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[Pt(phen)z]Clz and [Pt(bpy)2]C12, we propose that a band is 
formed from the interaction of the bipyridines and not the 
platinums in the linear chain of Pt(bpy)(CN), formed at the 
surface and that the chain is stabilized by partial reduction of the 
bipyridine A* (redox orbital) band. 

The question of the origin of the emissive state has been ex- 
amined by Biederman et a1.9 For a single oriented crystal (where 
the x axis is along the linear chain), the presence of a very intense 
x-polarized absorption beginning at - 18 OOO cm-' was noted. The 
intensity of the transition resulted in an off-scale signal above 
19 000 cm-' (complete absorption of incident radiation). Their 
polarized, temperature dependent emission studies for the C2, 
linear chain crystal indicate that although the strong visible ab- 
sorption is polarized along the linear chain axis ( x ,  bl), the 
room-temperature emission is polarized perpendicular to the crystal 
axis 01.9 or z ,  a,). They proposed a singlet absorption involving 
promotion from a d,2+ orbital of a,  symmetry to an orbital of 
bl symmetry that involves a Pt 6p, orbital strongly mixed with 
a CN T* orbital. This would give rise to a IB1 state that would 
be predicted to be polarized along the crystal axis. The emissive 
state was assigned as the corresponding 3B1 state, which is po- 
larized perpendicular to the linear chain axis ( x )  due to spin-orbital 
coupling, which removes the triplet spin degeneracy giving A,', 
A i ,  and B i  spin-orbit states. 

In their analysis, they assumed that the crystal structure was 
similar to that of Pt(bpy)CI2, with the bpy's in a trans configu- 
ration and a Pt-Pt distance of 3.4 A. However, as the recent X-ray 
structure determined by Che and co-workers8 indicates, the bpy's 
are in a cis (face-to-face) configuration and the molecular in- 
teraction between P t ( b ~ y ) ( c N ) ~  moieties is greater than that for 
Pt(b y)C12, as evidenced by the slightly shorter Pt-Pt distance 
(3.3 1). Another assumption made in assigning the involved states 
was that the CN A* orbitals are much lower in energy than the 
bpy A* orbitals, and thus ~ ~ ~ ~ - d ~  orbital interaction could be 
neglected. However, our electrochemical results are consistent 

with the first reduction of P t ( b ~ y ) ( c N ) ~  being localized in a bpy 
A* orbital, thus, suggesting it as the lowest unoccupied molecular 
orbital (LUMO). In addition, assuming that our linear chain 
structure at the electrode surface i s  similar to that of the crystal, 
the RR data of the Pt(bpy)(CN), linear chains at a platinum 
electrode surface indicate that the molecular distortion that OCCU~S 
upon excitation of the low-energy visible transition involves only 
bipridine modes. On the basis of these new data, the intense 
absorption in the visible portion of the spectrum must involve a 
bpy orbital, the likely candidate being the redox orbital (bJ. Thus, 
the absorbing state is either ligand centered (LC, AT*) or MLCT 
in nature. 

The emitting state then is also probably LC or MLCT in nature. 
Most LC emissions show vibronic structure even at room tem- 
perature, and no structure is evident for the Pt(bpy)(CN)z crystal. 
The symmetric and antisymmetric combinations of such orbitals 
would result in a, and b, orbitals, respectively. Thus for interacting 
?r orbitals, the highest occupied 'K* orbital would be of bl sym- 
metry, and the lowest unoccupied A* orbital would have a ,  sym- 
metry. The lowest energy spin-allowed state arising from these 
orbitals would then be a IB, which would be x polarized (along 
the chain axis). In addition, the extinction coefficient for a ?r - 
A* transition would be predicted to be very large. The highest 
occupied molecular orbital (HOMO) involved in this transition 
(b,) would be antibonding with respect to the adjacent bipyridines 
in the chain, and the LUMO (al) would be bonding in nature with 
respect to the adjacent bipyridines. Upon formation of the excited 
state then, the bonding interaction between the bpy's would in- 
crease giving rise to an excimeric interaction similar to that 
postulated3 for both [Pt(bpy)z]C12 and [P t (~hen)~]Cl~ .  Emission 
from excimers gives broad unstructured bands, such as the one 
observed. Since the corresponding emitting state would be a 3B1, 
the fact that the emission is polarized would arise from spin-orbital 
coupling removing the spin degeneracy and giving rise to A,', Bi ,  
and A2' spin-orbit states. 
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The steady-state bimolecular annihilation reaction A + B - 0 on twc-dimensional surfaces is studied via computer simulations. 
In the simulations A and B are randomly adsorbed on vacant sites, and reaction takes place whenever A and B reach 
nearest-neighbor sites, either directly following adsorption or through diffusion. It is found that both with and without diffusion 
the reactants segregate into separate islands of A's and B s .  The islands vary in size and exhibit highly ramified shapes. 
Moreover, the islands are self-similar with a fractal dimension D = 1.89 (similar to percolation, but also other clusters). 
D is found to be independent of the diffusion rate K. Other fractal dimensions, e.g., of the "hull" differ from those of percolating 
clusters. The steady-state coverage O* = decreases with K, as expected (e** = e*,, corresponding to equal fluxes 
of A and B is the only physical solution). For systems with immobile particles (K = 0) we find B* cz 0.59 and O* 0.49 
for the square and the triangular lattices, respectively, similar to the percolation thresholds on these lattices. The long-time 
characteristics of the system (D, 0*, etc.) are independent of the initial conditions of the simulation, indicating that the system 
reaches a stable steady state. Furthermore, for the large systems simulated (typically 500 X 500 lattice sites) it was found 
that the longtime behavior is independent of the input mode. Namely, the same results are obtained for conserved (i.e., 
exactly balanced) and nonconserved (statistically balanced) A,B input mechanisms, indicating that on the time scale of the 
simulations (- lo4 Monte Carlo steps) the apparent steady state (for nonconserved input) is essentially identical with the 
true steady state (for the conserved input). 

+ 

1. Introduction 
The bimolecular annihilation reaction A + B - 0 is of great 

interest in chemical kinetics' as well as in various physical and 
biological systems. In particular, if A and B represent adsorbates 
on a solid surface and 0 stands for a rapidly desorbing product, 
the annihilation reaction above corresponds to a simple bimolecular 
catalytic reaction. The rates of such reactions depend critically 
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on various factors such as the mode (e.g., 'pulsed" vs 'continuous") 
and rate of reactant input to the system, adsorbate mobilities, 
lateral interactions, and reaction probabilities. These factors 
combine to determine the spatial and temporal characteristics of 
the A,B overlayer on the surface. Quite often in these systems, 
local fluctuations in A and B densities can develop into long-range 
("mesoscopic") segregation and, consequently, to marked devia- 
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tions from classical ("mean field") reaction rate  law^.^-'^ For 
catalytic surface reactions this means deviations from the simple 
rate law R - 8A8B, with e,, and 8B denoting two-dimensional 
densities (coverages).1b23 It should be noted that in many surface 
reactive systems reactant aggregation and segregation and con- 
sequently deviations from classical kinetics are due to adsorbate 
lateral  interaction^^)-^^ and/or nonrandom adsorption mecha- 
n i s ~ n s . ~ J ~ a  However, in this paper we are exclusively concerned 
with the segregation induced by the reactive process itself, Le., 
by the fact that A and B react immediately whenever they are 
at close proximity. This process leads to nonuniform spatial 
distributions of the reactive adsorbates, even in noninteracting 
systems governed by a random adsorption mechanism. 

The general conditions for reactant segregation and the causes 
for anomalous kinetics in the A + B - 0 (and other, e.g., A + 
B - A or A + A - 0) reactions have been the subject of intensive 
theoretical research in recent Many of the relevant 
studies, which include both computer simulations and analytical 
approaches, consider the A + B - 0 reaction in arbitrary di- 
mensionalities, both Euclidean and fractal. Some analyses suggest 
the existence of a critical dimension, do such that segregation takes 
place only for d < d,. The values predicted for d, vary with initial 
conditions (reaction scheme) and other parameters.14J l-I5 

The two commonly studied reaction schemes are termed 
Yransient" (or pulsed) and "steady state" (or continuous). In the 
first case, A and B particles are created at t = 0 and one follows 
the spatial-temporal evolution of their den~it ies .~-~ For diffu- 
sion-limited reactions particle segregation and nonclassical 
lone-time behavior*+ characterize the system in d < d, = 4. A 
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different behavior was recently reported for the transient reaction 
with immobile particles reacting via exchange (exponentially 
decreasing with distance) pr~bability. '~ In this case there is no 
upper critical dimension to segregation and nonclassical kinetics 
is predicted for all d. 

In the steady-state reaction scheme A and B particles are 
continuously added to the system, with a given rate and a given 
spatial distribution."' Theoretical analysest3*" based on con- 
tinuous stochastic rate equations suggest that, for diffusion-limited 
reactions in infinite systems, macroscopic segregation occurs for 
d < 3 and not for d > 3. d = 3 is "marginalw in the sense that 
the segregation behavior depends on a subtle interplay between 
several parameters, mainly between the diffusion and reaction 
rates. For finite systems the marginal dimension13 is d = 2. 
Correlations between the added reactants can also affect the 
steady-state behavior in these ~ystems.'~J' 

In this paper we are specifically interested in the steady state 
A + B - 0 reaction in d = 2. As noted earlier, this is a model 
system, albeit idealized, for heterogeneously (surface) catalyzed 
reactions. More complex reactive systems (corresponding e.g. to 
the scheme 02(g) - 20(s), CO(g) - CO(s), O(s) + CO(s) - 
CO,(g); g = gas, s = surface) have recently been studied via 
computer simulations and rate equation approaches, revealing 
interesting kinetic phase transitions and reactant segregation 
behavior.1622 In these systems, as well as in the simpler 
of A + B - 0, segregation takes place both with and without 
particle diffusion. The basic driving force for segregation is the 
"infinite repulsion" (annihilation) between A and B on neighboring 
sites. Since reaction takes place at the boundaries of the segregated 
reactant islands, it is clear that their rates are very sensitive to 
the structure of these islands. Yet, the amount of information 
on the adlayer structure under steady-state conditions is very 
limited.21-23 The most significant finding in this context, based 
on a simulation study by Ziff and Fichthornzt for a system with 
immobile reactants, is that the clusters of A's and B's formed in 
the course of reaction are self-similar, with fractal dimension D 
31 1.9. 

In an attempt to better understand the structural-temporal 
behavior of the steady-state A + B - 0 reaction, we present in 
the following section a series of computer simulations of this 
system, with and without particle diffusion. As we shall see, this 
apparently simple reaction exhibits interesting and rather complex 
behavior and presents some nontrivial and puzzling questions. For 
example, it is clear that if steady state is achieved the rate of 
reaction R must be equal to the rate of particle replenishment, 
Q. The latter is proportional to the fraction of empty sites, hence 
R = Q - (1 - e * )  with 8* = @*A + 8*B denoting the total 
steady-state coverage. On the other hand, it is not at all clear 
what determines 8* and, furthermore, whether our finding that 
8* is very close to the percolation threshold on the lattices studied 
is physically meaningful or perhaps fortuitous. 

2. Results and Discussion 
In this section we present the results of computer simulations 

of the steady-state A + B - 0 reaction, with and without reactant 
diffusion. A and B particles were added, with equal probabilities 
and randomly to the empty sites of a two-dimensional lattice. We 
denote by J,, the flux of A's on the surface, that is, the number 
of A's impinging, on the average, on one lattice site in unit time. 
Particles impinging on occupied sites are reflected to the gas phase. 
For the sticking probability of A's and B's on empty sites we take 
SA = SB = 1, so that J,, is also the rate of A adsorption on the 
bare surface. On the partly covered surface the adsorption rate 
of A is .IA( 1 - 8). The total adsorption rate is J( 1 - 8 )  with J 
= JA + .Ie. Reaction, i.e., AB annihilation, takes place instan- 
taneously whenever A and B happen to occupy nearest-neighbor 
(nn) sites on the lattice. In simulations without diffusion, reactive 
events occur only if a newly added A lands next to a site occupied 
by B, or vice versa. If the empty site into which A has landed 
has more than one nn site occupied by B, one of these B's is chosen 
randomly to react with A, etc. It should be noted that if the rates 
of A and B adsorption are different the surface will be eventually 
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‘poisoned” by the majority species and the reaction will terminate 
(see section 3). Consequently, in all our simulations we set JA 
= JB = J/2. In some cases this was ensured by exact balancing, 
i.e., by adding simultaneously “pairs” of A and B into different, 
randomly chosen vacant sites. In some simulations the added 
particle was randomly chosen (with equal probabilities for A and 
B), thus allowing a certain degree of density fluctuations. These 
two types of input may be referred to as “conserved” (or “exactly 
balanced”) and “nonconserved“ (or “statistically balanced”), re- 
~pectively.’~.’~ We shall compare the two mechanisms and discuss 
their consequences with respect to the steady-state behavior in 
section 2A. 

In a lattice of M sites with 8 A M  of its sites occupied by A’s and 
6BM by B’s the number of vacant sites is M( 1 - 6A - e,) = M( 1 
- e). Thus, for a constant total flux J = JA + JB there will be 
JM( 1 - e) adsorption events or, equivalently, JM adsorption 
attempts per unit time. As the unit of time in our simulations 
we take the time between successive adsorption attempts per lattice 
site; this equals 1 / J .  Thus, on a lattice of M sites this time unit 
(hereafter 1 MCS = one Monte Carlo step) corresponds to M 
adsorption attempts, of which M( 1 - e) are successful. As noted 
above, at steady state this also means M( 1 - 0)/2 reactive events 
per MCS. 

In simulations with mobile particles the computational pro- 
cedure is as follows. Following every adsorption trial (Le., ran- 
domly choosing a site and, if empty, populating it with either A 
or B with equal probability) we perform K diffusion trials. Each 
diffusion trial corresponds to randomly choosing a site, and if this 
site is occupied by either A or B, the particle is randomly moved 
into one of its vacant nn sites, provided such nn sites are available. 
Otherwise, the diffusion trial is rejected. This is repeated K times 
per adsorption trial. (Note that the probability that a diffusion 
trial will be successful depends on the immediate neighborhood 
of the particle.) If following a diffusive jump A(B) becomes a 
nn of B(A), reaction takes place immediately. As in diffusion- 
limited reactions K may be interpreted as the hopping frequency 
of an isolated particle, which is simply proportional to the (low 
density) diffusion constant. To summarize, in general, each MCS 
consists of M(K + 1) microtrials, which include M adsorption trials 
(M( 1 - e) successful) and MK diffusion trials of which, at most, 
MKB can be successful, because some particles are fully surrounded 
by (like) particles. 

The majority of the simulations reported below were carried 
out on 500 X 500 square lattices, with periodic boundary con- 
ditions. For good statistics the results were averaged, for each 
initial condition, over many runs (typically 35 without diffusion, 
and 10 with diffusion). Several cases were also simulated on 
smaller square lattices, and on triangular lattices (of 250000 sites) 
with periodic boundary conditions, primarily for comparative 
purposes. All the calculations were performed on a Silicon 
Graphics workstation. 

2.A. Steady-State Behavior. Figure 1 shows a typical snapshot 
of the A,B overlayer after 2000 MCS for a system with immobile 
reactants (K = 0). The structure is dynamical, in the sense that 
particles are created and destroyed continuously, and the A and 
B clusters appear to form, disappear, coalesce, and diffuse on the 
surface. Snapshots of the surface at earlier and later times show 
very similar qualitative features, Le., highly irregular islands of 
A and B, characterized by ramified boundaries and separated by 
a highly tortuous connected region (‘buffer zone”) of vacant sites. 
A more quantitative analysis of the overlayer, based on the 
calculation of structural characteristics such as the fractal di- 
mensionality of the islands, their perimeters, and their size dis- 
tributions (section 2.C), indicates that after - 10000 MCS the 
system has essentially reached a steady state. 

The results shown in Figure 1 correspond to a simulation in 
which A and B are added to an initially empty surface. It has 
been suggested elsewhers that, even after - 104 MCS, the system 
may still be evolving toward a more segregated state. One rather 
straightforward test of this hypothesis would be to start the sim- 
ulation from a very different initial state. The opposite extreme 
of the empty surface would be one in which the A and B particles 

are fully segregated into few (say two) large domains with smooth 
boundaries, with a narrow (one site wide) buffer zone separating 
them. We have thus carried out several simulations starting with 
such a precovered surface as an initial state. (A picture of this 
state is shown in ref 23.) It was found that the adlayer structure 
developing from this initial condition is very similar to the one 
evolving from an initially empty surface. In other words, the 
overlayer structure at steady state has lost all memory of the initial 
state. 

The similarity between the long-time overlayer characteristics 
corresponding to the markedly different initial conditions is not 
only qualitative. In particular, the total coverage, 0 = 8 A  + OB, 
approaches in both cases the same value B* = e(t--) = 0.585 
f 0.005, as shown in Figure 2. We are thus led to conclude that 
the system tends to approach a stable steady state, characterized 
by constant t9* and other time-independent parameters. 

It should be noted that, in a finite system, a stable or ‘true” 
steady state is achieved only for the conserved input mechanism; 
that is, when the A and B coverages are exactly balanced at all 
times (Le., leA - e,( 0). On the other hand if A and B are only 
statistically balanced (a nonconserved input mechanism), there 
is always a certain probability that a fluctuation in (6, - will 
be amplified to such an extent that the surface will be poisoned 
by one of the species.I3J4 It is expected that the probability of 
such a fluctuation will increase as the system size decreases. 
Alternatively, the time required for such a fluctuation should 
increase with the system size. In a very recent paper, ben-Avraham 
et have shown that the poisoning time in the A + B - 0 
system varies as a power law of the system size L. Thus, in a finite. 
system with nonconserved A,B input the only true steady state 
at t - m is a poisoned surface (either 8, = 1 or OB = 1). 

Most of our simulations were carried out for nonconserved input, 
for systems of size L X L = 500 X 500. On the time scale of the 
simulations, - 104 MCS, we have not observed surface poisoning. 
(A few simulations, on small systems, revealed that indeed a 
nonconserved input ends up with surface poisoning.) Furthermore, 
and more significantly, we found that the apparent steady state 
reached in these systems is the same as the true steady state 
observed in the corresponding system simulated with a conserved 
input mechanism. This behavior was observed in a number of 
cases tested. This conclusion is not very surprising for the following 
reason. As long as (in the nonconserved input simulations) 6 A  
and Be are nearly the same, and 0 = eA + 88 is constant and 
significantly less than 1 (e.& 0.59 for the square lattice) the system 
is far from the poisoned state. Small fluctuations around these 
values, reflecting fluctuations in the A,B source, are expected to 
be washed out rapidly (in a large system), and the behavior 
resembles that of a system with conserved input. A large fluc- 
tuation, whose probability decreases with L, is required to take 
the system all the way to poisoning. To conclude, the apparent 
steady state in the nonconserved system is an excellent approx- 
imation to the true steady state in the conserved system. 

The value of B* obtained for the square lattice is just slightly 
lower than the percolation threshold on this lattice, P, = 0.593. 
The A and B clusters at steady state are large, but not infinite. 
Recall also that Ziff and Fichthornzl found D 1.9 for the A,B 
clusters which is the same as the fractal dimension of percolating 
clusters, D = 1.896. (We find a similar value, see section 2C.) 
Lacking a theoretical explanation of this puzzling resemblance, 
we decided to study the A + B - 0 reaction on an additional 
lattice, the triangular lattice. Here we found that the steady-state 
coverage is 8* 0.49, again just slightly below the percolation 
threshold on the 2D triangular lattice, P, = 0.5. Furthermore, 
the fractal dimension found here, D N 1.88, appears to be the 
same as on the square lattice (as is rigorously the case in the 
percolation problem). In section 2C we compare additional 
characteristics of the A,B and percolation clusters, revealing some 
significant differences between the two types of aggregates. 

2.8.  Adlayer Segregation. There is more than one way to 
characterize the segregation of A and B. In some of the analytical 
studies based on continuum equations the common measure of 
segregation is the order parameter S = (S(r)) with S(r) = [pA(r) 
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Figure 1. A snapshot of the A,B overlayer, after 2000 MCS, generated by the A + B - 0 annihilation reaction under constant impingement flux and 
with immobile reactants (K = 0). Top: A 100 X 100 section of the 500 X 500 square lattice used in the calculation, with the distributions of A's and 
B s  separated for clarity. Bottom: A smaller section (50 X 50) of the same lattice showing both reactants simultaneously. 

- pB(r)12/[pA(r) + pe(r)]* and pA(r) denoting the local density 
of A particles around r. This measure is less convenient for lattice 
simulations since S(r) will be sensitive to the extent of %oarse 
graining" the lattice. 

As an alternative measure of the tendency of A and B to 
segregate we have calculated the radial distribution functions 

Here, k = A,B and 1 = A,B and r = Ir, - r/I is the distance between 
lattice sites I' and j .  The local coverages are calculated using pk(ri) 
= 6k(r,), i.e., pk(r,) = 1 if the lattice site at r, is populated by a 
particle of type k and 0 otherwise. Analysis of our simulation 
data for a 500 X 500 square lattice (and immobile adsorbates) 
yields for gAA(f) and gAB(f) the results displayed in Figure 3. As 
expected, gAA and gAB reveal complementary behavior. At short 
distances gAA > 1 and gAB < 1, demonstrating the tendency of 
like particles to aggregate and unlike particles to separate. Both 
gAA and gAB approach 1, indicating total loss of correlation when 
r 5 60 lattice units. 

Another measure of the aggregation tendency in the system 
is provided by a familar quantity from percolation theory.29 The 
connectivity (or correlation) length, E,  defined via 

l2 = CR,2s2n,/Cs2n, ( 2 )  
I 

where n, is the fraction of clusters of size s (hence sn, is the 
probability that a randomly chosen site belongs to a cluster of size 
s ) .  R, is the radius of gyration of a cluster of size s 

( 3 )  

with the sum extending over all pairs of sites belonging to the s 
cluster. Note that 2R: is the average square distance between 
two cluster sites. Since sn, is the probability that a given site 

2R,Z = X(ri - r,)2/s2 
I./ 

(29) See, e.&: Aharony, A. In Directions in Condensed Matter Physics; 
Grinstein, G., Mazenko, G., Eds.; World Scientific: Singapore, 1986; Vol. 
1, p 1. Zallen, R. The Physics of Amorphous Solids; Wiley: New York, 
1983. Stauffer, D. Introduction to Percolation Theory; Taylor and Francis: 
London, 1987. 
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Figure 2. The coverage, 0, as a function of time, t ,  in the A + B - 0 
model without diffusion: (0) on a 500 X 500 square lattice, starting from 
an initially empty surface (averaged over 35 simulations); (0)  on a 500 
X 500 square lattice, starting from an almost fully covered surface and 
fully segregated initial state; (0) on a 250000 site triangular lattice, 
starting from an initially empty surface (averaged over 10 simulations). 
The horizontal lines are the site percolation thresholds (P,) on square and 
triangular lattices, respectively. 
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Figure 3. The radial distribution function of a (near) steady-state 
overlayer generated by the A + B -. 0 reaction scheme, with no diffusion 
(K  = 0). The curves correspond to the average of five simulations on a 
500 X 500 square lattice. 

belongs to an s cluster (in which case it is connected to s - 1 - 
s sites) it follows from (2) and (3) that t is a (weight) average 
distance between sites belonging to the same cluster. Analyzing 
the results of our simulations on the 500 X 500 square lattice we 
find H 90 lattice units, which is of the same order as the range 
of correlation (-60) implied by gu(r). It should be stressed that 
t (and similarly the range of g(r)) increases with the system's size 
L, e.g., for a lattice size L X L = 100 X 100 we find - 20. We 
have not attempted to derive a more quantitative (scaling) rela- 
tionship between L and 6, because of the limited range of L values 
over which the simulations are meaningful. Qualitatively it may 
be concluded that the range of segregation and correlations is 
"macroscopic" on the scale of the system analyzed. 

2.C. Structural Characteristics. The ramified structure of the 
A and B islands suggests that they might be fractal objects. This 
notion was confirmed by Ziff and Fichthorn?' for a system with 
immobile particles. They found that the scaling relation 

R, - s l f D  (4) 
between island sizes, s, and the corresponding radii of gyration, 
R,, is obeyed with s varying over several orders of magnitude, 
indicating self-similarity. The fractal dimension obtained was D 
= 1.90 f 0.03. This value is essentially identical with the fractal 
dimension ( D  = 1.896) characterizing the finite clusters in per- 
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Figure 4. A log-log plot of the gyration radii squared, R:, vs the cluster 
sizes, s, for several diffusion rates, K = 0 (no diffusion), 5 ,  25, 50 (on 
a 500 X 500 square lattice). 
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Figure 5. A log-log plot of the cluster size distribution, n,, vs the cluster 
sizes, s, for several diffusion rates, K = 0 (no diffusion), 10, 50 (on a 500 
X 500 square lattice). 

colating systems a t  threshold.29 
We have repeated the calculation of D, as defined in (4), by 

analyzing many samples of independent simulations (35 runs on 
a 500 X 500 square lattice, analyzed after 2000 MCS), and found 
it to be D = 1.89 f 0.02, in excellent agreement with ref 21. 
Figure 4 shows a log-log plot of R, vs s, demonstrating that (4) 
is obeyed over several orders of magnitude. Furthermore, the same 
value of D is found for both smaller (100 X 100 lattices) and larger 
samples (recall that the lattice size in ref 21 is 1024 X 1024), 
supporting D 1.9 as the asymptotic value of the fractal di- 
mension. 

In addition to the data for immobile reactants (K = 0), Figure 
4 shows also the results for systems with different rates of particle 
diffusion (K = 5-50). It is apparent that the value of D is in- 
dependent of K (see section 2D). 

In percolating systems, at threshold, the size distribution of finite 
clusters obeys the scaling relation 

n, - s-? ( 5 )  
where T = 1 + d / D ,  with d denoting the Euclidean dimension of 
the embedding lattice, and D is the fractal dimension. Thus, for 
d = 2 and D = 1.9 one expects T = 2.055. Ziff and FichthornZ1 
tested eq 5 for the AB reactive system (without diffusion, K = 
0) and concluded that 7 is slightly larger than 2. One cannot rule 
out that, indeed, T = 2.055 but the accuracy of the slope of the 
log n, vs log s plots does not warrant a more definitive statement. 
In Figure 5 we show the corresponding plots based on our sim- 
ulations, both for stationary (K = 0) and mobile (K > 0) reactants. 
We also find that 7 2 2 for K = 0. However, as K increases 7 

also increases, indicating that particle diffusion shifts the cluster 
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size distribution to lower sizes (see section 2D). It is also possible, 
although this is not obvious from the data, that the simple power 
law dependence ( 5 )  does not apply when K # 0 (similar to the 
behavior in percolating systems below threshold). In any case, 
the variation of T with K should be contrasted with the invariance 
of D with respect to K; see Figure 4. 

We reiterate the two points of similarity between the structure 
of the A,B overlayer in the A + B - 0 reaction and in percolating 
systems: (i) The steady-state coverage on the square lattice (for 
K = 0), 8* = 8A + OB = 0.59 is very close to the precolation 
threshold on this lattice, P, = 0.593. (ii) The fractal dimensions 
D H 1.9 are very similar. To further explore this similarity, we 
repeated our simulation of the A + B - 0 reaction (for K = 0) 
on a triangular lattice (of 250000 sites). Here, we found 8* = 
0.49, again just below the percolation threshold, P, = 0.50. For 
the fractal dimension, which should be independent of the lattice 
coordination we obtained D = 1.88 f 0.03, again, in good 
agreement with the value for the square lattice and that of per- 
colating clusters. 

Regardless of the striking similarities of D and of 8* in the 
reactive A,B overlayer and percolation systems, it is qualitatively 
apparent from Figure 1 that the A,B islands are "bulkier" than 
percolation clusters at the same coverage. In other words, the 
coastline of the A,B islands appears less tortuous than in perco- 
lation clusters. This observation is quantitatively confirmed by 
comparing the fractal dimension associated with the external 
perimeter, or the "hull", of the clusters. Following Vasm we have 
calculated the hull dimension, Dh, using the two scaling relations, 

H - X h  ( 6 )  

(7) 
In these equations H is the hull length of the cluster, i.e., the 
number of all occupied cluster sites which are neighbors of vacant 
external sites. X is some linear dimension of the cluster, which 
may be taken as (AXA~Y)' /~  with Ax (Ay) denoting the length of 
the projection of the cluster on the x (y) axis. Alternatively, X 
may be identified with the radius of gyration R. The cluster area 
A is defined as the total area confined by the hull (both occupied 
sites and inner lakes). For percolation clusters both relations yield 
Dh = 1.75 f 0.013*32 whereas for the A + B system we find Dh 
= 1.47 f 0.02, confirming that the edges of percolation clusters 
are, indeed, considerably more ramified. 

Percolation clusters contain many fjords and bays, separated 
from the outside Ocean by narrow straits. If we define a "coarse 
grained" hull length E as the (shortest) total length of occupied 
perimeter sites connected via either nearest-neighbor or next- 
nearest-neighbor sites (in contrast to the hull, H, that is only nn  
connected), most of these fjords and bays will not contribute to 
E, corresponding to smoother cluster coastlines. In analogy to 
(6)  or (7), we define De via E - AD* and E - ADJ2. For per- 
colation clusters we expect De to be considerably smaller than &, 
and indeed De = 1.37 f 0.03.)2 On the other hand, for the reactive 
A,B overlayer we find De = 1.47 f 0.03, which is the same as 
Dh, indicating the absence of narrow straits in the A,B overlayer. 

Another measure employed by us to compare the A,B and 
percolation clusters is the probability distribution of nearest 
neighbors, P,,. We define P,, as the fraction of particles with n 
occupied nearest-neighbor sites; n = 0, ..., 4 for the square lattice. 
Note that in our reactive system A particles cannot have B 
particles as nearest neighbors, and vice versa. For a percolating 
system with particle density 0, P,, is the binomial distribution P,, 
= [4!/n!(4 - n)!]P(l - e)'-". In Figure 6 we show P,, for the 
reactive A + B ( K  = 0) system and for percolation clusters, both 
for 0 = 0.55. The difference is apparent and consistent with the 
general notion that the A,B clusters are less ramified. In fact, 
we see that for percolation clusters P,, is maximal for n = 2, large 
for n = 1 and 3, and very small for n = 4, indicating that most 

H N Ah12 

~~ ~~ 

(30) Vou. R. F. J .  Phys. A: Math. Gm. 1984, 17, L313. 
(31) Ziff, R. M. Phys. Rea Lett. 1986, 56. 545. 
(32) Grouman, T.: Aharony, A. J. Phys. A: Math. Gen. 1986.19, L145. 
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Figure 6. The probability, Pn, that a given adsorbed particle has n 
occupied nearest-neighbor sites, in the absence of diffusion (K = 0): (0) 
random distribution, (0)  the A + B - 0 model (on a 500 X 500 square 
lattice). For both cases 0 = 0.55. 
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Figure 7. The (near) steady-state coverages, e*, in the reactive A + B - 0 system as a function of the diffusion rate, K. The data points are 
evaluated after 2000 MCS, except for K = 0 (12000 MCS). Insert: A 
log-log plot of 8* vs (K + 1). (On a 500 X 500 square lattice.) 

of the sites have vacant neighbors; Le., most sites belong to the 
cluster's perimeter. (Note that the dominance of n = 2 corresponds 
to a stringlike structure.) On the other hand, in the A,B system 
about one-third of the particles belong to the interior (n = 4) of 
the islands, revealing a higher degree of compactness. 

2.D. Effects of Diffusion. In the absence of diffusion ( K  = 
0), reaction takes place only if an A(B) particle has landed on 
a vacant site neighboring a B(A) occupied site. We will refer to 
this process as the direct reaction mechanism. If, between suc- 
cessive adsorption events, the adsorbed particles have enough time 
to perform several ( K )  diffusion steps and thus visit additional 
lattice sites, the reaction rate will obviously increase due to the 
additional ("indirect" or diffusive) route for A + B encounters. 
Higher reaction rate implies higher adsorption rate, because at 
steady state these two processes which respectively annihilate and 
create A,B particles in the system are exactly balanced. Thus, 
since the rate of adsorption is J(l - e*)  we expect that the 
steady-state coverage, e*, will decrease as K / J  increases. 

Figure 7 reveals that, indeed, 8* decreases monotonically with 
the rate of diffusion K. The slope of the log 8* vs log (K + 1) 
line shown in the insert is a H -0.35. This should be contrasted 
with the value a = -0.5 expected in the limit of very fast diffusion 
(Le., very low 8)  and classical kinetics. Explicitly, classical reaction 
kinetics corresponds to reaction rate R, which (apart from a 
numerical constant of order 1) is given by 

R = K8Ax8Bx = (K/4)02x (8) 

with reaction order x = 1 and 6 = 28A = 288. At steady state 
the rates of adsorption, J( 1 - e) ,  and reaction, R, are equal, and 
hence 6 2 X  - J( 1 - B)/K.  In the limit of fast diffusion, K / J  >> 
1 ,  we find 8 << 1; hence B - Ku with a = -(3/2x), which means 
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Fig& 8. A snapshot of the A,B overlayer, after 2000 MCS, in the 
presence of surface diffusion (K 50). A 100 X 100 section of the 500 
X 500 square lattice used in the calculation is shown. 

a = -1/2 in the limit of classical kinetics, x = 1. Thus, the value 
a = -0.35 ( x  = 1.4) derived from our simulations corresponds 
to an anomalously high reaction order. Such, nonclassically high 
reaction orders have been reported previously for the A + B - 
0 reaction on Sierpinski lattice and other restricted topologies.I0 
Qualitatively, in the A + B - 0 system the reactants are also 
restricted to diffuse in a restricted region of space, namely in the 
corridors of the "buffer zonen separating A and B clusters. In 
this sense, the observation of a high and nonclassical reaction order 
is not too surprising. However, the origin of this behavior is not 
at all obvious. 

Figure 1 reveals that all A,B islands involve some narrow 
corridors connecting bulkier regions ("blobs"). Such corridors 
in A islands are quite easily destroyed by diffusing B's, resulting 
in fragmentation of the islands into smaller ones. We thus expect 
that, as K increases (and 6 decreases), the average island size 
decreases as well. This notion is borne out both quantitatively 
and qualitatively. The qualitative aspect is illustrated in Figure 
8 which shows a snapshot of the steady-state overlayer structure 
for a system with K = 50. The smaller island sizes are apparent. 
The increase of 7 with K (cf. ( 5 )  and Figure 5 )  provides a 
quantitative measure of this trend. Note, however, that although 
the maximal island size decreases with K, the self-similar character 
of the islands appears to be preserved, as indicated by the fact 
that D is independent of K, cf. (4) and Figure 4. 

Figure 9 shows P,,, the nearest-neighbor probability distribution, 
for K = 50. Also shown is the binomial distribution P,, = [4!/n!(4 
- n)!]P( 1 - e)+" describing a random (percolation) system at the 
same total coverage (e = 0.145), as that of the A,B system. Not 
surprisingly, at this lower coverage, the two distributions appear 
much more similar than for the K = 0 case (Figure 6). Note, 
however, that at low coverages when nearest-neighbor pairs are 
rare (and even more so, triplets and higher clusters) P,, provides 
little information on the segregation tendency in the system. From 
Figure 8 it is apparent that, even though the surface is sparsely 
covered, segregated regions of A's and Bs are clearly identifiable. 

3. Summary and Conclusions 
in the A + B - 0 reaction can be 

expressed as a sum of three contributions: (i) a source term, 
corresponding to the adsorption of A particles into vacant sites 
surrounded by either vacant or A-occupied nn sites (otherwise, 
Le., if one or more of the nn sites is occupied by B, the newly 
adsorbed A will react instantaneously with one of them). The 
rate of this process is JA( 1 - @P,( #B(O)  with P,( #BlO) denoting 

The rate of change of 
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Figure 9. The probability, P,,, that a given adsorbed particle has n 
occupied nearest-neighbor sites, in the presence of diffusion (K = 50): 
(0) random distribution, (0) the A + B + 0 model (on a 500 X 500 
square lattice.) For both cases 0 = 0.145. 

the probability that none of the z nearest neighbors of the vacant 
site (where A has landed) is occupied by B. (ii) A direct reaction 
term corresponding to the adsorption of a B particle into a vacant 
site with at least one occupied by A. This process reduces 6, with 
a rate given by Je( l  - e)[l - P(#A10)]. (iii) An indirect, or 
diffusion limited, reactive term corresponding to reaction following 
the migration of adsorbed A's and B's toward each other. The 
rate of this process is given by Kfl(A,B)) with K denoting the 
diffusion rate and fl{A,B)) is some (unknown) function of the 
lateral distribution, {A,B), of the adsorbates on the surface. We 
thus have 

n 

dOA/dt = 
JA( 1 - B)Pz( # BIO) - JB( 1 - e) [ 1 - Pz( #A(O)] - Kfl{A,B)) 

( 9 )  
A similar equation (with A and B exchanged) describes dOB/dt. 

Subtracting the two equations we find d(BA4B)/dr = (JA - Je)( 1 
- e) revealing, as expected, that if J A  > JB the surface will be 
eventually poisoned by A, etc. Thus, a necessary condition for 
a steady state with finite coverage, e* < 1, is that JA = J B  = J. 
In this case we have of course = BB = 8/2 and P,( # BIO) = 
P,( #AIO), and (9) becomes 

de/dr J ( l  - e)[2Pz(#A(0)-1] - 2Kfl(A,BJ) (10) 

Considering the complex patterns of the A,B adlayer described 
in the previous section, it is highly nontrivial to derive closed form 
expressions for P,( #AlO), or fl(A,BJ). Thus, simple solutions 
either in closed form or in numerical form can only be obtained 
for special cases and subjcct to rather drastic approximations. One 
particular case of interest which we have studied in detail in the 
previous section corresponds to the limit of zero adsorbate mobility 
K = 0. In this case, we find from (10) that a steady state (de/dt 
= 0) with finite coverage is achieved if P,(#AIO) = 1/2. The 
simplest possible approximation of P, corresponds to assuming 
(as in the Bragg-Williams, "mean-field", scheme) that the sites 
are randomly populated. In this approximation the probability 
that any given site is not populated by A is 1 - 6A = 1 - 8/2, and 
hence P,( #AIO) = (1 - 8/2)'. For the steady-state coverage we 
find in this approximation 

(1 1) e* = 2[1 - 1 / 2 y  

which yields e* = 0.32 and 0.22 for the square ( z  = 4) and 
triangular (z = 6) lattices, respectively. These values are in poor 
agreement with the results of the simulations, e* N 0.59 and 0.49, 
respectively. 

Another, supposedly better approximation is the analogue of 
the quasichemical scheme, in which pairs of nearest-neighbor sit= 
(as opposed to single sites) are treated as independent.'* In this 
case one writes P,( #AIO) = [ 1 - P(A(O)]', where P(AI0) is the 
conditional probability that a site neighboring a vacant site will 
be occupied by A. The conditional probabilities are related to 
the pair occupation probabilities via P(iu)ej = P(ij)  with i, j = 
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A, B, or 0. Rate equations can be written for the pair and singlet 
probabilities and solved numerically for the steady-state values 
of these quantities.'* The results obtained for 8* through this 
higher order approximation are very similar to those derived from 
the site approximation. The fact that the pair approximation does 
not improve significantly the singlet approximation is not very 
surprising in view of the long-range correlations demonstrated by 
the results of the simulations. Site, pair, or higher cluster ap- 
proximations can also be written and solved for systems with finite 
diffusion rate (K # 0). However, since the size of the cluster 
defines the range of correlations accounted for by the model, it 
is clear that such schemes cannot explain the complex island 
structures and unusual reaction rates revealed by the computer 
experiments. 

Several authors have formulated analytical approaches starting 
out with the rate equations for the local densities of the reactive 
ad~orba te s . ' ~ J~  Based on these equations one can analyze the 
steady-state behavior of various correlation functions and order 
parameters which measure the extent of reactant aggregation and 
segregation. For simple reaction rate and diffusion laws, such 
treatments can yield considerable insight regarding the relation 
between segregation and dimensionality (see section l) ,  and about 
the interplay between the rates of diffusion, reaction, and particle 
deposition. Yet, because of their continuous ("coarse grained") 
nature they cannot provide detailed structural information on, say, 
the overlayer characteristics in the A + B - 0 reaction on a lattice. 
In some cases the predictions of such models are in conflict with 

the results of simulation studies. For instance, in ref 14 it is 
concluded that a finite diffusion rate is necessary to promote A,B 
segregation, because otherwise the distribution of A and B on the 
surface will be random, reflecting the uncorrelated deposition of 
A and B by the source. This behavior is of course in marked 
contrast to our simulations which show macroscopic segregation 
even for K = 0. 

We conclude this paper with the notion that even a very simple 
and familiar system, such as the A + B - 0 reaction on a surface, 
can exhibit complex and rich behavior and present some puzzling 
questions. These questions pertain in particular to the possible 
relation between the A,B clusters and percolating systems a t  
threshold. The appearance of similarities is not unreasonable in 
view of the fact that, apart from the restriction that A's and B s  
are not allowed to nearest-neighbor sites, their distribution is 
(apparently) random, as in percolation systems. However, whether 
a rigorous analogy between the A + B - 0 and the percolation 
problem does or does not exist is still an open question. 
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A much debated question in solvent extraction is that of the locale of the metal-extractant reaction: in the homogeneous 
aqueous phase or the organic/aqueous interface? Due to the existence of microscopic interfaces, micellar solutions and 
microemulsions can serve as model systems to try answering this question. Taking advantage of the very slow rate of complexation 
between an alkylated derivative of 8-hydroxyquinoline and NiZt in CTAB/butanol micelles, we were able to make use of 
NMR as well as UV-visible spectrophotometry for kinetic investigations. Whereas UV-visible spectroscopy directly monitors 
complex formation, NMR spectroscopy has permitted us to detect the interaction of Ni2+ with the surface of CTAB/butanol 
micelles in which the extractant is solubilized. Kinetic data obtained from both techniques turn out to be identical, tending 
to demonstrate that, viewed from the micelles, the reaction takes place at the microscopic interface. Critical examination 
shows that the answer might not be so simple. 

Introduction 
During the last few years, a large amount of work in the field 

of solvent extraction has been devoted to the problem of the locale 
of the rate-limiting metal-extractant reaction.'-I0 Such reactions 
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are usually carried out in biphasic heterogeneous systems, with 
a lipophilic extractant dissolved in an organic phase and the metal 
ions solubilized in an aqueous phase. When the reaction takes 
place in a stirred reactor, different regimes can be distinguished 
depending on the stirring rate." At low rates, the kinetics is 
dominated by the diffusion of the reagents in the stagnant layers 
surrounding each particle of the dispersed phase. At high stirring 
rate, a kinetic regime sets up and the proper complexation step 
becomes rate-limiting. 

A much debated point concerns the reaction site, which can 
be either the homogeneous '\queous phase or the organic/aqueous 
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