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function described in Appendix B. The general solution for the 
interior is given by 

where again the boundary conditions determine the coefficients 
E,. The determination of the coefficients in eq A7 is facilitated 
by using a spherical expansion for the screened Coulomb potential. 
Taking the Fourier transform and using the plane wave expan- 
sion,19 we get 

exp(-rlr - rol) 
Ir - rol 

- - 
k2 

S - d k  -&(kr) jn(kro)(2n + l)Pn(cos 0) (A9) 
Rn-0 0 k2 + K 

with j,, a modified spherical Bessel function. The integral can be 
evaluated19 and written in terms of two other modified spherical 
Bessel functions, namely 
exp(-rlr - rol) - 

= x ( 2 n  + l)Kkn(Kro) i,,(Kr)P,,(cos 0) (A10) Ir - rol n-0 

where r I r,. The properties of i,,(x) are also discussed in Ap- 
pendix B. If we substitute this expression into (A7), using the 
boundary conditions (A3) and (A4) and the relations (B5) and 
(B6) in the following appendix, it is straightforward to derive eq 
10. 

Appendix B 
The modified spherical Bessel functions used in this work are 

described in most elementary tables (see for example ref 19). For 
convenience, we list some of the relevant properties here. Explicit 
expressions for these functions are 

(B1) in(x) = (1 / 2 x ) { 8 A n ( x )  + e-"E,(x)] 

with 

n (-l)&(n + k)! 
An(x)  = Eok! (n - k)! ( 2 ~ ) ~  

n (n + k)! 
k-o(n  - k)! ( 2 ~ ) ~  B,(x) = (-1)"+' C (B3) 

and 

Their derivatives satisfy the following relations 

and 
i,,'(x) = (n /x ) i , (x )  + i,,+l(x) 

kn'(x) = (n/x)kn(x)  - kn+~(x )  

(B5) 

(B6) 
For the arguments used in this work, the explicit expressions were 
not able to be generated with sufficient precision as soon as n 
exceeded about 4. Thus, for larger n, we made use of the following 
recursion formulas and techniques described in ref 20 

(B7) 

(B8) 

Finally, we note that the modified spherical functions kn(x), used 
by Head-Gordon and are related to those used here 
via 

2n+  1 

2n + 1 

in+l(x) = in-l(x) - - in(x) 
X 

kn+l(x) = kn-~(x)  + 7 kn(x) 

Substituting this expression into eq 8 gives precisely eq A9 of ref 
8. 

Registry No. Superoxide dismutase, 9054-89- 1; superoxide, 1 1062- 
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A mean field theory of chain packing in amphiphilic aggregates is used to calculate conformational and thermodynamic 
properties of the inverse hexagonal phase. These properties are compared with those for planar bilayers and curved monolayers. 
Calculated bond order parameters reveal that chains packed in the hexagonal arrangement have more conformational freedom 
than chains packed in a bilayer. The calculated order parameters are in good agreement with recent experimental results. 
Free energy calculations are also presented. It is found that for small areas per head group the packing free energy of amphiphiles 
in a bilayer is considerably higher than in the hexagonal phase. 

1 .  Introduction 
Aqueous solutions of amphiphilic molecules exhibit rich and 

complex phase behaviors.' Amphiphila assemble in aggregates 

( I )  (a) Tiddy, 0 .  J.  T. fhys. Rep. 1980, 57, 1 .  (b) Wennerstrom. H.; 
Lindmn, B. Phys. Rep. 1979,52, I .  (c) Lamon, R. 0 .  J.  Chem. fhys.  1989, 
91. 2479. (d) Ekwall, P. Adu. U9. Crysr. 1975, I ,  1. 

(2) (a) Ben-Shaul, A.; Gelbart, W. M. Annu. Rev. Phys. Chem. 1985,86, 
179. (b) Gruen, D. W. R.  J .  fhys.  Chem. 1985,89, 146. (c )  Dill, K. A.; 
Cantor, R. S. Mtzcromolecules 1984, 17, 380. (d) Leematken, F. A. M.; 
Scheutjens, J. M. H. M.; L klema, J. Blophys. Chem. 1983, 18, 353. (e) 
Marcelja. S. Bfochlm. Blopiys. Arlo 1974, 367, 165. 

of different structures, depending on their chemical nature as well 
as on temperature and concentration. At low concentrations the 
stable phases are usually isotropic solutions of micellar aggregates 
of various shapes (e.g., spherical, cylindrical, vesicles) and sizes. 
At higher concentrations the aggregates grow and organize in 
partially ordered (e.g., nematic) or fully ordered phases charac- 
terized by lamellar, hexagonal, or cubic symmetries. 

~~ 

(3) (a) Van der Ploeg, P.; Berendsen, H. J. C. Mol. fhys.  1983,19.233. 
(b) Egberts, E.: Berendsen, H. J. C. J.  Chem. fhys.  1988, 89, 3718. (c) 
Watanabe, K.; Ferrario, M.; Klein, M. L. J .  fhys.  Chem. 1988, 92, 819. 

0022-3654/91/2095-7477$02.50/0 0 1991 American Chemical Society 



7478 The Journal of Physical Chemistry, Vol. 95, No. 19, 1991 Steenhuizen et al. 

1 ,= a-R 
1,= b-R 

a 

. . . . .  
i: I 2 3 4  .... 

b 
Figure 1. Schematic illustration of the HI1 phase (a) and the division of 
the hydrophobic core into (hypothetical) layers (b). The dashed and 
dotted areas represent regions of two and three layers overlap, respec- 
tively. 

Amphiphilic aggregates and phases can be classified as "regular" 
or "inverse". In a regular aggregate, the hydrophobic core is 
convex and the hydrophilic heads point out toward a continuous 
aqueous solution. In an inverse phase, the hydrophobic tails form 
a continuous medium while the hydrophilic heads point into convex 
aqueous regions. One example of the second class is the inverse 
hexagonal phase (HII),  schematically shown in Figure 1, where 
the water is confined to the interior of (infinitely long) parallel 
cylinders arranged in an hexagonal lattice. 

Extensive literature is available concerning the thermodynamics 
and the microscopic structure of regular aggregates such as 
micelles of different shapes, or bilayers. For these aggregates, 
conformational properties, such as bond order parameters, or 
spatial distribution of chain segments, have been measured by 
various techniques'' and calculated by use of different 
On the other hand, relatively little is known about the inverse 
phases. Thus, in this paper we present a theoretical study, focusing 
on the inverse hexagonal phase, for which partial experimental 
information is a ~ a i l a b l e ~ , ~  and the theoretical analyses are mostly 
qualitative.6b More specifically, in the following sections we shall 
analyze several conformational and thermodynamic properties of 
the HII phase and compare them with those of the L, phase. The 
L, phase, as shown schematically in Figure 2, consists of a lamellar 
array of planar bilayers. 

Our approach is based on the application of a recent mean field 
theory of chain-packin statistics and thermodynamics in am- 
phiphilic aggregates."f This theory has previously been suc- 

a 

b 
Fipre 2. Schematic illustration of the L, phase (a) and the division of 
the hydrophobic core into parallel layers (b). 

cessfully applied to the calculation of chain conformational 
properties, such as bond order parameters along the hydrocarbon 
chain, segment spatial distributions, or the average fraction of 
gauche bonds.IO It has also been used to calculate thermodynamic 
properties such as the packing free energies in different geome- 
triesIob and elastic moduli of bilayers and monolayers! 

In this paper, the theory will be employed to calculate C-D- 
(C-H) bond order parameters of amphiphile chains in the L, and 
HII phase and to compare them with experimental results obtained 
by Sternin et al.s using deuterium NMR spectrometry. We shall 
also present free energy calculations of the two phases in order 
to assess their relative stability. 

2. Theory 
(a) Singlet Probability Distribution. The central quantity in 

our analysis is the singlet probability distribution (spd), P(a1G). 
This is the probability that in a given geometry "G" the amphiphilic 
molecule will be found in conformation a. We consider single- 
chain amphiphiles of the form H(CH2),,-1CH3, with H denoting 
the polar head group. We assume that the head group is struc- 
tureless. Accordingly, the molecular conformation a is determined 
by the following: (i) the sequence of internal bond rotations 
(trans/gauche) along the hydrocarbon chain (CH2),,-ICH3, (ii) 
the three Euler angles specifying the overall orientation of the 
chain relative to the hydrocarbon water interface, and (iii) the 
distance of the head group from the interface. (In the calculations, 
the head group is confined to a narrow interval around the in- 
terface; see section 3.) 

The geometry G is specified by the curvature of the hydro- 
carbon-water interface (onto which the head groups are anchored) 
and by the area per head group, a, at the interface. For example, 
in the inverse hexagonal phase, the interface has a cylindrical 
geometry and the area per head group is a function of the cyl- 
inders' radii and the distance between them. 

Formally the spd can be expressed as 
W G )  = (1  /Z) exp[-kWaIG)l (1) 

(4) Seelig, J.; Nicderberger, W. Biochemistry 1974. 13, 1585. 
(5) Stcmin, E.; Fine, 9.; Bloom, M.; Tilcock, C. P. S.; Wong, K. F.; Cullis, 

(6) (a) Kirk, G. L.; Gruner, S .  M. J. Phys. 1985.46, 761. (b) Kirk, G. 

(7) Raa-Humn, F. J. Mol. Biol. 1967, 25, 367. 
(8) Ben-Shaul, A.; Szleifer. I.; Gelbart, W. M. J. Chcm. Phys. 1985, 83, 

P .  R.  Biophys. J .  1988,54, 689. 

L.; Gruner, S. M.; Stein, L. Biochemistry 1984, 23, 1093. 

3597. 

(9) Szleifer, I.; Kramer, D.; Ben-Shaul, A,; Roux, D.; Gclbart, W. M. 
Phys. Rev. Lett. 1988, 60, 1966. 

(IO) (a) Szleifer, I. Ph.D. Thesis, Hebrew University of Jerusalem, Sep- 
tember 1988. (b) Szleifer, I.; Ben-Shaul, A.; Gelbart, W. M. J. Chrm. Phys. 
1987, 86, 7094. 

( 1  1 )  Cullis, P. R.; de Kruijff, B. Biochim. Bio hys. Acta 1979,559, 399. 
(12) Tanford. C. The Hydrophobic Efiect; h e y :  New York, 1980. 
(13) Mitchell, D. J.; Ninhom, 9. W. J. Chem. Soc., Faraday Trans. 2 

1988, 77,601. 
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where W is a potential of mean force acting on a chain in con- 
formation a, Z = Ca exp[-@W(a(G)] is the partition function, 
and @ = 1 / k T .  To a first approximation W can be divided into 
two parts, corresponding to chain (tail) and head-group contri- 
butions, W = W,(a) + Wh. Wh accounts for the effects of in- 
teractions between the head group and (i) neighboring head 
groups, (ii) the solvent molecules, and (iii) the chains in the 
hydrophobic core. Assuming that Wh is independent of a cor- 
responds to the assumption that the internal organization of the 
chains in the core does not affect head-group interactions. The 
separation of head and tail contributions, W = W,(a) + Wh, 
implies a corresponding separation of the free energy per molecule 

@A = -In Z = -In 2, -In Zh = @A, + @Ah (2) 

An exact calculation of Wh and hence Ah is very difficult. We 
shall need these quantities for comparing the relative stability of 
the HI, and L, phases, to which end we shall use a familiar 
approximate phenomenological model. Note however that Wh 
does not affect our main goal, namely, the calculation of P(aJG). 

Because of the extreme complexity of amphiphilic aggregates 
we cannot calculate P(aJG) exactly. Instead we derived P(alG), 
and thus also the effective potential, by a mean field approach.ks 
Explicitly, we seek the probability distribution function which 
minimizes the free energy per chain A, 

A, = E, - TS, = CP(aJG) t (a )  + kTZP(a1G) In P(alG) (3)  

subject to the packing constraints on P(a(G) corresponding to the 
given aggregation geometry. The quantity €(a) is the internal 
chain energy. In the rotational isomeric state (RIS)I4 model it 
is given by ((a) = ng(a)cg, with n,(a) denoting the number of 
gauche bonds in configuration a and tg denoting the gauche 
energy. 

The packing constraints follow from the (single) assumption 
that the hydrophobic core is dry and uniformly packed with chain 
segments, a t  liquidlike density. The mathematical formulation 
of the constraints reflects the aggregation geometry. The geometry 
is conveniently characterized by dividing the hydrophobic core 
into L parallel (or concentric) layers of width AI, as illustrated 
in Figures 1 and 2. Using Mi to denote the volume of layer i and 
N for the total number of chains that can reach this layer, then 
the average volume per chain in layer i is m, = M i / N .  Now let 
+,(a) denote the volume that a chain in conformation a occupies 
in layer i. The requirement for uniform density implies 

(4) 

which means that (4i(a) ), the average volume occupied by a chain 
in layer i, is equal to the average volume available (per chain) 
in this layer, mi. For notational simplicity we shall hereon write 
P(a) instead of P(aIG). Note that G is fully specified by the m,'s 
and is not a result of the theory. In the next subsection the m,'s 
and the packing constraints are written explicitly for three ge- 
ometries corresponding to planar bilayers, curved monolayers, and 
inverted cylinders in the hexagonal phase. 

The spd that minimizes A, in eq 3 subject to the packing 
constraints of eq 4 is given by8Jo 

U (I 

CP(a)4i(a) = (4da)) = mi i = 1, ..., L 
a 

where y is the normalization constant (partition function), which 
is closely related, though not identical,s to the configurational 
integral Z, (A, = -kT In Z,; see below). The Ti are the Lagrange 
multipliers conjugate to the m,, which can be evaluated by sub- 
stituting P ( a )  from eq 5 into the equations of constraints (eq 4) 
and solving the resulting set of nonlinear equations,*JO The 
physical significance of r, is that of a lateral pressure exerted in 
layer i on any given ("central") chain by its neighbors. Consistent 

(14) Flow, P. J.  Srarisrical Mechanics of Chain Molceules; Wiley-lnter- 
science: New York, 1969. 
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with this interpretation the r,'s are positive and their magnitudes 
increase as the packing constraints become more severe, and thus 
restrict conformational freedom. Maximal orientational freedom 
corresponds to an isolated or a "free" ("unconstrained") chain for 
which all ri 0. Note that the spd given in eq 5 is a general 
expression valid for all the geometries. The difference between 
the geometries enters via the constraint equations (4) and hence 
through the ri)s, which depend on the mis. 

It may be noted that an alternative (more detailed) derivation 
of eq 5 is possible based on expansion of the many-chain con- 
figurational integral, and on the assumption that interchain forces 
are dominated by hard core repulsions, with the long-range forces 
providing a uniform attractive background.8 In the present de- 
rivation, which is based on the minimization of A,, the short-range 
repulsive forces are accounted for by the constraint equations. 

(b) Geometry and Packing Constraints. We now consider the 
packing constraints for the three relevant geometries: bilayers, 
monolayers, and cylinders in an inverse hexagonal phase. The 
first two cases will be briefly outlined since they have been 
thoroughly studied earlier, in refs 2a and loa, respectively. The 
third case has not been treated before and will be considered in 
detail below. 

(1) Planar Bilayer. For computational purposes it is convenient 
to divide the hydrophobic core into 2L parallel layers of equal 
width, AI, and volumes Mi (Figure 2b). For the planar bilayer 
Mi = const and hence mi = M i / N  = m = const. The value of 
m is proportional to the area per head group, a (namely, mL = 
uu where u is the chain's volume). Some of the layers (especially 
near the midplane) can be reached by chains originating from 
either interface of the bilayer (Figure 2). This is taken into 
account in the requirement for uniform density in the hydrophobic 
core, which reads 
(6,) = Z P ( a ) [ 4 , ( a )  + 4*~-i+1(a)J m i J ,  ..., 2L (6 )  

where 4,(a) is the volume that a chain in conformation a occupies 
in layer i .  The two terms in eq 6 represent the contribution to 
the packing constraint from chains in conformation a originating 
from the two opposite interfaces.& Thus, (4,) = (4i) + (4zL-i+l ), 
is the average volume per chain in layer i ,  with the average taken 
over chains from both interfaces. 

(2) Monolayer. In a monolayer, unlike "compact" aggregates 
like bilayers or micelles, the chains need not fill all the volume 
available to them. Thus, instead of the equality constraints of 
eq 4 or eq 6, we now have the following inequalities: 

(I 

(4i(a)) 5 mi (7) 
The derivation of the P(a), which minimizes A, subject to eq 

7, is similar to the case of equality constraints, eq 4. It can be 
shown that for those layers i, for which the optimal P(a) implies 
(4,) = mi, the lateral pressure is positive r, > 0. On the other 
hand if (4,) < ml, then rl = 0, implying that the packing constraint 
in layer i is trivially satisfied and is thus an "irrelevant conpaint". 

(3) Hexagonal Phase. One important feature of the previous 
two cases is that in both bilayers and monolayers all chains have 
the same local environment, or in other words, all chains are 
equivalent. Here we face a situation where a given region can 
be reached by chains originating from three different cylinders. 
Furthermore, as is shown in Figure la ,  chains originating from 
different regions of the cylinder are not equivalent. Thus, the 
symmetry of this geometry is lower than in the former cases, and 
consequently, the packing constraints are more complicated. To 
calculate P(a) for the hexagonal phase we can again divide the 
hydrophobic region into layers. However, because of the lower 
symmetry, there is more than one way of doing so. We found 
that the most convenient division is the one described in Figure 
1 b. Basically this scheme corresponds to prescribing a set of 
concentric cylindrical shells around each cylinder. In the hex- 
agonal phase, overlap exists between shells corresponding to 
neighboring cylinders. Since some points in the hydrophobic region 
can be reached by chains originating from two (or more) adjacent 
cylinders, this overlap must be taken into account in formulating 
the packing constraints. That is, the constraints should reflect 
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the fact that the volume (m,) of layer i around a specific cylinder, 
say cylinder I in Figure 1 b, is partially filled by chains originating 
from cylinders K and J. Thus, clearly, (@,), the average volume 
taken up by a chain originating from cylinder I in layer i around 
this cylinder, is less than m,. Formally this fact can be expressed 
as 

L 

/.k=l 
(4,) mi[l - Kijdjk] 2’ = 1, . . . I  L (8) 

with the factor in brackets correcting for the overlap between 
different cylinders. The subscripts i j , k  in eq 8 designate layers 
around cylinders I, J, and K, respectively. The upper limit L 
corresponds to the most distant layer that can be reached by a 
(fully extended) chain originating from cylinder I. f i j k  denotes 
the (volume) fraction of mi that overlaps with layers j and k of 
the other cylinders, and KUk stands for the fraction of the overlap 
volume that is filled up by chains originating from cylinders J and 
K. 

In most relevant cases, and in all the calculations presented in 
section 3, the distance between the interfaces of two neighboring 
cylinders (211 in Figure 1) is smaller than the length, I,, of the 
fully extended amphiphile chain. Furthermore, 1, 5 1,; Le., the 
chain is just slightly longer than the minimal distance between 
the midpoint of three neighboring cylinders to the interface of 
any of these cylinders. (Clearly, 1, must exceed 1, to avoid “holes” 
between the cylinders. On the other hand, from volume filling 
requirements it follows that 1, cannot significantly e x 4  12, since 
this would imply unreasonably large head-group areas a.) Thus, 
the volume between cylinders (see Figure lb) involves three types 
of regions corresponding to (i) overlap between three cylinders, 
(ii) overlap between two cylinders, and (iii) no overlap. In terms 
of the layer numbers i j , k ,  the three regions correspond respectively 
to (i) i = j H k (Le., the central region), (ii) e.g., i j and k - 1 (overlap between cylinders 1 and J. ‘k - 1” means an “inner” 
layer close to cylinder K), and (iii) i “considerably larger” than 
both j and k,  (e.g., i = 5 and j = k = 1 in Figure 1 b). 

TheJj;s are geometrical quantitites dictated by the two g e e  
metrical characteristics of the HII phase (e.g., R and 12) and by 
the choice of the “computational parameter” L (or AI). On the 
other hand the KU;s are more complex quantities, which are not 
constant but, rather, functions of the (&)’s. To clarify this point 
let us consider the simpler case of a planar bilayer. The bilayer’s 
analog of eq 8 is 

( 9 )  

with i and j denoting the layers corresponding to the two bilayer’s 
interfaces 1 and J (see Figure 2b). If, as in Figure 2b, the two 
sets of layers fully overlap, we havefi = 1 for j = j *  = 2L - i 
+ 1 andfi] = 0 otherwise. The volume haction of layer i (relative 
to I, and hence layer j*  relative to J), which is filled up by chains 
from the opposite interface (J), is 

2L 

IJ  
(4,) = mi[l - XK,bj1 i = 1, ..., 2L 

(@,*W) 
(10) =--- (@/*(a)) 

(@La))  + (#j*(a)) M Kij* = 

which, upon substitution into eq 9, yields eq 6, as expected. 
Equation 6 can be extended to the more complex case of 

hexagonally arranged cylinders, thus expressing K, k in terms of 
the (@,)’s. Upon substitution into eq 8 we then oitain a set of 
equations for the (4,)’s that can be solved numerically by an 
iterative (“self-consistent”) procedure. It turns out however that 
for the cases of interest here, for which numerical results are 
reported in section 3, a simpler choice of the KU;s yields essentially 
identical results. More explicitly, we found that the extent of chain 
overlap (“interdigitation”) is rather small and does not significantly 
affect the conformational properties of the chains. In other words, 
the chains in the hexagonal phase are not very different from those 
grafted (as a “monolayer”) around a single cylinder. The most 
significant distortion of the chains in the HII phase, as compared 
to a monolayer, is associated with the stretching of the few chains 
reaching the middle regions between cylinders. Based on these 
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notions, we found that the following (approximate) choice for &. 
Kilk = v3 i = j = k = v 2  i = j > k o r i = k > j  

= 1  i > j , k  (1 1) 
gives results similar to those obtained with the more detailed 
procedures mentioned above. 

(c) Conformational Statistics. The a,‘s and hence P ( a )  are 
obtained by numerical solution of eq 8, (see section 3 for more 
details). Using P ( a ) ,  we can calculate various chain conforma- 
tional properties. Of particular interest are the C-D bond order 
parameters, which can be measured by deuterium NMR spec- 
trometry. The order parameter of the nth (C,-D) bond is defined 
by 

S, = (P,(COS e,)) = c~(4[3 cos2 e,(a) - 1]/2 (12) 
a 

where P2(x) = (3x2 - 1)/2 is the second Legendre polynomial. 
e,(cr) is the angle between the C,-D bond and the local normal 
to the hydrocarbon-water interface, for a chain in conformation 
a. Note that in the limit of a fully extended (all-trans) chain 
perpendicular to the interface 3, = -1/2. On the other hand, for 
a random distribution of bond angles 8, = 0. It should also be 
noted that the C,-D bond order parameters are related to the 
‘skeletal” order parameters S,, corresponding to the vectors 
connecting carbons CW1 and Cn+l of the chain, via S, = -23,. 
Thus, for a fully extended chain perpendiculary oriented with 
respect to the interface, S, = 1 for all n, whereas for a random 
distribution, S, = 0. 

The free energy per molecule, in the mean field approximation, 
can be calculated by substituting eq 5 into eq 3, yielding 

L 

i-i 
A,  = -kT In y - Xaimi (13) 

Recall, however, that A, is only the chain contribution to the 
amphiphile’s free energy. The full free energy should include the 
head-group term Ah. In this paper we adopt for Ab a simple 
phenomenological form, based on the familiar model of the 
“opposing  force^".^^.^^ These “forces” include the effective at- 
traction between head groups arising from the hydrophobic effect, 
which tends to minimize the contact area between the water and 
the alkyl chains. This tendency is opposed by excluded volume 
or electrostatic (ionic, dipole-dipole) repulsions between the head 
groups, which tend to increase the area per molecule. The first 
contribution to the free energy is usually modeled by a “surface 
tension“ term ya, while the second is assumed to be (approxi- 
mately) inversely proportional to a. This yields 

Ah = y [ a  - ao2/a] (14) 

where y is the effective interfacial tension and q, is the head-group 
area that minimizes Ah. 

For curved interfaces, this expression is often replaced by the 
modified phenomenological form” 

(1 5)  

Here I /R = l / R I  + 1/R2, with R l  and R2 denoting the principal 
radii of curvature of the hydrocarbon-water interface and D a 
parameter of the model (an effective distance between the head 
groups and the neutral surface). Adding the head-group free 
energy Ah to the tail free energy A,, one can calculate A = A, 
+ Ah for various aggregation geometries G. The geometry is 
determined completely by the area per head group a and by the 
radii of curvature R1 and R2. (It is straightforward to show that 
the m,‘s are simply related to these quantities.) 

Amphiphiles packed in a lamellar phase depend on a single 
geometric parameter, namely, the bilayer thickness d, or the area 
per head group a (Figure 2a). These two parameters are related 
via a = u/d,, where u is the chain’s volume. 

Two geometrical parameters suffice to characterize the HII 
phase (Figure lb): the radius of the water cylinders (R) and the 
distance between two cylinder centers (4. All other geometrical 

Ah = ” [ a  - ao2/a(l + D/R)] 
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Figure 3. Chain segment density in the HI] phase. The figure shows the 
average number of chain segments in layer i around cylinder I; for chains 
originating from this cylinder, see Figure 1. (The distance scale corre- 
sponds to the distance from the interface of cylinder I to the middle of 
layer i; namely, to ( i  = 1/2)A/ with i = 1, 2, ... and A/ = 2.51 A. The 
9, are normalized according to E@, = n = 15, the number of chain 
segments.) All the results here are for cylinders of radius R = 30 A. A, 
free chain. and 0, chains in the HII phase, with the area per head 
group (I = 24.8 and 29.9 tf2, respectively. The symbols 0 and 0 corre- 
spond to chains grafted on a single cylinder (Le., monolayer) at the same 
area per head group as the comsponding solid symbols. The dashed lines 
describe mi, the volume (per chain) in layer i .  

characteristics can be expressed in terms of these parameters; e.g., 
1, = ( d / 2 )  - R a n d  1, = (II + R)/cos ( ~ 1 6 )  - R H 1.15(1, + R) 
- R (Figure la). Similarly, the area per head group is given by 

3. Results and Discussion 
All the calculations presented here were carried out for 14- 

carbon chains, Le., H(CH2)&HJ amphiphiles, with H denoting 
the (structureless) head group. We have used T = 300 K and 
a gauche energy = 500 cal/mol. The chains are represented 
by the rotational isomeric state model.I4 Chain conformations 
are generated as follows:'oa first all the bond sequences are 
generated according to the RIS model (each C-C bond has three 
possible states: t = trans, g+ = gauche+ and g- = gauche-). Then 
we randomly sample three head-group positions for each of the 
bond sequences (within a small interval of - 1.5 A around the 
interface). Finally, we randomly sample 12 overall orientations 
for each bond sequence and head-group position: thus every bond 
sequence is sampled 36 times. 

In the process of generating chain conformations, we discard 
all overlapping ("self-avoiding") sequences. Furthermore, we keep 
only those conformations in which all segments are confined to 
the hydrophobic region. Thus the number of acceptable con- 
formations depends on the curvature of the interface. (This 
number is higher in the inverse hexagonal phase as compared to 
the planar bilayer.) For each chain conformation generated we 
calculate &(a) and all other conformational properties of interest, 
e.g., P2(cos 8(a)). The 4,(a)'s are then used in the equations of 
constraints to solve for the a,'s and hence for P(a) .  

In the calculations presented here conformations are separately 
generated for the planar bilayers of the L, phase, and for the 
inverse cylindrical geometry with R = 25 A and R = 30 A of the 
HII phase. 

(a) Conformational Properties. Figure 3 shows the spatial 
distribution of chain segments for the HI, phase. More precisely, 
for chains anchored to cylinder I, the figure shows (d,), the average 
number (or volume) of chain segments in layer i (Le., a t  the 
interval iAl - ( i  - I)Al), as a function of the distance iAl from 
the interface of cylinder I. The geometrical parameters chosen 
are R = 30 A and 1, = 17.7 A or I, - 15.5 A. The corresponding 
areas per head group are a = 24.8 A2 and a = 29.9 AZ, respec- 
tively. For comparison, we also show (i) the segment distribution 

a = ~ R v / ( ~ ' / ~ / T &  - 2R2). 
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Figure 5. Bond order parameter profiles in the HI* phase and in the La 
phase. The calculated results are for a = 26.6 A’ (for both phases). Also 
shown are the experimental results of Sternin et aLs 

of the hydrocarbon region I,, keeping-the cylinder radius constant, 
R = 30 A. (Recall that S,, = -2S,,.) We note a continuous 
decrease of the order parameters down the chain, from the head 
group to the terminal segment. Note also that the magnitude of 
the order parameters increases as l2 increases ( a  decreases), since 
the chains need to stretch further in order to reach the inner 
regions. For small l2  values, e.g., l2 = 13 A ( a  = 38.6 A,), the 
packing constraints are not significant and the chains resemble 
free chains. 

Similar trends are displayed in Figure 4b, which shows how 
the order parameter profile varies with the cylinder radius R, for 
a given hydrophobic core thickness 12. From the relations between 
12, R, and a ( a  = 4R0/[3(3)’/~/7r(R + 12)2 - 2R2)] it follows that, 
for a fixed 12, a decreases as R decreases, explaining the increase 
in S, as R decreases. 

Figure 5 shows the order parameter profiles of the chains in 
the HII phase and in the L, phase, Le., in a lanar bilayer. In 
all cases the area per head group is a = 26.6 1,. The HII phase 
allows more conformational freedom than the L, phase, as in- 
dicated by the faster decline of s,, with n.  The typical plateau 
in S, of planar bilayers is replaced by a monotonic decrease in 
the hexagonal phase, due to “milder” packing constraints in the 
HII phase. (m, is a constant for the planar bilayer and increases 
linearly in HI].) 

Figure 5 shows also the experimental results of Sternin et aL3  
who measured the order parameters in the L, and HII phases using 
a mixture of 1 -palmitoyl-2-oleylphosphatidylethanolamine and 
perdeuterated tetradecanol in water. These authors did not report 
the values of R or a. The value of a (26.6 A2) was chosen to give 
good agreement with the experiments. While the agreement may 
not be perfect, we consider it very satisfactory in view of the 
complexity of the system. 

(b) Thermodynamics. In Figure 6 the energy, entropy, and free 
energy of the chains in the HII phase are shown as a function of 
12. Figure 6a reveals that the internal chain energy E,  (which 
is proportional to the average number of gauche bonds) decreases 
as I 2  increases and as R decreases. This is consistent with the fact 
that the extent of chain stretching increases with 12, Le., with 
intercylinder separation. As noted already with regard to Figure 
1, the behavior of the chains in the HI, phase is quite similar to 
that of chains anchored to a single cylinder (monolayer). 

As expected, the entropy S, decreases with 12, reflecting the 
substantial loss of conformational freedom upon chain stretching 
(Figure 6b). The decrease of E, with chain stretching lowers the 
conformational free energy A,, whereas the corresponding decrease 
in S implies an increase in A,. Quantitatively, the decrease in 
S, is stronger and will thus dominate A,, as shown in Figure 6c. 
The minimum of A, at l2 = 13 A, corresponds to a free chain (Le., 
no packing constraints). 
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Figure 6. (a, top) Average conformational energy per chain in the HI, 
phase as a function of /,, which measures the distance between adjacent 
cylinders (see Figure I ) ,  for two values of the cylinders radii R. (ml 
corresponds to monolayer.) (b, middle) Conformational entropy per 
chain in the HI, as a function of I*.  (c, bottom) Conformational free 
energy per chain in the HII A, = E, - TS,, as a function of l2 (T = 300 
K). 

Figure 7 shows the chain’s free energy in the hexagonal and 
in the lamellar phases as a function of the area per head group. 
Because of the larger conformational freedom in the hexagonal 
phase it is more favorable for all values of a. Thus, a crossover 
in stability from one geometry to another, Le., a transition from 
the L, to the HII phase at some value of a, must involve additional 
contributions to the total free energy. Interaggregate (cylinders 
or bilayers) interactions is one major contribution to the system’s 
free energy that must be considered. Another important free 
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Figure 7. Conformational free energy per chain in the HI, and L, phases 
as a function of the area per head group. 
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Figure 8. Average free energy per chain (including both head-group and 
chain contributions), as a function of the area per head group, in the HI,  
and the L,, phases. 

energy term is the head-group contribution Ah. In the following 
we briefly consider the combined effect of A, and Ah on the relative 
stability of the two phases. 

We have calculated A = A, + Ah, using the mean field theory 
for A, and the phenomenological expressions, eqs 14 and 15, for 

Ah. From eq 15 it is clear that, for the same value of a, Ah will 
be larger for the HI, phase (R > 0) than for the L, (R = a) phase, 
reflecting the stronger head-group repulsion for convex hydro- 
carbon-water interfaces. On the other hand, A,(a) is higher for 
the L, phase because of the more stringent packing constraints. 
As a numerical example, Figure 8 shows A = A, + Ah vs a for 
y = O.lkT, D = 2.5 A and u,, = 20 A2. We see that the hexagonal 
phase is more stable for head-group areas lower than a certain 
“critical” area a* (-34 A2 for the parameters chosen), whereas 
above a* the lamellar phase is the one with lower free energy. 
Clearly, for other choices of molecular parameters for crossover 
from HII to L, symmetry will take place at different values of a*. 
Our main purpose here was to demonstrate that such a transition 
is indeed possible. 

The qualitative trends implied by the results above are consistent 
with the experimental observation of a phase transition from the 
L, to the HI1 phase upon decreasing the water content in the 
sy~tem.’~f ’J~  This is because a decrease in water concentration 
is equivalent to a decrease in the average area per head group. 

4. Concluding Remarks 
In this paper we have analyzed a number of conformational 

and thermodynamic properties of amphiphilic molecules packed 
in the inverse hexagonal phase HIP It was found that for the same 
area per molecule the degree of chain conformational freedom 
in the hexagonal phase (HI,) is higher than in the lamellar (L,) 
phase and is comparable to that in a cylindrical monolayer of 
grafted chains. The last finding indicates that chain overlap 
(interdigitation) in the HI, phase does not significantly affect the 
conformational freedom of the chains. By a thermodynamic 
analysis based on a free energy expression that takes into account 
both tail and head-group contributions, it was found that a 
crossover from the HII to the L, phase may take place as the area 
per head group exceeds a certain critical value a*. 
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