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In this paper we present a rigid-rod model (involving a restricted set of orientations) which is 
solved first with mean-field theory and then by Monte Carlo simulation. It is shown that both 
inter-particle attractions and anisotropic adsorption energies are necessary in order for two 
successive fluid-fluid transitions to occur. The first is basically a gas-liquid condensation of 
“lying down” rods in the plane of the surface, and the second involves a “standing up” of the 
particles. A close qualitative correspondence is established between the results obtained in the 
mean-field and Monte Carlo descriptions. The role of biaxial states, i.e., in-plane orientational 
ordering, is also discussed in both contexts. To this end, we develop an analogy between our 
one-component rod monolayer and a bidisperse system of interconverting isotropic particles. 

I. INTRODUCTION 

Monolayers of amphiphilic molecules at air-water in- 
terfaces (also known as Langmuir monolayers’~* ) are 
neither exactly two-dimensional (2D) nor three-dimension- 
al (3D) systems. Because of the “head-tail” asymmetry of 
the amphiphiles, the symmetry of monolayers is lower than 
that of purely 2D or 3D systems-a fact reflected in their 
phase behavior. 2V3-7 Another important aspect of the mono- 
layer phase behavior is the ability of the constituent mole- 
cules to respond to changes in density and/or temperature 
by altering their shape and orientation. 

The monolayer’s free energy F may be represented as a 
sum of three terms F = Fconf + F,,, + Fatt .* The confor- 
mational free energy Fconf = Nfconf is a sum of single mole- 
cule terms incorporating contributions from internal de- 
grees of freedom (e.g., internal rotations around tail bonds), 
overall rotations of the tail chain, and molecule-surface in- 
teractions. F,,,, represents the two-dimensional transla- 
tional entropy of the molecules, including the effects of ex- 
cluded-area interactions, e.g., in the van der Waals(vdW) 
approximation F,,,, E - NkTln(A - bN) with A denot- 
ing the interfacial area and b the excluded area per molecule. 
The third term accounts for infer molecular attractions. 

At low densities, when interaction effects are negligible, 
the amphiphiles are in a state of maximal conformational 
freedom so that fconf is minimal. The tails of these “free” 
molecules are usually characterized by a globular, or “ex- 
panded,” shape.’ At low densities (p = N/A) the globules 
form a 2D gas. If intermolecular attractions are strong 
enough (i.e., T is below the critical temperature) then, asp 
increases the globules will eventually condense to a liquid. 
The gas-liquid transition is governed primarily by a trade- 
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off between F,,,,, and F,,, , i.e., a loss in translational entropy 
ofthe gas phase for a gain in attractive potential energy in the 
liquid phase. The internal degrees of freedom are reluctant to 
participate in this transition since Fconf is already minimal, 
particularly so if small changes in shape or orientation in- 
volve a high free energy price AFconf. In this case the gas- 
liquid transition is, to a good approximation, a simple con- 
densation of free chain globules. Thus the area per molecule 
a = A /N = l/p in the liquid phase is similar to the cross 
sectional area, a/, of the adsorbed free molecule (“free” in 
the sense of not being interfered with by other molecules-it 
is still constrained, however, by virtue of being excluded 
from the water substrate). The “order parameter” of this 
transition is the 2D density of unperturbed molecules. 

As the monolayer is compressed further the molecules 
must stretch out (if they are flexible) and/or desorb some of 
their segments from the surface and stand upright, so as to 
occupy less surface area. This transition may be discontin- 
uous (i.e., first-order) if, following the conformational 
change, the molecules can get considerably closer to each 
other, thus increasing the number of interchain (segment- 
segment) contacts. In other words, this transition is gov- 
erned primarily by an interplay between Fconf and F,,, . The 
change in a at the transition is, roughly, from a,. to a,, with 
a, denoting the cross sectional area of a fully stretched 
(upright) molecule. The degree of chain stretching/align- 
ment or the monomer (segment) density may be taken to 
represent the order parameter of the transition. 

The qualitative scheme outlined above was proposed 
earlier’ as a possible explanation of the two successive fluid- 
fluid transitions which have been observed in various surfac- 
tant monolayers. The analogy was drawn between (i) the 
gas-liquid-expanded (g-le) transition in mono1ayers3(a)*4 
and the condensation of free chains, and (ii) between the 
liquid-expanded-liquid-condensed (le.-/c) transition and 
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the conformational/orientational transition described 
above. This qualitative picture is consistent with some other 
studies of the monolayer phase behavior.‘-” In particular, 
Shin et ~1.~ have carried out a mean-field analysis of a mono- 
layer of flexible model chains. At low densities their (free) 
chains are strongly adsorbed to the surface, implying large 
cross sectional area per chain, a,.. They find two successive 
transitions: one (corresponding to the g-le transition) is 
characterized by “in-plane” condensation of the strongly ad- 
sorbed chains, while the second (Ze-Zc) involves “out-of- 
plane” stretching and concomitant crowding of the chains. 

If the qualitative notions outlined above regarding the 
origin of the monolayer’s phase transitions are valid, then it 
might be possible to confirm and analyze them in simple 
model systems. The basic requirement from such models is 
to allow the adsorbed particles to change their cross-section- 
al area in response to lateral pressure. Then, in order to ob- 
serve two successive monolayer transitions, this change 
must involve a high free energy price, which can only be 
compensated for at high densities-by favorable anisotropic 
intermolecular attractions between the particles in their 
upright (small area) orientation. If either of these condition 
is not fulfilled the two transitions will coalesce into a single 
transition. 

The simplest conceivable monolayer models are those 
involving particles with two (or few) internal states.“-l4 
One can consider for instance a “chemical” mixture of inter- 
converting large and small disks” representing, respective- 
ly, the expanded and condensed states of the molecules. 
Large adsorption energy and/or degeneracy may be as- 
signed to the large disks, to mimic their favorable&,,. Var- 
ious lattice-type models l4 of this kind have been proposed to 
account for the monolayer phase behavior. In such models 
each site is occupied by either a large or a small particle so 
that p is constant. Only one type of phase transition, involv- 
ing a change in the chemical composition of large vs small 
particles, is possible in these systems, resembling the le-Zc 
transition, To account for the possibility of a condensation- 
type transition, the overall particle density should be a vari- 
able. In the lattice picture this amounts to adding vacancies 
as a third component. An extended spin-Hamiltonian ap- 
proach of this type is described by Costas et ~1.‘~ Recently, 
Zuckermann et al.” have presented a Monte Carlo study of 
a monolayer of interconverting hard disks. They focus on the 
phase behavior in the high density regime and find two tran- 
sitions, one corresponding to a change in the composition 
(which may be compared to the le-lc transition) and the 
other to an ordering, liquid-solid, transition of small disks. 

Another class of simple monolayer models is that of 
grafted mobile rods.‘“20 The rods may be regarded as the 
“stiff chain” limit of surfactant tails in a Langmuir mono- 
layer, or as a realistic model of elongated rigid molecules 
adsorbed at one of their ends to a 2D surface. Moreover, a 
system of mobile grafted rods is of considerable interest in its 
own right. As is well known,Z’-23 3D and 2D systems of 
rodlike particles have long served as model systems for liq- 
uid-crystalline materials. As we shall see in the next sec- 
tions, some of the more interesting aspects of grafted rods are 
related to several qualitative differences between their phase 

behavior as compared to that of rods in the bulk. 
One of the first studies of rod monolayers is due to 

Boehm and Martire.16 They applied DiMarzio’s combina- 
toric algorithmz4 to calculate the configurational entropy of 
prolate parallelepipeds on a square lattice, and a Bragg-Wil- 
liams approximation for the attractive free energy. The ef- 
fects of excluded area interactions enter through the configu- 
rational entropy. These authors found only one first-order 
transition, in which both the density and the orientational 
distributions change simultaneously. In this study the rods 
were restricted to three possible orientations, two (X and JJ) 
in which the rods lie on the surface and one upright (z). 
Similar models, in the spirit of Zwanzig’s restricted orienta- 
tion schemez2 for the isotropic-nematic (I-N) transition of 
liquid crystals, were used by Chen et al.‘* and by Wang.” 

Recently it has been shown177’8 that a system of hard 
mobile grafted rods does not exhibit a first order I-N transi- 
tion. This conclusion should be contrasted with the behavior 
of hard rods in 3D. There, as first shown by Onsager, the 
gain in translational entropy (lower excluded volume) can 
compensate at sufficiently high densities for the loss in orien- 
tational entropy and induce a first order transition. Halperin 
et ~1.” have applied Onsager’s approach to a monolayer of 
grafted hard spherocylinders and found (via simple func- 
tional forms for the orientational distribution function and 
numerical solution of the self-consistent equations) that the 
orientational order parameter increases monotonically and 
continuously with p. Based on a Landau-type analysis of a 
monolayer of rods with restricted orientations (Zwanzig’s 
model) ,22 Chen et al.‘* have shown that the absence of a 
first-order transition in a monolayer of hard rods is due to 
the broken symmetry of its excluded area matrix, as com- 
pared to the corresponding 3D case. They have also predict- 
ed that when attraction is added to the rod-rod potential the 
monolayer can exhibit a first-order orientational phase tran- 
sition in which the rods stand up from the surface. This was 
confirmed by Monte Carlo (MC) computations for sphero- 
cylinders with continuous orientations. The simulations also 
indicate, in agreement with the Landau analysis for restrict- 
ed orientations, the possibility of an orientational phase tran- 
sition to a biaxial state, involving rod ordering in the surface 
plane. The coupling between the two types of orientational 
transitions (the standing-up and in-plane) and the gas liquid 
transition has been examined in some detail by Wang” on 
the basis of a generalized van der Waals approach.2’ One of 
his conclusions was that if the attractive interactions are an- 
isotropic, and the adsorption energy is large, a first-order in- 
plane ordering transition can take place, leading to a discon- 
tinuous jump in the relative proportions of in-plane and 
upright rods. 

The present paper also deals with the phase behavior of 
a system of mobile grafted rods, and all of the analysis is 
based on a monolayer version of the restricted orientation 
mode1.22 We present both MC (lattice) simulations and 
mean-field theory for this system. Our primary goal is to 
examine the validity of the qualitative ideas mentioned 
above regarding the nature of the two successive fluid-fluid 
transitions, and the conditions responsible for their appear- 
ance. In particular, we analyze the effects of excluded area 
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interactions, isotropic and orientation dependent attrac- 
tions, and adsorption energy. These are the molecular fac- 
tors which govern the interplay between the various contri- 
butions to the monolayer’s free energy. We use a generalized 
vdW-mean-field theory to establish several basic results con- 
cerning the differences between the monolayer and the 3D 
behavior, and then check these conclusions via direct MC 
simulation of the same system. The role of biaxiality in each 
of these contexts is also discussed. In particular, we treat in 
detail a system of interconverting isotropic particles of dif- 
ferent sizes and develop an analogy between their phase be- 
havior and that obtained for reorienting rodlike molecules. 

II. THE MODEL 
We consider a system of N rodlike particles which are 

adsorbed on a planar surface of area A. The rods are mobile, 
but one of their ends (the “head”) is always in contact with 
the surface, which we take as the xy plane. We use r, = xi, yi 
to denote the position of the head of rod ion the surface, and 
Ri = 8,, 4i for its orientation. As usual #i is the azimuthal 
angle and 13~ (0~19; <r/2) is the angle between the rod and 
the z axis which is normal to the surface. The configuration 
of the monolayer is fully specified by r”, aN with the nota- 
tion, rN = r , ,..., r,; CP = CI, ,..., R,. 

The potential energy of the monolayer is written quite 
generally as a sum of one-body and pair-interaction contri- 
butions, as follows: 

WrN9flN> = C E(ni) + C u,(r,,fl,,fi,) 
I i4j 

+ 1 U, (rij,fii,Qji,- 

i-cj 
(1) 

Here E(R) denotes the orientation-dependent energy of ad- 
sorption, or rod-surface interaction. Note that ~(a) can 
also be thought of as an effective free energy, since the mod- 
eling of semiflexible surfactants by rigid rods involves the 
implicit suppression of internal, i.e., conformational, de- 
grees of freedom. More explicitly, in this case the adsorption 
energystandsfore(S1) = -ki”lnq(R),whereq(R) isthe 
orientation-dependent internal partition function for an ad- 
sorbed molecule. u, represents the short-ranged repulsive 
interaction between pairs of particles, modeled here by ex- 
cluded-volume forces. More explicitly, 

4 (r&G9fij 1 = 
I 
0”’ 

overlapping hard cores 
(2) 

, 
otherwise 

Finally, u, denotes the attraction energy associated with a 
pair of particles whose heads (or centers of mass) are sepa- 
rated by rii = Irj - ri 1 and whose orientations are sZi and flj. 
To further specify u, ( r,,Ri,fij ), and to be more precise 
about the energies E( Szi ) and u, ( r,,fli,fij ), we introduce a 
particular choice for the shape of the rodlike particles. Also, 
since the generalized mean-field theory described below is 
most incisively analyzed for the case of discretized positions 
and orientations, we need to consider the above interaction 
model in the specific context of an appropriate lattice. 

Let each rigid, rodlike, particle be described as a rectan- 
gular parallelepiped of length I and square cross section 
d X d. Let the axial ratio i/d be denoted by x. For conve- 
nience we shall put d = 1, i.e., measure all lengths in units of 
of d, so that x = 1. In our Monte Carlo simulation the planar 
surface on which rods are adsorbed (i.e., the xy plane) is 
represented by a square lattice, each of whose sites of area 
d * = 1 can accommodate one rod in the upright (z) direc- 
tion. A lying-down rod, on the other hand, occupies a row of 
x nearest-neighbor sites along a direction parallel to the x or 
y axes. Thus only three orientations are allowed for the rods, 
R = x or y (lying down) or R = z axis (standing up). The 
same model is employed in our mean-field analysis of the 
monolayer. In this case, however, the discretization of thexy 
plane is not necessary and, in fact, not used explicitly. 

For the above model it is clear that the one-body adsorp- 
tion energy can take on one of two values, according to 
whether the rod is lying down or standing up: 

E(n) = 
-,yekT, fi=x or y 
- EkT, n = z. 
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That is, ekT can be thought of as the adsorption energy per 
rod “segment” in contact with the surface. Similarly, treat- 
ing the pair attractions between rods as a sum of nearest- 
neighbor segment-segment contributions we write 

u, (r,,fli,flj) = - nukT. (4) 
Here n is the number of nearest-neighbor segment-segment 
contacts for the configuration rij, R,, flj, and ukT is the 
attraction energy associated with a single pair of nearest- 
neighbor segments. Thus, for example, any configuration of 
perpendicular rods corresponds to u, = - ukT if the parti- 
cles are touching (and zero otherwise), whereas parallel 
rods along x ory have u,‘s ranging from - ukT to - pkT 
as they move along each other in neighboring rows, etc. The 
only exception to Eq. (4) is the configuration of two z rods 
on neighboring sites, for which we take u, = - axukT, 
with a serving as a measure of the anisotropy of the attrac- 
tive interactions; a > 1 corresponds to stronger attractions 
between segments of z rods. 

In the generalized van der Waals formulation used be- 
low to treat the above system in mean-field approximation, it 
is convenient to consider first the case of continous orienta- 
tions and to specialize to discretized values (x, y, and z) only 
when we need to explicitly evaluate the pair excluded-areas 
and effective attraction energies which arise naturally there. 

III. MEAN-FIELD ANALYSIS 
A. Free energies and order parameters 

Generalized van der Waals theory25-27 provides a sys- 
tematic way to treat the competing roles of interparticle re- 
pulsions and attractions in determining the phase behavior 
of fluids. In the original formulation of Kac, Uhlenbeck, and 
Hemmerz6 and Longuet-Higgins and Widom,*’ which dealt 
specifically with simple liquids, (i.e., no anisotropy or inter- 
nal degrees of freedom), the rigid core effects were treated 
essentially exactly, with the long-ranged attractive forces en- 
tering via a mean-field averaging. More generally, for a sys- 
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tern such as ours where the (hard rod) particle anisotropy 
may give rise to long-range orientational order, we can write 
the system free energy as 

flCKJJA,T) = Fhr aw~>n + NC PflY(n), 
n 

(5) 
where {Nn} describes the distribution of particle orienta- 
tions and \I, (a) is the effective attraction felt by a particle 
with orientation a. Pn = Nn/N is the fraction of rods in 
orientation a. 

For systems of symmetrical particles (e.g., attracting 
spheres in 3D or disks in 2D) Eq. (5) reduces to the ordi- 
nary vdW equation and its attendant predictions for the gas- 
liquid transition. For anisotropic (e.g., rodlike or disklike) 
particles in 3D it can be reduced*’ to Onsager’s*’ or Maier- 
Saupe’s’* theories of the isotropic-nematic (I-N) transition 
in liquid crystals. It should be recalled that in Onsager’s the- 
ory the I-N transition is driven by the anisotropy of the hard 
core (excluded volume) interactions, while the attractive 
part of the potential is totally irrelevant. In Maier-Saupe’s 
theory, the role of u, and u, is reversed, i.e., the transition is 
dominated by the anisotropy of I(, . Alternatively, following 
power series expansion in the appropriate “order param- 
eter,” the generalized vdW free energy becomes a Landau- 
de Gennes-type free energy, enabling analysis of the phase 
behavior from yet another angle.‘* Thus the generalized 
vdW equation provides a versatile tool for incorporating the 
various contributions to the system’s free energy and for elu- 
cidating their roles in different phase transitions. We shall 
therefore adopt it as a starting point for analyzing the phase 
behavior in a monolayer of grafted rods. 

In the Appendix we show that some straightforward 
approximations allow Eq. (5) to be rewritten in the form 

,8F/N =lnp- 1 +CPo[lnP, +&(0)] 
R 

-ln(l -p(b)) -Pbip. 

Herep = N/A is the 2D number density, and 

(6) 

drf,,(r&R’)) 

(7) 

is the average vdW “b ” coefficient in “mixture of composi- 
tion” {Pi,). fhr (r,n,sl’) is the hard-rod Mayer function 
whose integral over r gives the excluded area b, n, for two 

’ rods in orientations R and R’. Similarly, 

(a) = C PnPn.annt Cl,n = dr[.A,,(r,~,Q’) + l]U,(r,fW’) 
is a generalized vdW “u” coefficient. Note that the factor 
fhr + 1 restricts the average over u, to nonoverlapping hard 
core configurations. Finally, the free energy in Eq. (6) can 
be rewritten exactly in the alternately suggestive form 
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@F/N = ln(p/eF) + C Pn ln(Pn/Pi ) 
n 

-Ml --p(b)) -Pb)p, (9) 
where we have incorporated the adsorption energy term 
BP,dfl) into the mixing entropy term BP, In Pn through 
the definitions 

PO, = exp[ -Pe(R)]/zD, 

z0=Cexp[ -@(fi>]. 
l-l 

(10) 

(11) 

Here Pz is the orientational probability distribution func- 
tion (pdf) in the limit p +O, and Zo is the corresponding 
molecular partition function. It is easily confirmed that PO, 
is, indeed, the pdf which minimizes Fwhen p -+ 0. Explicitly, 
from Eq. (9) we see that in this limit ZP, In( Pn /P”, ) is the 
only Pn dependent term. Since In x) 1 - l/x for all x > 0 we 
can write ln( Pn /P”, ) > 1 - PO, /Pn . Multiplying the in- 
equality by Pn and summing over Q we find 
ZP, ln(Po/Pg )>O. The equality, which corresponds to 
minimal F, holds only when P, = P on. Thus, asp -+ 0, we get 
F = NkT ln(p/2e), as expected. 

Expanding the third (hard core) term in Eq. (9) yields 

PF/N = ln(p/ef) + C P, In(P,/Pi > 
n 

+ :wp + Cp’ + ap3>. 
Here C= (b)*and 

(12) 

(wi = 2 PnPn’w,,~ 
cm 

(13) 

with 

wnn’ = 2(b,,. - Panap 1 (14) 

denoting the effective interaction free energy (in units of kT) 
between two rods in orientations Sz and R’. In the third term 
of Eq. ( 12)) (w)/2 = B is the second virial coefficient corre- 
sponding to the vdW equation. As is well known, B is the 
high temperature approximation to the exact second virial 
coefficient B [for a pair potential of the form ( 1) 1. Larger 
differences exist between C = (b )” and C, and between the 
0(p3) terms and higher virial coefficients. 

From Eq. (9) we obtain the generalized vdW equation 
for the monolayer’s 2D pressure, II = p2 [a( F/N)/+] : 

Bn=p/(l- Wp) -PWp’. (15) 

Similarly, from the virial form ( 12) or the expansion of Eq. 
(15) wegetpIl =p + ( (w)/2)p2 + CP’ + 0.e. Anexplicit 
expression for the chemical potential ,U then follows from 
,u = F/N + II/p. 

Let AP, = Pn - Pk denote the difference between 
the actual P, and its value at p = 0. Also, let 
F” = F( {Nk),A,T) denote the free energy (at finite den- 
sity) assuming that Pa = PO, = NO, /N, independent of p. 
Indeed, Pa is constant over a wide range of densities for 
many systems, e.g., for the gas phase or isotropic-liquid 
phase of rodlike molecules in 3D. It does not hold for grafted 
rods, however, as we shall see below. 
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Corresponding to CAP,} one can define an orienta- 
tional free energy F via 

F=F’+?, (16) 
sothat?=OforPo =PO, (AP, =O). IfweuseEq. (12) 
for F, then 

j?FO/N= ln(p/e& + ;(w)‘,c + Cop2 + O(p3), (17) 
where (w)” is the zero density limit of (w), cf. Eq. ( 13). 
(B ’ = (w)‘/2, Co, etc., are the virial coefficients for a mix- 
ture of rods with fixed composition PO, .) For ?we get 

/6/N = z Pn ln(Pn/PO, 1 + $p[(w) - W”l + O(p2) 

= 2 P, ln(Pn/Pt ) 
n 

++p 2 (PnP,t - Po,P”n, )Wnn, + O(p2). 
n,n’ 

(18) 

Since all the Pn dependence of F appears in p, the equi- 
gbrium P, for every value ofp corresponds to a minimum of 
F. One, or several, orientational orderparameters can be de- 
fined to characterize Pn . A necessarXcondition for the ap 
pearance of a phase transition is that Fshows two minima as 
a function of the relevant order parameter. In the Onsage?’ 
and Maier-Saupe29 theories of the I-N transition in 3D sys 
terns, the O(p*) terms are neglected, and P, (and hence ?), 
is expressed in terms of a single order parameter, say A, mea- 
suring the tendency of the rods to align parallel to each oth- 
er. It is convenient to define A so that A = A, = 0 for the 
isotropic distribution Pn = Pi, = constant; [P’(fin) 
= 1/47r for continuous a]. IrQD, A = A1 = 0 ( Pn = P& ) 

corresponds to a minimum of F (either global or local) over 
a wide range of densities. (This is not the case for grafted 
rods, see below.) The appe2rance of a nematic phase be- 
comes possible only when F shows another minimum at 
A = AN # 0, with coexistence properties (pI ,pN , A,, A, ) de- 
termined from the usual requirements of equal pressures, 
II, = IIN, and chemical potentials, ,ui = ,u~. Recall that 
l-l =p*[d(^F/N)/dpl and ,u=FF/N+Wp with 
F = F” + F denoting the full free energy. 

The 3D rod mixture can exhibit an additional, gas-liq- 
uid (g-I), transition at densitiesp <pr . Clearly, at these den- 
sities F = F” [as given by Eq. ( 17) orihe generalized vdW 
form (9) 1, since Pn = Pi and hence FE 0. The coexisting 
densities pg and p, are determined again by p, = y, and 
II, = II,. The relevant order parameter of this transition isp 
since the two phases correspond to minima of G = Np, with 
their p satisfying JG /Jp = 0. (Note that a g-l transition is 
possible only if ( w)” < 0. ) 

As we shall see below, in the monolayer problem, PC1 
departs from P on, as soon asp becomes finite. Hence, even if 
a g-l transition takes place prior to the onset of an orienta- 
tional transition, P, is generally different for the two phases, 
i.e., the change inp is coupled to a change in A. Furthermore, 
in some cases the g-l and the orientational transition are not 
separable. We elaborate on this issue in Sec. III C. 

Identifying the stable phases by minimizing 2 with re- 
spect to A is consistent with the more general requirement 
thatP, inEq. (9) [andhenceinEq. (18)] isinfagthemost 
ppbable o$entational pdf. At the minimum of F we have 
SF = H(dF/LJPn )6Pn = 0 for all @P,}, subject only to 
X6Pn = 0. Using Eq. ( 18) we find that P, must satisfy the 
self-consistency relation 

Pn =+P& exp 
[ 

- P 2 pne Wnn~ n’ 1 (19) 

with Y determined by the normalization condition ZP, = 1. 
The exponent in the Boltzmann-like distribution ( 19), or 
more precisely 

Qn = kTp 2 P,, wnnO 
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(20) 
n* 

can be interpreted as the mean-field potential acting on a rod 
with orientation R. Note from Eq. ( 14) for w that it contains 
contributions from both repulsions and attractions. 

For rodlike particles in 3D, wnn, depends only on the 
relative orientation of the two rods, implying that 2,, wnn, 
is independent of s1. Consequently, the mean field poten- 
tial corresponding to the isotropic distribution, 
@):, = kTpB,, Pi,, wnn,, is also independent of R (since 
PL = constant). In the absence of fields [e(n) =O] 
PO, =Pk,andhenceP, =PkisasolutionofEq.(19)for 
all p. In other^words, the isotropic phase corresponds to an 
extremum of F at all densities. 

In marked contrast to the 3D case, in the monolayer 
qy wnn., and hence ai1 (and more generally 
@, = kTpB,, P”n, w,,, for cases where e(n) #O) are not 
independent of R. This is due to the lower symmetry of the 
monolayer, resulting from the existence of the impenetrable 
surface which restricts the allowed rod orientations to one 
hemisphere (O<B<?r/2 as compared to O<B<rrin 3D). This 
implies that woo and 8,, wnn. are Sz dependent, as will be 
demonstrated for a specific model in the next section. Clear- 
ly Pn = PO, is a solution of Eq. ( 19) forp = 0. But as soon as 
p becomes finite PO, can no longer be a solution since Qn is 
not a constant, and hence Pn a Pi exp [ - fl@, ] #P on. As 
a special case these conclusions apply also to systems with 
e(n) = 0, for which PO, = Pk is the isotropic distribution. 

The different symmetry properties of wnn, in the bulk 
and the monolayer explain additional differences in the 
phase behavior between the two types of systems. For exam- 
ple, in the 3D case large anisotropy of wnn, (i.e., preference 
for fi -a’), combined with the fact that w,,, is R indepen- 
dent, suffice to explain the appearance of a stable nematic 
phase, regardless of the origin of wnn, . Thus in Onsager’s 
theory, the I -, N transition is accounted for in terms of ex- 
cluded volume interactions (wan, = 26,,, and a,,, = 0), 
whereas in Maier-Saupe’s approach wno, is due entirely to 
the anisotropic attractive interactions. On the other hand, 
purely excluded area interactions do not induce an orienta- 
tional transition in the monolayer. Such a transition is pre- 
dicted only if attractive contributions are added to wnn, . 
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Consider now the restricted orientational model de- 
scribed in Sec. II. Suppose that one end of the rod is at the 
origin of a Cartesian coordinate system. Then in 3D its other 
end can point into the f x, f y, or f z directions. For 
symmetric rods the f x (and similarly the f y and f z) 
orientations are indistinguishable, reducing the number of 
orientations to three, R = xy,z. In the monolayer problem, 
the surface is the xy plane and the - z direction is forbidden. 
While in 3D the isotropic distribution is naturally 
Pi = Pi = P f = l/3, for grafted rods the identification of 
Ph is not as obvious. We take here Ph = l/3 for R = x,y,z 
(corresponding to Pi = PI-, = P,, = Pm, = l/6 and 
P j = l/3 ), because for this P h the usual orientational order 
parameter, namely (P, (cos 19)) vanishes (as in 3D); 
Pz (cos 8) = ( 3 cos’ f? - 1)/2 is the second Legendre poly- 
nomial. As we shall see below the basic qualitative character- 
istics of the monolayer phase behavior are independent of 
what we take for Pk. A more relevant quantity is the zero 
density distribution Pi -Ph exp[ --&(a) 1. More spe- 
cifically, for the restricted orientational model (a = x,y,z) 
the fraction of rods, which at p +O lie down on the surface 
(“$‘=xory)isP~=P~ +PFandthefractionofupright 
(z) rods Py = 1 - (P”, + Pt)=l - Pf are related to the 
adsorption energy via 

In(Pt/2Pt) = (x - 1)6. (21) 
The matrix of excluded areas (2b,,,, with 

C&R’ = x,y,z) corresponding to the restricted orientational 
model, for rectangular parallelepipeds, is easily shown to be 

b= i(pN2 
[ 

2x 4(x+ II2 (x+ 1) 
2x (x+1) * (22) 

(x+ 1) (x+1) 2 1 
This matrix should be contrasted with the corresponding 
matrix of excluded volumes, 2b(3D), for the same rod model 
in 3D: In the bulk case all the diagonal elements are equal 
and likewise the nondiagonal elements. Specifically, 

b (3D) _ 4x R = cl’ 
nn - (x+ 112 fi#fi’ * 
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segment-segment potentials, see Eq. (4). For this model the 
integration in Eq. (8) corresponds to “moving” an fi rod 
around an Cl’ rod. Using Eq. (4) in Eq. (8) we find, for 
example, that @a, = pa,,,, = u(x2 + 1 ), quite different 
from paa, = 2ux. To allow for still larger asymmetry (as 
may be the case in surfactant monolayers) we shall write 
a, = 2uxa and examine some cases with a # 1. The full 
a nn, matrix is found to be 

$a=u 2x 

[ 

(x2+1) 2x (x+ 1) 
(x2+1) (x+1) * (24) 

(x+ 1) (x+ 1) 2Xa 1 
For the 3D case the same model yields 

$agE?/u = 
i 
2x2 + 1 R = i-l’ 
x(x+2) O#fi’ * 

(25) 

For rods in the plane /3aa(2D) is given by the x, y minor of Eq. 
(24). Thus, as with b, for the pure 2D and 3D cases the 
diagonal elements of a are equal whereas in the monolayer 
a = a,,,, #a,. This lower (“broken”) symmetry will be re- 
fl:ted in the phase behavior of the monolayer as we shall see 
below. 

B. The standing up (s-z) transition 

From Eq. (22) we see that excluded area interactions 
tend to increase the fraction, P,, of standing rods, thus re- 
ducing the fraction P, = P, + P,, = 1 - P, of surface rods. 
In the xy plane the interactions tend to align the rods parallel 
to each other, an effect which is enhanced by the attractive 
interactions, cf. Eq. (24). These two tendencies may induce 
two types of ordering transitions: A standing up (or “s-z”) 
transition associated with a change in P, = 1 - P,, and an 
in-plane (or “x-y”) I-N transition involving a change in 
qx = P,/(Px + P,,) = P,/P, andqY = P,,/Ps = 1 - qx, the 
proportion of rods lying along the x and y axes, respectively. 

Using the definitions of P,, P,, qn , and q,,, the orienta- 
tional free energy for the three-state model can be expressed 
as a sum of two terms 

In the monolayer this full symmetry is seen to be broken due 
to the difference between in-plane (x,y) and upright (z) 
rods. Note in particular that 26, = 4 is the smallest ex- 
cluded area, indicating the tendency of the rods to stand up 
asp = N/A increases. 

(23) 
?= Fsz + P&, (26) 

in which F, and Fxy are the free energies corresponding to 
the two types of transitions mentioned above. Explicitly 
fiF=/N = P, ln(P,/Py) + P, ln(P,/P:) 

+ ~[Pl’wzz + 2pzpsw, + pfw, - <do], 
(27) 

For rods in 2D the matrix of excluded area b’2D’ consists 
of the 2 X 2 in-plane (x,y) minor of Eq. (22). Here, like in 
the bulk case, the diagonal elements of b are equal. Thus the 
monolayer, which is neither a 2D nor a 3D system, is charac- 
terized by a lower symmetry as compared to either of these 
cases. 

where (w)‘= (Pz)‘w, + 2P~P~w, + (Py)2w,. w, is the 
isotropic (q, = q,, = l/2) average of the rod-rod interac- 
tion in the xy plane: 

The attractive part, an*,, of the interaction matrix w,o, 
depends on u,, cf. Eq. ( 8). To calculate anR, we treat the rod 
as a row ofx segments (“atoms”) placed (either horizontal- 
ly or vertically) on a square lattice, with unit lattice con- 
stant, as described in Sec. II. The attractive interaction be- 
tween neighboring rods is taken as a sum of nearest-neighbor 

w, = (wxx + wy,, + 2w,)/4 = (w,, + w,)/2. (28) 
Introducing an orientational order parameter A, 
A=P,-P;=P;-Ps, (29) 

we can rewrite Eq. (27) as 
PFJN = (Pz + A)ln( 1 + A/P:) 

+ (Pz - A)ln( I- A/P:) -pVA +&WA’, 
(30) 
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where it should be noted that - Pz < A<P y. V and W are 
defined as 

v= P:(w, - w,> + PS(w, - w,), (31) 
w= w, + w, -2w,. (32) 

The order parameter A measures the excess fraction of z 
rods, as compared to their fraction atp = 0. Of course, other 
quantities, e.g., P,, could also serve as order parameters. 

isotropic (e.g., squares or circles) rather than rodlike. For 
example, large squares can be used to represent lying-down 
particles with small squares used for standing-up ones. The 
free energy of such a system is also given by Eq. (27) or Eq. 
(30) (with s and z corresponding to large and small parti- 
cles). Some MC simulations for this system of bidisperse 
interconverting squares are presented in Sec. IV. 

For the free energy of the surface rods we have 
PFJN = qx In qx + q,, In qy + In 2 

Differentiating Eq. (30) we find the extremum condi- 
tion for F, , 

+~P*[q~W,,+2q,q,w,+q2,w,,--**]. 
(33) (36) 

Note that Fx,, = 0 for the isotropic 2D distribution 
q$ = $ = l/2 (which is also the equilibrium distribution at 
p = 0). 

The next two derivatives are given by 

Introducing, in analogy to Eq. (29)) an in-plane order 
parameter 7 = qx - l/2 = q,, + l/2, we find (using 
WXX = wyy) 

PFJN = (l/2 + v)ln( 1 + 277) + (l/2 - V) 

d2F 1 (B/N) $=-+ 1 

P:+A 
-+pw, 
P;-A 

(37) 

(P/N) SE_ I 1 
aA3 U’: + Al2 + (P;-A)’ . 

(38) 

Xln(l - 27.1) +~s~2Ws, (34) 

with ps = P,p = (Py - A)p denoting the (2D) number 
density of surface rods, and 

ws=w,~+wyy-2w,y=2(w,,--w,y) (35) 
denoting the net interaction potential between surface rods. 
Unlike F,, the 2D free energy Fx. does not contain a linear 
term in the order parameter. This is due to the symmetry 
w, = wyy, as opposed to the w, # w, asymmetry in F,. 

Both F,, as given by Eq. (27) or Eq. (30), and F,,, as 

Explicit expressions for Wand V for our rod-rod inter- 
action model are obtained from Eqs. ( 14)) (22-25)) (28), 
(3 1) , and ( 32). For the monolayer we get 

W=j(,y- l)‘-u[(x- 1)(x+3) +Q(a- 111, 
(39) 

- u[2PZ(2ax -x - 1) + Pt(,y’- 111, (40) 
and for the bulk case 

given by Eq. (33) or Eq. ( 34)) correspond to mean-field 
(Bragg-Williams) free energies of two-state systems. In par- 
ticular Fxy , with appropriate identification of the interaction 
parameter ps W, , is completely analogous to the free energy 
of a binary solution (or lattice gas or spin l/2) system.30 
Similarly, FE is similar to the free energy of an asymmetric 
(w, #w, ) binary system (or a system in a field). Thus 
many characteristics of the standing-up and the in-plane 
transitions can be inferred by analogy to the corresponding 
binary systems. In the monolayer problem the two transi- 
tions are coupled to each other through P,, which appears in 
Eq. (27) (as the order parameter) and in Eq. (33 ) (as a 
parameter measuring the interaction strength). Both transi- 
tions are coupled to theg-I transition. These couplings were 
first discussed by Boehm and Martire16 and later treated by 
Chen et al.” and analyzed in detail by Wang.” We shall 
briefly discuss the role of the in-plane (x-y) ordering in the 
context of the Monte Carlo simulations presented in Sec. IV. 
However, our main interest in this paper is in the standing- 
up transition, its different features as compared to the I-N 
transition in 3D and its coupling to the gas-liquid transition. 
Therefore, our mean-field analysis of F will focus on F,, to 
which end we shall assume Fx,, = 0. This suppression of the 
in-plane free energy corresponds to assuming that the rod 
orientational distribution on the surface is always isotropic: 
q, = q,, = l/2. This is rigorously true for a somewhat differ- 
ent model system in which, on the surface, the particles are 

w’3D’ = _ (3/2)(x - 1)2( 1 + u); Vc3D) = 0. 
(41) 

Since V(3D) = 0 the isotropic solution A = 0 satisfies 
Eq. (36) for allp. On the other hand, in the monolayer one 
generally has V #0, and hence A = 0 is a minimum of F, 
only when p-0, consistent with our general conclusion 
based on Eqs. (19), and (20). For both the monolayer and 
the bulk cases, at sufficiently low densities, 8 ‘F-/ah2 > 0, 
implying that the low density solution is indeed a minimum 
of F,. [In the bulk case W (3D) is always negative, and A = 0 
turns into a maximum at high p] . 

A necessary condition for the appearance of a first order 
orientational transition is that F, should obtain two 
minima, say at A1 and A,. Thus at some 
A = A,,, (A, <A, c A, ) F, must have a maximum, at 
which point a 2F,/dA2 < 0. This condition can only be ful- 
filled if W< 0 and jp W 1 is large enough to overcome the first 
two (entropic) terms in Eq. (37). From Eq. (41) we see that 
this requirement is easily satisfied in the bulk case (especial- 
ly for large x), where W (3D) < 0 and Ip W ] increases with p 
and u (recall u - l/T). Note that W’3D’ < 0 regardless of 
whether the interaction is dominated by excluded volume 
repulsion [as in Onsager’s or Zwanzig’s theories which cor- 
respond to u = 0 in Fq. (41) ] or by an attractive potential 
(as in Maier-Saupe’s theory). 

On the other hand, from Eq. (39) we see that in the 
layer case Wean be either positive or negative, depending on 
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whether the interaction is dominated by the repulsive or at- 
tractive parts of the potential, respectively. In particular, for 
hard rods (u=O) we always find W> 0, implying-in con- 
trast to the bulk case-that a monolayer of hard rods cannot 
exhibit an orientational phase transition. A similar conclu- 
sion has been reached by Halperin et al.” based on a mono- 
layer version of Onsager’s theory=’ of the I-N transition, 
and by Chen et al. ‘* based on a Landau analysis of the mono- 
layer version of Zwanzig’s three-state model. It should be 
stressed that our conclusion that hard rods (U ~0) do not 
show a first order transition is independent of the adsorption 
energy 6. 

In a monolayer of hard rods the equilibrium order pa- 
rameter A = A,, corresponding to the single minimum of 
F,, increases monotonically with p. Figure 1 shows 
P, = P!j + A as a function ofp for hard rods of axial ratio 
x=4withE=O and 1, and for rods with x = 6, E = 0. The 
continuous curves were obtained by numerical solution of 
Eq. (36). It should be noted that for some values ofp and E 
the solution of Eq. (36) yields physically unacceptable solu- 
tions for A. An acceptable solution is one which satisfies the 
requirement 4 < 1 where 

~=P[xP, +q =p[l+ (x- w+-h)] (42) 
is the coverage (area fraction) of rods on the surface. For 
large values of E (andx) 4 reaches 1 much faster thanp. This 
is the case, for example, for the curve corresponding to 
~=4,~=li F n ig. 1. In thissystem$- 1 whenp-jjE0.35. 
In such cases we assume that for all p >p the coverage 4 
remains 1, implying that A increases with p according to 

A=P;-(l-p)/‘p(x-1). (43) 
ThechangeinslopeofP,(p) = Py + A(p) atpr0.35in the 

P ’ z 
0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 

P 

FIG. 1. The fraction of rods in upright (z) orientation as a function of sur- 
* face density in a monolayer of hard rods. The solid curves are the mean-field 

results corresponding from top to bottom, tax = 6, E = 0;~ = 4, e = 0; and 
x = 4. e = 1. The squares, circles, and triangles show the results of Monte 
Carlo simulations for these systems, respectively. The change in slope in the 
mean-field calculation for the last case (ofstrong adsorption) x = 4, E = 1, 
takes place at the density p~O.33 where the full surface coverage first ap- 
pears (see the text). 

x = 4, E = 1 curve of Fig. 1 is due to switching from Eq. ( 36) 
to Eq. (43 ) . 

Figure 1 shows also the results obtained for A, (p) from 
a MC simulation (see Sec. IV below), revealing similar 
qualitative behavior, and satisfactory quantitative agree- 
ment with the mean-field results. Figure 2 shows a compari- 
son between mean-field and simulation results for the chemi- 
cal potential of hard rods with x = 4 and E = 0. Again the 
qualitative behavior is similar and the quantitative agree- 
ment is reasonable. 

The p dependence of Ai (p ) , the order parameter corre- 
sponding to branch i of dF,,/dA = 0 is governed by 

dAi (6’ 2Fsz/dpc3A) -= - 
8P [ (6’ 2Fsz/aA2) 1 A = Ai 

(V- WA,) 

= (a2Fsz/dA2),=Ai ’ 
(44) 

[The second equality also follows directly from thep deriva- 
tive of Eq. (36) .] For the layer of hard rods [U = 0, single 
branch A, (p) ] it is easily found using Eqs. (37), (39), and 
(40) thatJA,/Jp>Oforall - P:<A, <Py,consistentwith 
the results of Fig. 1. 

If rod-rod attraction is strong enough, corresponding to 
large u in Eq. (39)) W can become negative, and if Ip W 1 is 
sufficiently large F, can exhibit two minima and a maxi- 
mum, signaling the appearance of an orientational phase 
transition. The three extremum points coincide at a critical 
point which can be specified by A = AC, p = pc, and u = u, . 
(Recall that ukT is the energy of segment-segment attrac- 
tion, thus U, - l/T,.) Near the critical point 
c?F~JcYA - (A - A, ) 3. Equivalently, at the critical point the 
first three derivatives of F, must vanish, 

= 0 k = 1,2,3. (45) 
AC@‘-% 

Explicit expressions for the critical constants are ob- 

kT 

-81 
0 0.2 0.4 0.6 0.8 1 

P 
0 0.2 0.4 0.6 0.8 1 

P 

FIG. 2. Chemical potential as a function of density in a monolayer of hard FIG. 2. Chemical potential as a function of density in a monolayer of hard 
rods with x = 4 and E = 0. Solid curve-mean field calculation. Circles- rods with x = 4 and E = 0. Solid curve-mean field calculation. Circles- 
computer simulations. computer simulations. 
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tained using Eqs. (36)-(38) for the derivatives, and Eqs. 
(39) and (40) for Wand V. For A, we get immediately 

AC = 1/2-P; = P; - l/2, (46) 
which corresponds to P: = Pz + AC = Pz = l/2, i.e., at 
the critical point half of the rods are standing up and the 
other half lie down on the surface. 

To simplify somewhat the expressions for PC and U, let 
W, and W, denote, respectively, the attractive and repulsive 
components of W, cf. Eq. (39). That is, we write 
w= w, -uw, with w, = (x- 1)2/2 and 
W, = [(x- 1)(X+3) +4X(a- l)].Similarly,wewrite 
Eq. (40) as V= V, - uV,. Then, after some algebra, we 
find 

hW, + v, 
Uc=hwa+va (47) 

with h = h(Pz) = [ln(Py/Pz) - 2(Py - P’j’)]/4. Forp, 
we get 

pc =4/[u,W, - Wr] =c+de. (48) 
Here c = c, /c, and d= (,y- l)W,/c, with 
c, =4[(x- l)‘-4x(“- l)] + W, In2 and 
c2 = [,y3(2a + 1) +x2(&- 5) -~(6a + 1) + 51. E is 
the segment adsorption energy, cf. (2 1) . 

Figure 3 shows how l/u, ( - T, ) varies with E for (x, 
a) = (4, l), (6, l), (10, l), and (4,2). Each curvedivides 
the U, E plane into two regions: Above and to the left of the 
curve A changes continuously withp at all densities. For all 
U, E points below and to the right of the curve, there is a 
certain density ,5 =p(e,u), such that for p -+ F,(A) 
shows a single minimum [at A, = A, (p) 1; at densitiesp >fi 
F, (A) develops two minima, at A, (p) and A, (p), signaling 
the possibility of a first order orientational transition (see 
below). 

Since at the critical point P,’ = Pf = l/2, the critical 
coverage is 4, = pC (P: + P:,y) = (x + 1 )p,/2. Figure 4 

3 
l/U 

C 

2 

1 

(x- 1 )E 
FIG. 3. Critical temperature (T, - l/u,, see the text) as a function of ad- 
sorption energy for four representative systems. 

( x- 1 )E 
FIG. 4. Critical area fraction as a function of adsorption energy for the four 
representative monolayers from Fig. 3. 

shows how #C varies with e, for the same values of x and a 
considered in Fig. 3. The increase of PC with E reflects the 
increasing reluctance of the rods to undergo a standing-up 
transition at higher adsorption energies. Since u, decreases 
as pC increases, see Eq. (48), larger E implies lower u,, as 
confirmed by Fig. 3. 

Figure 5 shows A, (p) and A, (p), the two branches of 
minima of F, (A) characteristic of systems at T< T,, for a 

0.8, 1 

A 
-P 0 

0.6- ’ 

0.4 

I- 

~PO z 

0.2 

-0.4h 0.2 1 0.4 0.6 0.8 1 
P 

FIG. 5. Orientational order parameter as a function of surface density for a 
monolayer of rods with x = 4, (z = 1 and adsorption energy e = 0 
(Pz = l/3). For this system U, (-l/r,) = 1.109. The results shown are 
for u = 1.2, i.e., T/T, = U/U, -0.92. For this system a second branch of 
minima of F, sets in at p=O.22. At p* ~0.244 the two minima are of equal 
depth. p, andp, mark the densities (and A, and A, the order parameters) 
of the coexisting phases, as obtained by solving Eqs. (49) and (50), see the 
text. The system considered here shows only one first-order phase transi- 
tion. 
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monolayer of rods withy = 4, E = 0, a = 1. For this case we 
find from Eq. (47) that u, = 1.109 so that 
T/T, = u,/u = 0.92. It is clearly seen that a second, high A, 
branch appears at p>p =0.22. For the same system we show 
in Fig. 6 how A = A( U, ) changes along the critical iso- 
therm. 

In the mean-field equations (30) and (36)-( 38) all the 
interaction terms are multiplied by p, which can thus be re- 
garded as a coupling constant measuring the strength of the 
interaction. As noted earlier, F, as given by Eq. (27) or Eq. 
(30), is very similar to the free energy (in the Bragg-Wil- 
liams approximation) of a binary mixture described by a 
lattice model with nearest-neighbor interactions. This analo- 
gy can be stretched further by assuming that each lattice site 
is occupied either by an s rod or a z rod (but no vacancies) 
and the nearest-neighbor interactions are proportional to 
pw=, pwu, andpw,. Since all sites are occupied by particles, 
this system is assumed to be uniformly dense even if phase 
separation takes place. In other words, this scheme ignores 
“IL4 ‘* effects, (Recall, however, that our wY’s include the 
effects of excluded area interactions). In this approximation 
a first order phase transition takes place when the two mini- 
ma of F, are equal, F, (A, ) = F, (A, ) . For the example 
considered in Fig. 5 this condition is met when 
p =p*Eo.244. 

The density change accompanying the jump in A in the 
course of the orientational transition is determined by the 
requirement of equal pressures, Il, and chemical potentials, 
p, of the coexisting phases. Let Iii(p) = ll [p,Ai (p) ] and 
P,(P) =P[PA(P)] d enote the pressure and chemical po- 
tential along branch i (i = 1,2). Then, the densities p1 and 
pz and the order parameters A, (p, ), A, (p2 ), of the coexist- 
ing phases are determined by 

n[p,A(p,)] =n[p242(~2)]1 (49) 

P[[P,A (P, )] =~[~2tA2(~2)1. (50) 

-0.41 I 
0 0.2 0.4 0.6 0.8 1 

P 

FIG. 6. Critical isotherm of the orientational order parameter vs density. 
The results are shown for the same system (x = 4, a = 1, E = 0) considered 
in Fig. 5, for which II, = 1.109. A, = l/2 - P: = l/6. 

The solution of these equations for x = 4, a = 1, E = 0, 
and u = 1.2, as shown in Fig. 5 yield p, = 0.13, 
A, = - 0.04, andp, = 0.48, A, = 0.66. The change in area 
fraction is smaller than in p, namely 4, -0.4, 
42 =p2 = 0.48. In solving Eqs. (49) and ( 50)) we have used 
the generalized van der Waals free energy with hi deter- 
mined by minimization of F,. [A qualitatively similar be- 
havior, though for different interaction potentials was found 
by Wang” for longer, x = 10, rods, using the full general- 
ized vdW equation (9) for analyzing the orientational tran- 
sition]. We elaborate on this point in the next section where 
we discuss the relation between the orientational and the 
gas-liquid transitions. 

C. Successive transitions 

In addition to the standing-up (s-z) transition dis- 
cussed in the previous section, the monolayer can exhibit a 
gas-liquid (g-l) transition. The distinction between the two 
transitions is somewhat subtle since they both involve 
changes in A and in p. However, as noted in Sec. III B, the 
hierarchy of these variables in the two transitions is differ- 
ent. A is the order parameter of the orientational transition, 
withp accompanying the change in A so as to ensure equality 
of II and p of the coexisting phases. On the other hand, p is 
the order parameter of the gas-liquid transition, with 
A = A(p) adjusting so as to minimize the system’s free ener- 
gy at any density. Physically, the orientational transition is 
driven by the anisotropy of the interaction potential as mea- 
sured by the interaction parameters Wand V, whereas the 
gas-liquid transition is dominated by the isotropic part (or, 
more precisely, the average) of the interaction potential, 
e.g., (w)‘in Eq. (17). 

The phase behavior of the monolayer is determined by 
an interplay between the molecular parameters x, a, u, and 
E. For some combinations of these parameters the mono- 
layer at low temperatures shows only one first-order phase 
transition. More interesting systems are those in which, at a 
certain temperature regime, the II-p isotherms exhibit two 
flat portions, one betweenp, andp, and the other betweenp, 
andp, , corresponding, respectively, to successive g-l and s-z 
transitions (ps <p, <p, <p2 >. The coexistence curves (or 
T-p diagrams) of such monolayers are typically character- 
ized by two humps, which end at critical pointspz-‘,Tg’and 
pi-‘, Tz-’ and intersect at a triple point ptp, TtP, with 
p:-’ <ptp <p:-’ and TtP < T!--‘, Ty. Let us assume, as in most 
cases of interest that Tf?' < Tz-‘. Then, isothermal compres- 
sion at T> T:-’ results in continuous increase in A = A(p) , 
similar to that of hard rods. If T:-‘> T> Tz--‘the monolayer 
will exhibit one first-order, standing-up, transition at high 
densities. At T < T,, the system transforms directly from the 
gas to the higher density (z) phase of the s-z transition. Fin- 
ally, as demonstrated for a specific system in Fig. 7, when 
TtP -C T-c T~--‘,T~-* the monolayer undergoes two successive 
phase transitions. Here, the gas-liquid (g-l) and the stand- 
ing-up (s-z) transitions of the grafted rod layer are analo- 
gous to the gas-liquid-expanded (g-le) and liquid-expand- 
ed-liquid-condensed (Ie-lc) transitions in surfactant 
monolayers. Clearly then, the lower density (s) phase in the 
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FIG. 7. Pressure( II)-density(p) iso- 
therm for a system with x= 4, 
e=4/3,anda=2atu=3.Twofirst- 
order phase transitions occur, a gas- 
liquid, (g-l) transition at very low 
density (left) and a standing-up, 
(s-+2) transition between condensed 
phases (see the text). The dashed line 
ties the coexisting phases. 

s-z transition and the liquid phase (I) in the g-l transition 
are the same, corresponding to the Ze phase in surfactant 
systems. In the next section this correspondence is demon- 
strated by computer simulations. In the mean-field analysis 
it is reflected by the fact that the I and s phases belong to the 
same pressure branch, II i . 

A possible approximate scheme for analyzing the se- 
quence of monolayer transitions would be to use the vdW 
equation ( 15) with the low density coefficients (b ) = (b )” 
and (a) = (a)” for theg-I transition, and Fx from Eq. (30) 
for the s-z transition. Then, if the vdW pressure loop is com- 
pleted before the standing-up transition sets in, as shown by 
the appearance of a second branch of F=, the conclusion 
would be that the transitions are separate. Note, however, 
that in this vdW equation Pn = Pi is constant (AGO) be- 
fore and throughout the g-I transition. As discussed in pre- 
vious sections, this assumption is valid for bulk systems and 
may turn out as an adequate approximation for some mono- 
layers (with large E). Yet, it ignores one of the most unique 
characteristics of the monolayer, namely, the continuous 
variation of Pn with p which begins as soon as p becomes 
finite. 

In order to account for the change of A withp along ag-I 
isotherm, we use Eq. ( 15) with the density dependent coeffi- 
cients (b ) = b(A) and (a) = a( A) to calculate H. Similar- 
ly, we calculatep = F/N + II/p using F from Eq. (6). Thep 
dependences of (a) and (b ) enter through the variation of A 
with p, which we determine from the minimization 
ofF,.Thatis, wecalculateb(A) = (Pz-A)(b, +b,)/ 
2 + (Pt + A)b, [and similarly u(A)] using the A’s which 
solve JF,/JA = 0 with F, from Eq. (30). Determining A 
by minimization ofF, rather than Fis clearly an approxima- 
tion since F, does not account for the entire A dependence of 
the free energy. However, this approximation captures all 
the essential physics of the problem. 

Corresponding to each branch Ai (p) of F, we obtain an 
equation of state, Hi = Hi [p,Ai (p)] = Hi(p) from Eq. 
(15). Similarly, we can calculate the chemical potential 
along this branch, yj = pi [p,A., (p) ] = pi (p). As we have 

seen in the previous section, only one branch exists [A, (p) ] 
at low densities. In the mean-field picture a gas-liquid tran- 
sition is recognized by a (vdW) loop of II, (p) . This happens 
when T< Tf--‘, i.e., when on the average rod-rod attractions 
[as measured by a(A) ] are strong enough. pg and pl, and 
hence Ag and A,, are determined by Maxwell construction. 
A second branch, A, (p), appears at higher densities, pro- 
vided the anisotropic rod-rod attractions, as measured by W, 
are strong enough to ensure T-C Ty-‘. Then an s-z transition 
can take place between two (expanded and condensed) liq- 
uid phases whose densities p I , pz , and order parameters A, , 
A, at coexistence are determined by solving II, = HZ and 
PI ‘Y2* 

It may be noted that for a monolayer of rods (or flexible 
molecules) with many possible orientations (conforma- 
tions), the (functional) minimization of F with respect to 
Pn may result in a vdW-like pressure loop. Thus the orienta- 
tional transition is indicated by a second loop at high p, as 
was found by McIlroy and Cantor for a monolayer of flexible 
chains.” This behavior indicates a continuous passage from 
one branch to another through a series of local free energy 
minima, including a nonphysical regime. 

If, for T< Tz-‘, Tz-‘, the calculation above yields 
p, <pl , we conclude that the g-i and s-z transitions take 
place successively, as for the system in Fig. 7. This also 
means that T> Ttp. At lower temperatures (T< Tfp > the 
calculation yieldsp, <pl, suggesting that the s-z transition 
sets in before the Hi (p) loop has been completed. The inter- 
pretation of this result is that the g-i and the s-z transitions 
have merged into one (“g-z”) transition from the gas to the 
condensed liquid phase. This rather common case is charac- 
terized by a large jump in A, typically from A, -0 to (near- 
ly) the maximal value, A, z 1 - Pz. The corresponding 
jump in p is also large. A very similar behavior prevails in 
systems where T:-‘< Tr and pr is small (py 2~:~‘). In 
this case the g-l coexistence curve is nearly fully absorbed 
into the s-z curve, so that the s-z transition preempts the g-I 
transition at all T< Tz-‘. (In this case the distinction be- 
tween an s-z or g-z transition is meaningless). An example 
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of this behavior was shown in Fig, 5. The opposite case, 
where only a g-Z transition can take place is, of course, also 
possible. AS an extreme example we may take a system 
where the interaction parameters (in our model) w,, w,, 
and w, are all negative but w, + w, - 2w, = W= 0. 
Then, of course, the monolayer can only undergo ag-l tran- 
sition, since the s-z transition is impossible [ W-0 implies 
T? --rOorpy-+o3, cf. Eqs. (47) and (48) 1. Thus in sys- 
tems with small W one expects that at densities p >p, the 
order parameter A will increase monotonically with p. This 
behavior has indeed been revealed by our Monte Carlo simu- 
lations, see, e.g., Fig. 1. 

We close the mean-field analysis with some comments 
on the role of the molecular parameters, particularly E and a, 
in the monolayer’s phase behavior. The qualitative conclu- 
sions drawn here pertain also to the Monte Carlo simula- 
tions presented in the next section. 

Consider first the limit of large adsorption energy, say 
(x - 1)~ = ln(Py/2Py) 2 1. In this case the rods stick to 
the surface and are reluctant to stand up. They are forced to 
do so, however, by the strong excluded area repulsions when 
p-+j5z1/(b). Since in this case (b) is large, 
(b )rb, = (6, + b,)/2 = (x2 + 6,y + 1)/4, [see Eq. 
(22) 1, the corresponding densityp = l/b, is small; e.g., for 
x = 4 we getb-= 0.1. For the fraction of occupied area at this 
point we find 4 -xjj -x/bss. If rod-rod attractions in the xy 
plane are strong enough ( T-C T:-‘) the monolayer can com- 
plete a g-1 transition (with all rods in the plane) before the 
density reachesp, i.e., withp, <pI <p. Estimates of Tf-‘and 
@-‘for the case of large ecan be obtained from Eq. ( 17) with 
(b ) and (a) replaced by the constant coefficients b, and u, ; 
namely kTf-’ = 8uJ276, and p$-’ = 1/3b,, both familiar 
from the usual vdW theory. The numerical values obtained, 
e.g., forx = 4 are kTf-’ = l/uf-*~~O.36 andp:-‘z0.032. 

Large E tends to postpone the s-z transition to higher 
densities, due to the reluctance of the rods to give up their 
adsorption energy. This is reflected by the increase of ~~ 
with E, as shown in Fig. 4. As we have seen in the previous 
section, excluded area interactions in the monolayer (unlike 
in 3D) do not provide a sufficient incentive for a first-order 
orientational transition. A necessary condition for such a 
transition is a strong anisotropic attractive potential W. If W 
is such that the coexisting phases in the s-z transition satisfy 
p, <p, <py<p2 < 1 then, indeed, a first-order s-z transi- 
tion will follow the g-l transition. This sequence of inequal- 
ities is satisfied over a limited range of molecular parameters. 
ForX = 4 and, say, E = 4/3 and u = 3, this condition is ful- 
filled for a 1: 2, as we have already seen in Fig. 7. However, if 
a and therefore also Ware smaller, say a= 1, one finds that 
p, > 1, which means that a first-order s-z transition occurs 
only at physically unacceptable densities. (This trend is also 
reflected by the sharp increase in 4, as a changes from 2 to 1, 
Fig. 4. ) We thus conclude that in this case, following the g-l 
transition, A increases continuously with p. On the other 
hand, if the anisotropic attraction is very large, say a = 4, 
then for the same values of x, E, and u as above, the onset of 
the s-z transition shifts to very low densities, resulting in 
p, <p, or evenpy <p,. This is a case of a system showing a 
single (g-z) first-order transition. 

As E decreases the fraction, Pp + A, of surface rods in 
the plane decreases and likewise their resistance to stand up 
as p increases. This results in increasing values of 
g-‘f: 1/3b(p,) and pi y l/b(p, ). In parallel, when E de- 
creases the s-z transition is shifted to lower densities, i.e.,pr 
(and p1 ) decrease, as shown in Fig. 4. As a consequence of 
this overlap between the (coexistence curves of the) g-Z and 
s-z transitions they merge into one, g-z, transition. 

To summarize, our analysis suggests that large e is a 
necessary condition for the appearance of two, successive, 
first order transitions. In addition, however, the strength of 
the anisotropic attraction (as measured by W, or u and a) 
which determines the shape of the s-z coexistence curve 
should not be too small (in which case it is largely absorbed 
into the the g-l coexistence curve) nor too large (in which 
case the s-z absorbs the g-Z transition). 

IV. MONTE CARLO SIMULATIONS 

In this section we present the results of Monte Carlo 
simulations for some representative systems of mobile graft- 
ed rods. The computations are performed on the same re- 
stricted-orientation lattice model which we have used since 
Sec. II. The motivation for carrying out full MC simulations 
on the restricted orientational model is that we want to con- 
firm as directly as possible the mean-field conclusions, in- 
volving the possibility for successive fluid-fluid phase transi- 
tions. 

Recall that the xy plane (the surface) is represented by a 
square lattice, each site of which (of area d 2 = 1) can ac- 
commodate one rod in the upright (z) orientation. When 
adsorbed on the surface a rod occupies x consecutive sites 
parallel to the x or the y axes. The adsorption energy per 
“segment” in contact with the surface is ekT, e.g.,XekT for a 
lying-down rod and EkT for a standing-up one. The restric- 
tion of one rod segment per lattice site implies the same ex- 
cluded area interactions specified in Eq. (22). Similarly, by 
treating the attraction between rods as a sum of nearest- 
neighbor segment-segment potentials we obtain complete 
correspondence with Eq. (24). More explicitly, for the at- 
tractive potential between a pair of rods in a given configura- 
tion we take u, = - nukT, where n is the number of near- 
est-neighbor segment-segment contacts, see Eq. (4). The 
only exception is the configuration of two rods in the z state 
for which case instead of u we take au, a > 1. If we substitute 
this U, into Eq. (8) we obtain Eq. (24). [Note, however, 
that other choices of u could also lead to Eq. (24) 1. 

Although the interaction potentials in the lattice simu- 
lations and the mean-field analysis are entirely equivalent, 
we clearly do not expect more than a qualitative agreement 
between the two approaches. It should be recalled that fol- 
lowing the basic approximation of using Eq. (9) for F we 
have made two additional approximations. First, we em- 
ployed an approximate scheme to separate (in Sec. III A) 
and then to combine (in Sec. III C) the gas-liquid and the 
standing-up transitions. Second, in order to eliminate from 
the discussion the complexities associated with rod align- 
ment and phase transitions in the xy plane, we have consis- 
tently assumed P, = P,, (hence F’,, SO), This assumption 
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FIG. 8. Snapshots of typical configurations from a Monte Carlo simulation 
of rod monolayers with x = 4, E = 0, and cr = 1. (Shown are 50 x 50 sec- 
tions from the simulation of a 100X 100 lattice.) Figures (a)-(d) corre- 
spond to the four thermodynamic states (a,b,c,d) in the temperature ( l/u) 
vs area (-l/p) phase diagram of Fig. 9(a). Specifically, points (a)-(d) 
correspond, respectively, to (ug) = (0.5,0.05), (0.5,0.3), (1.0,0.3), and 
( 1.0,0.05). Note that point (a) describes a homogeneous phase whereas 
(b)-(d) are in the two-phase region. 

can be rigorously incorporated into the simulations if the 
surface particles are chosen to be symmetrical e.g., squares. 
We shall do so after first discussing the case of rods which are 
free to lie in the plane along x or y or stand up along z. The 
rods are indeed found to order in the plane at high densities, 
forming in some cases tilelike patterns, which are explained 
below. Such patterns cannot be explained by a simple mean- 
field approach, even one which allows P, #P,, . 

All the simulations reported here were carried out ac- 
cording to the standard (Metropolis) procedure.31 The lat- 
tice size used was 100 X 100 in all cases, except where larger 

samples (200 X 200) were used to verify that finite size ef- 
fects are unimportant. The simulations are performed in the 
N, V,T ensemble. When results for chemical potentials are 
reported they were calculated using Widom’s insertion 
method.32 For all the systems and all the initial conditions 
studied, the typical duration of a simulation run was - lo6 
Monte Carlo steps (MCS), with each step corresponding to 
a sweep through all the particles. In each MCS every particle 
is allowed (on the average) one attempted move, corre- 
sponding to either a change of orientation, or translation by 
one lattice site on the surface. The simulations were per- 
formed on Silicon Graphics workstations. 

The results of the simulations for a monolayer of hard 
(u #O) rods were shown already in Figs. 1 and 2. These 
simulations confirm the prediction of the mean-field analysis 
that an orientational phase transition does not take place in 
this system. Clearly, a g-I transition does not take place ei- 
ther since there is no attraction between rods, in the several 
cases involved there. 

Figure 8 shows four snapshots from a simulation of a 
monolayer with x = 4, E = 0, and a = 1. This is a typical 
case of a system with low adsorption energy, for which, 
based on the discussion in the previous section, we expect a 
single (“g-z”) first-order phase transition. The figures 
clearly illustrate the phase separation process attendant 
upon cooling or compressing the system into the coexistence 
region. In discussing them it is useful to refer to the tempera- 
ture ( - l/u) vs area ( - l/p) phase diagram shown in Fig. 
9 (a). In particular, Figs. 8 (a)-8 (d) display typical configu- 
rations for the thermodynamic states indicated by points a-d 
in Fig. 9 (a). Note that Fig. 8 (a) involves a uniform density 
gas phase in which standing-up and lying-down rods are 
mixed throughout the available area. Indeed, point a corre- 
sponds to the one phase, high-temperature and large-volume 
(gas) region in the T-p diagram shown in Fig. 9 (a). 

Upon either compressing (at constant temperature) to 
point b in Fig. 9(a), or cooling (at constant density) to point 
d, the system is brought into the two phase region involving 
coexistence between the gas phase discussed for Fig. 8(a) 
and a highly condensed phase in which essentially all the 
rods are standing-up-see Figs. 8(b) and 8(d). Moving 

FIG. 9. (a) Temperature (l/u) vs area 
(l/p) phase diagram obtained by Monte 
Carlo simulations (see the text) for the 
monolayer (x = 4, a = 1, e = 0) of Fig. 8. 
(b) Three chemical potential isotherms for 
the above system corresponding to mono- 
layers above (U = 0.3) below (U = 0.5) 
and, approximately, at the critical tempera- 
ture(u=0.4-uu,). 
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FIG. 10. Typical configuration SC 50X 50 sections from 100X 100 samples 
of Monte Carlo simulations) of ‘ar nonolayer exhibiting two first order tran- 
sitions. The three figures correspond to isothermal compressions of a rod 
monolayer with x = 4, a = 2, E = 4, u = 1. (a) Coexistence between a gas 
phase and (islands of) expanded-liquid phase of lying-down rods. (b) The 
monolayer pattern at theend of the above, g-2, transition and, just before the 
next, S-Z, transition sets in. (c) Coexistence between a z (liquid-condensed) 
phase, of standing-up rods and an s (liquid-expanded) phase consisting of 
lying-down rods. (d) The chemical potential in the gas-liquid transition 
region. 
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horizontally from point d to c describes an isothermal com- 
pression which simply involves the “growth” of the con- 
densed phase according to the usual lever rule. The differ- 
ences in density pL -pp and order parameter A, - As 
decrease as T ( - l/u) approaches the critical point. The 
coexistence curve ( T-p diagram) in Fig. 9(a) was deter- 
mined by analysis of computer experiments corresponding 
to isothermal compression and isochoric cooling. The analy- 
sis comprised inspection of snapshots of the kind shown in 
Figs. 8 (a)-8 (d), as well as the calculations of p = p ( T,p), 
collected in Fig. 9(b). For each T,p point shown, p was 
evaluated by averaging the results of - lo6 insertion at- 
tempts over several (typically ten) different configurations 
of the monolayer. The accuracy of the calculations decreases 
around the critical point. 

Figure 10 confirms the qualitative notion that large ad- 
sorption energy is a necessary requirement for the appear- 
ance of two, successive, transitions. The snapshots (a)-(c) 
shown correspond to isothermal compression (at u = 1) of a 
monolayer characterized by x = 4, a = 2, and E = 4. Var- 
ious other choices of monolayer parameters (e.g., 
a,E,u = 1,1,1.25, ora,e,U = 2,3,0.85 forx = 4) reveal simi- 
lar qualitative behavior. Namely, a g-Z transition sets in at 
low densities, with negligible change in the orientational or- 
der parameters, A, = A, ~0. Figure 10(a), withp = 0.1, lies 
already in the two phase gas-liquid region, revealing coexis- 
tence between low- and high-density fluids of lying down 

( AzO) rods. Figure lO( d) shows the chemical potential of 
the system in the density regime corresponding to the gas- 
liquid phase transition. The flat portion of p confirms the 
coexistence of the two phases. Note that pI 5 l/x in the liq- 
uid domains, corresponding to a situation where essentially 
all of the area in the domains is covered by lying down rods. 
Equivalently, the coverage 4, cf. Eq. (42), is nearly com- 
pletely saturated: & =xpl 5 1. 

Consequently, we expect that the orientational transi- 
tion, involving a standing up of the lying-down rods, will set 
in shortly after the condensation from the gas to liquid is 
complete, i.e., when the system density begins to exceed 
pl z l/x ( = 0.25 in our present example). Figure 10(b) 
shows a typical configuration just before reaching this point: 
p = 0.24 5~). For higher densities (and still at the same tem- 
perature, i.e., same u and E) we move into the two phase 
region involving coexistence with essentially full-coverage 
standing-up rods (p2 5 1 and A, 5 1) . Figure lO( c) shows a 
typical configuration in this two phase region, at an overall 
system density ofpz0.54 corresponding, roughly, to com- 
parable amounts of the two phases. Simulations performed 
at lower temperatures, (large U) reveal (e.g., when 
u = 2,~ = 3, and a = 2) that instead of two successive tran- 
sitions the monolayer exhibits only a single jump from gas to 
condensed liquid. This corresponds to T< Ttp as discussed 
at the end of Sec. III C. 

The numerical value of the liquid phase density, 
pr - l/x, found in the simulations is considerably larger than 
the mean-field estimate p, - l/b,. One of the many reasons 
for this difference is our assumption, P, = P,,, that rod ori- 
entations in the plane are random [or, 7 = 0, cf. Eq. ( 34) 1. 
This assumption eliminated the possibility in the mean-field 
theory of long range in-plane order which would imply 
smaller 6,, i.e., b, - b, instead of b, = (b, - b, ) /2. Re- 
laxing this assumption cannot dramatically improve the 
agreement between the mean-field and simulation results, 
because of the rather special (in-plane) rod-rod correlations 
apparent from the monolayer patterns of the “liquid-ex- 
panded” (“s”) phase, see Figs. 10(a)-10(c). 

Figure 10 reveals in-plane ordered domains of the liq- 
uid-expanded (p = l/x) phase, consisting, roughly, of x by 
x “tiles” of parallel rods. To a large extent this is an artifact 
of our restricted-orientation lattice model which does not 
allow for (small) fluctuations in rod orientations.33 Each of 
those clusters of x parallel rods is essentially randomly ori- 
ented with respect to the others since their alignment in- 
volves no further advantage as far as the excluded area inter- 
actions are concerned. Similarly, since in our model the at- 
tractive interactions are sums of nearest-neighbor segment- 
segment potentials, the total potential energy is also unaf- 
fected by long-range ordering of these tiles at this density. 
Consequently, there is no driving force for long-range nema- 
tic order in the restricted orientation model. Yet, the “tiling” 
phenomenon complicates the mean-field analysis. It does 
not change, however, our conclusion that the first discontin- 
ous transition which occurs is an :in-plane condensation of 
particles while the second involves their standing up off the 
surface. To demonstrate this point clearly it is instructive to 
treat a system where this artifact cannot arise, e.g., the “che- 

J. Chem. Phys., Vol. 96, No. 3,l February 1992 Downloaded 05 Dec 2003 to 132.64.1.37. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Kramer eta/.: Phase transitions in rod monolayers 

‘0 
q 
0 

‘U 

u 

. * 
0 0. 

. . 
g * “,:: do?** ** - 
0. 00 q 0 q -* 

. ‘.n. 
-u q 00 . . 

* yU.uuq& . * 

00s. ‘0 ‘u.~oo.’ 
yQ!J. q u . q 

.0 0 ;.’ e. : q u p 
I 
(a) 

~p;f$&gf?$ 
* -&:$~~$~$u;....e :P $,.9;: a 0 -+ .- -:g. b 

q 6 

P 

f 
... {;ufb$f-i!-i@$4 

qg.~b~ ZJ I$ 6 

h: \ &0 y.+. .::m.!y . . .d -0 

mically reactive” mixture of squares mentioned earlier. 
More explicitly, we continue to treat the upright (z) 

rods as particles occupying a single lattice site in the xy sur- 
face, or more specifically, as elongated parallelepipeds of 
length x = I and square cross section d x d = 1. We replace 
the x and y rods by flat parallelepipeds (s particles) of area 
x = 1/l XdZand height d = 1. Thus thevolumeofthezand 
s particles is the same, as if they were chemical isomers of 
some molecule. The projection of the particles on the xy 
plane corresponds to a mixture of interconverting small and 
large squares. 

We keep assuming that the repulsive interactions are of 
the excluded-area type: zero if the squares do not overlap 
and infinite otherwise. Similarly the adsorption energy per 
segment is 6, i.e., I% and E for a big and a small square, 
respectively. As in Eq. (2 1) we assume that the s state is 
doubly degenerated so that P f = 2Pz when E = 0. Clearly, 
this is an arbitrary choice made only for comparative pur- 
poses. Finally, the attractions between particles are again a 
sum of nearest-neighbor contributions, with - ukT from 
each such segment-segment pair. Thus the attraction energy 
between two adjacent small squares is - ,yukt (we consider 
only a = 1 in this model) or - ukT between neighboring 
large and small squares, etc. 

We have already remarked in our generalized van der 

0 

D 

FIG. 12. A typical configuration from a Monte Carlo simulation ofa mixed 
monolayer of attracting, interconverting small and large squares. This mon- 
olayer (x = 4, E = 0, and u = 1) exhibits one first order phase transition. 
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FIG. 11. Three typical configura- 
tions from a Monte Carlo simulation 
of a mixture of interconverting hard 
squares. (x = 4, u = 0, and E = 0, 
corresponding to P:/Py = 2). 
Shown are 50~ 50 sections from the 
100X 100 lattices used in the simula- 
tions. Note the continuous increase 
in the fraction of small rods 
P, = 1 - P,, as the density increases 
from p = 0.05 in (a), to 0.2 in (b) to 
0.7 in (c). 

Waals discussion for reorienting rods [see the paragraph be- 
fore Eq. (36) ] that the quasianalytical development pre- 
sented there can be carried over directly to this system of 
bidisperse, “chemical reacting,” squares. The a and b matri- 
ces are easily evaluated and consequent results can be de- 
rived for the attending phase behavior. Here, however, we 
shall illustrate the relevant analogies by simply presenting 
the data generated by MC simulations of this system. The 
simulations are completely analogous to those of the rod 
system. In each MC move an attempt is made to either trans- 
late a particle or to change its size (from big to small or vice 
versa), with acceptance probability according to the Metro- 
polis criterion. 

At low number densities, where the average distance 
between squares is much greater than their sizes, one expects 
that most of the particles will be large ones since interparticle 
interactions are not important and it is essentially the single- 
particle, adsorption energy, which must be minimized. On 
the other hand, as the density approaches the close packing 
value for small squares, (i.e., p+ 1 ), the small squares be- 
come the dominant species because of excluded area packing 
constraints. It remains “only” to determine whether this 
progression occurs continuously or via one first-order or two 
successive first-order phase transitions. 

Figures 11 (a)-1 1 (c) show three typical Monte Carlo 
configurations for low, intermediate and high densities, i.e., 
p = 0.06,0.2, and 0.7, in the case of pure excluded area inter- 
actions (U = 0 and E = 0). The two square sizes are 2 x 2 
and 1 X 1. It is clear that the progression from large to small 
squares is continuous and that no phase transition occurs. 
Allowing for E > 0 has no effect other than to make the small 
squares less likely at low density, just as in the one-compo- 
nent rod case it resulted only in a larger fraction of lying- 
down rods in the dilute regime. In the absence of interparti- 
cle attractions (U = 0) we again find that the standing up of 
particles (s+z rods or large-, small squares) occurs con- 
tinuously. 

As soon as attractions are introduced (U #O), the possi- 
bility arises for a first-order phase transition. Figure 12 
shows a typical configuration of coexistence phases of 2 x 2 
and 1 X 1 squares at p = 0.05 for u = 1.0 and E = 0. The 
behavior of this system is analogous to the one described in 
Fig. 8 where the compression (or cooling) of one-compo- 
nent rods with u #O and E = 0 involved a single phase transi- 
tion to a standing-up state. 
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Finally, with the addition of a sufficiently strong ad- 
sorption energy (E#O) the progression from big to small 
squares is characterized by two, successive, first-order phase 
transitions. Figures 13(a)-13(c) show this sequence for the 
case of u = 1.0 and E = 4/3. Note that we move upon com- 
pression from a gas phase of big squares at p = 0.0 1 [see Fig. 
13 (a) ] to a two-phase coexistence at p = 0.1 involving di- 
Iute and condensed phases of big squares (b), and then final- 
ly to a two-phase coexistence consisting of two condensed 
phases of big and small squares, respectively [Fig. 13 (c) ] 
This behavior is the analog of that shown in Figs. lO(a)- 
lO( c) and discussed there in terms of a gas-liquid condensa- 
tion (of lying-down rods) followed by a transition to stand- 
ing-up rods. Further details about the phase behavior of a 
system of interconvertible symmetric particles will be pub- 
lished elsewhere.34 
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APPENDIX: THE GENERALIZED VAN DER WAALS 
EQUATlON 

In this section we briefly outline the approximations and 
assumptions involved in the derivation of the generalized 
van der Waals and virial equations for the free energy and 
pressure of a monolayer of mobile grafted rods. Although 
most of the relevant concepts and notions are well known, 
we find it instructive to present them in a form appropriate 
for the model calculations and computer simulations pre- 
sented in the present paper. 

The number of indistinguishable configurations r”, RN 
corresponding to the same orientational distribution (com- 
position) {N, } is IIN,!. Thus the classical configurational 
partition function of a monolayer of a given composition 
CN, 3 is 

FIG. 13. Typical configurations 
from a Monte Carlo simulation of a 
mixed monolayer of interconverting 
squares which exhibit two successive 
transitions. The monolayer param- 
etersareX=4,6=4/3,andu=l. 
(a) p = 0.01; gas phase of large 
(strongly adsorbing) squares. (b) 
p = 0.1; coexistence between gas and 
(islands of) an expanded liquid 
phase. (c) p = 0.3; coexistence be- 
tween expanded and condensed 
(small squares) liquid phases. 

(Al) 
where U is the total potential energy of the rod mixture, cf. 
Eq. ( 1 ), /? = l/kT, and A is the total area available to the N 
molecules of the system. The total configurational integral is 
the sum over all compositions Z(NAT) 
= 2Z(bK&,T). In the thermodynamic limit 

lnZ(N,,4,7’)+lnZ({N~},A,T),withZ({N~+4,T)denot- 
ing the maximal term in the sum. {N X ) is the most probable, 
i.e., the equilibrium, composition. Hence the system free en- 
ergy is 

F= - kTlnZ({Nz .sl,n. (A21 

The equilibrium composition is determined by minimizing F 
with respect to the appropriate order parameters. 

Substituting U from Eq. ( 1) into Eq. (A- 1) and noting 
that Z,e( fii) = 2, Nn E( fi) we can write 

z = z,,z khr) 

with 

(A3) 

Z,,, ({N,),A,T) = l-I R [epoxy”‘] JdrN 

Xexp -P C u,Crij,Qi,fijzi, 1 (A4) 
icj 

denoting the configurational partition function of a mono- 
layer of hard rods. The product in front of the integral is 
simply the partition function of a monolayer of noninteract. 
ing rods. 

The second factor in Eq. (A3) includes the contribu- 
tions of the attractive potentials, averaged in the hard rod 
system. That is, 

z (hr) _ a - s drN Phr (r”,Q”)exp -0 C u, (r,,sZi,aj) , 
ij I 

(A5) 
where P,,(rN,fiN)-exp[ -/312i,ju,(rii,Cki,CIj)] is the N- 
body probability in the hard-rod system. 

Expanding the exponents in Eq. (A5) in powers of flu, 
and neglecting O(p *) terms we find that the contribution of 
the attractive potential to the free energy is given by 
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F(hr) = - kTln Zchr) 0 a -& (ua (re,ai?oj2i))hr 

= 9% z ; PnG s dr& (r,R,~‘)f$ (r,flR,fl’) 

= NC Pn’4’(f2). 
R 

(A6) 

In the last equation, ( )hr indicates averaging according to 
the probability distribution Phr ( rn,flN) -g,, (r,R,W) is the 
radial distribution function for a pair of rods in orientations 
R and R’. The last equality serves as the definition of the 
effective (mean-field) attractive potential felt by a rod in 
orientation a, cf. Eq. (5). 

The next approximation is to replace g,, by its low den- 
sity limit 

gO(rij,fii,flj) =exp[ -Pu,(r,j,@,fiji,] 

= 1 +A (rijtf&tajZj)7 (A7) 
which implies go = 0 or 1 for overlapping and non overlap- 
ping rod configurations, respectively. fhr (ij) is the Mayer 
function for a pair of hard rods. From Eqs. (A6) and (A7) 
one gets 

PF Lhr)/N = - /3 (a)~ (43) 
with the orientationally averaged a coefficient defined in Eq. 
(8) of Sec. II. 

Finally, to derive the generalized vdW equation the inte- 
gral in Eq. (A4) is replaced by the mean-field product, yield- 
ing 

z,, =a [ e-;;n’][A -N(b)-jN (A9) 

with (b ) denoting the average vdW b coefficient defined in 
Eq. (7) of Sec. II. Equation (6) then follows from 
F= - kTlnZusing Eqs. (A3), (A8), and (A9). 
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