaller and fewer 
but E, stays nearly constant (see fig. 4). If y = 0 lat- 
eral interactions and islanding affect R only through 
local concentration effects (probably of AB-pairs). 
If in addition wAB = WBB= 0, {B} is always random 
and w, affects R only via the island pattern at tp. 
The TPRS (not shown) for L2= ( - 2,0,0; 0) appear 
similar to curve (a) in fig. 3A (random A, B) for 
both t,=O and 5000. This is due to the large perim- 
eter-area ratio of the islands which for y =O is 
enhanced as reaction proceeds [ 31. 

All TPRS in figs. 3B and 3C are for tp= 5000. Fig. 
3B illustrates the role of WBB. WBB < 0 favors B segre- 
gation, thereby diminishing B-concentration near A- 
islands. (The opposite holds for WBB > 0). However, 
the effect is small unless &J( 1 - 13,) is large. Indeed, 
for 19~ B =0.2 = 0: the spectra corresponding to 
wBB = + 1 are all very similar to the wBB = 0 case (thus 

no spectra are shown for these cases). The effects are 
sizeable (fig. 3B) for larger e”, ( = 0.5 ), but only for 
JJ = 1. Fig. 3C displays the effects of WAB. WAB> 0 
reduces B-concentration near island boundaries. 
Similarly WAB < 0 enhances B-concentration near 
island perimeters, implying increased R for y = 0. But 
for y = 1 the increased number of bonds between 
reactive A- and “spectator” B-atoms also means 
higher reaction barriers, which offset the concentra- 
tion effect (compare with curve (d) in fig. 3A). 

Kinetic parameters derived from TPRS depend 
largely on the reaction mechanism assumed. Con- 
sider a general rate law 

RT= -dB,ldT= (RIP) 

=w@A, 6,) exP[ -E&&, 8&T] . 

Note that when WAB, WBB # 0, E, incorporates both 
barrier (E. - YE,) and concentration contributions. 
The latter enters via P( B, 1 A,), e.g. for WA, < 0 this 
probability includes an exp( - w,JkT) factor. Also, 
the simple exponential dependence is clearly an 
approximation. Further, in our problem bothf, and 
E. depend on initial conditions. Yet, adopting the 
above RT we can use Taylor and Weinberg’s proce- 
dure [ 15-J to derive E,; i.e. E,( &, &J is the slope of 
the In RT versus l/T plot obtained from a series of 
runs with different heating rates p for the given &, 

8,. A few E,-curves are shown in fig. 4. The G?= ( - 2, 
0,O; 1 ), C= (0.2,0.2,5000) curve shows that except 
for a transient initial period of monomeric A-con- 
sumption, E. z constant k: 28 kcal/mole indicating 
reaction with island perimeter A-atoms, each bonded 
to (E,-Eo)Il w,I w 2 other As. In contrast, for 
t,, = 0, i.e. non-aggregated A, E. z E. as long as sin- 
glet As react (first peak in fig. 3A); later 
EazE,,-wAAu -26 kcal/mole when doublets start 
reacting. At variance with both cases above, the ordi- 
nary QCA predicts monotonically decreasing Ea. 

5. Concluding remarks 

We have demonstrated some of the effects associ- 
ated with adsorbate interactions and islanding for a 
reactive chemisorbed system, using a newly devel- 
oped modeling scheme. We have specifically referred 
to the effects of adsorbate aggregation on thermal 
desorption spectra, because they serve as a common 
tool for extracting kinetic information. Yet it should 
be noted that we do not suggest (at least not at this 
stage) theoretical analyses of the type presented 
above as a means (or an “inversion” procedure) to 
derive lateral interaction parameters. These may be 
more reliably inferred by independent measure- 
ments, e.g. from phase diagrams. Rather, our aim was 
mainly to demonstrate the qualitative trends, and the 
complications, arising from lateral interactions. The 
systems we have investigated are, admittedly, ideal- 
ized. Nonetheless, extension to more general (and 
realistic) cases is, at least in principle, straightfor- 
ward. For instance, by considering higher than nn 
interactions one can model, say, p(2x2), ~(2x2) 
overlayers, etc. and study the effects of different lat- 
tice sites and domain boundaries (ground state dege- 
neracies). Similarly, A-migration and A- and B- 
desorption can be easily included in the model. 
(Extension of our approach along these directions is 
now in progress). Of course, interaction parameters, 
diffusion rates and transition state characteristics are 
required for reliable modeling of specific systems. 
Such information is being steadily accumulated. 
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