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We consider micellar solutions whose surfactant molecules prefer strongly to 
form small, globular aggregates in the absence of intermicellar interactions. At 
sufficiently high volume fraction of surfactant, the isotropic phase of essentially 
spherical micelles is shown to be unstable with respect to an orientationally 
ordered (nematic) state of rodlike aggregates. This behavior is relevant to the 
phase diagrams reported for important classes of aqueous amphiphilic solutions. 
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1. I N T R O D U C T I O N  

It is often tempting to treat micellized surfactant solutions as colloidal sus- 
pensions of particles of given size and shape. The "particles," however, are 
aggregates of large numbers of individual molecules, each in exchange 
equilibrium with all others in the solution. Accordingly, the aggregates do 
not in general maintain their integrity upon changes in temperature, con- 
centration, or onset of long-range positional or orientational order. Rather, 
the self-assembly process is coupled to the system's thermodynamics, and 
the micelles vary their size and/or shape in response to any change in 
macroscopic state. Even in the dilute, ideal-solution, limit, for example, 
small globular ("spherical") aggregates are known to transform themselves 
into extended, cylinderlike micelles upon increase in concentration/~) At 
higher concentrations, where repulsive interactions between micelles 
become important, the cylinders reorganize into a smaller number of larger 
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aggregates, first to maximize the packing entropy ~2) and then in response to 
the alignment arising at the isotropic-nematic (I-N) transition. (3) 

In the present paper we consider an even more dramatic manifestation 
of coupling between micellar self-assembly and interaggregate interactions. 
Specifically, we treat the situation in which surfactant molecules form 
small, globular micelles throughout the entire concentration range of the 
isotropic phase; rodlike, extended structures appear only upon the onset of 
nematic order. In "ordinary" colloidal suspensions, of course, this possibility 
does not arise: the particles must be sufficiently anisotropic in the isotropic 
phase in order for liquid crystallinity to develop. In surfactant solutions, 
on the other hand, there are instances where no evidence of micellar 
anisotropy is seen in the isotropic phase, even as one approaches the long- 
range ordered hexagonal or lamellar states at high concentrations. (4) 

In Section 2 we outline the free energy considerations necessary to 
describe interacting micelles in their isotropic and nematic phases. We 
include there the effects of the molecular exchange equilibrium, excluded- 
volume forces between aggregates, and long-range orientational ordering. 
Numerical results are presented in Section 3 and discussed in the context of 
both phenomenological and experimental studies of concentrated micellar 
solutions. 

2. FREE ENERGY CONSIDERATIONS 

2.1. Free Energies 

Let A, denote the Helmholtz free energy per amphiphile in an 
aggregate comprised of s molecules. For present purposes it is sufficient to 
consider spherocylindrical micelles consisting of a body of length L capped 
at each end by a hemisphere of diameter D. (L ~ 0 corresponds to the limit 
of spherical aggregates.) From earlier work (5) we can write (in units of 
kB T) 

As--#~yl+ + -  In - - l + a s + Z ~  (1) 
S 

~ 0  ~ 0  ~ 0  ~ 0  Here 6=--m ( ]2sph- -~cy l )  , where /~cyi and /~sph a r e  the standard chemical 
potentials per molecule in the body and cap, respectively, of an s-aggregate. 
m is the number of amphiphiles in the end caps and is given by m = (47r/3) 
(D/2)3/v, where v is the volume of each surfactant chain. ~1) Note that 
positive (negative) 6 values correspond to a natural preference for the 
amphiphilic species to pack into cylindrical (spherical) geometry. ~bs is 
the volume fraction of molecules incorporated into s-mers, and 



Micellar Solutions 1309 

(1/s)[ln (Ojs) -1]  describes the "entropy of mixing" contribution, which 
favors organization of the system into many aggregates of small size. The 
fourth term, (US)as, arises from the loss of orientational entropy upon 
micellar alignment: as-S  dfJf,(s 4nf+.(s where f,(s is the fraction 
of s-micelles having orientation f2. (For an isotropic distribution of par- 
ticles, where f,(t2) = 1/&z, a s = 0.) Finally, X, incorporates the effects due to 
interactions between micelles. For sufficiently dilute solutions, with steric 
forces between micelles, Zs can be approximated by the leading term in a 
virial expansion(6): 

where v,,(s Q') is the pair excluded volume between an s-mer and r-mer of 
orientation/2 and s respectively. 

Consider in more detail now the intramicellar energy 
~0 ~0 - 0  ~0 c]---= m(ktsph- #cyl)- If ~cyI  < ]gsph' a surfactant molecule prefers the environ- 

ment in the cylindrical body and there is a "push" for the micelles to grow 
beyond the minimum size m (that of the spherical aggregate). This is the 
well-studied situation (7) appropriate to surfactants such as cetyltrimethyl- 
ammonium bromide (CTAB), where long, cylindrical micelles are found (s> 
to dominate shortly after the critical micelle concentration (CMC) is 
exceeded. That is, the 6Is term (with 3 positive and large compared to kT) 
overwhelms the (1/s)[ln(~js)-1] dispersion entropy contribution, and 
minimum-size micelles are not competitive. If ~~ < ~o #oy~, on the other hand, 
the aggregates will tend to retain their spherical shapes until interaction 
effects become important at much higher concentrations. Negative-3 
behavior of this kind is expected in nonionic surfactants such as the 
large-m CnEO m polyoxyethylene ethers; there the (OCH2CH2)mOH head 
groups require more packing room than the CH3(CH2),~_ 1 alkyl chains, 
and positive-curvature spheres are the strongly preferred micellar geometry. 

Before proceeding to treat the alignment and interaction terms in the 
free energy, it is useful to simplify them by restricting the micellar orien- 
tations to lie along any of three mutually perpendicular axes. (9/ We also 
suppress-polydispersity and take s to be the single size characterizing the 
elongated micelles. These approximations have been shown to preserve all 
qualitative aspects of the liquid crystal phase transition. ~ It follows 
immediately that 

3 

or, - f dr2 f~((2) In 4~f+(f2) --+ ~ X i In 3X i (2) 
i - -1  

where Xi is the mole fraction of rods pointing in the ith direction: 



1310 Bagdassarian et  al. 

~ 3 =  1 X i ~ -  1. (Again, if X 1 = X 2 = X 3 ~- 1/3, i.e., in the isotropic case, a = 0.) 
Similarly, the second virial term can be written as 

! f~(f2)L(f2')~-~os'(i 'J) x, Xj (3) Z,= ~ f df2 f dr2 ' v'( Q' f2' (~ 3 
YS ., j YS 

vs,(i, j) now refers to the pair excluded volume between an s-mer in the ith 
direction and one in the jth.  Finally, we have 

A s - o  3 ! (  ! ~ -x v~'(i' J) (4) 
= # c y l  "t- --"]-S In 3 + in - - -  1 + -- X' In Xi + z - - i  i. j 

The above, Onsager, expression, retaining only the linear term in ~b, is 
quantitatively valid for sufficiently anisotropic particles. (6'1~ Since we want 
to treat, at the same time, concentrated phases of spherical particles, it is 
useful to include higher-order terms in ~b. We do so by expanding the free 
energy in powers of, not the volume fraction ~b, but the variable 
y-q3/(1-(~). Truncations of equations of state for several hard-particle 
geometries, written as summations in powers of y, have been shown to be 
rapidly convergent. (m The free energy is transformed into a y expansion 
by simply recognizing that infinite-order series in ~b and y must be identical 
and then by equating the coefficients of like powers in each. In the "Y2" 
level of truncation, i.e., keeping only through quadratic terms in y in the 
pressure, 

j s  = ' ~  l n 3 + l n Y - l - y + ~ X ~ l n X ~ +  (5) 
# c y l  S i i, j SY 

2.2. Isotropic Suspensions 

In the isotropic state, the mole fraction of spherocylinders pointing in 
each of the three allowed directions is 1/3 (=Xi);  it follows that the 
In 3 + Z i  X~ In X~ terms cancel (a = 0). Using the familiar oss = 4reD3/3 + 
2~D2L + 2DL 2 sin 7 (where 7 is the angle between the rod axes), we obtain 
for the excluded-volume term, 

Y ~V"(i'J) xixj=8rc 1 2 ~ + 8 {  2 
2 ,., sv ~z(2 + 33) Y 

with ~=-L/D=2(s/m - 1). Substituting this into Eq. (5) and introducing 
a = 0 yields the free energy per surfactant molecule 

I ln s y- 8re+ 12~z~ + 8~2 ] + s  +1 - l - y - }  y (6) As~~_-o_ #cyl s re(2 + 33) 
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in the isotropic phase. Minimization with respect to s gives the optimum 
micellar size for a given y (or, equivalently, ~b): 

32ym] 
g= y e x p [ 6 + ( 3 - ~ )  y+ 9rcgJ (7) 

A graphical solution to Eq. (7) indicates directly that there is a unique 
g>  0 for any given y, 8 pair. Furthermore, analysis of AI s shows that this 
single extremum g corresponds to a minimum in the free energy: .~. 
increases monotonically with s for s > L with 

16 
lim A] = 1~cOyl -]- ~ y 

s~co  

For fixed 8, ~ increases with y; the micellar size grows with concentration 
(in accord with previous work). With 8 free and y fixed, on the other hand, 
the micelles are seen to get smaller as 8 becomes more negative. Indeed, for 
sufficiently negative 6 and small enough y, the solution to Eq. (7) appears 
at g<m, in which case we need to set g=m, since A~ from Eqs. (5) and (6) 
holds only for s ~> m, i.e., s = m is the smallest allowed aggregation number. 

2.3. Al igned States and the S p h e r e - N e m a t i c  Transit ion 

From the uniaxial symmetry of the nematic, X~=X2=x and 
X3= 1 - 2 x  for the mole fractions in Eq. (5), thereby obtaining, with 
inclusion of the appropriate Vss(i, j), 

~ _  ~o ~ + ! ~ l n Y _ y _ l + l n 3 + 2 x l n x + ( l _ 2 x ) l n ( l _ 2 x  ) 
- ~ y l + s  Sk s 

8x+  1 2 ~ + 4 8 ~ 2 x - 7 2 ~ 2 x  2 ] 
+ ~(2+ 3~) Y (8) 

Setting OAN,/Sx = 0 gives the extremization equation for fixed ~: 

~(2 + 3~) In 1 - 2x (9) 
( l - 3 x ) y -  24~2 x 

(The case in which ~ is not fixed, but rather is allowed to couple with 
alignment, is treated elsewhere(3); see also the discussion in Section 3 
below.) Equation (9) leads to the familiar result that x =  1/3 (the isotropic 
distribution) is a solution for all y, and that at some critical value Yc two 
new solutions appear, one with x decreasing with increasing y, the other 
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increasing. The first describes the stable thermodynamic situation 
corresponding to preferential alignment of the rods along a special direc- 
tion [-Yc turns out to be equal to 2.75~(2+ 3~)/24~2]. 

3. RESULTS A N D  C O N C L U S I O N S  

Since the quantity ~b.~s is proportional to the system's free energy per 
unit volume, its r dependence in each of the (isotropic and nematic) phases 
can be used to locate a first-order transition via the common-tangent con- 
struction. For a given choice of 6 and m--and ~ for the nematic, we simply 
determine AI s and . ~  as functions of ~b by minimizing with respect to size 
(s) and degree of alignment (x), respectively. Figure 1 shows the results for 
the corresponding free energy densities in the case of 6 = -3kT, m = 20, 
and ~ = 5. It is important to note that the optimum size ~ in the isotropic 
phase begins to exceed the minimum (spherical) value m only for large ~b; 
specifically, for this choice of 6, m spherical micelles give way to 
(isotropically distributed) rods iff ~b~>0.64. But this ("sphere-to-rod") 
"transformation" is preempted by the I -N transition: as pictured, the 
isotropic and nematic phases coexist for volume fractions in the range 
0.57 <r  Accordingly, the transition is seen to take place from a 
system of spheres to one of aligned rods (and is strongly first order). We 
stress that such a transition is possible only when the interacting 
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Fig. 1. Plots of ~b,41s and r  versus r for 6= -3kT, m=20, ~=5 (for the nematic). The 
common-tangent construction shows the coexistence of isotropic and nematic phases for 
volume fraction 0.57 < ~b < 0.81; spherical micelles give way to rods in the isotropic phase only 
for ~b >/0.64. 



Mieellar Solutions 1313 

particles--here micelles--are able to change their size and shape in 
response to thermodynamic state. 

As mentioned in the Introduction and in Section 2.1, there are many 
surfactant molecules which prefer the stronger curvature of a globular 
(~spherical) aggregate to that of more extended structures. Our object in 
the present work has been to point out how a nematic state arises in such 
systems at sufficiently high volume fraction. The competing free energy 
terms which we have featured are the same as those discussed in previous 
studies(2'3): the (1/s)[ln(Os/S)-  1 ] mixing entropy favors a large number of 
small aggregates, the (1/s)a orientational entropy is maximized by an 
isotropic distribution of particles, and the (1/s)z packing entropy prefers 
(growth and) alignment of the micelles. Note that, although we have fixed 
for simplicity the nematic rod axial ratio 3, minimization of ,3, y with 
respect to (alignment x and) size ~ (~s)  would only stabilize further the 
nematic state. Accordingly, our prediction of a sphere-to-nematic transition 
would not be qualitatively changed: we conclude that aggregate anisotropy 
is not necessary for the onset of liquid crystallinity in micellar systems. 
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