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Within the framework of two complementary models, we show that the densities and patterns 
of defects in amphiphile-water systems with lamellar organization are coupled to the strength 
of the bilayer-bilayer interactions and hence to the overall surfactant concentration. We 
consider defects which introduce curvature (i.e., larger head-group area per molecule) while 
preserving the integrity of stacked bilayers at surfactant volume fractions of several tenths. 
These features are favored if the molecules comprising the lamellae are preferentially packed 
with a nonplanar aggregate-water interface: curvature defects lower the local free energy in 
systems constrained by aggregate-aggregate interactions to lamellar geometry. As the 
amphiphile volume fraction is increased-and the bilayer-bilayer spacing thereby decreased- 
we predict phase transitions between lamellar phases of different defect patterns on the bilayer 
surface, with concurrent decrease in the defect area fraction per bilayer. Specifically, there is a 
progression from a stripe-like pattern of parallel channels to a random network of line defects 
to a pore phase, with the latter appearing at the highest amphiphile concentrations but 
characterized by the lowest density of defects. Connection is made with experimental work 
which has recently suggested various departures from classical lameliar structure. 

I. INTRODUCTION 

The lamellar phase of an amphiphile-water system is 
characterized by alternating, stacked sheets of bilayer and 
water domains. The bilayers have traditionally been thought 
of as continuous, homogeneous structures (membranes) ) 
but recent experimental work indicates that they are actually 
pierced by pores or channels which allow for water in the 
planes of the membranes.ld In this paper we investigate the 
coupling to amphiphile concentration of the densities and 
patterns of these lamellar defects. These defects serve to in- 
troduce local curvature, the nature of which will be made 
explicit shortly, into otherwise planar lamellae; accordingly, 
they should be favored in bilayers formed by molecules pre- 
ferring a curved aggregate-water interface. 

We begin with a brief review of the phase diagrams of 
these surfactant systems in order to expose the driving force 
for defect formation in these planar bilayer systems. 

An amphiphile, or surfactant molecule, consists of a hy- 
drophilic head group which can be ionic, polar, or zwitter- 
ionic, and a hydrophobic tail, consisting of one or two alkyl 
chains. Understanding their aqueous solution phase dia- 
grams’ presents a rich challenge because the aggregates 
formed by these molecules do not maintain their integrity as 
colloidal particles; instead they respond via shape and size 
reorganization to changes in temperature and concentra- 
tion. More explicitly, below what is called the critical micel- 
lar concentration (CMC), the surfactant molecules are solu- 

ble as monomers in aqueous solution. Above the CMC, 
self-assembly-driven by the hydrophobic effect-orga- 
nizes the system into small aggregates. At low enough con- 
centrations, where aggregate-aggregate interactions can be 
ignored, these colloidal particles behave as an ideal solution; 
even SO, their shapes and sizes are dependent upon competi- 
tion between molecular packing constraints and the transla- 
tional entropy of the particles.* Specifically, entropy favors a 
large number of small, globular micelles, while the packing 
constraints involve a molecular preference for a given geo- 
metrical environment, e.g., that of a sphere, cylinder, or 
planar bilayer, say. Because the head groups shield water 
from the hydrocarbon tails, they are found to cover the sur- 
face of any aggregate formed; for interfaces with positive 
curvature each hydrophilic moiety has a larger area than its 
chain. 

This molecular preference for a given curvature (spheri- 
cal, cylindrical, or planar) will be crucial in our work, and 
we concentrate on molecules having their local free energies 
minimized by a cylindrical geometry-that is, the surfactant 
of interest will have an optimal head-group area which is 
larger than the cross-sectional area of its tail. For these am- 
phiphiles, then, we find, in the dilute regime, an isotropic 
solution of rod-like aggregates whose lengths are concentra- 
tion dependent. At higher surfactant mole fractions, interag- 
gregate interactions trigger first an isotropic-nematic transi- 
tion and then a hexagonally packed phase of intinite 
cylinders.” On the other hand, if the surfactant strongly 
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prefers the larger curvature of a spherical interface, the sys- 
tem may undergo a direct transition from an isotropic phase 
of spheres to a nematic state of rods,” which underscores, 
again, the importance of molecular constraints. In either 
case, the onset of long-range orientational order results from 
interaggregate interactions. Upon further increase in surfac- 
tant concentration, reorganization into a translationally or- 
dered system of amphiphilic bilayers, the lamellar phase, 
takes place. This phase, in principle, can be packed to a sur- 
factant volume fraction of unity. An example of a surfactant 
showing an isotropic-hexagonal-lamellar phase progression 
is dodecyltrimethylammonium chloride. l1 

It is clear that lamellae satisfy global, aggregate (vs lo- 
cal, molecular) packing requirements at the moderately 
high surfactant volume fractions of several tenths, since such 
planar aggregates relieve the “grid-lock” (i.e., less-efficient 
packing) of a concentrated hexagonal phase. On a molecular 
level though, there is a free-energy price for packing the mol- 
ecules in a planar bilayer: the molecules prefer a cylindrical 
aggregatcwater interface and the bilayer does not provide 
the necessary curvature. In the present work, we consider a 
simple way to introduce curvature into the membrane with- 
out destroying its overall planar geometry, the “motivation” 
being to allow at least some of the surfactant molecules in the 
bilayer to enjoy locally a more curved environment. This is 
done by introducing defects such that a molecule residing in 
the defect will have a lower free energy than one on the 
planar surface, consistent with the idea that molecular pack- 
ing constraints can be better satisfied when the amphiphiles 
reside in a curved geometry. We concentrate upon in-plane 
defects which are uncorrelated between successive layers. 

Pertinent experimental work has focused on lamellar 
phases (L, ) lying close to nematic or hexagonal ones. For 
example, the decylammonium chloride/water/ammonium 
chloride system studied by Holmes and Charvolin’ exhibits, 
at low temperature, a lamellar phase which upon heating (at 
constant surfactant concentration) transforms into a nema- 
tic phase of discotic micelles. It is found that L, consists of 
bilayers containing pores or channels, which mediate transi- 
tion to the discotic nematic. A similar conclusion is drawn 
by Chidichimo et al. for a water/ammonium perfluoronon- 
anoate system.2 Holmes, Reynolds, and Boden,3 for a cesium 
pentadecafluorooctanoate/water mixture, show that the la- 
mellar phase itself (close lying to a discotic) consists of dis- 
coid micelles-certainly a curvature-adding defect situa- 
tion. Indeed, the common lamellar phase of SdS/water 
(where SdS denotes sodium decyl sulfate) shows diffuse 
neutron scattering indicating defects which, at low tempera- 
tures and low surfactant fraction, are correlated between ad- 
jacent bilayers; with increasing temperature and concentra- 
tion the defects remain correlated within-but not 
between-bilayers.4 Finally, Kekicheff and Tiddy’ find an 
interesting phase transition in the lithium perfluorooctan- 
oate/water system where, at low temperatures and high sur- 
factant fraction, there exists an “intermediate” phase which 
is lamellar with strongly correlated defects staggered from 
one layer to the next. Upon heating, an L, phase appears 
which shows a loss of these interplane defect correlations 

Although within the framework of our theory we focus 
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on uncorrelated in-plane defects which do not alter the 
planar nature of the lamellae, these are not the only defects 
observed. Freeze-fracture electron microscopy has revealed 
various defect structures in lamellar phases of lipids, such as 
confocal domains, screw dislocations, and disclinations. ” 
Theoretical work aimed at characterizing and understand- 
ing such structures is extensive.‘3-” Sadoc and Charvolin’6 
have used geometric ideas to explain defect formation as a 
result of frustration in bilayers. Lamellar phases of nonionic 
surfactants, such as hexaethylene glycol dodecyl ether 
(C,,E,), exhibit a temperature-dependent, defect-mediated 
phase transition in which the bilayers are disrupted by dislo- 
cation loops. r’*‘* Ripple phases 19-U also serve to introduce 
modulated curvature into the lamellar systems, and these 
defects add a negative contribution to the free energy. Final- 
ly, Petrov, Mitov, and Derzhanski consider saddle splay in- 
stabilities and the presence of pores in bilayers.“3*24 It is clear 
that all of these defects alter the classical lamellar structure. 

We propose here two complimentary models which al- 
low description of the topology of in-plane defects, that is, 
the pattern of defects in a bilayer. As will be made explicit 
below, the first model builds up patterns, on the bilayer sur- 
faces, from random lines of defect, with the defect playing 
the role, in two-dimensions, of the surfactant film in microe- 
mulsion structures. The second model allows for growth of 
pore defects into finite strips or channels, analogous to mi- 
cellar growth in the dilute surfactant regime. In each case, 
the amount of defect is coupled to the surfactant volume 
fraction: we find that the area fraction of defect per bilayer 
decreases with increasing surfactant concentration. With 
this decrease in defect density, the surface patterns change, 
and we predict phase transitions (first and second order) 
between lamellar phases with different defect patterns. In 
other words, we relate the topology and the amount of defect 
within a membrane to the bilayer-bilayer interactions. 

II. CURVATURE DEFECTS, BILAYER-BILAYER 
INTERACTIONS, AND LAMELLAR GEOMETRY 

Before the two models are presented in the following 
section, it will prove useful to state the general, model-inde- 
pendent features upon which our ideas are built. As dis- 
cussed above, we envision the bilayers in a lamellar phase to 
contain defects which introduce curvature into an otherwise 
planar system. The simplest of these is a pore (see Fig. 1). 
The curvature is added via the inner surface of a toroidal 
“lip” which “heals” the defect in the sense that the surfac- 
tant molecules on this surface shield otherwise exposed hy- 
drophobic tails from the aqueous surroundings. If the radius 
of the pore is sufficiently large, the head groups enjoy a re- 
gion of overall positive curvature on the defect surface. One 
of the principal curvatures is certainly negative-meaning 
that the head groups along the direction are more closely 
packed than in a flat surface-but this negative curvature 
can be made small with a large pore size. Other defect geo- 
metries, e.g., lines, can add curvature as well, and here we 
will need to differentiate between the patterns allowed by 
each of the models; the patterns shown in Fig. 2(a) corre- 
spond to the first, random line, model, while those in Fig. 
2(b) are for the defect growth model. 
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FIG. 1. Lamellar geometry showing line and pore defects ofcurvature. We 
stress that our theories do not allow for coexistence of lines and pores within 
the same bilayer: we simply illustrate here ways in which curvature is added 
to a lamella. 

vature on the order of a molecular length. In this fashion, 
defect energies can be related to monolayer elastic bending 
energies. indeed, if a monolayer made of amphiphile of a 
particular type has a relatively large spontaneous curvature, 
in the direction of larger head groups, it would be reasonable 
to expect that a line defect (with its half-cylindrical lip) 
would be energetically favored-more so than a pore, say, 
which involves in addition a negative curvature. Defect ener- 
gies will be treated phenomenologically in our work, with 
connection made to the bending constants of a surfactant 
film (monolayer). 

Looking down upon a bilayer face, one can imagine a 
stripephase [see leftmost picture in Fig. 2(a) ] in which nar- 
row, parallel channels run the length of the bilayer: we have 
a phase of parallel lines. On the other hand, as in the second 
model, these parallel channels may be offinite length with 
the pattern corresponding to a translationally disordered ne- 
maticphase of channels in two dimensions [see leftmost pic- 
ture in Fig. 2(b) 1; this is the first instance where a qualita- 
tive difference arises between our two models. Furthermore, 
in both models these channels may form a random network, 
which we will call a random line phase for the first and an 
isotropic phase for the second, with bends or crossings (we 
discuss this distinction below) in the building-block line de- 
fects (center pictures in Figs. 2(a) and 2(b) 1. Figure 1 
shows the nature of these channels: they are healed by half- 
cylindrical lips with, for simplicity, a constant defect width 
(lip-lip separation) a. It should be noted that we have cho- 
sen our surfactants so that they prefer the local packing ge- 
ometry of these half-cylindrical lips and that, for a fixed-area 
fraction of defects per bilayers, these narrow channels allow 
a maximum number of molecules to enjoy such regions of 
higher curvature-that is, the channels maximize the length 
of the cylindrical defect surfaces. Figure 2 (a) [2(b) J shows 
progression from stripe (nematic) to random line (isotrop- 
ic) to pore phases-it will be seen that this pattern sequence, 
in the direction of increasing surfactant concentration, is de- 
termined by the statistical thermodynamics of the problem. 

Note that these healing surfaces are simply monolayers 
of surfactant curved back on themselves with radius of cur- 
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Having introduced curvature defects as a means of low- 
ering the Iocal free energy of surfactant packing, we must 
consider the way in which interbilayer interactions serve to 
suppress their proliferation. Qualitatively, it suffices to use 
any repulsive interaction between the stacked lamella: elec- 
trostatic, screened electrostatic, Helfrich undulation, or hy- 
dration forces will lead to the same picture.‘* In this work we 
use an electrostatic interaction between the bilayers (con- 
sisting of ionic surfactant) with a subsequent generalization 
independent of the details of the interaction. Now, “cre- 
ation” of a pore, say, involves the removal of a block of mole- 
cules from the membrane. These “extra” molecules can be 
used either to thicken existing bilayers or to form new bi- 
layers. In either case, the surface-surface distance between 
opposing, interacting, lamellae is decreased with resulting 
increase in the repulsive force between these surfaces. It is 
therefore expected that defect formation raises the intemc- 
tion free energy above that of perfect bilayers at the same 
volume fraction: bilayer-bilayer interactions serve, there- 
fore, as a “brake” on defect number, or more conveniently, 
defect area fraction per bilayer. It is also appreciated that 
these interactions become more important at high surfactant 
volume fraction (when the bilayers are anyhow closer to- 
gether j, and we expect, with increasing amphiphile concen- 
tration, a decrease in the amount of defect. Hence, defects 
are lost upon concentration of lamellar phases (Kekicheff 
and Tiddy’ allude to this), and an essentially “perfect” bi- 
layer results. 

[:_F( r’ r-.q f!J) 
FIG. 2. (a) Stripe-random-line-pore progression, with increasing surfac- 
rant volume fraction (decreasing defect density), within the line defect 
model. (b) Nematic-isotropic-pore progression, with decreasing defect 
area fraction, described by the defect growth model. 

We now investigate what can be learned from the geom- 
etry of the lamellar phase (see Fig. 1 ), pursuing as long as we 
can ideas which are model independent. A given bilayer is 
taken to be of thickness 21 and facial area L ‘. If we demand, 
for simplicity, that the introduction of defects into the mem- 
branes only increases the number of bilayers and not their 
thickness, we have a constant area per head group, call it I;, 
and, of course, a constant membrane thickness 21. This con- 
dition can be relaxed but Z would then have to be treated as a 
variational parameter. This area per head group refers to a 
surfactant molecule in the bilayer proper, rather than in the 
defect (where we expect a larger value). With u taken as the 
incompressible volume per molecule, a simple relation is ob- 
tained from the bilayer geometry which holds in the pres- 
ence or absence of defects: 

z = v/l. (1) 

(For comparison, in the half-cylindrical lip of a channel the 
area per head group is 2v/I.) 

A most important variationalparameter is 4d, the area 
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fraction of defect-that is, the fraction of the bilayer surface 
covered with defect, independent of pattern. It is just this 
quantity, 4cr, that decreases with increasing surfactant vol- 
ume fraction, as described above. Since L ’ is the area of a 
single face of bilayer, it is clear that the number of surfactant 
molecules per bilayer (with neglect of the number used to 
heal the defects) is i 

2L2(l -$if.Jm. (2) 
This relation serves also to define the area fraction gd. 
Though we have suppressed details of the healing lips by 
neglecting to count the number of molecules in them (which 
is smaKfor small #d ), we capture the main idea of defect 
introduction: as $d increases, the number of molecules in 
each membrane decreases, but new lamellae are necessarily 
formed (at fixed surfactant fraction). Finally, if d is the in- 
terlamellar spacing (actually, the distance between bilayer 
surfaces) and 4 the surfactant volume fraction, we have 

d=2u(l --$Z5--&)/@. (3) 

Clearly, as #d increases, for fixed 4, the distanced decreases. 

ill. DEFECT MODELS 
A. Line defect model 
1. Description of model 

We present the first (line defect) model, develop the 
corresponding free energy (Sets. III A 2 and III A 3)) and 
work out a representative phase diagram (Sec. III A 4). The 
second (defect growth) model is subsequently described 
(see Sets. III B l-111 B 3 below) and the two compared. 
The line defect model will provide for a simple treatment of 
the random line phase-a random network of defects-with 
the pore phase as a limiting case. The stripe phase is included 
in a simple fashion. 

Let the surface of a bilayer be partitioned into a square 
lattice with lattice size g: this will allow for calculation of 
defect energies and entropies via a simple scheme which also 
defines the topology. The formulation is motivated by the 
phenomenological theory of microemulsions2L29 and espe- 
cially by the description of planar surfaces in the isotropic L, 
(“sheety” or “sponge”) phase of dilute surfactant solu- 
tions.30 We divide, randomly, the lattice squares into types A 
and B, with 9 defined as the area fraction of A. The equilibri- 
um value of + will follow from free-energy minimization for 
given surfactant volume fraction, 4. That is, $ is the second 
unconstrained variable or variational parameter (the first 
being the defect area fraction 4d, as discussed above). Note 
that A and B do not refer to different species or phases; rath- 
er, they denote different regions of the bilayer, separated by 
line defect (i.e., a water “crack” of width a), Corresponding- 
ly, $ does not describe a composition, but is instead a mea- 
sure of the topological organization of defect. We shall see 
shortly, in the random mixing approximation, that there is a 
direct relation between the lattice constant 6 and the two 
variational parameters, $ and $d: for each pair $ and $d, 
there corresponds a unique {. 

At the interface of an A square and a B square we lay 

down our strip of line defect; again, the defect is transmem- 
brane (a channel) but we are now concerned only with the 
surface features of the bilayer. Figure 2(a) shows typical 
patterns constructed from the model. The defects are pic- 
tured as self-avoiding at positions of possible crossings. We 
choose to exclude crossings because the surfactant molecules 
in them would not have the preferred cylindrical packing. As 
such, crossings are energetically unfavorable with respect to 
the gently bending patterns replacing them. Furthermore, 
the line defect model does not allow for lines that simply 
“end’‘-the allowed defect patterns are closed. Indeed, the 
surfactant head groups in an end, if it were possible, would 
have an area per molecule smaller than those in the pores as 
they arise in this model. Energetically, then, ends can be 
excluded. Accordingly, for the self-avoiding case, the build- 
ing block of all defect patterns is the line defect and the corre- 
sponding energy is described by a single quantity, the defect 
energy per unit length. Furthermore, the paired-lip (sepa- 
rated by a distance a) nature leads to a particularly simple 
form for this quantity. [Our second model (see Sec. III B) 
will allow for free ends and crossings (if desired) but with an 
associated price.] 

If ,V is taken to be the total length of defect per bilayer, 
as measured by the length of the A-B interface, then 

_4a =4N$(l -r/5,6 (4) 
in the random mixing approximation. Here N = L 2/l 2 is 
the number of squares in the lattice, $ is the probability of an 
A square, and 1 - II, of a B square. Since all defects are of 
width a, 4d = Ya/L ‘, and from (4) and N = L ‘/c * we 
have 

6=4a$(l- 1clV4d. (5) 
This is, of course, analogous to the expression used in the 
microemulsion work, with $d corresponding to the volume 
fraction of surfactant, t/ to the volume fraction of, say, oil, 
and 1 - 9 to that of water. In the microemulsion case, how- 
ever, both q5d and $ areJixed by composition, whereas in our 
equation (5), both of these are unconstrained variables 
(and, as stated, determine 5) : the statistical thermodynamic 
free energies which we will obtain are then minimized with 
respect to these two quantities. 

Equation (5) immediately suggests a natural cutoff val- 
ue for g which serves to effectively define a pore phase. More 
explicitly, as + decreases, the defects become loops around 
isolated A squares. Concurrently, with decreasing $, 6 de- 
creases for fixed area fraction of defect and, if the lower cut- 
off is taken as lea, we find a phase of isolated pore-like 
defects each of area a’. On the other hand, if $ and { turn out 
to be larger, with $= l/2 as the maximum, an extended 
network of line defects is realized. Figure 2 (a) depicts these 
extremes. For convenience, we refer to the T/ = l/2 situation 
as a random Iinephase and the $ < l/2 phase as apore phase, 
even though we may be far away from the pore cutoff de- 
scribed. 

In order to determine the defect energies it will be neces- 
sary to count the number of bends in the length 9 of the 
defect. This is done in the random mixing approximation, 
with the realization that each of the four appropriate config- 
urations of A-A-A-B squares and each of four arrange- 
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ments &B-B-B-A squares is associated with a bend, while 
two bends (because of self-avoidance) are associated with 
each of the two pertinent configurations of A-B-A-B 
squares [examples can easily be found in Fig. 2(a) 1. Since 
the bends occur at the vertices of the lattice, of which there 
are !V (the number of squares), we have for the total number 
of bends: 

$(I - $1. 

(6) 

In ignoring terms in f ( 1 - 4)’ compared. with $( 1 - $), 
we essentially ignore any special interaction energy for the 
self-avoiding defect pairs whose number goes with 
$‘( 1 - $1”. 

2. Free-energy consid&rations 
The total free energy of the lamellar phase is given by the 

free energy per bilayer multiplied by the number of bilayers, 
with the latter not constant during the variation with respect 
to eSd. As was seen, the two-dimensional aspect of the defect 
density is coupled to the overall three-dimensional nature of 
the lamellar system: as #d increases, the number of bilayers 
increases. It is appropriate, then, to minimize with respect to 
eScl and $ a free-energy density defined by the total free ener- 
gy divided by the total volume. Actually, it is convenient to 
define an intensive free energy defined by the product of this 
density and the space-filling molecular volume “u.” The sim- 
plest way to proceed with this quantity is to introduce a free 
energy per bilayer, divide by the number of molecules in it, 
and multiply by the surfactant volume fraction. Further- 
more, a plot of this free energy vs 4, after the extremum 
values of the 4, and $ are obtained, provides the basis for a 
common tangent construction for locating first-order transi- 
tions between coexisting lamellar phases of different defect 
densities and topologies. (The coexistence is not between 
different topologies and area fractions within agiven bilayer, 
but rather-in the usual way-between macroscopic do- 
mains of lamellar phases, each characterized by a specific 
qL, +h and 4.1 

The dimensionless free energy will feature three contri- 
butions: 

$+=.f=h +f, +fit ll 
where F’ and V are the total free energy and volume of the 
system (k, is Boltzmann’s constant, T the temperature, and 
u the conserved molecular volume referred to above). The 
first term in Eq. (7) refers to the “core” defect energies 
which can be regarded as elastic energies associated with the 
curved lips. f, is the defect entropy and is calculated via the 
mixing entropy of the A-B lattice, as in ( 13 ) below. Finally, 
fb describes the bilayer-bilayer interaction which suppresses 
defect proliferation. To the extent that the area per head 
group, 2, is fixed, any surface free-energy term of the type 
~2 is inconsequential: it would simply have the form of a 
constant times (p, and can be ignored. 

The defect energy fd can be thought of in two ways. . 
Because the building block of the defect pattern is a line, it is 
natural to introduce an energy per unit length. Phenomeno- 
logically, we can write the local elastic energy per unit length 
for a “line” as a function of its curvature (we ignore the 
defect width) as 

-s+xc:. (8) 

- 6 in Eq. (8) is the core energy per unit length of the 
locally straight line defect. C, is the single curvature needed 
to characterize its bending and is measured along the length 
of the defect pattern in the bilayer plane (C, is nonzero only 
at bends). x is a harmonic bending constant, having dimen- 
sions of energy times length. There is no term linear in the 
curvature since the straight line, by symmetry, corresponds 
to the energy minimum. Furthermore, ,y > 0 since there is a 
free-energy price for bending. Now, since - 15 must reflect 
the idea that defects provide the opportunity for molecules 
to pack with large head-group areas, - 6 ~0. Indeed, the 
energy per unit length of Eq. (8 ) can be thought of as serving 
the role of the free-energy difference between a molecule in 
the defect and one in the bilayer proper. The validity of the 
above expression breaks down in the limit of pore defects, 
where we apply Eq. (8) only qualitatively. More explicitly, 
we write the line energy as - S + x( aC,>2/a2 and require 
that aC, Q 1: this is not the case for a pore where C, - I/a. 
The idea, however, is clear: straight, nonbending, defects are 
preferred. 

We can understand Eq. (8) in the context of the elastic 
properties of the monolayer of surfactant curved to form a 
defect by starting with the Helfrich3’ expression for the elas- 
tic energy per unit area of a monolayer: 

F= F(O,O) - fkC; +‘ik(C, + C, - CO)f + i;C,C,. (9) 

F(O,O) is the energy per unit area of the locally flat mono- 
layer and depends on the nature of the surfactant; C, is the 
spontaneous curvature. C, and C, are the two principal cur- 
vatures, with C, (as above) taken along the defect line as 
seen from above the bilayer surface, and C, measured along 
the semicircle described by the defect lip (C, = l/I every- 
where). The elastic constants of the monolayer are k and z. 
Briefly, Eq. (9), or more properly the quantity F- F(O,O), 
since we need an energy difference between the defect sur- 
face and the bilayer proper, can be rewritten as an energy per 
unit length for a single lip and added to the corresponding 
quantity for the other lip, with C,e - C, for the pair. it 
follows that no linear terms in C, remain and that energy per 
unit length is 

-%rkC,+rk/I+?rklC:.’ (10) 

Clearly, Eq. (8) is recovered with - 5~ - 2&C, + z-k /I 
and ;y= z-kt. As indicated, x > 0 (since k > 0) and - S is 
taken as negative in order to promote defects (and, indeed, 
Co > 0 here ) . 

Because Eq. (8) is a local quantity, it must be integrated 
over the length defect. The energy becomes (recalling that 
2 = qSdL ‘/a and that C, #O only in the bends), for the 
bilayer, 
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Fd = 
= S&L 2 

a 

-+ XC: (number of bends) (length per bend). 
(11) 

The number of bends has previously been calculated in the 
random mixing approximation; see Eq. (6). A bend is envi- 
sioned in the lattice model to be a quarter-circle of radius 
g/2 = l/C,. With the above result for the core defect free 
energy per bilayer, Eq. (6) for the number of bends per layer, 
and Eq. (2) for the number of surfactant molecules, the di- 
mensionless free energy fd becomes 

Here, S and ,y have been rendered dimensionless and are 
related to the corresponding parameters in Eq. (8) by 
6r BS/2ak, T and ~~z2n-X,~/a3k, T. From Eq. (5)) fur- 
thermore, c = 4a$( 1 - $)/#d with both $ and eSd vari- 
ational parameters, and # is the surfactant volume fraction. 

(12) 

Calculation of the entropic contribution f, relies on the 
connection between the A-B mixing entropy and that of the 
defects. We stress that, since the A-B squares comprise a 
fictitious division of the bilayer surface, this scheme is simply 
a convenient device for arriving atf;. To within an additive 
term in p( 1 - $)’ (which accounts for the self-avoidance 
of the line defects, at sites of potential crossings, by either 
bending towards A squares or B squares), we find 

f,== a’c’ 
I’(1 - 4d) 

[$ln$+(l--$)ln(l-$)I (13) 

with CS 8/2a2 dimensionless. 
The remaining contribution is the bilayer-bilayer inter- 

action free energy. As mentioned earlier, this term is a mat- 
ter of preference, and we will use the electrostatic interac- 
tions between bilayers which can be easily calculated by 
solving the Poisson-Boltzmann equation with the appropri- 
ate boundary conditions (see Ref. 25 and references within). 
We use the limit in which the free energy per bilayer goes as 
the inverse of the distance between the bilayers, d. Though 
this is a useful limit of the electrostatic interactions, we could 
have simply postulated that the bilayer-bilayer interactions 
have the form (where the free energy is for a bilayer) 
Fh = AL ‘/d since all that. is required is a repulsive term. 
This form suggests a particularly simple and natural cou- 
pling between the defect area fraction, $d, and the surfactant 
concentration, 4. If we assume that the only effect of defect 
introduction is to alter the intermembrane spacing d [see Eq. 
(3) 1, then we arrive at 

fb’;A~2/(1-~d)(l-~-Qld), (14) 
where A is now dimensionless and related to the correspond- 
ing quantity in Fh above by A =AB2/4vk, T. At fixed surfac- 
tant volume fraction 4, the overall effect-since d decreases 
with increasing $d according to Eq. (3)-is an increase inf, 
with increase in $d: this is the sense in which interbilayer 
interactions suppress the proliferation of defects, as dis- 
cussed earlier. 

We collect here the free-energy density terms, and, with 
CgivenbyEq, (5),find 

1 
+ &d 

[ 
$ln$++l-$>ln(l-ICI> 

1-4d I l/m-$>’ . 
(15) 

We have divided f by the dimensionless coefficient of the 
entropic term, which is C/4’ after the substitution for g, and 
have accordingly resealed the other coefficients, A, S and x. 
This free-energy density serves to describe the symmetric 
($ = l/2) random line and pore ($ < l/2) phases. 

As discussed above, the stripe phase is one where the 
defect channels are parallel to each other throughout the 
bilayer surface-for such a pattern we can eliminate the 
bending energy given by the third term on the right-hand 
side of Eq. ( 15). We crudely describe this phase by the first 
two terms in the free-energy density above: 

.&tripe = 
A42 &d4 

(l -+d)(l -$b-+d) --’ 1 --#d 
(16) 

This is easily justifiable: the stripe phase has no “topologi- 
cal” entropy or bending. That is, the only disorder in this 
phase is characterized by thermal undulations of the line 
defects about the basic parallel pattern. We ignore the details 
of these thermal fluctuations as we did in the random line 
and pore phases. As such, there is no need for an entropic 
term for any unknown topology (as there is in the other 
phases), and there are no bends in this topological sense. In 
the absence of these fluctuations, we would just need a one- 
dimensional entropy which would characterize the nonper- 
iodicity of the stripes-a quantity that scales with the length 
of the bilayer and is, therefore, negligible compared to the 
other free-energy components (per bilayer) which scale 
with the area (length squared). 

3. Qualitative discussion and simplification of the free- 
energy density 

Much can be learned by inspection of Eq. ( 15). The area 
fraction of defect, $d, is controlled essentially by the first two 
terms in the free-energy density-that is, the features of the 
stripe-phase free energy determine 4d. This is because the 
bending and entropic terms are higher order in #d than the 
second, core-energy term. Furthermore, the coefficient A as 
calculated from the electrostatics or as simply chosen, is 
large enough so that the linear term in $d contained within 
the interaction free energy will dominate over the bending 
and entropic contributions at moderate values of 4. The elec- 
trostatic interaction term is minimized by #d = 0 (at fixed 
4) while S > 0 allows for the defects to “grow in” (i.e., favors 
large eSd ) . The topology of the defects (cf. $), for fixed +d, is 
controlled by the last two terms of the free energy. Since 
,x > 0, the term containing it-the line-bending energy con- 
tribution-is minimized by $ = l/2. In other words, be- 
cause there is a price for bending lines, the system wishes to 
arrange itself into an extended network of defects where 
there are not as many bends and in which the minimum 

Bagdassarian eta/.: Curvature defects in lamellar phases 3035 

J. Chem. Phys., Vol. 94, No. 4,15 February 1991 
Downloaded 05 Dec 2003 to 132.64.1.37. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3036 Bagdassarian et a/.: Curvature defects in lamellar phases 

distance between them, {, is large. It is reasonable to expect, 
on the other hand, that the entropic contribution-see the 
last term in Eq. ( 15)-favors many, small defect loops and, 
indeed, this term gives a small $ (and 5) phase of pores. 

4. Phase diagram and anaiytic results 

The trends in +d and $ (amount and topology of defects, 
respectively) can be followed with increasing surfactant vol- 
ume fraction, 4. When the lamellar phase is dilute, the bi- 
layer spacing is large and the “brake” term-the bilayer- 
bilayer interaction-is not as sensitive to increases in #d: at 
low surfactant fraction, we expect a large area fraction of 
defect. In this large +d regime, the defect bending price 
(which is cubic in tid) is important and an extended network 
of defects is expected: we expect the random line phase 
($ = l/2). In the regime of concentrated lamellae, on the 
other hand, the bilayer-bilayer interactions -dominate and 
the area fraction of defect is small; with this small @d, the 
entropy favors a small $ pore phase. In summary, then, upon 
concentration of the lamellar phase, defects are diluted out 
with a concurrent evolution from a web-like (random line) 
pattern to an isolated pore phase. Furthermore, the only fea- 
ture which destabilizes the random line phase with respect to 
the stripe phase is the bending cost of the former. As this 
price is greater at low 4 (large 4d ), we expect a stable stripe 
phase at low 4, which will give way to the increasing 4 pro- 
gression just summarized. See Fig. 2 (a) for a pictorial repre- 
sentation. 

At the first level of simplification, we proceed to mini- 
mize Eq. ( 17) with respect to both $d and 77 and generate 
(via the common tangent construction) a typical phase dia- 
gram with 6 vs 4 as shown in Fig. 3. Because the lamellar 
phase is not expected to be stable at low surfactant volume 
fractions (with respect to a hexagonal phase, say), we do not 
extend the phase diagram below C$ = 0.4; indeed, at low am- 
phiphile concentrations, +d is too large to properly describe 
the system as lamellar. For this work the coefficient A is 
taken to be 10 and a, b, c, d are determined from Eq. ( 15) to 
be 8,48, 8 - 2/ln 2, 48 - 52/3 In 2, respectively. It is im- 
portant to stress that for fixed 6 and #y, the area fraction of 
defect decreases continuously with increasing surfactant. 

We have solved numerically the extremizatidn equa- 
tions which follow from ( 15) and ( 16), but we find it most 
instructive to capture these results with a simplified free- 
energy density, and we do this at two levels of approxima- 
tion, both of which give good qualitative agreement with the 
numerical work. Specifically, we seek simple results regard- 
ing the S and y dependence of the progression stripes-ran- 
dom lines -, pores. We begin with the following: 

The progression of phases is that which was described 
qualitatively. Below an easily obtainable value of 4 which 
depends on 6 and ,v, the free-energy minimum corresponds 
to the random line phase for which the equilibrium value of 
r = 0, i.e., $ = l/2. In the pore phase, above this 4, v in- 
creases continuously from 0 ( 1c, decreases from l/2) to give a 
true pore-like phase at high 4 where the defect density is 
lowest. Because the stripe-phase free energy is distinct from 
that of the random line phase, the stripe to line transition is 
necessarily first order: we have coexistence between a lamel- 
lar phase with ribbon-like defect patterns and another with 
random channels, the latter with smaller area fraction of 
defect. In a sense, then, this first-order transition is from a 
phase with high density of defects to a more “perfect” bilayer 
system. The order of the line to pore transition depends on 
the values of S and x, but we have not investigated this de- 
pendence in detail. increasing the value of ,y simply de- 
creases the slope of the lines separating the stripe-line and 
line-pore domains in Fig. 3: at a given 8, both stripe and 
random line phases survive to higher surfactant fractions. 

-I- &rj( - 1 - c$ - d$) (17) 

with 17 defined as l/2 - $. This serves for the line and pore 
phases while the stripe phase is given by the first four terms: 

Aripe =A(1 + 4, + &>P - W,$. (18) 

The first four terms in ( 17), i.e., fstrlpe, can be regarded as 
strictly phenomenological. The bilayer-bilayer interaction 
and its coupling to #Jo are given by A ( 1 + c$~ + &)p: as C$ 
increases, the brake on defects “turns on.” The “push” for 
defects is provided by - &,4. Alternatively, these first four 
terms are suggested by the form of the coupling between 4 
and +d in the expansion of Eq. ( 15) in these quantities. We 
need the previously developed model, however, to establish 
the powers of #d in the remaining terms of ( 17). The expan- 
sion of these terms in even powers of the variable’v, defined 
as l/2 - $, follows either from the free-energy density ( 15) 
or directly from the symmetry of the problem; the coeffi- 
cients a, b, c, d are a consequence of the particular model 
used. Finally, the expansion of Eq. ( 15) in powers of 717 intro- 
duces new constant coefficients for the bending and entropic 
terms; division by the entropic coefficient ( 16 In 2) rescales, 
once again, A, S, and ,r, giving Eq. (17). 

If we use a final (the second level of) simplification, 
these results are most easily captured and summarized. With 
the assumption that the stripe-phase features determine $8, 
the equilibrium value of 4d .at a given 4, for stripe, random 
line, and pore phases, we -obtain several simple analytic re- 
sults from the free energies given by Eqs. ( 17) and ( 18)-all 
of which are in agreement with the results referred to above. 
(The reasoning behind this assumption was discussed in Sec. 
III A 3). For all phases, then, we will use 

PIG. 3. Phase diagram calculated from the line defect model. Concentra- 
tion of the lamellar phase decreases the defect density. ,y = 4 here. 
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q5$ = lmAq5 - 1. (19) 

As 6 becomes more positive, the area fraction of defect, $f, 
increases; as surfactant concentration increases, it decreases 
as required. We demand that $2 > 0, which imposes an up- 
per bound on 4. (Alternatively, we could simply tune S and 
A such that @ = 0 only when 4 = 1, say.) Furthermore, 
since we have developed a small #d theory, 4 cannot be too 
small. The result ( 19) is substituted into Eq. ( 18) to give the 
thermodynamic potential of,the stripe phase,&, ($2 ( c$)$) 
(which is identical to that used to generate the phase dia- 
gram above); similarly, the general free energy of Eq. ( 17) is 
reduced to a function of 7 and 4 only:A@($),r7;$). 

Examination of the stripe-line stability proves to be a 
simple matter. For the random line phase 7~0, and for the 
moment we assume that this phase can be described by Eq. 
( 17). Indeed, we will see the analysis of this equation does 
yield the 17 = 0 solution. It is easy to show that the stripe 
phase has the lower free energy at low 4 ( < 4, _ , ) where q5d 
is larger, and the line phase at higher 4 ( > 4s _ , ) with 4d 
smaller. This c$~ _ , at which the free energies cross is, within 
this simplified treatment, 

A-r =p&) 9 (20) 

and corresponds to 

&-* = l/y* (21) 

Again, if #f > c&-‘, the strilje phase has the lower free-ener- 
gy density. From Eq. (20) we see that as 6 becomes more 
positive, the stripe phase survives to higher concentra- 
tions-since more defect is present for high 6, remaining in 
the stripe phase avoids increasing the bending cost. As ,r 
increases, it is also expected that #*-, should increase, and 
this is indeed so. This mimics the behavior seen in phase 
diagrams. Again, by construction, the stripe-to-line transi- 
tion is first order. We turn now to the random line to pore 
(7 > 0) transition. 

Recall the free-energy density 

f=A(l+ & + $b2”,$” --s&$4 

+-J/&$3qw + q* + b-779 + &yqq - 1 - c?jJ), (22) 

where $8 is given by Eq. ( 19). Note that we have set the 
coefficient d = 0 in ( 17) since it can be shown that, in the 
case where Eq. ( 17) is minimized with respect to both q and 
$d, the surfactant volume fraction at which the random line 
phase (77 = 0) ceases to be a minimum is independent of this 
coefficient. 

Landau analysis, at fixed 4, and therefore, fixed $2, re- 
veals that below q5 E 4, _ p, the equilibrium value rj* = 0 pro- 
vides the free-energy minimum, i.e., the free-energy curva- 
ture-coefficient of $=-is positive for. 4 < $I- ,,. As the 
surfactant volume fraction increases beyond q5[ _ p, v* grows 
continuously away from the zero value. That is, for 
I$ < $I- P, the random line phase ($ = l/2) minimizes the 
free energy density, and -for 4 > c$,-~, the pore phase 
(9 ( l/2) grows in. This qir _ p is easily found to be 
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+I-p = -3, +:,,a> (23) 

with the corresponding 

C&X’= c/xa. (24) 
If @ < &- ‘, the pore phase is stable. Note that #, _ [ < I$, _ p : 
the stripe-line phase transition (or rather the crossover in 
their free energies) is at lower concentration than the sym- 
metry breaking transition just discussed. Otherwise, both 
4, _ I and q5( _ p have the same dependence on S andx and for 
the same reasons. 

The behavior of the v* > 0 solution is analyzed. The 
pore phase grows in only for 4 > r$! _ p and v* is found by 
minimizing the free-energy density with respect to 17 (and 
ignoring the ~7” = 0 solution). We obtain 

( 
C a IL? 

--- 
‘” = 2xbqQ 2b > 

(25) 

for $24, _ p and $2 given by Eq. ( 19). As C$ increases and I$$ 
decreases, q* increases, i.e., I$ = l/2 - 17 decreases-with 
increasing surfactant concentration, we see evolution 
towards isolated, pore-like defect loops. 

Finally, we solve Eqs. (20) and (23) for S and note that 
these describe well the S vs 4 phase diagram of Fig. 3: 

s=4,-,w~+ 1) (26) 
and 

ti=Aq5,-,(2c/Xa + 1). (27) 
These equations also summarize the phase boundary depen- 
dence on x. 

Within the framework of the line defect model, then, we 
predict successive phase transitions between lamellar phases 
characterized by different defect topologies. 

B. Defect growth model 
1. Description of model 

We now introduce the second model. It is suggested nat- 
urally by the micellar growth and alignment work reviewed 
briefly in the Introduction, and gives the same qualitative 
picture as the line defect model. Because the details of a 
chosen model are not important in determining lamellar ge- 
ometry and the bilayer-bilayer interactions, the results of 
Sec. II and the form of the interlayer repulsion, Eq. ( 14)) are 
unaffected. In particular, we still have the result that lamel- 
lar phase dilution leads to an increase in the area fraction of 
defect. 

The building block of the defect growth model is a 
straight line (channel) defect of constant width a and finite, 
but variable, length. Because this line has ends (“caps”), 
there is an energy price, call it f; associated with them be- 
cause the head-group areas of molecules in these regions are 
considerably smaller than the optimal. The aspect ratio of 
the defect-the length-to-width ratio-will be denoted by s, 
and ifs = 0, we have a pore defect resulting from fusion of 
the end caps; this pore will have energy E. As s grows away 
from zero, there is one-dimensional growth of the defect into 
the linear, narrow channel described, and it is this linear 
portion which provides the favored, hemicylifidrical defect 
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lips. This provides the analogy with the micellar growth pio 
ture-entropic considerations favor many small pores 
(small s), while a large value for s satisfies molecular pack- 
ing constraints. It is clear that if e, the end energy cost, were 
allowed to increase sufficiently, the defects would lengthen 
indefinitely until we would be in a regime where the line 
defect model, which does not allow ends, would be more 
realistic. Nonetheless, the qualitative defect patterns and 
their evolution with the surfactant volume fraction are the 
same for both models. 

The dimensionless energy of a single defect is 

energy/defect =- - Ss + E, (28) 
where 6 is a dimensionless line energy ( = cYa/k, T in terms 
of the original energy per unit length of defect ), and 
E = dkB T is now a dimensionless end price. This S > 0, 
analogous to the quantity used in the defect growth model, 
will serve two purposes here: first, it leads to linear defect 
growth, and, secondly, it is the “push” for defects as it leads 
to large area fraction of channels. 

A bilayer will have nd monodisperse line defects-we 
ignore polydispersity as a first simplification. If the area of a 
pore, the species defined by s = 0, is taken as a’, the relation 
between #cr, the defect area fraction, and nd is given by 

qSd =n,(s+ l)aZ/L2, (29) 

where L ’ is the area of a bilayer. For fixed I$~, the system can 
organize into many small defects or fewer larger ones. By 
restricting the orientation of the long axes of the defects to lie 
along two perpendicular directions, we introduce a second 
simplification which is known to preserve the features of the 
isotropic-nematic transition of a bulk phase of long rods.j2 
Indeed, we are looking precisely for-an isotropic phase of 
defects, with half the lines aligned in one of the allowed di- 
rections with the other half orthogonal-a situation analo- 
gous to the random line phase of the first model-and a 
nematic phase with essentially all defects having the same 
orientation. This nematic is reminiscent of the stripe phase, 
except that here the defects are of finite length. Because s can 
go to zero, we have the pore phase included as a limiting 
phase of the isotropic. For a pictorial sequence of these pat- 
terns, see Fig. 2(b). 

In order to have a nematic phase, and its attendant loss 
of orientational entropy compared to the isotropic, we in- 
clude “repulsive” defect-defect interactions. Two perpen- 
dicular, interacting defects will cross, and because the cross 
introduces regions of unfavorably high curvature, a price is 
introduced for each orthogonal interaction-we are focus- 
ing again on a regime where cylindrical geometry best satis- 
fies the molecular packing requirements. (Indeed, if higher 
curvature than that provided by a cylindrical lip were re- 
quired, a bilayer might well reassemble into discoidal mi- 
celles, but we do not consider this possibility here.) Because 
the number of interacting parallel defects, at least for large s 
and isotropic distribution, is less than the number of crossing 
defects, we ignore the former at this level of the model (we 
elaborate on this below). Recall that in the line defect model 
we replaced crossings with self-avoiding bends assumed to 
be less costly: this allowed us to fully describe the defect 
energies with a single line energy. In the present model, we 

can easily handle either type of interaction: a cross or the 
corresponding bends are both characterized by an interac- 
tion energy, call it ,v, but, again we implicitly use the energe- 
tically favored one. In this growth model, then, alignment to 
the nematic is prompted by the need to avoid a large interac- 
tioncost at higher defect densities. 

2. Free energies 
The dimensionless free-energy density will feature five 

terms: 

-f ==-fd +f, +f, +.A +fb, (30) 

where fd is the defect self-energy resulting from Eq. (28) ,f, 
is the translational entropy, f, the orientational entropy, and 
J; the defect-defect interaction term. The bilayer-bilayer in- 
teraction,&,, is the same as for the first model and is given by 
Eq. ( 14). In general, we proceed in the same fashion as 
above: to derive an appropriate free energy, we use the free 
energy per bilayer, divide by the number of molecules in it 
[see Eq. (2) 1, and multiply the result by the sarfactant vol- 
ume fraction, 4. 

The defect energy, per bilayer, is given by Eq. (28) mul- 
tiplied by the number of defects, yld = +& ‘/(s + I)a”. 
With this, and following the procedure above, we arrive at 

fd = 
c&N - 8s + d 
(1 -#d)(S+ 1) 

(31) 

with CE Z/2aa the same dimensionless constant as in ( 13). 
The area fraction of defect, 4d, and the aspect ratio, s, 

are independent variational parameters in the problem; the 
third one is x, the fraction of defects aligned in one of the two 
allowed orientations. Because of the - S < 0 term, it is clear 
thatf, provides for large aspect ratio (as well as large $d ), 
and is helped in this respect by the end energy, E > 0. The end 
energy also counteracts the push for large area fraction of 
defect, but for larges this effect becomes unimportant. It will 
be seen that E enters into the extremization equation deter- 
mining the aspect ratio in an uninteresting fashion: it simply 
adds to S. 

In order to calculate-& we need the number of defect 
crossings, recalling that a cross can be replaced by two bends 
if this lowers the energy. A simple way to proceed is to divide 
the bilayer surface into N lattice sites each associated with 
some area. The number of crossings is then 

n,x[ nJ;x)] (No. of interacting sites), 

where ndx is the number of defects in one direction and 
nd ( 1 - x)/N is the probability of a defect in the perpendic- 
ular direction at any perpendicular lattice site. The “No. of 
interacting sites” describes the number of neighboring posi- 
tions such that placement of a perpendicular defect there will 
result in the overlap of the two (x and 1 - X) defects. It is 
proportional to the excluded area of two orthogonal lines: 

No. of interacting sites5 (s+ 1>2a2 
area per site ’ 

With this, Eq. (29) for the +d dependence of nd, the deflni- 
tion N (area per site) = C ’ (where L ’ is the bilayer area), 
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and the usual quantity for the number of surfactants per 
bilayer, we obtain 

$i = x&4x( 1 -x) 
‘-/Pd ’ 

(32) 

where +y=x8/2a2k, T (in terms of a quantity with dimen- 
sions energy per interaction) is the dimensionless bending or 
crossing per interaction. 

Note that this result is independent of the aspect ratio of 
the defects; this is not the case for parallel defects, but as 
mentioned, since the corresponding quantity in the isotropic 
phase is less for the parallel case (because there are fewer 
interacting aligned defects at large s), we ignore it there. In 
the nematic, however, where xz 1, the h above vanishes, 
and, in principle, there should be a parallel interaction term. 
However, upon alignment, the defects are found to length- 
en-this feature, analogous to the alignment-growth cou- 
pling in the micellar system, will be quantified shortly. Now, 
the interaction free energy in the nematic, i.e., the quantity 
analogous to (32)) would scale as the inverse of the aspect 
ratio, and it would be a small quantity because of the larger s 
in the aligned phase. Furthermore, while it is clear that we 
can assign a crossing price to interacting defects, the nature 
of the parallel interactions is.more ambiguous. Indeed, end- 
end interactions which can result in loss of the costly end 
caps can actually stabilize the nematic. 

The final quantities to be determined are the orienta- 
tional and translational entropies for noninteracting, “ideal” 
defects-the interactions are, of course, taken care of by&- 
and can be calculated simultaneously. On a lattice with N 
sites we randomly set downtwo components, ndx of which 
represent “centers of masses” of defects pointing in one di- 
rection and nd ( 1 - x) representing defects aligned orthogo- 
nally. A given lattice site can be occupied by one of each 
species since defects can cross. The entropy is calculated 
from the following number of unique arrangements: 

Oil= (N!)’ 
(ndx)![nd(l -X)]~(N-tZdX)![N-f’Zd(l -X,]! 

and if nd (N, a condition corresponding to the continuum 
limit, we succeed in decoupling the orientational’entropy 
from the translational. We find, with the usual manipula- 
tions involving Stirling’s formula, the free energies (with 
C = 8/2a’, as before) : 

f,= 
c+d# ln id -- 1 

(1 -&,)(s+ 1) s-l-1 > 
(33) 

and 

f,= 
(?d4 

(l -#d)b+ l) 

X[xlnx+ (1 -x)ln(l-x) +ln2]. (34) 

To arrive at these tinal results, we have used, in the quantity 
in (n,/N), the fact that the number of lattice sites is propor- 
tional to the bilayer area L ‘. The resulting extra additive 
factor proportional to nd is absorbed into E of Eq. (3 1) . The 
isotropic phase has been taken as the zero of the orienta- 
tional entropy, i.e.,f, ~-0 for x = l/2. Recall, from analogy 

with the micellar work, that f, favors, at fixed 4d, many 
small defects, andf, favors an isotropic orientation. 

Collecting of the free-energy-density terms gives, after 
division by the constant C (thereby resealing A and x) 

f= 
‘442 

(l -#,,(l-$-@d) 

(Pd$ 

+ t1 -(bd,(S+ 1) 

ln 4d -- 1 +xlnx 
s+l 

f (1 -x)ln(l -x) +ln2-&S+E 
I 

. (35) 

In principle, since there appear three variational parameters 
(x, #d1, s) we need to minimize this free-energy density with 
respect to each. 

3. Results 

As was done for the line defect model above, we decou- 
ple the value of &$, the equilibrium defect density, from the 
details of the patterns. S is made large so that s becomes 
large, and the increase in dd is counteracted with a large A. 
This limit again suggests a free-energy density, given by Eq. 
( 18), which is minimized with respect to #d yielding Eq. 
( 19) for its equilibrium value. On the other hand, we can be 
more consistent with the form of the bilayer-bilayer interac- 
tion used in Eq. (35) and determine #d from 
f’ = .4@/( 1 - 4 ~- 4d ) - &5,+, which gives a simple result 
if terms linear in #d only are retained. We stress, again, that 
the form of the bilayer repulsive term is not important: it is 
just a matter of convenience to use Eq. ( 18) as it simplifies 
the analytic work leading to the construction of the phase 
diagram for the line defect model. With @ replacing $d in 
Eq. (35)) we minimize the free-energy density with respect 
to x and s. The simultaneous equations are easily solved nu- 
merically, and we learn that, with increasing defect fraction, 
there is a strong first-order phase transition from an isotrop- 
ic (random line-like) phase with x = l/2 to a nematic 
(stripe-like) pattern with x ,< 1, as shown in Fig. 2 (b) . For 
typical values of 6 and x ( E simply adds to 8, as seen below 1, 
a small (A# ~0.01) coexistence region in 4 space is found 
(via a common tangent construction) between a lamellar 
phase with an isotropic defect pattern and one with oriented 
channels. 

We can also obtain these results by using Eq. (35) with 
x = l/2 for the isotropic phase and x = 1 for the nematic. In 
the isotropic phase the equilibrium aspect ratio is given by 
(3/W,= 1,2 = 0, or 

s, =#es+‘- 1, 

and this phase is stable if 
(36) 

(37) 

As &$ increases-as the lamellar phase is diluted-we learn 
that the defects grow into longer channels: we progress away 
from the pore phase. When 4s increases beyond &, as given 
above, there is a first-order transition into the nematic phase 
of line defects with the aspect ratio 

s, =2@es+‘- 1 (38) 
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as follows from solving (~5f/as),, i = 0. Note the align- 
ment-growth coupling upon going from the isotropic to the 
oriented phase in which, for the same #cr, the defects are 
longer. [The factor of 2 appearing in Eq. (38) results from 
our particular choice of restricted orientations.] As ,y, the 
defect interaction price, is increased, the nematic phase ap- 
pears at lower defect fraction and consequently survives to a 
higher surfactant concentration. 

In summary then, for both the line defect and defect 
growth models, we have the following progression with con- 
centration of the lamellar phase (corresponding to defect 
dilution): stripe phase (nematic) to isotropic line phase to 
pores. In the line model the first transition is first order by 
construction, and in the growth picture it corresponds to a 
first-order nematic-isotropic transition. Because the line to 
pore progression in the isotropic regime of the growth model 
is a one-dimensional reorganization, it cannot be a real phase* 
transition; in the line defect work the random line to pore 
rearrangement corresponds to an Ising symmetry breaking 
($ = l/2 to $ < l/2) transition which need not be second 
order in r~5 space, depending on the values of S and ,y. 

IV. DISCUSSION AND CONCLUSIONS 

Roth models discussed above give rise to analogous pat- 
terns with change in surfactant concentration: But are the 
driving forces for these topological changes the same? Con- 
sider first the pore-like defects in concentrated lamellar 
phases. In both models these pores are entropically stabi- 
lized. With increasing defect density, the pores of the growth 
model elongate in one dimension to an isotropic line phase in 
order to take advantage of the cylindrical packing of the 
surfactant. In the same sense, the pore-like objects of the line 
model evolve into more extended line patterns, thus mini- 
mizing the number of bends, which are regions of noncylin- 
drical packing of the surfactant-bending involves a price 
for deformation of the cylindrical lips. In both models, then, 
the progression from pore to an isotropic (random) line 
phase, with increasing area fraction of defect, is driven by the 
need to pack the maximum number of molecules with pre- 
ferred curvature while still profiting from the “topological” 
entropy of an isotropic or random line distribution. In the 
growth model, this orientational entropy is given up, with 
the appearance of the nematic phase, only when defect-de- 
fect interactions become too costly at higher coverages. The 
random line phase of the first model is characterized, simi- 
larly, by defects which cover the bilayer surface, the lines 
bending in order to avoid interactions while trying to gain 
topological entropy: we assume that crossing defects cost 
more than the gentle bends on squares of edge length 6. With 
increasing density of channels, more bends are introduced in 
order to prevent an increasing number of interactions, with 
the eventual transition to a stripe phase. In this sense, the 
random line to stripe transition in the line defect model, as in 
the growth picture, is triggered by defect interactions. The 
stability of the oriented phase (stripe or nematic) in both 
cases is controlled via the quantity x. 

Finally, it is apparent that if flexibility, along with an 
infinite price for the defect ends, were introduced for the 
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defect growth model, we would recover the line defect mod- 
el. 

We have stressed that the presence of defects in the la- 
mellar phase results from an attempt to satisfy molecular 
packing demands within the constraints of the aggregate 
packing required at moderate to high surfactant volume 
fractions. In order to make connection with the work of Sa- 
dot and Charvolin (see Refs. 16 and 33 for a review), we 
note, in our work, the frustration between local, molecular 
forces and the large-scale liquid-crystalline order when the 
amphiphile molecules are packed in homogeneous, perfect 
bilayers. Resolution of this frustration involves allowing for 
some of the molecules, at least, to reside in highly curved 
defect lips which leads to pattern formation on the bilayer 
face. Similarly, in the geometrical approach of Sadoc and 
Charvolin, local stresses lead to frustration which is also re- 
lieved by large-scale topological reorganization of the am- 
phiphilic system. Specifically, they begin with a stable bi- 
layer, existing under some “experimental” conditions, in 
which the head and tail areas of a molecule are equal. Be- 
cause the forces determining these respective areas are not 
the same, it can be expected that a different temperature, say, 
the areas will no longer be similar, thereby introducing cur- 
vature into each monolayer. By symmetry, both monolayers 
will gain either positive or negative curvature resulting in 
disruption of the bilayer hydrophobic core. This, then, is the 
frustration which leads to structural reorganization. The 
common feature shaped by their work and ours is a locally 
stressed bilayer in which the molecular packing require- 
ments lead to a frustration. Our approach, however, explores 
directly the statistical thermodynamic consequences of this 
frustration as a function of surfactant concentration. In this 
same light, we comment upon additional analogies, first to 
the ripple phases mentioned in the Introduction, and then to 
the domain walls present in commensurate-incommensu- 
rate phases on surfaces. 

At temperatures below which the bilayers of a lamellar 
phase have a fluid hydrocarbon core, phospholipid mem- 
branes may deform with a sawtooth pattern. *9-z’ This ripple 
phase with its modulated defects arises, again, from packing 
competition between heads and chains; in phosphatidylcho- 
line, for example, the head-group area is larger than that of 
the tails. It seems, then, that such local stress in the lamellar 
phase can be relieved in yet another way: through ripples. 
Though in our defect work we have not explicitly mentioned 
these packing competitions between the hydrophobic and 
hydrophilic portions of the molecule, it is implied that the 
competition is such that the entire amphiphile enjoys regions 
of high curvature allowing for a relatively larger head group. 

Finally, consider the problem of absorbing gas atoms 
onto a crystal surface where the natural periods of absorbate 
and substrate are incommensurable or mismatched; again, a 
frustrated situation arises with resolution provided by do- 
main walls separating regions of commensurate matching of 
the two lattices in question.34 It turns out that under suitable 
conditions, if wall crossings are costly, stripe phases of these 
domain walls are stable. Furthermore, at finite temperature 
these walls fluctuate in the same way expected for the defect 
channels of our lamellar systems, and dislocations in these 
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incommensurate stripe phases can lead to more random wall 
patterns reminiscent of our lines phases. It seems likely that 
the language and the machinery of incommensurate-com- 
mensurate theory can be exploited further in our work. With 
this discussion of how molecular stresses lead to reorganiza- 
tion of the lamellar phase (except for the case just men- 
tioned), we turn to some experimental work which renders 
more plausible these theoretical notions. 

It is clear from the experimental papers cited in the In- 
troduction that lamellar phases are pierced by pores or chan- 
nels. We have seen that as 6, the core defect energy, becomes 
larger, the bilayers are more fragmented by channels. Im- 
plicit in this conclusion is the argument that surfactant mole- 
cules requiring larger curvature will be characterized by a 
more positive S. Neutron scattering studies on the lamellar 
phase of the ternary system SdS/decanol/water6 show that, 
for constant water fraction, the bilayers have a greater area 
fraction of defects as the surfactant/alcohol ratio is in- 
creased. Furthermore, as this ratio is increased, the periodic- 
ity of the lamellar phase decreases-indeed our model re- 
quires that the periodicity (d spacing) decrease with 
increasing defect density. What is happening here is clear. 
Both the surfactant and the alcohol have the same tail group, 
but the former has the larger head. As the amount of surfac- 
tant relative to decanol is increased, there is need to accom- 
modate the larger head groups, and this promotes defects of 
positive curvature. Indeed, it seems that SdS molecules will 
be packed preferentially in the defect lips.35 As is expected, 
at still higher surfactant/alcohol ratios (at constant water 
content), the lamellar phase is disrupted via a phase transi- 
tion. 
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