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TABLE 111: The Same Parameters as in Table I for NaC Solutions 
cM, M cw9 g/cm3 s,,,, A-‘ d A ,  8, MA NA 
0.0299 0.0129 0.063 f 0.005 110 f 9 7200 17 
0.0697 0.0300 0.087 f 0.005 79 f 5 6400 15  
0.1411 0.0607 0.105 f 0.006 66 f 4 7300 17 
0.2504 0.1078 0.122 f 0.005 57 f 4 8300 19 

NaCDC concentrations, presented in Figure 2 (double rings point), 
lie nearly on the same curve as in the case of NaDC. Calculated 
dA, MA, and N A  values are presented in Table 11. Evidently there 
is no difference between these two bile salts obtained by X-ray 

results. 
However, the results for sodium cholate are essentially different. 

The X-ray scattering maxima for NaC water solution (Figure 6 )  
are more widely spread than in the case of NaDC and NaCDC. 
For this reason it is difficult to establish their position, s,,,, with 
high accuracy. The scattering intensity is about twice lower than 
for two other bile salts of the same concentration. The calculated 
dA, MA, and N A  values for NaC solutions are presented in Table 
111. The aggregation number of sodium cholate micelles does 
not reveal concentration dependence, or if it exists this dependency 
is very weak. 
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I n  this paper we extend our earlier theories of chain statistics in amphiphilic aggregates to include the important case of 
surfactant monolayers. Explicitly, the monomer packing conditions are relaxed to allow for the possibility of nonuniform 
segment densities. Minimization of the chain free energy is carried out under the constraints of inequalities imposed on 
moments of the conformational distribution function. Results are presented for the segment density and lateral pressure 
profiles as a function of area per molecule and chain length. We also discuss the computation of surfactant free energies 
and their relationship to the successive gas - liquid and “expanded liquid” - “condensed liquid” phase transitions in adsorbed 
monolayers at the air/water interface. 

1. Introduction 
Monolayers of amphiphilic molecules are of interest from both 

practical and theoretical points of view.’ Examples of such 
monolayers are the surfactant films in microemulsions, the 
(Langmuir) films formed by spreading amphiphilic molecules on 
a water/air (or water/oil) interface, the dense (Langmuir- 
Blodgett) films of chain molecules on solid supports, or the two 
opposing lipid monolayers in biological membranes. Among the 
major issues concerning the statistical thermodynamic description 
of these systems are the dependences of chain conformation 
properties (e&, segment density profiles) and thermodynamic 
functions on the average area per chain, the chain length, or the 
nature of the support and the apolar solvent (oil or air) surrounding 
the chains. Related questions arise in systems of grafted polymer 
chains (e.g., on colloidal particles). However, because of the very 
different chain lengths involved, the theoretical approaches suitable 
for treating polymer “brushesn2 are generally inadequate for 
treating the relatively short (typically 10-20 segments) amphiphile 
chains. 

I n  a series of papers we have recently presented a mean-field 
theory of chain packing statistics in amphiphilic aggregates and 
applied it to study a variety of systems and phenomena.3” In 
these studies we have focused on ”compact” aggregates, such as 
surfactant micelles or lipid bilayers in which the hydrocarbon tails 
of the constituent amphiphiles form a liquidlike hydrophobic core, 
uniformly packed with chain segments (monomers). For these 
systems we have calculated various conformation properties, such 
as bond order parameters and segment spatial distributions, 
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showing good agreement with the experimental or computer 
simulation data4 whenever comparison is possible. The theory 
has also been used to calculate thermodynamic functions such as, 
for example, conformational free energies in pure and mixed 
aggregates of different g e o m e t r i e ~ ~ ? ~  or (for the first time from 
a realistic molecular theory) curvature elastic constants of am- 
phiphilic f i h ” s 6  The possibility of applying the theory to systems 
where the density of chain segments in the hydrophobic region 
is not necessarily uniform has already been mentioned’ but, so 
far, has not been explicitly demonstrated. We do so in this paper, 
with particular reference to amphiphilic monolayers. (The pre- 
liminary calculations of monolayer bending constants reported 
in ref 5b are based on the procedure described in section 2.) 

In our treatment of compact aggregates the assumption of 
uniform segment density in the hydrophobic core is translated into 
packing constraints (reflecting excluded-volume interactions) on 
the distribution of chain conformations, which is then derived by 
minimization of the appropriate free energy f ~ n c t i o n a l . ~  (An 

(1) For a comprehensive recent review, including descriptions of new ex- 
perimental techniques, see: Knobler, C. M. Adu. Chem. Phys. 1989, 77, and 
references therein. 

(2)  See, e.g.: (a) Milner, S. T.; Witten, T. A,; Cates, M. E. Europhys. Leff .  
1988, 5, 413. (b) Macromolecules 1988, 21, 2610. 

(3) (a) Ben-Shaul, A,; Szleifer, I.; Gelbart, W. M. J .  Chem. Phys.  1985, 
83, 3597. See also: (b) Proc. Nafl .  Acad. Sci. U.S.A. 1984, 81, 4601. (c) 
Physics of Amphiphiles: Micelles, Vesicles and Microemulsions; Degiorgio, 
V., Corti, M., Eds.; North-Holland: Amsterdam, 1985; p 404. (d) Ben-Shaul, 
A.; Gelbart, W. M. Annu. Rev. Phys. Chem. 1985, 36, 179. 

(4) Szleifer, 1.; Ben-Shaul, A,; Gelbart, W. M .  J .  Chem. Phys. 1985, 83, 
3612; 1986.85, 5345; 1987, 86, 7094. 

(5)  (a) Szleifer, 1.; Kramer, D.; Ben-Shaul, A,; Roux, D.; Gelbart, W. M. 
Phys. Reu. Lefl. 1988, 60, 1966. (b) Ben-Shaul, A,; Szleifer, I.;  Gelbart, W. 
M. In  Springer Proceedings in Physics: Physics of Amphiphilic Lnyers; 
Meunier, J. ,  Langevin, D., Boccara, N., Eds.; Springer-Verlag: Berlin, 1987; 
VOl. 21, p 2. 

(6) Szleifer, I .  Ph.D. Thesis, Hebrew University, Jerusalem, 1988. 
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alternative derivation, based on expansion of the many chain 
partition function, leads to exactly the same di~tribution.~”) On 
the other hand, in monolayers, packing constraints set only upper 
limits on the density profile of chain segments, and the actual 
profile is an outcome of the minimal free energy procedure. The 
principles of the derivation are discussed in section 3, and nu- 
merical results pertaining to alkyl chains of 8-16 carbons are 
presented in section 4. In these results we emphasize the de- 
pendence of the density and lateral pressure profiles and of the 
conformational free energy on chain length and head-group area, 
in the regime corresponding to the liquid state of the monolayer 
(-22-50 A2). This is the region where chain-chain repulsion 
is significant and where the chains lose conformational entropy 
as the monolayer is compressed. Both in the theoretical discussion 
and in the numerical examples we concentrate on a detailed 
treatment of the conformational free energy and chain statistics 
of the monolayer. In our derivation of the conformational dis- 
tribution function, we do not include (or, alternatively, treat as 
constants) the translational entropy of the chains and the energy 
of interchain attraction. Accordingly, in a strict sense, our results 
pertain to monolayers of immobile chains in good (“athermal”) 
 solvent^.^ The significance of, and the interplay between, these 
various terms in the monolayer’s free energy are discussed briefly 
in section 2 and in more detail in section 5 .  

The theoretical interest in amphiphile monolayers has intensified 
recently, largely following some important experimental and 
computational developments. One such development concerns 
the observation of interesting “super structures” of solid domains 
(e.g., of spiral, elongated, dendritic, and ordinary rounded shapes) 
coexisting with a liquid phase, in phospholipid monolayers.1*8-10 
Different thermodynamic theories have been proposed to explain 
the phase behavior of these systems.11J2 In parallel, several 
molecular dynamics studies have been concerned with chain 
packing statistics in the high-density liquid and solid phases of 
the monolayer. 13-15 Another important development involves the 
new experimental evidences supporting the existence of two 
first-order fluid-fluid transitions in Langmuir films: the gas- 
“liquid-expanded” (G-LE) and the “liquid-expanded”-”liquid- 
condensed” (LE-LC) transitions.IJ6J7 

Many theoretical attempts to explain the successive fluid-fluid 
phase transitions have been reported in the past 15 years, with 
particular emphasis on the nature of the LE - LC t r an~ i t ion . l~ -~~  

(7) de Gennes, P. G. Scaling Concepts in Polymer Physics; Cornel1 
University Press: Ithaca, NY, 1979. 

(8) See, e.g.: (a) Fischer, A.; Sackmann, E. J. Colloid Interface Sei. 1986, 
112, 1. (b) Fischer, A.; Liische, M.; Mohwald, H.; Sackmann, E. J. Phys., 
Lett. 1984, 45, L785. 

(9) See, e.g.: (a) Heckl, W. M.; Cadenhead, D. A.; Mohwald, H. Lung- 
muir 1988,4, 1352. (b) Kirstein, s.; Mohwald, H.; Shimomura, M. Chem. 
Phys. Lett. 1989, 154, 303. (c) Helm, C. A.; Mohwald, H.; Kjaier, K.; 
Als-Nielsen, J. Biophys. J. 1987, 52, 381. (d) Floresheimer, M.; Mohwald, 
H. Chem. Phys. Lipids 1989, 49, 231. (e) Miller, A.; Knoll, W.; Mbhwald, 
H. Phys. Rev. Lett. 1986, 56, 2633. 

(10) See, e.g.: (a) Weis, R. M.; McConnell, H. M. J. Phys. Chem. 1985, 
89,4453. (b) McConnell, H. M.; Moy, V. T. J. Chem. Phys. 1987,86,5852. 

( 1  1) (a) Keller, D. J.; McConnell, H. M.; Moy, V. T. J. Phys. Chem. 1986, 
90,231 1. (b) McConnell, H. M.; Gaub, H. J. Phys. Chem. 1986,90,1717. 

( 1  2) (a) Andelman, D.; Brochard, F.; de Gennes, P. G.; Joanny, J. F. C. 
R. Seances Acad. Sei., Ser. C 1985,301,675. (b) Andelman, D.; Brochard, 
F.; Joanny, J. F. J. Chem. Phys. 1987, 86, 3673. 

(13) See, e.g.: (a) Cardini, G.; Bareman, J. P.; Klein, M. L. Chem. Phys. 
Lett. 1988,145,493. (b) Bareman, J. P.; Cardini, G.; Klein, M. L. Phys. Rev. 

(14) Harris, J.; Rice, S. A. J. Chem. Phys. 1988, 89, 5898. 
( 1  5) Mouritsen, 0. G.; Ipsen, J. H.; Zuckermann, M. J. J. Colloid Zn- 

terface Sei. 1989, 129, 32. 
(16) (a) Pallas, N. R.; Pethica, B. A. Lungmuir 1985, 1,509. (b) J. Chem. 

Soc., Faraday Trans. I 1987,83, 585. 
(!7) Moore, B. G.; Knobler, C. M.; Akamatsu, S.; Rondelez, F. To be 

published. 
(18) For reviews of work published before 1981, see: (a) Bell, G. M.; 

Combs, L. L.; Dunne, L. J. Chem. Rev. 1981,81, 15. (b) Wiegel, F. W.; Kox, 
A. J. Ado. Chem. Phys. 1980,41, 195. (c) Caille, A.; Pink, D.; de Verteuil, 
F.; Zuckermann, M. J. Can. J. Phys. 1980, 58, 581. 

(19) See, e.g.: (a) Roland, C. M.; Zuckermann, M. J.; Georgallas, A. J. 
Chem. Phys. 1987,86,5852. (b) Mouritsen, 0. G.; Zuckermann, M. J. Chem. 
Phys. Lett. 1987, 135, 294; Phys. Rev. Lett. 1987, 58, 389, and references 
therein. 
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Figure 1. Schematic rendering of amphiphile chains a t  an air/water or 
oil/water interface. In (a) the chains are free of one another, occupying 
an area per molecule a which is significantly greater than the single-chain 
cross-sectional area a*. In (b) and (c), on the other hand, Q is smaller 
than a*, in the case of good and bad solvent, respectively. 

Various approaches have been suggested, including several lattice 
gas (or Ising) type models, involving highly simplified treatments 
of the conformational degrees of f r e e d ~ m . ’ ~ . ~ ~  Recently, two 
mean-field theories have been pre~ented,*~J~ in which the coupling 
between conformational and translational entropies is explicitly 
considered and chain conformational statistics are treated by using 
realistic models. Both theories predict the appearance of two 
successive fluid-fluid phase transitions but attribute them to 
(apparently) different mechanisms. In section 5 ,  based largely 
on our present study of amphiphile monolayers, it is argued that 
these mechanisms are, in fact, qualitatively similar. It should, 
however, again be emphasized that in our present study we focus 
only on a detailed description of the conformational statistics of 
the chains and are not concerned directly with the equation of 
state (pressure-area isotherm) calculations. 

2. Free Energy Considerations 
Consider a monolayer of N amphiphiles spread over a total area 

A of a water/air or water/oil interface, as schematically illustrated 
in Figure 1 .  For a given type of amphiphile the conformational 
and thermodynamic characteristics of the monolayer depend on 
the average area per molecule, a = A / N  (a = l / a  is the surface 
density), as well as on the temperature and the nature of the 
nonpolar “solvent” (air or oil) surrounding the amphiphiles’ hy- 
drocarbon tails. The interaction potentials between chain seg- 
ments, chain segments and solvent molecules, and solvent mole- 
cules play a central role in the phase behavior of the monolayer 
and in the conformational statistics of the constituent chains. In 
the theory outlined below, the short-range intrachain interactions 
are treated exactly via explicit counting of all allowed chain 
conformations, within the framework of the rotational isomeric 
state The short-range, excluded-volume, interactions 
between different chains are taken into account through packing 
constraints reflecting the mean-field potential imposed on each 

(20) See, e.g.: (a) Barville, M.; Caille, A.; Albinet, G. J. Phys. 1985,46, 
101. (b) Legre, J.-P.; Albinet, G.; Firpo, J.-L.; Tremblay, A.-M. S. Phys. Rev. 
A 1984, 30, 2720. 

(21) Marcelja, S. Biochem. Biophys. Acta 1974, 367, 165. 
(22) (a) Nagle, F. J. Annu. Rev. Phys. Chem. 1980, 31, 157, and refer- 

ences therein. (b) Faraday Discuss. Chem. Soc. 1986, 81, 15 1. 
(23) Cantor, R. S.; McIlroy, P. M. J. Chem. Phys. 1989,90,4423,4431. 

See also: J. Chem. Phys., in press. 
(24) Shin, S.; Wang, Z.-G.; Rice, S. A. Preprint. See also: Popielawski, 

J.; Rice, S. A. J. Chem. Phys. 1988,88, 1279. 
(25) Flory, J. P. Statistical Mechanics of Chain Molecules; Interscience: 

New York, 1969. 
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chain by its neighbors (see below). It has been shown that for 
chains packed at (nearly) uniform density, such as in lipid bilayers 
or in micelles, the conformational properties calculated by these 
approaches are in excellent agreement with experiment and 
computer  simulation^.^^^ 

The inclusion of attractive chain-chain, chain-solvent, and 
solventsolvent interactions in our mean-field treatment is possible 
in different levels of rigor. However, in this paper we ignore them 
entirely since we focus on systems in which chain-chain and 
chain-solvent interactions are the same (Le., chains in a “good” 
or “athermal” solvent as depicted in Figure lb). In the language 
of lattice theories this corresponds to the case where the Flory 
parameter x = [w,, - (w,, + w S , ) / 2 ] / k T  satisfies x << I ;  wc, 
denotes the interaction potential between solvent and chain mo- 
nomers occupying nearest-neighbor lattice sites, etc. Another 
limiting case which will be considered for comparative purposes 
is that of a very poor solvent, corresponding to x >> 1. In this 
limit the system tends to minimize chainsolvent contact resulting 
(at high surface densities) in the formation of a “compact” 
monolayer, as schematically depicted in Figure 1. 

In  addition to interactions with other chain segments and with 
the molecules of the nonpolar solvent, chain segments interact with 
the water surface as well. For certain combinations of the in- 
teraction potentials w,,, war and w,, (w = water) the chains will 
preferentially adsorb onto the water surface, whereas less 
chain-water contact (Le., repulsion) is expected for other com- 
binations. The incorporation of chain-water interaction in our 
theory is straightforward, particularly so because this is a sin- 
gle-chain effect. Consequently, as we shall see below, the ad- 
sorption energy can be treated as an additive contribution to the 
conformational free energy per chain, f,. 

I n  section 5, starting from a general expression for the mon- 
olayer’s free energy, F ,  in terms of the multichain distribution 
function, it is shown that F can be expressed as a sum 

F = F, + U - TS,, 

Here F, = Nf, is the conformational free energy and U is the 
interamphiphile interaction energy. To a good approximation U 
can be separated into Urcp which accounts for the short-range 
interchain repulsion, Val, which represents the long-range attractive 
interactions (including the solvent), and a head-group term Uhg. 
S,, is the translational (or “mixing”) entropy. The significance 
of the terms in ( I ) ,  particularly the separation of the monolayer’s 
entropy into a conformational component which is included in F, 
and a translational one in S,,, is discussed in section 5. Now, in 
order to proceed to the derivation of the conformational distri- 
bution function, we focus only on F, and Urepr treating the other 
terms as independent of this distribution (as appropriate for an 
immobile monolayer in an athermal solvent). 

3. The Distribution of Chain Conformations 
Let +(a,x) dx denote the volume occupied by a chain in con- 

formation a in  a planar layer of width dx which is parallel to, 
and at a distance x from, the water/oil (air) interface. The 
conformations are specified by the coordinates of all atoms (or 
chain segments) along the chain. For alkyl chains represented 
by the rotational isomeric state model, a = b, w specifies a given 
trans-gauche bond sequence, b, and a given overall orientation 
of the chain with respect to the interface, w. The chain volume 
#I is conveniently measured in units of u, the (effective) volume 
of one chain segment in the bulk liquid phase. (For alkyl chains 
u - 27 A’ is the effective volume of a CH2 group.) Thus, #I(a,x) 
dx/u n(a,x) dx is the number of (centers of) chain segments 
of an a chain within x, x + dx. 4(a,x) is proportional to the 
effective cross-sectional area of the chain at plane x. Note that, 
for all a,  Jn(a,x) dx = (l/u).fd(a,x) dx = n is the number of 
segments per chain. 

For any multichain configuration alr  ..., aN the total area 
occupied by chain segments at plane x cannot exceed the mon- 
olayer’s total area A, Le., C~$(a~.x)  I A. Multiplying both sides 
of this inequality by the (normalized) multichain probability 

P(al,  ..., aN), summing over all possible configurations a l ,  ..., aN, 
and dividing by the total number of chains N ,  we find 

(4(x))  = m a )  4(a,x) 5 a (2) 
a 

Here, a = A / N  is the average area per chain and 

P(a) = c P(aI.a2,....aN) (3) 
ab .... uN 

is the singlet probability distribution of chain conformations 
(hereafter the “pdc”). In deriving (2), we have used the fact that 
P(ai) is the same function for all chains, as appropriate for a 
single-component monolayer. (The extension of (2) to mixed 
systems is ~traightforward.~~)  ($(x)) is the average area taken 
up by a chain in plane x, which is proportional to the density of 
chain segments p(x) within the planar layer x, x + dx, namely 
p(x) = (4(x))/au. Accordingly, we shall often refer in the 
following to (+(x)) as the “segment (or monomer) density profile”. 

The restriction (2) on the density profile represents the packing 
constraints imposed on the conformational statistics of a given 
chain, i.e., on P(a), by its neighbors. As noted earlier, and dis- 
cussed in more detail e l~ewhere ,~  these constraints are due to 
excluded-volume (or area) interactions between chains (see also 
section 5). Thus, eq 2 is a direct consequence of the fact that the 
term Urep in ( 1 )  is either 0 or m: Urep = 0 for all allowed, Le., 
nonoverlapping, chain conformations; on the other hand, if any 
two chains overlap (hence (2) is violated) VI, = m, implying that 
the corresponding chain configuration is forbilden. The constraint 
( 2 )  expresses the way in which Urep is coupled to F, in F. 

Many different choices of P(a) can satisfy the inequality ( 2 ) .  
But the best approximation to the true pdc is the one which 
minimizes the singlet (“mean-field”) free energy 

f, = c P ( a )  € (a )  + k T x P ( a )  In P(a)  (4) 

subject to the packing constraint (2) and the normalization 
condition x P ( a )  = 1. The first term on the right-hand side of 
(4) is the average internal energy per chain while the second is 
equal to -Ts, with s, = -kx:P(a) In P(a) being the conformational 
entropy per chain. In the present context the internal energy 
includes two terms: e(.) = eb(a) + ea(a). cb((Y) is the energy 
associated with a given bond sequence, e.g., in the rotational 
isomeric state scheme eb(a) = ng(a)eg where ng denotes the number 
of gauche bonds along a chain in conformation a and eg (- 500 
cal/mol) is the gauche energy. e,(.) is the adsorption energy 
which depends on the distances of the various chain segments from 
the water surface. In the simplest approximation, corresponding 
to a square well interaction potential of width f and depth +, we 
have ea(a) = n,(a)$, with n,(a) denoting the number of segments 
of an a chain located at  a distance x I f from the surface. 

For “compact” aggregates such as surfactant micelles or lipid 
bilayers, in which the density of chain segments is (nearly) uniform 
throughout the hydrophobic core, the packing constraints (2) are 
strict equalities, Le., ($(x)) = a for all x. (In curved aggregates 
a = u(x) ) .~-~  In this case the minimization off, subject to (4(x)) 
= a is straightforward, yielding 

a 

serving as the normalization factor. The ~ ( x )  are the Lagrange 
multipliers associated with the packing constraints (4(x)) = a(x) .  
In other words, ~ ( x )  is the lateral pressure profle  conjugate to 
the area profile (d(x) ) .  The numerical values of the ~ ( x )  are 
determined by solving the (“self-consistency”) equations obtained 
by substituting (5) back into (#I(x)) = a (for compact planar 
aggregates). Explicitly, for every value of x we have 
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The solution, ~ ( x ) ,  satisfies ( 7 )  for all x simultaneously. The range 
of x is the width of the hydrophobic region, i.e., of the order of 
the length of a fully extended chain, I .  In actual computations 
we discretize the problem by dividing this region into several 
parallel layers, i = 1, 2,  ..., L of width AL (small enough to ensure 
smooth variation of n ( x )  and ( $ ( x ) ) ) .  Equation 7 then reads 
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C[4La) - 51 exp[-P4a) - PCn;$,(.)I = 0 (all i) (8) 
U J 

with ~$((a)  denoting the number of segments of an a chain in layer 
i, ii = aAL/u = is the average number of segments in this 
layer, and n, is the corresponding lateral pressure. 

With the aid of P(a) one can calculate various conformational 
properties of the chains, e.g., the bond order parameters q k  = 
(P2(c0s 6k)), with ek denoting the angle between a specific (e&, 
Ck-H or Ck-Ck+,) bond and a fixed direction in space (typically 
the normal to the interface); P2(x)  = (3x2-1)/2 denotes the second 
Legendre polynomial. Similarly, using P(a)  we can calculate 
thermodynamic functions in a mean-field approximation (as im- 
plied by the use of a singlet distribution function). In particular, 
substituting (5) into (4), we get 

f, = -kT In z + l ~ ( x ) ( $ ( x ) ?  dx 
= -kT In z + sCa (9) 

Szleifer et al. 

where in passing to the second equality we have used ($(x)) = 
a and defined the total (conformational) lateral pressure nc = 
sn(x )  dx. Using in (9) the explicit form of z from (6), one finds 
that n ( x )  = -af,/a(q5(x)); Le., n ( x )  is indeed an area derivative 
of a free energy. Similarly, using af,/aa = Jdx (af, /a($- 
( x ) ) ) ( a ( $ ( x )  j / a a ) ,  (4(x)) = a, and the definition of n,. we find 
that 

K c  = -aL/aa 
is the external lateral pressure which must be applied to the 
monolayer in order to compensate for the loss in conformational 
free energy associated with chain compression. Note, finally, that 
sincef, is a Helmholtz free energy, z is not a canonical but, rather, 
an isothermal-isobaric partition function; Le., g, = -kT In z is 
the Gibbs potential per chain.3 

The functional form of P(a)  for monolayers is similar to the 
expression given in (5)  for compact aggregates. However, several 
important differences should be noted with respect to the mini- 
mization procedure off, and the special significance of the ine- 
quality in the packing constraint ( $ ( x ) )  I a. Basically, the 
differences stem from the fact that the state of minimal free energy 
in monolayers corresponds to a density profile characterized by 
(q5(x)) = a in certain regions of x and by (4(x)) < a in  others. 
Furthermore, as we shall see below, T ( X )  > 0 for those x values 
where ( + ( x ) )  = a, whereas for ( 4 ( x ) )  < a we have n ( x )  0. In 
other words, ( $ ( x ) )  I a turns out to be an “irrelevant” (or 
“redundant”) constraint for every x where the P(a)  which min- 
imizes f, yields ( @ ( x ) )  < a. 

To clarify the last statements, let us consider the changes in 
P(a)  as the average area per chain, a = A / N ,  is gradually de- 
creased. Suppose first that the chain density is so low that a is 
larger than the effective cross-sectional area of a single isolated 
(”free”) chain. Specifically, let a > 4 ( x , a )  for all a and all x .  
Then, of course, we also have a > ( @ ( x ) ) ~  with ( @ ( x ) ) ,  = 
C z o ( a )  ~ ( x , c u )  denoting the average area of a free chain at plane 
x .  Clearly, from the definition of a free chain its pdc is Po(a) 
= exp[-8c(a)]/zo, which can also be regarded as a special (low 
density)-zero lateral pressure-limit of (5). Alternatively, Po(a) 
is the pdc which minimizesf, subject to no packing or other 
constraints except normalization and impenetrability of the in- 
terface. Furthermore, it is not difficult to show6 thatf,O, the free 
chain’s free energy (obtained by substituting Po(cy) into (4)) is 
the lowest possible value off,. By definition, a relevant constraint 
on P ( a )  is a restriction implying f, > fA otherwise the constraint 
is irrelevant. Thus if  ( @ ( x ) ) ~  < a, the inequality ( 2 )  i.e., (@(x)) 
< a, is an irrelevant constraint because it is automatically satisfied 
by Po(a) which corresponds to the absolute minimum offc. Since 
Po(a) can be regarded as a special case of ( 5 )  with ~ ( x )  0. we 

can also say that the Lagrange multipliers conjugate to irrelevant 
constraints vanish identically. 

Let x* denote the ‘‘latitude’’ x where the area profile of the 
free chain ( $ ( x ) ) ~  is maximal, with area a*. As the monolayer 
is compressed, a point will be reached where a = a* = (+(x*)),,. 
Slightly beyond this point, when a = a, = a* - 6a, the chains must 
be squeezed at x*  (within a small region 6x* around this point), 
in order to satisfy (c$(x*))  I a, < a*. Since now (4(x*))  < 
( 4 ( ~ * ) ) ~ ,  it follows that P(a)  is different from Po(a) and, cor- 
respondingly, fc > f:. Thus, the constraint ( 2 ) ,  ( $ ( x ) )  5 a, 
becomes a relevant one for x = x* (or, more precisely, for x = 
x* f 6 x * / 2 ) .  If 6a = a* - a is infinitesimal, we still have ( 4 ( ~ ) ) ~  
I a for x # x * ;  Le., ( 2 )  remains an irrelevant constraint at x z 
x * .  Let Pi(.) denote the particular P ( a )  which minimizesf, 
subject to ( $ ( x * ) )  I a,. Pi(.) is easily derived by noting the 
following: (i) For any preassigned value of ( $ ( x * ) )  the P(a) that 
minimizes f, is of the (generalized canonical) from P(a)  - 
exp[-pt(a) - pn(x*)  $ ( a , x * )  6 x * ] ,  with n ( x * )  > 0 to ensure 
( $ ( x * ) )  < ( $ ( x ) ) ~ .  (ii) Substituting (the normalized) P(a) into 
fc, we find a f , / d ( $ ( x * ) )  = -n(x*)  < 0. Hence, the lowest free 
energy price required to satisfy (@(x*)) I a l  will be obtained for 
( $ ( x * ) )  = a, consistent with out intuitive expectation that f: - 
f, is minimal when the extent of chain distortion, measured by 
( $ ( x * ) ) ~  - ( $ ( x * ) ) ,  is minimal. Thus, PI(.) is given by the 
canonical functional form above, with the numerical value of n(x*) 
determined by solving ( $ ( x * ) ) ,  = C P l ( a )  4 ( x * , a )  = a,. 

Upon further decrease in a there will be additional regions of 
x besides x* (but still near to it) where the free chain’s area 
exceeds the available area, Le., regions where ( $ ( x ) ) ~  > a. (In 
fact, if a = u2 5 a, ,  we will also have there ( $ ( x )  j ,  > a2, etc.) 
That is, the range of x over which (4(x)) I a is a relevant 
constraint increases gradually as the monolayer is compressed. 
Following similar arguments to those given above, it follows that, 
for any a, P(a)  will be given by the general form ( 5 ) ,  with n ( x )  
# 0 only for x where ( $ ( x ) )  = a. In the other regions ( $ ( x ) )  
< a is trivially satisfied and n ( x )  E 0. It should be noted that 
the change in the range of x where n ( x )  # 0, attendant upon a 
decrease in a, is accompanied by a change in the magnitude of 
n ( x )  as well. 

Finally, a remark should be made regarding a somewhat subtle 
difference between the evaluation of n ( x )  in monolayers and 
compact aggregates. In the latter case, we simply solve the coupled 
equations for all x (more precisely, we solve (8) for all layers i ) .  
In  the case of a monolayer, on the other hand, one first needs to 
identify the range of x for which ( $ ( x ) )  = a ensures ( $ ( x ? )  < 
a for x’  # x. (In the discretized version, we need to identify the 
layers i for which the set of constraints ( $ i )  = a ensures ( k )  < 
u for j # i . )  In general, there is more than one choice (of x region 
or set of i ’ s )  consistent with this condition. However, only one 
set of constraints leads to the P(a) which minimizes f,. Although 
there is no general algorithm for identifying the desired set of 
constraints (layers), the practical procedure is quite simple. 
Basically, we follow the gradual compression pictured above. 
Namely, starting with ($(x)) for a free chain we gradually reduce 
a and note which parts ( x  values) of the chain must be squeezed 
as a - u - 6a, etc. The lateral pressure profile n ( x )  follows 
qualitatively the chain distortion profile ( 4 ( x ) ) , ,  - ( $ ( x ) ) .  

4. Results and Analysis 
In  this section we present some calculations illustrating the 

conformational statistics of amphiphile chains in monolayers. All 
the results are for single-chain amphiphiles of the type H- 
(CH2)I,1-CH3, with H denoting the polar head group. The head 
group is treated as a p i n t ,  marking the chain origin. The chain 
conformations are represented by the rotational isomeric state 
scheme,25 with eg = 500 kcal/mol. As in previous  calculation^,^^ 
we generate for every chain length all the allowed “trans-gauche” 
bond sequences, h. (By matrix methods26 we calculate the co- 

(26) As opposed to assertions elsewhere [Dill, K. A.; Naghizadeh, J.; 
Marquee, J. A. Annu. Reu. Phys. Chem. 1988,39,425], we do not count the 
conformations ‘by hand” and the chain lengths are not -no longer than about 
4-5 segments”. 
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Figure 2. (a) Lateral pressure profile, ~ ( x ) ,  in units of k T / u ,  for CI2 
chains at avera e areas per chain of 2 5 ,  30, 35, and 40 A*. x measures 

of u / A  = 27 A2, including that (see dotted curve (b(x))) for a “free” 
chain. 

the distance in w from the surface. (b) Corresponding (b(x))’s, in units 

ordinates of all chain segments and hence + ( a , x )  for .every a.) 
We exclude all self-crossing conformations by discarding every 
conformation where any two nonbonded segments are less than 
1.5 A apart.6 Then, for each allowed b we sample a number 
(usually 36) of overall chain orientations, a, and head-group 
positions, xo, with respect to the interface. More explicitly, each 
w is specified by the set of three Euler angles describing the overall 
orientation of a chain (with a rigid b) ,  and xo is the distance of 
the head group from the water/oil (air) interface at x = 0. (xo 
is randomly chosen within the interval -6x0/2 I x I 6x0/2 with 
6xq = 0.75 A.)  Note that for every b we keep only those w ,  xo 
which ensure that all the n chain segments are located on one side 
of the interface (e.g., x L 0, or more precisely x L -6xo). The 
number of allowed conformations, a,  included in the calculation 
ranges from - I O 4  for n = 8 to - I O 7  for n = 16. It should be 
stressed, however, that for each chain length the conformations 
are generated (and classified according to their 4i(a)) only once, 
the variation with the area per head group of their statistical 
weights, P ( a ) ,  being determined by solving (7) or (8) for the 
appropriate a. 

In the calculations below we have chosen n = 12 chains as our 
“standard” example. However, results are also presented for n 
= 8, 10, 14, and 16 carbon chains. It should be remembered that 
in our chain model the C-C bond lengths is 1.53 A and the C-C-C 
angle is 1 1 2 . 2 O ,  so that the length of a fully extended (all-trans) 
chain is I = 1.27 X ( n  - 1) A (the H-C bond treated as a C-C 
bond). Using u = 27 A2 as the volume of a CH2 segment, one 
estimates a, -27/1.27 = 21.2 A2 as the effective cross-sectional 
area of an all-trans chain. All the areas reported below are 
calculated relative to this number. As mentioned in section 2, 
we consider chains in good (apolar) solvents, but we also comment 
on chain packing in a “compact” monolayer, corresponding to an 
extremely poor solvent. Some results specifically compare mon- 
olayers and bilayers to illustrate the similarity and differences 
between the two systems. 

(a )  Density and Pressure Profiles. The gradual increase in 
range and magnitude of ~ ( x )  associated with decrease in the 

The Journal of Physical Chemistry, Vol. 94,  No. 12, 1990 5085 

o’807 

0 

Figure 3. (a) ~ ( x )  for C, chains at a = 30 A2, with n = 8 (-), 10 (---), 
12 (e-), 14 (-,-),and 16 ( -e.-) ,  in sample units as Figure 2. (b) Cor- 
responding (@(x))’s. 

average area per chain is illustrated in Figure 2 for 12 carbon 
chains. Note for example that as the free chain is slightly com- 
pressed to (4(x)) I a l  = 40 A2, T ( X )  # 0 for x = 0-4 A, which 
nearly overlaps the region where ( $ ( x ) ) ~  > a l ,  Le., the region 
where the free chain must be compressed in order to fit into the 
given a. The peak in ~ ( x )  occurs nearly where the extent of chain 
distortion, ( + ( x ) ) ~  - a, is maximal, Le., at x - 3 A (at the 
”shoulders” of the chain, near its head group). Similarly, as a 
falls from a ,  = 40 A2 to a2 = 35 A2, we find, as expected, that 
“(x) > 0 in the region where (C$(X) )~  > a2, etc. Similar corre- 
spondence between the pressure and density profiles was found 
for bilayers as 

Consistent with the qualitative analysis in the previous section, 
we find that for any given a (smaller than (+(x*) )~)  the density 
profile (+(x)) can be divided into two regimes. In the first regime, 
at low x values (near the “shoulders”) the profile is flat; Le., ($(x)) 
= a is constant, the chain is compressed, and ~ ( x )  > 0. In the 
second regime, mostly reached by segments near the end of the 
chain, (4(x)) decreases gradually. In this region the “end” part, 
or the “tail”, of the chain behaves as a free short chain. Of course, 
the length of this free tail portion depends both on the area, a, 
and the length, n. 

Figure 3 shows (4(x)) and ~ ( x )  for a fixed value of a (30 A2) 
but varying chain length n. Indeed, we see that the ratio between 
the two regimes of ($(x)) depends strongly on the chain length. 
The (nearly) linear variation of the width of each of these regimes 
can be interpreted as follows. For any given a there is a certain 
chain length n = ii(a) such that, for all chains of length n I ii(a), 
( 4 ( ~ * ) ) ~  5 a. In other words, for a given area a all chains with 
n I A(a)  behave as free chains (satisfying ( 4 ( ~ ) ) ~  < a for all 
x-recall that x* denotes the position for which ( 4 ( ~ ) ) ~  is 
maximal). Now consider chains with n > fi(a). The best way 
(least free energy price) to pack such chains within area a is to 
pack the first n - i i(a) = nf segments so as to satisfy (4(x)) = 
a, letting the rest of the chain, Le., the last $a)  segments, behave 

(27) Viovy, J .  L.; Gelbart, W. M.; Ben-Shaul, A. J .  Chem. Phys. 1987, 
87, 41 14. 
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Figure 4. Probability density Pk(x )  of finding kth segment of chain at 
a distance x from the surface, for a “free” C I 2  chain [see (a)] and a 
constrained C I 2  chain at  a = 30 A2 
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Figure 5. Total (conformational) lateral pressure rC Jdx ~ ( x ) ,  as a 
function of area a, for n = 16 (-) and n = 12 (---) chains, in units of 
dyn/cm. 

as a free chain. These arguments explain both the linear n de- 
pendence of the length of the flat ( + ( x ) )  regime and the very 
similar shape of ( + ( x ) )  for all n in the second regime. 

The qualitative explanation above is only approximate because 
it implicitly assumes that the two regions of ( + ( x ) )  correspond 
to two portions of the chain. However, examination of Figure 
4 reveals that for the compressed monolayer (Figure 4b) this 
picture is very reasonable. The figure shows Pk(x) ,  the probability 
density of finding segment k of the chain at distance x from the 
interface both for a free chain (a) and for a constrained (a  = 30 
A2) chain (b) of length n = 12. In both cases ( x k ) ,  the average 
distance of segment k from the interface ( x  = 0), increases 
monotonically with k .  Also, in  both case the width, fsk, of Pk(x)  
(as measured for example by ak2 = ( x k z )  - ( x ~ ) ~ )  increases with 
k as expected from the fact that segments further down the chain 
can span larger x regimes. Note, however, that the extent of 
overlap between the x i s  is considerably smaller for the constrained 
chain. Again, this behavior is easily understood when we re- 
member that as a decreases the chain is further stretched, implying 
smaller motional amplitudes for its segments. In  particular, in  
the limit of an all-trans chain Pk(x)  - 6(x - x k )  with xk - k = 
1.27 A. 

An idea about the order of magnitude of the total conforma- 
tional lateral pressures, a, = J”a(x) dx, is given in Figure 5 which 
shows a, as a function of a for n = 12 and n = 16 chains. These 
areas, around 35-45 A2, correspond to the regime where the onset 
of the LE - LC transition typically takes p l a ~ e . ’ J ~ - ~ ~  For each 
of these areas the conformational free energy as a function of chain 
length is found to be linear. The linear dependence off, on n for 
a free chain is not surprising. For smaller areas it can be explained 
following arguments similar to those which we have used to explain 
the results in Figure 3 .  

( b )  Monolayer os Bilayer. A bilayer is usually depicted as a 
”sandwich” of two monolayers facing each other such that their 
chains form a compact hydrophobic core, uniformly packed with 
chain segments. Because of the possibility of chain interdigitation 
across the bilayer’s midplane, the chains emanating from the two 
opposing interfaces interact with each other in the midplane region 

18 24 
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Figure 6. Density profiles, in units of u/A = 27 A2, for CI2 chains packed 
at a = 29.5 A’ in two indigitated monolayers (---) and for two opposing 
C,, chains in a bilayer at  the same a (-). The dotted curve shows the 
sum of the monolayer profiles. 

(whose relative width increases with the area per chain). Thus, 
chains in single monolayers and in bilayers need not exhibit the 
same conformational and thermodynamic behavior. This is 
particularly so if one compares the behavior of chains in bilayers 
with those in “compact” monolayers, Le., monolayers in contact 
with p r  apolar solvents. On the other hand, as we shall presently 
show, monolayers in contact with good solvents (such as those 
considered above) closely resemble the monolayers in a bilayer 
for small chain areas a.  

The packing constraint governing chain conformational statistics 
in a symmetric bilayer is ( + ( x ) )  + (4(2L - x ) )  = a,  with 2 L  
denoting the width of the bi1ayer.j” This equality expresses the 
requirement for uniform density. (Volume filling requirements 
imply L = u/a where u is the chain’s volume.) The first term 
accounts for the contribution to the density at x from chains 
originating at one (x = 0) interface, and the second corresponds 
to the opposing monolayer (x = 2L). This equality is also the 
mathematical expression of the coupling between the two mon- 
olayers. Now, recall that for a single monolayer we have required 
($(x)) I a. Furthermore, we found that ( + ( x ) )  = a over a certain 
region, say 0 I x I X, followed by ( 4 ( x ) )  < a for x > %. It is 
not difficult to show that if in a single monolayer ( + ( x ) )  decreases 
linearly beyond x, then simple volume filling considerations imply 
($(x)) =a[(2L-%)/2(L-%)J[1  - x / ( 2 L - % ) ]  in this regime. 
Adding to the density profile of this monolayer an identical profile 
corresponding to a chain anchored to an opposing monolayer at 
distance 2L, we recover the packing condition of the bilayer ( + ( x ) )  
+ ( 4 ( 2 L  - x ) )  = a.  Thus, if 4(x) decreases linearly beyond R, 
we should expect similar chain statistics in monolayers and bilayers 
(for the same a ) .  

Examination of Figure 2 reveals that the decrease of ( + ( x ) )  
at x > % is not exactly linear. Yet a linear dependence is a 
reasonable approximation for small values of a,  in which case the 
x > R region is small and not very significant. (Similarly, for a 
given a the x > % regime is smaller, and the linear approximation 
for ($(x)) more appropriate, as n increases; see Figure 3.) Figure 
6 shows (+(x)) for single monolayers of n = 12 chains packed 
at a = 29.5 A2. It also shows the (4(x)) corresponding to (each 
of) the interdigitating monolayers in a bilayer of such chains. The 
profiles are indeed very similar although clearly not identical. Note 
that, in particular, the solid curves (bilayer halves) add up to a 
constant (#(x)) = 1.09 (29.5 A2), whereas the dashed ones (in- 
dividual monolayers) do not; see dotted curve. Larger differences 
are expected as a increases and the region of chain interdigitation 
becomes broader. 

Figure 7 shows the C-H order parameter profile of the same 
chains. Here, as well as in all other conformational and ther- 
modynamic properties, close monolayer-bilayer similarity is ob- 
served whenever a is small simply because the monolayers’ overlap 
region is small. 

The bilayer’s packing constraint (4(x)) + ( 4 ( 2 L  - x)) = a 
is obviously more restrictive than the monolayer’s constraint (&)) 
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Figure 8. Conformational free energyf,, in units of kT, for CI2 chains, 
packed at different areas per molecule a, in bilayers (-), monolayers 
(---), and “compact” monolayers (-). 

I a (because ( 4 ( 2 L  - x ) )  > 0 for all x ) .  Thus,f,(monolayer) 
If,(bilayer) for all values of a. For small a’s we expect the free 
energy to be similar, since ( $ ( x ) )  [and P ( a ) ]  is very similar in 
both cases; cf. Figures 6 and 7. This is quantitatively demonstrated 
in Figure 8, which shows thatf,(monolayer) If,(bilayer) for all 
a I a* - 45 AZ. a* represents here the same quantity defined 
in section 3; namely, the chain is conformationally free for all a 
I a*. Consequently, in this regimef,(monolayer) =fc(a*)  =f: 
= constant. On the other hand, around a = a* the bilayer’s free 
energy reaches a minimum, from which it increases as a increases. 
At the minimum, the chain closely resembles a free chain. The 
increase inf,(bilayer) for a > a* is due to the fact that the chains 
must be “squashed” (as opposed to the stretching at  a < a*) in 
order to satisfy the packing constraint (4(x)) + (4(2L - x)) = 
a. At very large a’s the bilayer is very flat, L N l /a,  and the 
chains are essentially two-dimensional. On the other hand, at very 
small a’s, the chain becomes one-dimensional, Le., fully stretched 
(all-trans) and perpendicular to the interface. The scale off, in 
Figure 8 is such thatf,(a -, a, - 21 AZ) = 0; at  this point both 
the chain entropy and the chain energy are zero. 

In Figure 8 we also show f, for a “compact monolayer”. By 
construction, in this monolayer the density profile is a step function: 
(4(x)) = a for x 5 L and ( $ ( x ) )  = 0 for x > L. ( L  = o / a  is 
the half-width of a bilayer packed with chains a t  the same area 
per head group.) This system represents the limit of a monolayer 
in contact with an extremely poor solvent. The flat chainsolvent 
interface implied by the step function profile minimizes the un- 
favorable contact between chain and solvent monomers. We see 
(Figure 8) that f,(compact monolayer) Lf,(bilayer) for all areas, 
the reason being that ( @ ( x ) )  = a for x I L is a much more 
stringent constraint than the bilayer’s condition (4(x)) + ( 4 ( 2 L  
- x ) )  = a. Apart from serving as a limiting (possibly not very 
realistic) case of real monolayers, the compact monolayer has 

sometimes been treated in the past as a model for (one half of) 
a bilayer. The large difference betweenf, of the two systems is 
just one indication of the inadequacy of this model. 

(c) Chain Adsorption. All the results presented so far in this 
section correspond to chains that do not interact (attractively or 
repulsively) with the water interface; i.e., no adsorption energy 
term E,(.) has been included in €(a ) .  (See discussion following 
eq 4.) Figure 9 shows the density profile of a free n = 16 chain, 
for different strengths of the adsorption energy. Specifically, for 
the adsorption energy of a chain in conformation (Y we use the 
(square well potential) expression €,(a) = n,(a)+, where na(a) 
is the number of segments of an a chain at  distance x I C; from 
the interface. For the numerical results in Figure 9 we have used 
C; = 1.0 8, (which is simply the width of the first layer, i = 1, in 
the discrete representation of P ( a ) :  see, e.g., eq 8). 

As expected, negative + attracts the chain to the interface, as 
reflected by the increase in ( 4 ( x ) )  near x = 0. The average 
adsorption energy is proportional to the number of surface seg- 
ments, (t,) - (4(0))$. When $ / k T  - -1, the adsorption energy 
becomes the dominant factor inf: and the chain lies essentially 
flat on the surface. (Note that ( t , ) / k T + n + / k T  - -n in this 
case, where n is the total number of chain segments, whereas the 
entropy loss associated with the passage of a free chain to an 
essentially 2D chain is AS - nc with the constant c smaller than 
1 .) On the other hand, strong (but short ranged) repulsive in- 
teraction will have a small effect on chain statistics. Basically, 
the result will be a shift of the interface from x = 0 to x = l .  

The maximum in the area profile of a free chain occurs always 
at x*  2, 0, particularly so when the adsorption energy is large. 
Thus, in practice, the chain is no longer a “free chain” when the 
monolayer is compressed to areas u C a*($) = (4(0)), = (4- 
( x * ) ) ~ .  Clearly, for all a < a* the density profile must satisfy 
the usual packing constraint ($(x)) I a including of course at 
x = 0. Accordingly, the density profile and other conformational 
properties of the chains are essentially independent of + for all 
a I a*($). The adsorption energy is constant for a > a*(+) and 
varies (very nearly) linearly with a at  smaller areas, because ( e a )  

$( +(O) )  = +a. Consequently, a constant term T , , ~  = -a( ca)/aa 
= -$ will be included in the conformational lateral pressure of 
eq 10. 

To summarize, segment adsorption can affect the conforma- 
tional properties of a free chain, such as the density profile and 
hence, a*, the area which marks the onset of chain overlap. The 
dependence of a* and of T,  on $ affects, in turn, many details 
of the phase behavior in amphiphilic monolayers. However, the 
qualitative behavior, such as the number and nature of the 
transitions, is expected to be independent of $ (as discussed below 
in section 5 ) .  

5. Discussion and Summary 
In section 3 we derived P(a) by minimizingf, subject to the 

excluded-area constraint ( d ( x ) )  S a. In doing so, we have as- 
sumed that the other terms in (1) are independent of p(.). In 
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order to assess the validity and the implications of this assumption, 
and in order to relate the present work to some recent studies 
concerning the G - LE and the LE - LC transitions in am- 
phiphile monolayers, we begin this section by examining the 
significance of the various terms in the (approximate) free energy 
expression ( 1 ) .  

Let P(a,“,rN) denote the probability of finding the monolayer 
in state = a, ,  ..., aN; p = rl,  ..., rN, with ri denoting the position 
of the head group of chain i and ai its conformation. The mon- 
olayer’s free energy is given by 
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As in section 3, ( e )  is the average (conformational plus adsorption) 
energy per chain and P(a)  = S d f l  Za2,,,oN P(aN,p) is the singlet 
conformational distribution function. The second term, u = 
‘ j 2 I @ (  u ) ,  is the total interaction potential in the system, with 
u(airi,ajrj) representing the interaction energy between chains i 
and j .  We have assumed here that the interaction potential is 
pairwise additive; also, to simplify the discussion, we treat the 
solvent as a continuum. Accordingly, u is in fact a potential of 
mean force. P(alr,,a2r2) is the pair distribution function defined 
as usual as the partial sum (integral) of P(aN8“) over a3;r 3...aN,rN 
If  we separate u into repulsive, attractive and head-group terms, 
u = uIep + uatt + uhg, we also have U = Urep + Vat, + Uhg, as in 
eq 1, To a good approximation uhg = uhg(rirrj) is independent of 
ai and aj  On the other hand, both uIep and u,,, depend in general 
on both position and conformation. (Note that for athermal 
solvents uaCt = 0 for all conformations, as assumed earlier.) 

Exact evaluation of P(aN,rN), hence also of S ,  is obviously 
hopeless. One possible alternative is a Flory-Huggins type ap- 
proximation, as formulated for chain molecules adsorbed on in- 
terfaces by Scheutjens and Fleer.28 In very general terms, in this 
approach, the monolayer is treated by a lattice model and the 
possible conformations are counted by sequential placements of 
chains. That is, one first counts the number of ways of placing 
chain 1 with its head at  r l  on the surface and with conformation 
a,,  then of placing chain 2 given the position and conformation 
of chain I ,  etc. The advantage of this approach is that one treats 
simultaneously the transitional (“rn) and conformational (“a”) 
degrees of freedom. The main disadvantage is that one of the 
approximations employed is to neglect chain connectivity in the 
process of state counting. This can lead to serious qualitative 
problems in the treatment of the monolayer  thermodynamic^^^ 
(see also below). 

Alternatively, the entropy may be separated into translational 
and conformational parts. Note, however, that (at least) two 
separations are possible corresponding to the two decompositions 
of P(aN,rN), namely, ( I )  P(aN,rN) = P(aN) P(rNlaN) and ( 2 )  
P ( # , f i  = P ( f i  P(a“yIfi, with P(PlaN) denoting the conditional 
probability of finding the N chains at positions r,, ..., rN, given 
conformations c y I ,  ..., ow P(aNIP) has the analogous (”opposite”) 
meaning. Thus, the first decomposition yields 

-ps = -P(S, + Str) = 
X P ( a N )  In P(aN)  + X P ( a N )  j d r N  P(rNIaN) In P(rNlaN) 
a”’ oh 

(12) 

with p = l / k T .  A similar expression results from using P(aN,@) 
= P(rN) P(aNlp) .  In both representations the translational part 

(28) Scheutjens, J .  M. H. M.; Fleer, G .  J. J .  Phys. Chem. 1979,83, 1619; 
1980. 84. 178. 

vanishes identically if the head-group positions are fixed, Le., if 
the chains are immobile. The conformational part in ( 1  2) becomes 
identical with ( N  times) the entropy term in our eq 4, provided 
that P(#) = P ( a l ,  ..., aN)  = P ( a I )  ... P(aN). This of course is the 
essence of the mean-field approximation. One such scheme has 
been employed by Cantor and Mcllroy in their study of the 
monolayer’s equation of state.23 Following a sequence of ap- 
proximations they have expressed S,, as a functional of P(a) or 
more precisely of an effective chain area a, which depends on the 
products P(a l )  P(az). Then, by minimizing the sum -T((sc + str) 
+ uatt, they derived P(a)  and calculated pressure-area isotherms, 
revealing two successive fluid-fluid transitions. It should be noted 
that in this theory the effects of chain-chain repulsion enter F 
via s,, (through its a, dependence). The general qualitative role 
of s,, in  the phase behavior of fluid supported monolayers, and 
its a dependence, is discussed again below. Another important 
term in F which is generally treated via a mean-field approxi- 
mation is U,,,. Here, again, the common approximation amounts 
to replacing P(aIr l ,a2r2)  by P ( a l )  P(a2)  P(rl laI)  P(r21a2). The 
passage from ( 1  1 )  to (1) is then clear, at least formally. F, = 
Nf, is the sum of S, from (12) and N ( t )  from the last equality 
in ( 1 1 ) .  S,, is the complicated second term in (12), and the 
potential energy terms correspond to the separation of ( U )  into 
its three contributions. We have also shown how P(a)  is included 
in both Cg,, and St,. 

We conclude this section with a less formal discussion regarding 
the roles of F,, U,,,, and S,, in the G - LE and the LE - LC 
transitions in amphiphile monolayers. Consider first a monolayer 
of rigid, rodlike molecules. This monolayer may represent a real 
system of amphiphiles with stiff chains or a hypothetical system 
of amphiphiles all of which are in the all-trans (or another fixed, 
“elongated”) conformation. In the terminology of the previous 
sections, the “conformations“ a = b. w of these molecules are fully 
specified by the orientation w with respect to the surface, because 
their bond sequence b (all-trans) is the same, i.e., P(a)  - P ( w ) .  
The phase behavior of such a monolayer of mobile grafted rigid 
rods has been recently investigated by several groups using dif- 
ferent theoretical appro ache^.^"^' These studies have established 
that no first-order phase transition takes place in such a system 
of hard rods, i.e., rods interacting only through excluded-volume 
repulsion. (This behavior differs qualitatively from that of hard 
rods in bulk, which exhibit a first-order isotropic-nematic tran- 
 iti ion.^* The different behavior of the monolayer is directly related 
to its lower symmetry.30) Furthermore, it has been shown that 
a single first-order, fluid-fluid, phase transition takes place in the 
monolayer prouided that the interparticle potential includes a 
(large enough) attractive term. In this transition both the grafting 
density (u = l/a) and the order parameter, 7, which measures 
the fraction of “upright” rods (or, more precisely, their average 
alignment) jump s i m u l t a n e o ~ s l y . ~ ~ * ~ ~  Angle-dependent adsorption 
energy is not a necessary (nor sufficient) condition for a first-order 
transition. 

Since monolayers of “real”, i.e., flexible, chains show two 
successive phase transitions, whereas monolayers of rigid rods show 
only one transition, it is clear that the additional transition is 
intimately related to the conformational freedom of flexible chains. 
Yet, correlating the single transition of the rigid molecules with 
either the G - LE or the LE - LC transition of flexible chains 
is not entirely evident. In fact, by varying the degree of anisotropy 
of rod-rod interactions, the single transition may resemble more 
an isotropic-nematic transition which involves a small change in 
(T and a large one in 7 or an ordinary 2D gas-liquid transition 
where the grafting density u exhibits a large jump while 7 changes 
only slightly. In particular, if the interactions (both repulsive and 
attractive) are completely isotropic, the transition degenerates into 
a simple 2D gas-liquid transition of rigid, isotropic particles.?’ 

(29) Halperin, A.; Alexander, S.; Schechter, I .  J .  Chem. Phys, 1987, 86, 
6550. 

(30) Chen, Z. -Y . ;  Talbot, J.; Gelbart, W .  M.;  Ben-Shaul, A. Phys. Reu. 

(3  1 )  Wang, Z.-G. J .  Chem. Phys., in press. 
(32) Onsager. L.. Ann. N.Y, Acad. Sci. 1949, 51, 621. 

Leu. 1988, 61, 1376. 
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More generally, any system of adsorbed rigid particles will show 
a gas-liquid transition provided the attraction between them is 
strong enough. 

At very low densities, when the average area per molecule, a, 
is considerably larger than the average cross-sectional area of the 
chain, a*, a monolayer of (flexible) chains is in fact a 2D gas of 
free chains. The average shape of the free chain is symmetrical 
with a caplike (or truncated “blob”) envelope whose height de- 
creases as the adsorption energy increases. Although the free 
chains are not rigid particles, they strongly resist any change in 
their (average) shape, as this involves (see, for example, Figure 
8) a large increase in their conformational free energy,f,. Thus, 
unless the external pressure R is large enough, so as to reduce a 
below a*, the chains may be treated as (nearly) “rigid blobs”. As 
noted above, a mbnolayer of such particles can undergo a gas - 
liquid transition if the attraction between the free chain blobs is 
large enough to compensate for the corresponding loss in trans- 
lational entropy. Our picture of the G - LE transition is that 
it is, in fact, a gas-liquid transition of free chains, in the course 
of which the area reduces from some aG >> a* to aLE - a*. 

Using the terminology of eq 1, we suggest that in the G - LE 
transition Ua,, decreases and F,, = -TS,, increases, while F, = 
Nfc(a*) remains essentially constant. (The constancy off, implies 
of course that P(a)  = Po(a) is nearly the same in the G and the 
LE phases.) This qualitative picture is consistent with the recent 
mean-field theories of Cantor and McIlroyz3 and of Shin et aLZ4 
The latter conclude that the G - LE involves condensation of 
the “in surface” portions (Le., the adsorbed layer) of the am- 
phiphiles, while the former found, following simultaneous mini- 
mization of all the terms in (an appropriate form of) F, that the 
effective excluded area per chain does not change much in the 
transition. Although the two theories employ rather different chain 
models and different treatments of translational-conformational 
coupling, they support the notion that the chains at the coexisting 
G and LE phases have similar configurations. 

When the monolayer is compressed to areas below a*, the 
translational motion is largely hindered and, correspondingly, the 
contribution of St, to F becomes negligible (and very difficult to 
calculate). I n  this regime F, is no longer constant, as we have 
discussed in detail in  sections 3 and 4. Now, if a second, LE - 
LC, transition takes place, it should involve an interplay between 
F, and Fa,,. That is. the loss of conformational freedom should 
be balanced by increased attraction between neighboring chains. 
In our discussion in the previous sections we have assumed that 
Fa,, = constant, as appropriate for chains in athermal solvents. 
In  this case one should not expect another phase transition in the 

monolayer and similarly so in Ycompactn aggregates such as lipid 
bilayers in which the density is uniform and liquidlike. No phase 
transition is expected here unless the assumption of constant 
segment (monomer) density and consequently constant Fa,, is 
relaxed. This point has been recognized by MarceljaZ1 and Nagle22 
over a decade ago in their treatments of the chain melting (“liquid 
crystal - gel”) transition in lipid bilayers. In order to predict 
such a transition, they had to postulate an expression for the 
decrease of Ua,, with I / a .  

In the theory of Cantor and M ~ I l r o y ~ ~  the LE - LC transition 
is associated with the expulsion of solvent molecules from the chain 
region. In the treatment of Shin et al.24 it is attributed to con- 
densation of the “off-surface” chain portions (whose size increases 
of course as a decreases). Similarly, in many Ising-type and related 
“few-state” models, the LE - LC transition is reflected by an 
increase in the fraction of “standing-up” (or stretched) confor- 
m a t i o n ~ . ’ ~ . ~ ~  In the molecular dynamics simulations of Klein et 
a1.I3 and Harris and Rice,I4 compression of the LC phase is 
accompanied by enhanced tilt of the alkyl chains and a simul- 
taneous increase in the monomer segment density. In all these 
approaches, then, the conformational changes are associated with 
increased attraction energy. Alternatively, they all correspond 
to an increase in the, overall density of chain segments in the 
hydrocarbon region. Recall that in our treatment in sections 3 
and 4, as a decreases below a*, the height of the (@(x)) = constant 
regime increases gradually. This behavior also implies increasing 
monomer density and consequently increasing Fa,, upon lowering 
the area a (for x < 0). 

The qualitative picture emerging from the above analysis is as 
follows: The G - LE transition involves condensation ofCfree 
chain) blobs, corresponding mainly to a loss of translational en- 
tropy (AS,, < 0) and a gain in attractive energy (Alla,, < 0) and 
relatively small change in conformational energy (AF, - 0). On 
the other hand, in the LE - LC transition the relevant interplay 
is between the conformational degrees of freedom, Le., AF, > 0 
(because ASc < 0) and the attractive energy (Allalt C 0); Ua,, now 
decreases because the increase in the monomer density. St, plays 
a minor role in  the second transition. 
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