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We consider the effect of shear velocity gradients on the size (L) of rodlike micelles in dilute 
and semidilute solution. A kinetic equation is introduced for the time-dependent concentration 
of aggregates of length L, consisting of “bimolecular” combination processes L + L ’ 
-+ (L + L ’ > and “unimolecular” fragmentations L + L ’ + (L - L ’ ) . The former are described 
by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced 
coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to 
flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean 
micellar size (z) evaluated as a function of the Peclet number P, i.e., the dimensionless ratio of 
flow rate i and rotational diffusion coefficient D, . For sufficiently dilute solutions, we find 
only a weak dependence of z on P. In the semidilute regime, however, an apparent divergence 
in 1: at P- 1 suggests a flow-induced first-order gelation phenomenon. 

I. INTRODUCTION 

The structures and phase transitions in self-assembling 
systems have attracted intensified interest from a broad 
range of chemists and physicists over the course of the past 
decade. In particular, the micellization of surfactant mole- 
cules in aqueous solution has confronted both experimenta- 
lists and theorists with a wide variety of intriguing and chal- 
lenging problems.’ The underlying difficulty stems from the 
fact that-unlike “ordinary” colloidal suspensions in which 
the number density of interacting particles is fixed by their 
volume fraction, and the size and shape of particle is essen- 
tially constant-self-assembling amphiphiles can aggregate 
into many different structures. Specifically, these surfactant 
molecules are capable of organizing into large-scale micelles 
involving either cylindrical-tubular, bilayer-lamellar, or dis- 
ordered bicontinuous structures. Furthermore, even in di- 
lute solution, these structures are observed to evolve dra- 
matically from one equilibrium state to another as control 
parameters such as the temperature or surfactant concentra- 
tion are varied. 

Consider, for example, the much studied case of 
CTAB/KBr (cetyl trimethyl ammonium bromide/potas- 
sium bromide) or CPySal/NaSal (cetyl pyridinium salicy- 
late/sodium salicylate) in water.’ These ionic amphiphile- 
counterion systems exhibit a strong preference for cylindri- 
cal micelle formation. That is, above the critical micelle con- 
centration (CMC), they tend overwhelmingly to satisfy the 
hydrophobic effect by forming tubelike aggregates. These 
cylinders have an essentially constant radius characterized 
roughly by the length of the stretched hydrocarbon tail: lO- 
20 A. The lengths of the micellar rods, however, are already 
large-100’s of A’s-even just above the CMC. More signifi- 

cantly, they are found to increase dramatically (up to 1000’s 
of A’s) as the surfactant concentration is raised. At volume 
fractions of the order of 1%, the rods are believed to entangle 
and to form a gel-like phase. Recently it has been observed 
by Rehage and Hoffmann that concentration is not the only 
control parameter for self-assembly. They found that shear 
flow can also induce gelation. As a function of the velocity 
gradient y (i.e., the shear rate), they found a dramatic rise in 
the micellar solution viscosity at a critical flow rate, indicat- 
ing a sharp increase in the mean rod length. This is a rather 
surprising result because one expects the delicate, large-scale 
surfactant structures to be easily destroyed by flow-induced 
stresses. Previous theoretical studies for extensional flow ap- 
pear to confirm this expcctation.4 

Our basic premise in the present work is that this flow- 
induced micellar gelation is an important example of a well- 
known effect in the hydrodynamics of suspensions: orthokin- 
etic couguhtion. Orthokinetic coagulation is the coagulation 
of colloidal suspensions under shear flow, a phenomenon 
discovered by Paines in 19 12. It stands in contrast toperikin- 
etic coagulation,6 where Brownian motion is the dominant 
transport mechanism. Orthokinetic coagulation does not re- 
quire attractive interactions. Dilute dispersions of spheres in 
shear flow, for example, aggregate due to purely hydrody- 
namic interactions. In the case of reversible aggregation, the 
size distribution of the aggregates must, under equilibrium 
(i.e., no flow) conditions, be given by the Boltzmann distri- 
bution, and so this should hold for the perikinetic situation. 
However, for orthokinetic coagulation, shear flow, in gen- 
eral, prevents the establishment of thermal equilibrium: it 
will increase the number of particle-particle collisions and 
thereby shift the steady-state size distribution of aggregates, 
while at high enough shear rates the flow can actually pro- 
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duce percolationlike patterns in the spatial distribution of 
particles. The aim of this paper is to apply to the problem of 
flow-induced micellar gelation the experience gained with 
colloidal coagulation. Accordingly, we will first review the 
classical theory of coagulation, considering, in particular, 
the case of shear-induced coalescence of emulsion drops. 
Since the interactions between general colloidal particles dif- 
fer from those between micelles we will concentrate on those 
aspects of the theory which are independent of the interac- 
tion potential. 

The first theoretical study of reaction rates during or- 
thokinetic gelation was by von Smoluchowski’ in 1916. He 
assumed that, before colliding, the (spherical) particles 
move along the flow lines in rectilinear trajectories, i.e., he 
neglected both hydrodynamic as well as nonhydrodynamic 
interactions. Furthermore, he assumed that after colliding 
the two particles would stick together, in other words that 
the collision cross-section equals the reaction cross section. 
Under these assumptions, the particle flux J, on a reference 
particle (i.e., the reaction rate) is 

J&&R 3 (1.1) 
with dR the particle concentration and R the particle radius. 
To obtain Eq. ( 1.1)) note that collision rates are proportion- 
al to ua, with u the impact velocity and (T the scattering cross 
section, and to the number density &. The geometrical 
cross section of a sphere is proportional to R 2 while typical 
velocity differences for particles on neighboring stream lines 
are of order ;R. 

The underlying assumptions of the Smoluchowski theo- 
ry are obviously crude. Spheres in close contact feel a very 
strong hydrodynamic resistance preventing close approach. 
The result is that instead of true collisions, spheres form 
“trapped binaries.” Moreover, the reaction cross section is, 
in general, not equal to the collision cross section. The theory 
has been investigated in further detail along these lines, in 
particular by Curtis and Hocking* and van de Ven and Ma- 
son.’ The result of their work was that the numerical factor 
of order unity which we have dropped in Pq. ( 1.1) must be 
replaced by a constant which depends only weakly on parti- 
cle radius and other factors: the von Smoluchowski theory is 
surprisingly good. Mainly because of non-negligible multi- 
particle hydrodynamic interactions, it is not yet understood 
how these microscopic mechanisms produce the macroscopic 
spatial patterns noted earlier. In the following we will re- 
strict ourselves to the “microscopic” level of the Smolu- 
chowski description and not address the question of spatial 
distribution. 

When should we expect orthokinetic gelation to over- 
take perikinetic gelation? To compare the two processes, we 
note that the particle flux Jb on a reference particle due to 
translational Brownian motion is 

Jb -Q&R (1.2) 

with D, the translational diffusion constant. Again, Eq. 
( 1.2) may be derived by noting that diffusion currents must 
be proportional to D, and collision rates proportional to 4,. 
Since Jb has dimensions of [ l/time], Eq. ( 1.2) follows im- 
mediately from dimensional arguments. Flow-induced colli- 

sions will start to dominate when the ratio P = J,/J, be- 
comes of order unity. From Eqs. ( 1.1) and ( 1.2), we must 
have 

P--j&D/R 2). (1.3) 
This ratio is the well-known Peclet number. The Peclet num- 
ber of a suspended particle determines whether its motion is 
dominated by hydrodynamic flow or by diffusion. A solu- 
tion of particles can sustain large concentration gradients if 
Pg 1, while for P) 1 the concentration profile is homog- 
enized by the flow. If we applied the preceding arguments to 
micellar gelation for a solution of rods of length L, then we 
should expect flow-induced gelation to start when i-it 
with 

ic = D,/L ’ (1.4) 

assuming that a tumbling rod of size L approximates a 
sphere of that size. For rods of length on the order of 1000 A, 
this threshold would be of the order of 103-lo4 Hertz-a 
very reasonable number for mechanical stirring. It appears 
that on the basis of qualitative, but general, arguments we 
can identify PE 1 as the condition for the onset of flow in- 
duced gelation. 

This naive extension of the von Smoluchowski theory is, 
in fact, questionable. The first problem is that shear flow can 
align rods along the flow direction. Flow-induced alignment 
of rods was investigated by Peterlin and Stuart. lo They 
found two regimes. Let D, be the rotational diffusion con- 
stant (dimensions l/time). If ;/D, is small compared to one 
then the rod performs rotational Brownian motion and in- 
deed tumbles. However, for i/D, large compared to one, 
rods are approximately aligned along the flow direction, al- 
though every now and then they perform a sweep of about 
180” after which they return to their aligned configuration. 
The borderline between these regimes is defined by the con- 
dition that i/D, be of order 1. Now, the rotational and trans- 
lational diffusion constants for rods of length L are approxi- 
mately related by’ ’ 

D, rrr D,/L 2. (1.5) 
Comparing with Eq. ( 1.4) we see that the borderline condi- 
tion is approximately ic u D,. Apparently, flow alignment 
and orthokinetic gelation start at about the same shear rate. 
Note that flow alignment will reduce the collision cross sec- 
tion, so it becomes unclear whether or not we really should 
expect gelation to start at i=. This problem is addressed in 
detail in the present work. 

The second problem is the shear-flow induced fracture 
of aggregates noted before. Flow fracture could potentially 
prevent the onset of orthokinetic gelation. Whereas we ar- 
rived at Eq. ( 1.4) from very general arguments, there ap- 
pears at first sight to be nothing “universal” about flow frac- 
ture. Clearly it depends on the interaction potential between 
the surfactant molecules which holds the micelles together. 
The onset of flow fracture was investigated by de Gennes12 
for the case of colloidal coagulation. He concluded that it 
starts at considerably higher shear rates than P = 1. A simi- 
lar calculation can be done for micellar aggregation. Re- 
markably, as we shall see, flow fracture does have universal 
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features, and it necessarily occurs at flow rates in large excess 
of i,. 

To construct a quantitative theory of flow-induced gela- 
tion, we need an explicit model for the combination and 
breakage reactions which are taking place. (This is not so for 
zero flow where we have recourse to statistical thermody- 
namics arguments.) Not much is known about the relevant 
reaction kinetics. We adopt in Sec. II a generalization to 
nonzero velocity gradient of the kind of scheme proposed by 
Cates13 for the case of zero flow. In Sec. III we derive expres- 
sions for the effect of shear flow on the reaction rate con- 
stants. The resulting rate equations are solved in Sec. IV 
where we construct the “phase diagram” for the gelation of 
rodlike micelles under shear flow and predict the enhance- 
ment of their average size. 

Our results are summarized in Fig. 1. We find that rod- 
like aggregates in shear flow are characterized by the critical 
velocity gradient yc for which the Peclet number Pis of order 
unity, i.e., ic CODA. Using the well-known result” 
D, N k, T/vL (‘) we have 

and (6), obtains only for su5ciently rigid rods. WhenjIexi- 
bility is important, the situation necessarily becomes more 
complicated, both with regard to D, (L (O)) and the formula- 
tion of bimolecular collision cross sections (see Sec. 
III A 1). 

What happens for i2 i, depends on the dimensionless 
concentration CZ.~~L 3. If C( 1, L increases linearly with i 
for YQ y=y,; for y > ‘ye the mean rod sizes increases more slow- 
ly with shear rate, specifically as P 2:“) - ?‘3, the mean rod 
size remaining of order L (O). The left-hand side of Fig. 1 
shows the schematic “free energy” appropriate to dilute 
(C( 1) solutions as i increases through its critical value 
(P, 1). 

If, on the other hand, Ck 1, there are now two possible 
size distributions for is ic: A steady-state configuration 
with a mean rod size of order L (‘) and a runaway solution 
for which the mean rod size diverges. The steady-state con- 
figuration can be considered as a metastable state. Under a 
large enough perturbation it degenerates into the runaway 
solution. For i2 i,, the steady-state solution is found to 
disappear in a characteristic time r of the order of 
(jC) -‘z 10 - 2-10 - 3 s for C- 1. It is this rapid runaway of 
the mean size when PE 1 which we identify with the flow- 

induced gelation observed by Rehage and Hoffmann. Of 
course, the actual gelation process requires a discussion of 
the formation of an entangled network under shear flow. We 
only discuss here (see Sec. IV) how shear flow triggers the 
gelation at the microscopic level. 

(1.6) 

Here L (‘) is the mean rod size for f = 0 and 7 is the solvent 
viscosity. Since L (‘) is proportional to #1’2 with 4 the mon- 
omer concentration (see Sec. II), i, depends on 4 as 4 - 3'2. 
Typically, ic TT 10’ s - r. (Note that the aforementioned de- 
pendence of D, and, hence, P on rod length, see Eqs. ( 1.5) 

DILUTE SEMI-DILUTE 

STRONG 
FLOW 

P,lO, ’ 

WEAK 
FLOW 

It is useful to compare our results to the work of Cates 
and Tumer14 who discussed the effect of extensional flow on 
the rod-size distribution. They allowed only end-to-end re- 
actions and discussed the regime C$l. Even though the 
physics of suspensions in extensional tlow is usually very 
different from that of shear flow, and even though they con- 
sider the strongly entangled (C) 1) regime, they also found 
a runaway when the Peclet number is of order 1. This sug- 
gests that the result for C2 1, i.e., that flow-induced gelation 
starts at PZ 1, is quite robust. Similarly, Wang” has treated 
the case of rodlike micelles in two-dimensional, shear flow, 
invoking an approximate decoupling of the hydrodynamics 
and the self-assembly. Again, for high enough concentra- 
tion, he finds that gelation is triggered at a critical threshold 
for the velocity gradient. This universal nature of the Peclet 
number is better understood by writing P = ;r with 
r = D ,- 1 the relaxation time. For P< 1 the system relaxes 
fast enough to avoid deformation of its microstructure by the 
flow, whereas for B 1 this is no longer possible. The point 
PE 1 also marks the onset of non-Newtonian flow effects. 

FIG. 1. Schematic depiction of the weak (P( 1) and strong (P, 1) flow 
regimes, in the limit of dilute (C< 1) and semidilute (C< 1) concentration. 
Y(L) is the effective potential which controls the dynamics of the average 

micellar length; see Sec. IV. 

The onset of flow-induced gelation for PF2 1 as a func- 
tion of C around CZ 1 is formally similar to a first-order 
phase transition. One can even identify an effective quasi- 
free-energy V( L )-depending on C and P-which has to be 
minimized to find the optimal mean rod length (see Fig. 1) . 
Since for PS 1 we must overcome a barrier, we would ex- 
pect, on the basis of this analogy, that gelation proceeds via 
nucleation and growth while for P2 1 it is likely to proceed 
via spinodai decomposition. These scenarios are discussed in 
detail in Sec. IV. 
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II. REACTION KINETICS 
A. Basic mechanism: Slow-reaction regime 

In this section we define a reaction kinetic model for the 
size distribution of rodlike micelles. We are interested in 
concentration ranges such that in the absence of shear flow 
we are below the gel point. This limits us to the dilute or 
semidilute regime where the density of rods is less than-or 
at most comparable to-l/L 3. A crucial distinction is 
whether we are in the “slow” or “fast” reaction regimes. We 
will call a reaction slow if, in between collisions, rods have 
sufficient time for their angular distribution to assume their 
steady-state angular distribution, i.e., the distribution in the 
absence of reactions (but in the presence of flow). A reaction 
is called fast if this is not the case. 

In the regime of small Peclet numbers we are in the 
slow-reaction regime for sufficiently low concentration. 
More explicitly, Pg 1 means that the rotational diffusion 
constant D, exceeds the collision rate Jb of rod collisions due 
to Brownian motion. Using Eqs. ( 1.2) and ( 1.5), we find for 
the ratio of collision and relaxation rates: 

J,/D, w&L 3 (2.1) 
with 4L the concentration (number density) of rods of size 
L. For small Peclet numbers, then, the ratio J,/D, is small, 
i.e., we are in the slow-reaction limit-if c#I~L 3 ( 1. In the 
regime of large Peclet numbers, alignment of the rods (in the 
forward direction) proceeds by rotation of the rods by the 
shear flow. The characteristic time scale for this rotation is 
l/i, and we are in the slow reaction regime if i exceeds the 
flow-induced collision rate J,. From Eq. ( 1.1) (R -+L) we 
find that 

J,/j-q&L 3 (2.1’) 
so if bLL ‘4 1 we are again in the slow-reaction regime. In 
conclusion, if #= L 3 ( 1 we are in the slow-reaction regime 
for all Peclet numbers, while if 4t L 3 5 1 we are in the fast- 
reaction limit, again for all P. This correspondence between 
dilute (semidilute) concentration and slow (fast) reaction, 
will be stressed throughout our work and seen to play a cru- 
cial part in understanding the shear-induced micellar sizes. 

The slow-reaction regime is less dependent on the spe- 
cific assumptions we have to make concerning the nature of 
the reaction kinetics. We thus will start by considering the 
slow-reaction kinetics. 

Our first assumption is that we only allow for “bimo- 
lecular” reactions of the simplest “combination” type. By 
this we mean that if two rods of length L, and L, collide, 
then they can only form a rod of length L, + L, . This as- 
sumption forbids “length-redistribution” reactions where 
the reaction product is two rods of lengths L, and 
L, + L, - L, . Furthermore, the only “unimolecular” reac- 
tions we consider are those in which a rod of length L breaks 
into a pair of shorter ones with lengths L ’ and L - L ‘, there- 
by excluding events where the number of product “frag- 
ments” is 3 or greater. Our aim, however, is to get a general 
understanding of the effects of shear flow on the reaction 
kinetics, not a rigorous description of all possible microscop- 
ic processes (which will differ anyway from one surfactant 
to another). With that goal in mind we construct in this 

section a rate eguation^fr the length distribution of the rods. 
Let N( L,R)dL dCl be the number of rods per unit vol- 

ume whose length lies in the interval [ L,LA+ dL] and whose 
orientation lies inside the solid angle di2 around the unit 
vector a. This distribution function is constrained by the 
requirement that the total surfactant concentration 4 is 
fixed. More explicitly, the surfactant concentration is the 
first moment of the distribution function: 

s s 
m dL dii(L/a)N(L,& = c#. 

0 
(2.2) 

Here l/a is the number of molecules per unit length of rod, 
characterizing the packing density in each micelle; 4 is the 
total number of surfactant molecules, per unit volume, in the 
overall solution. Note that the dimensionless concentration 
C= ot L 3 can also be written as q5aL ‘, since (L /a) 4, = 4. 

In the slow-reaction regime, a rod “forgets” quickly 
about the orientation it had immediately following a preced- 
ing reaction event. That i% at the next collision, the angular 
distribution function fL (a) of the rod-with a length L- 
will be that of the steady-state angular distribution of an 
isolated L rod k shear flow. The combined rod distribution 
function N(L,R) can, under these conditions, then be de- 
composed as 

N(L,& = N(L)f, (6). (2.3) 
SinF a rod and, its mirror image are indistinguishable, 
fL ( fi ) = fL ( - aA). The time-independent angular distribu- 
tion function fL (a) obeys the normalization condition 

s 
diif,(ii) = 1. (2.4) 

Furthermore, in the absence of s@ar flow, the angular distri- 
bution must be isotropic, so fL (Cl) = in-. 

The next step is the definition of the reaction constants. 
In a typical breakage reaction, a rod of length L and orienta- 
tion fi breaks into two parts, with lengths, respectively, L ’ 
and L - L ’ with L ’ <L. After a time of order D ,.. ‘, t,he 
orientationaidistributions of the two rods become f ;. (Cl) 
and f ;. _ L (a), dependent on the ratios i/D, (L ‘) and 
i/D, (L - L ‘), respectively. xhe (“unimolecular”) rate 
constant is defined to be k, (L,R 1 L ‘). Now, the new rod L ’ 
could have broken off either from the top or bottom of the 
original rod; by symmetry, then, these two reactions must 
have the same rate constant, i.e., 

k, (L,i$L - L ‘) = k, (L&IL ‘). (2.5) 
In a com$+zatio~reaction, two rods of lengths L and L ‘, 

orientations fl and a’, collide, fuse, and form a new rod of 
length L + L ’ whose orientations after a>ime D rw ‘, once 
more, are distributed accgrding,to fL + L, (J-I). The associat- 
ed rate constant is k, (L,RIL ‘,a’). By symmetry, 

k,(L’,ii’IL,ii) = k,(L,iiIL’,Si’). (2.6) 
Note that in the presence of shear flow there is no rotagonal 
s2mmett-y in the sense that k, is a sep?rateiunction of n and 
a and not just of the relative angle fi - a’. 

We now incorporate the breakage and comb&ration re- 
actions which can contribute to changes in N&a): 
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& N(L,ii) = - 
s 

L 

dL ‘k, (L,i$L ‘)N(L,i?) + 2 d@k,(L’,&~L)N(L’,&)fL(Si) 
0 

- 
s s 

-dL’ dii’k, (L,silL $i’)N(L,ii)N(L ‘,&) 

+i”dLj- ^‘j- h da dW’k,(L’,Si’lL - L’,i?)N(L’,ii’)N(L - L’,ii”)f,(i?). (2.7) 

The first term in Eq. (2.7) represents the breakage reaction 
L -+ L ’ + (L - L ’ ) , with L ’ < L. The second term represents 
the breakage reaction L ‘2 L + (L ’ - L), with L ‘>L. The 
angular distribution fL (a) of the product rod L has been 
included as a factor here, in order to give us tJhe fraction of L 
products which:‘end up” with orientation R. Accorc$ngly, 
the orientation R’ of the initial rod L ’ need not equal R since 
angular redistribution occurs after the breakage. The factor 
2 is due to the fact that the rod L may break off from either 
end ofL ‘. The third term describes the combination reaction 
L + (L ‘) -+ (L + L ‘) and the fourth term the combination 
reaction L ’ + (L - L ‘) + L, with L ‘<L /2. 

To simplify Eq. (2.7)) we perform a weighted angular 
average over s1 on both sides. Defining k, (L IL ‘) and 
k, (L IL ‘) to be 

k,(L IL’) = 
s 

diiif,(Si)k,(L,iilL’), (2.8a) 

k,(L IL’) = d6 
I s 

d~‘f,(~)f;(~‘)k,(L,~IL’,~‘), 

(2.8b) 
and using Eqs. (2.3)) (2.4), and (2.8) in the angular average 
of Eq. (2.7) gives 

$N(L) = -N(L) 
L 

s 
dL’k,(L IL’) 

0 

+2 
s 

- dL’N(L’)k,(L’IL) 
L 

-N(L) 
s 

m dL’N(L’)k,(L IL’) 
0 

s 

L/2 

+ dL ‘N(L ‘)N(L - L ‘)k, (L ‘IL - L ‘). 
0 

(2.9) 
This is the basic kinetic equation which we shall use to 

describe micellization in the presence of shear flow. First we 
determine (see Appendixes A-C) the dependence of the rate 
constants k, and k, on rod lengths L and L ’ and on flow rate 
i, and then solve Eq. (2.9) for the steady-state distribution 
N(L) describing the micellar sizes (Appendixes D-E). We 
emphasize again here that the derivation of Eq. (2.9) has 
involved several key assumptions, the most important of 
which included the following: ( 1) rotational relaxation (via 
orientational Brownian diffusion) occurring on a time scale 
short compared to the time between collisions and (2) the 
neglect of all micellar combination processes other than the 
“fusion” reaction L + L ’ + (L + L ‘) . 

As an example of where we can solve Eq. (2.9)) consider 
the special case where k, and k, do not depend on L: 

I 

k,(L IL’)+k:” and k,(L’IL - L’)+ki”. (2.10) 
It is then straightforward to show that the exponential distri- 
bution 

-L/L@’ (2.11) 

satisfies Eq. (2.9) with (J/&)N, =O, if the mean rod size 
L (‘) is given by 

L (0) - - (2.12) 

If we actually are in thermal equilibrium, i.e., if i = 0, 
then one should of course be able to compute N(L) without 
having to resort to kinetics arguments. The classic approach 
is due to Flory and Huggins. Let S denote the scission energy 
associated with “capping” a rodlike micelle,16 i.e., with reor- 
ganizing a single cylindrical aggregate into two. The internal 
energy density is then given by S times the number of rods 
per unit volume. Adding the ideal-solution (low-density) 
entropy-of-mixing contribution to this scission energy gives 

f=~mdL~dhN(L,6)(S+k,Tln~) 
0 

(2.13) 
for the free-energycJensity of the micellar solution. Here we 
have divided N(L,Ci) in the argument of the logarithm by 

$+)~mdL~diiN(Lii) 

to make it an appropriately dimensionless quantity. Mini- 
mizing f with respect to N, under the mass conservation con- 
straint Eq. (2.2), leads to the exponential distribution Eq. 
(2.11) with 

(2.12’) 

Again, as in Eq. (2.12)) the mean micellar size is seen to 
increase with the square root of the overall surfactant con- 
centration 4. The dependence of L (‘) on the capping energy 
S is even stronger (exponential). Note that es’kBT in Eq. 
(2.12’) corresponds to the ratio k :“/k Lo’ in Eq. (2.12), 
consistent with an activation energy (Arrhenius) depend- 
ence of k Lo’ on temperature (i.e., k Lo’ -e - 6’kBT). 

B. Detailed balance 

The rate equation, Eq. (2.9 ) , is, in general, of consider- 
able mathematical complexity. As a guide towards finding 
appropriate solutions when k, and k, do depend on L, we 
appeal to the principle of detailed balance. 
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In thermal equilibrium, the kinetics of the self-assem- 
bling system must obey detailed balance. In the present in- 
stance detailed balance requires that 
N(L’)N(L - L’)k,(L’IL - L’) = 2N(L)k,(L.[L’), 

(2.14) 
because the rate at which the combination reaction 

occurs then equals the rate for the reverse (breaking) pro- 
cess 

L2L’+ (L-L’). 

Note that the factor of 2 appears in Eq. (2.14) again because 
the L rod can break at either end to give an L ’ (and L - L ‘) 
fragment. Substituting Eq. (2.14) into Eq. (2.9), and using 
the symmetry property 

k,(L IL’) = k,(L IL-L’) (2.5’) 
which follows from averaging Eq. (2.5) overf( 6)) one finds 
that any solution of Eq. (2.14) is also a steady-state solution 
of Eq. (2.9), i.e., (dN/&) (L,t) = 0. 

For a nonequilibrium problem such as self-assembly in 
shear flow, detailed balance may or may not be obeyed. In 
other words, we are not guaranteed that Eq. (2.14) indeed 
has (stable) solutions for p#O. If, however, we assume de- 
tailed balance, then according to Eq. (2.14) with L = 2L ’ 
the distribution must obey the recursion relation: 

N(2L) = N’(L)k,(L IL)/2k,(2L IL). (2.15) 
Defining g(L) = k, (L /L)/2k, (2L /L) and iteratively 
solving Eq. (2.15) for N(L) in terms of N( 1) it is possible to 
show (see Appendix D) that 

N(L)- ’ -L/Z 

[g(L)]‘A”” e ’ 
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of this correlation length. At the critical point, there should 
emerge a scale-free power-law distribution. A continuous 
flow-induced gelation transition in the micellar system 
would thus correspond to a divergence ofz at a critical shear 
rate. 

Besides using detailed balance to help with the solution 
of Eq. (2.9)) one may also invoke it to gain insight into the 
breakage and combination rates on the microscopic level. If, 
for example, we only allow breakage with the products col- 
linear, then detailed balance requires that we only allow end- 
to-end collinear collisions to be “reactive”, i.e., to lead to 
combination. (Since micellar rods are in reality flexible- 
thus allowing noncollinear breakage-this is clearly an ex- 
treme constraint.) However, the rods lose their “memory” 
of collinearity after a time of order D ?- ‘, a time which-in 
the “slow-reaction” regime-is short compared to the aver- 
age time between reactive collisions. Accordingly, in writing 
Eq. (2.9) we are implicitly performing an average over a 
time of order D ,- ’ during which the rods undergo rotational 
reorientation. Thus, even if we do only allow collinear pairs 
to be reactive (via whatever microscopic mechanism might 
be operative for the actual combinatgn of Ficelles), we still 
must alJow fF general orientations 0 and a’ in formulating 
k, (L,filL’,W). 

C. Fast-reaction regime 

In the fast-reaction limit, the time between collisions 
becomes less than the orientational relaxation time. The mi- 
cellar rods do not have enough time to undergo rotational 
Brownian motion or to be reoriented by the flow field before 
they experience the next collision. An immediate conse- 
quence is that the orientational part of the distribution func- 
tion N(L,fi) is no longer governed only by the rotational 
diffusion coefficient or by the shear rate (velocity gradient). 

(2.16) Rather, the angular distribution is expected to depend on the 
detailed nature of the micellar fission and fusion reactions 
about which so little is known. 

with 

I;= - ln[N(l)] +&sm 
1 

(2.17) 

The proportionality constant in Eq. (2.16) will be deter- 
mined from the constraint Eq. (2.2), as needed below for 
each flow rate and concentration regime of interest. Note 
that the equilibrium distribution Eq. (2.11) is a special case 
of Eq. (2.16), i.e., with g(L) = const. (independent of L). 
Later we will use Eq. (2.16) as an “ansutz” for the solution 
to Eq. (2.9) with z as a parameter to be determined self- 
consistently [since N( 1) remains undetermined]. 

As an aside, we shall see below that, under shear flow, 
g( L ) is expected to acquire a power-law dependence on L. 
There is then an interesting mathematical similarity between 
Eq. (2.16) and the size distribution function in percolation 
problems. To pursue this analogy we could interpret the un- 
determined parameter z as a “correlation length.” The 
(continuous) percolation transition corresponds to the ap- 
pearance of infinite clusters and is signaled by the divergence 

If we assume thaA the breakage and combination pro- 
cesses control N(L,Cl) rather than the solvent-induced 
Brownian and flow reorientation, then we can consider our 
system as a dense flowing gas of anisotropic particles which 
can break and combine with one another. The fission and 
fusion reaction rates must now be interpreted as the micro- 
scopic rates rather than as quantities describing an average 
over a time 0, ‘, and the question of whether or not all 
reactive collisions are collinear becomes relevant. If we in- 
deed enforce strict collinearity, then the different rod orien- 
tations become decoupled. This scenario, for C> 1, is dis- 
cussed in Ref. 14. If, on the other hand, the collinearity 
constraint is not strict-as we have argued it should not be 
for flexible rods, for example-then, after a certain number 
of collisions, the orientation of a rod is expected to be ran- 
domized. By analogy with the famous assumption by Boltz- 
mann (the “Stosszahlansatz”) for molecular chaos in gas- 
es,17 we thus assume that dynamic correlations between 
successive reactions are lost because of the high collision 
rate. This implies that rod orientations are essentially ran- 
dom before any given collision. Under this assumption of 
“molecular chaos” we choose accordingly: 
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N( L,6) =& NL + higher-order terms. (2.18) 

The kinetic equation (2.9) thus remains valid^except that 
everywhere in Eq. (2.8) we must replace f, (Cl) by 1/47r. 
For PL > 1 there is of course always some degree of forward 
polarization induced by the flow of solvent. In particular, we 
saw (Sec. II A) that this forward polarization is expected to 
be of order j/J, N 1/4,L 3. The higher-order terms in Eq. 
(2.18) will thus be ??( l/4, L 3, and are non-negligible. 

The assumption of molecular chaos in rod orientation, 
on which Eq. (2.18) is based, cannot be derived by apriori 
arguments about relative time scales for rotation and ran- 
domization of rod orientations. In fact, neither has the anal- 
ogous Stosszahlansatz for colliding gas particles been fully 
justified, even though it is so intuitively reasonable. As in 
this latter case we must treat our assumption as one whose 
usefulness has to be determined by comparison with experi- 
ment. 

Ill. RATE CONSTANTS IN FLOW 
A. Combination in shear flow 
1. General cross-section considerations 

The collisions between rodlike aggregates leading to mi- 
cellar combination are, in general, due both to Brownian 
motion and to flow. For small Peclet numbers, Brownian 
motion is dominant and-in the spirit of the discussion in 
Sec. II B-we will approximate k, (L IL ‘) by the constant 
value k 2”). In the regime of very large Peclet numbers, on the 
other hand, we can equate k, with an appropriately defined 
Smoluchowski rate, k r”(L IL ‘), taking into account the 
shear-induced collisions between rods. To interpolate be- 
tween these two limiting cases we will assume the simplest 
form 

k,(L IL’) = k;” + k:“‘(L IL’), (3.1) 

i.e., we take the Brownian motion and shear flow to be “par- 
allel,” noninterfering channels for the collision process. The 
value of k 1-O’ is discussed later [see Eq. (3.19) 1. The func- 
tion krs’ can be evaluated by a generalization of Smolu- 
chowski’s original idea for spherical emulsion drops. More 
explicitly, assume we have rods whose center-of-mass 
(COM) moves along straight-line trajectories under the im- 
posed velocity gradient. We neglect the perturbation of the 
flow fieJd by the presence of the rods, and compute the rate 
J, (L,l2) at which a given (“reference”) rod undergoes col- 
lision with all the other rods. This rate will be of the form 
VO$~, with v the velocity difference between rods on differ- 
ent flow lines (i.e., at different heights in the velocity gradi- 
ent ), u the collision cross section, and #L the number density 
of rods. The %ctual combination rate for the reference rod is 
then aJs (L,Cl), where a< 1 is the reaction efficiency. Since 
this rate describes the contrib$ion of combination collisions 
to the rate of decay of N( L,R), comparing it with the third 
term in Eq. (2.7) will necessarily provide an expression for 
k,. It is important to realize that by making a a constant, we 
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are allowing com^binaticn reactions between two rods with 
arbitrary angles n and R’ before the reaction. As discussed 
in Sec. II B, this does not imply that, on the microscopic level, 
we allow noncollinear encounters to be reactive. Rather, we 
are merely asserting that at times D r- ’ before a reactive col- 
lision two rods can have arbitrary orientations and that after 
a time D r- ’ following reaction the products again have arbi- 
trary orientations, constrained only by the steady-state dis- 
tribution fL (R) . 

We start by defining the shear-flow velocity field 
Z(y) = ir;. (3.2) 

A reference rod of length L and orientation 6 
= (sin 6 cos 4, sin 8 sin 4, cos 8) is centered at the 

qrigin, and a second rod, of length L’ and orientation 
R’ = (sin 8 ’ cos d’, sin 0 ’ sin @, cos c9 ‘), is moving along a 
flow line at height y. Let [x,y,z( t) ] denote its COM coordi- 
nates with z(t) = tit, according to Eq. (3.2). To describe 
the collision between thz twofds we introduce the differen- 
tial cross section da( L,R IL ‘,a’). It is the area of a parallelo- 
gram strip in the xy plane which is bounded by the interval 
[y, y + dy] and is such that if x,y is located inside the strip 
then a collision will indeed take place. It follows that the 
collision rate of incoming rods with the reference rod is 

Comparing this with the combination rate 

aJ,(L,6) =l-dL’J d&N(L$?)k,(L@L’,& 

(3.4) 
from Eq. (2.7)) we conclude that 

krS’(L,61L’,s’) =a dyrlyl % (L,8IL’,6’). 

(3.5) 
The differential cross section do/dy can be determined 

straightforwardly from the geometrical considerations out- 
lined in Appendix A. For y* > 0, we find 

do -= 
dy 

(3.6) 

with 
y* = i(Ln, - L 9-q) 

and 
(3.7) 

=LtQt si44-47 
’ sin 4 sin f$’ ’ (3.8) 

For y* ~0, all primed and unprimed quantities in Eqs. 
(3.6)-( 3.8) must be exchanged. (Recall that 
0, = sin 19 sin 4, etc.) Carrying out they integration in Eq. 
(3.5) then gives 
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k :“‘(L,fiIL ‘,i?) 

ay sinI4 - d’l (L 2L rnznl, + fL t3,i3, =- 
4 sin f$ sin f#’ 

for LR, > L ‘n;. (3.9) 
(Again, primed and unprimed quantities must be switched 
in the case La,, CL ‘SZJ.) 

It, rem$ns only to substitute Eq. (3.9) for 
k,(L,RIL ‘,a’) into the double orientational average, see 
Eq. (2.8b), which defines the Smoluchowski contribution to 
k, (L IL ‘). In Sets. III A 2 and III A 3 we evaluate these 
angular integrations for the cases of small and large Peclet 
number, respectively. We will see in Appendix E that we 
need only be concerned with the case L of order L ‘, to which 
we restrict ourselves henceforth. T,o evaluate k is) (L IL) we 
need the angular distributionf, (Cl) for both weak (P< 1) 
and strong (Pg 1) flow conditions. 

2. Small Pecle t number (do w-reac tion regime) 

To obtain the angular distribution fL (s), one must first 
find the long-time solution to the Smoluchowski equation 
describing the rotational Brownian motion of isolated (i.e., 
noninteracting) L rods in the presence of a shear velocity 
gradient. Boeder’* has shown that the steady-state orienta- 
tional distribution for dilute thin rods in weak shear flow can 
be expanded in powers of the Peclet number according to 

(3.10) 

Here we have subscripted the Peclet number Pt to show 
explicitly its dependence on rod length L. If 7 is the solvent 
viscosity then the rotational diffusion constant can be ap- 
proximated by 

(a;) = (a:) = [ (PJ/2] -1’3. (3.1%) 
From Eq. (3.15b) we see that (sin’ 6) = 1 - (Cl,‘) 
N (0 ‘) N 2 [ ( Pt ) */2] - 1’3 < 1 for large Peclet number, i.e., 
the rods are strongly aligned along the flow direction. In 
addition, Eq. (3.15~) implies (cos2 4) N (sin2 4) and, hence 
a broad distribution of rods over azimuthal angles. Finally, it 
follows from Eq. (3.15a) that (sin 0 sin 4) z (8 ) u P L 113, 
in agreement with (8 ‘) = P t 2’3 from Eq. (3.15b) ( C$ is re- 
stricted to [ O,rr] ). The average (8 ) is thus nonzero and 
(e 2) u (e y. 

implying 

p,=&. 
k,T 

(3.12) 

Note that the lowest-order correction in Eq. (3.10) to the 
distribution is proportional (through Pr. ) to t&e angular fac- 
tor R,R,. This implies that, for small PL, fL (a) has a maxi- 
mum along a polar angle (19) of rr/4 in the yz plane, i.e., 
8 = ?r/4, cp = ?r/2. The next correction, of order (P t ), how- 
ever, has its maximum at R, = 1, corresponding to align- 
ment in the flow direction (0 = 0). Thus we have the well- 
known result that the preferred polar angle is pulled from 45 
to 0” as the shear velocity gradient is increased. 

Substituting Eq. (3.10) forf, and Eq. (3.9) for k 6”’ 
into Eq. (2.8b), we find 

Even with fL (a) peaking sharply at 6 = 2, it is still 
important to determine the behavior of the angular distribu- 
tion away from its maximum, sincz wezeed in Eq. (2.8b) to 
evaluate the average gf k ~“~L,fllL,fh’) over all orienta- 

(3.11) tions. To estimatef,Aa) for sZ#Z, we note first that strong 
shear flow stabilizes R ZP only for sl, > 0. Whenever a,, < 0, 
the velocity gradient (through viscous drag) gives rise to a 
destabilizing torque: The rod rotates (“flips”) with angular 
velocity y until it has performed a sweep over 180”, after 
which it is stable again with Sz, 2 0. Let 7 l/f denote the 
duration of such a sweep. For a,, 20, the rod performs rota- 
tional Brownian motion with (6 *(t> ) zD,t. For a typical 
value (e*)‘/*dL 1/3, then, we expect that the rod will find 
itself with a,, < 0 (and hence starting a new sweep) after a 
time T- (8 *)/D, or 

Tz 1/(Py3D,). (3.16) 
It follows that the probability fL. (a#,?) of finding a rod 
away from the flow direction is of order r/T. Using Eq. 
(3.12) wefind 

f,(i&l/Py, (3.17a) 
so k,(LlL’=L) =kS”’ + ajL3(co + c,P; + .**) 

=k:“(l +ac,P, +ac,P; + *es), 
(3.13) 

Bruinsma, Gelbart, and Ben-Shaul: Gelation of living polymers 7717 

where co and c2 are positive numerical constants of order 
unity (see Appendix B) . Note that the term in k :“) which is 
quadratic in PL vanishes identically by symmetry. 

3. Large Peclet number (slow-reaction regime) 

The distribution function fL (3) is not known in closed 
form for the limit PL ) 1 (except in two dimensions). It is 
possible, however, to solve approximately for steady-state 
solutions to the kinetic equations describing the second mo- 
ments 

f&T= u-w,> - f&p (3.14) 

Here the angular brackets denote an average overf, (R ) and 
a and p label the space-fixed x, y, and z directions. Specifi- 
cally, a decoupling approximation can be introduced which 
expresses the quartic averages (R, R&I, R, ) in terms ,!Yapa, 
so that a closed set of equations is obtained for the second 
moments. For PL) 1, Doi and Edwards find” for the 
steady-state values: 

(n,n,) = (2P,) -1’3, (3.15a) 
(i-g) = 1 - 2[ (P,)2/2] -1’3, (3.15b) 

and 

(P, g l,si#2). (3.17b) 
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xhat is, for P= % 1, fL ( fi) is approxim2tely constant for 
fi #Z, while it has a large peak around R = 1. Indeed, one 
finds exactly this behavior in the steady-state solution ob- 
tained analytically for troo-dimensional systems of long rods 
in shear flow.” 

To evaluate the (double) orientational average defining 
k, (L IL ’ = L) in^Eq. (2.8bh we break up the angular inte- 
grations into their R ~2 and R #i parts and use Eqs. (3.14c) 
and (3.17a) to approximate these respective contributions. 
We find (Appendix B) 

k,(LIL’=L)=kS”‘+a~L3(dP,‘+eP,2’3) 

u eajL 3P ‘- *j3, PL. ) 1 (3.18) 
with d and e both numerical factors of order unity. The first 
term in parentheses arises from the strong, forward (0zO) 
peak in fL (8) and the second from the nearly constant 
“wings” (0 #O) of the distribution. Note that the shear-in- 
duced collision (reaction) rate is dominated for large Peclet 
number by the small fraction of rods which remain un- 
aligned (0 #O) by the flow, their larger geometric cross sec- 
tion compensating for their lower orientational probability. 

We conclude by noting that k y), the collisional rate of 
“bimolecular” recombination in the absence of flow, can be 
expressed directly in terms of the rod length L and its rota- 
tional diffusion coefficient D,. More explicitly, recalling our 
original discussion surrounding Eqs. ( 1 )-( 2) and ( 1.5)) we 
found, in Sec. I, 

k,T k z”j EaJb/qSL --a - . 
77 

Using this result in Eqs. (3.12) and (3.18) leads immediate- 
ly to 

k,(L)-k,(L IL’= L) 

k:“(l + P= + . ..). P,<l 

PL%l, 
(3.20) 

where numerical factors of order unity have now been 
dropped altogether. 

4. Fast-reaction regime 

In the fast-reaction regime, we use Eq. (2.18). The re- 
sulting calculation is then identical to the slow-reaction re- 
gime with small Peclet number and we can immediately use 
Eq. (3.13): 

k,(LlL’=L) =k1”+coaiL3 (3.13’) 
with co the same numerical constant as in Eq. (3.13). The 
second-order term in Eq. ( 3.13 ) should not be included as it 
involves the flow alignment which is suppressed in the fast- 
reaction regime. 

B. Breaking in shear flow 
1. Shear-induced fracture mechanism: General 

As discussed in Sec. II B, the breaking rate constant in 
the absence of flow, k Ip’, is expected to be independent of 
both how long the rod is (L) and just where it breaks at (L ‘) . 
In the presence of flow, the mechanism whereby viscous 

7716 Bruinsma, Gelbart, and Ben-Shaul: Gelation of living polymers 

forces contribute to k, is quite different from that described 
earlier for k,. Instead of the velocity gradient resulting in a 
shear-induced collision rate, it now gives rise to a tension in 
the rod which enhances the probability of breaking. More 
explicitly, it is straightforward to show from a bead model 
for the rod, see Appendix C, that the tension at a distance s 
from the rod center ( - L /2 < s CL /2) is given by 

t(s) =& f-l 
2b ’ z[(+~-pl’ 

Here b is the rod diameter and 6 is the friction coefficient 
associated with each bead (of diameter b) comprising the 
rod of length L. Let Kbe the intrinsic elastic constant charac- 
terizing the extension-compression of the rod. Then the de- 
formation at s, due to the shear-induced tension, is 
t(s)/K&(s) and the local deformation energy at s can be 
approximated by (Appendix C) 

E,,,(L,L’) ==L~*(L~-L)*Cl$-g, 
8Kb * 

(3.21) 

where we have used s = L ’ - L /2. 
Note that Edef vanishes at the two ends of the rod, i.e., at 

L ’ = 0 and L ’ = L, and that it has a maximum at the rod 
center. The maximum deformation energy is 

E max =E”(L,L’=~)=~L”~~~:. (3.22) 

To estimate the importance of fracture with L ‘#L /2, we 
first specify the connection between the above deformation 
energy, Edef, and the effective breaking rate constant, 
k, (L IL ‘), in the presence of flow. Recalling 

k co)-,-%T 
b (3.23) 

from Sec. II B, it is natural to write 

k,(L,L’)-e- [a- E&Lr.‘)]/kgT (3.24) 
However, from Eq. (3.2 1 ), i.e., from the parabolic falloff in 
E,,,(L,L ‘) from the rod center (L ’ = L /2), it follows that 
shear-induced breaking is most likely to occur near the cen- 
ter because, in practice, k, T(S or Edef, and this maximum 
must be quite pronounced. Accordingly, we need only esti- 
mate Edef at its maximum, Em,, . 

2. Small Peclet number 

To simplify E,,,,, we observe first that the energy Kb * is 
essentially the binding, or scission, energy S of the rodlike 
micelle. For typical surfactant systems it has been estimated 
to be on the order of ten’s of k, T. Accordingly, we replace 
Kb * in the denominator of E,,,, by Ak, T, with il ) 1. Then, 
simple algebraic manipulation allows us to write 

E 
z,P; + *q-l;. 
kgT 0 

(3.25) 

Here we have used ,$--6qb, and dropped the numerical 
factor 6d/32;1 of order unity. Since b/L< 1 and 
(n:@) 5 1, it follows immediately that Em,, is negligible 
compared to k, T whenever PL < 1. 
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3. Large Pecle t number 

Here the effect of flow on alignment is no longer negligi- 
ble. We now have 

(R~R,2)2!(B2)-(l/P,)2’3. 

From Eq. (3.25), we see that E,,,,, becomes of order k, T 
only when 

k, zk Ip’. 
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NL =$-e-‘/‘, z<ii (4.2a) 

whereas, for large Peclet number (z&Z), 

&~‘1A”2’-2 e-L/E (slow reaction) (4.2b) 
N,E 

L (vh.2) 

q%aa (3/ln2) -2 

(3.26) 
L (3/h 2) 

,-L/E (fast reaction) (4.2~) 

(see Appendix E). Here 7i is a (shear-rate-dependent) 
length defined by the condition PL= 7r = 1, i.e., 
ii = (kT/v,+) “3, and enters naturally as a lower limit in the 
L integrations when we consider large Peclet number 
( PL $ 1-L ) 5). It remains only to substitute for NL in Eq. 
(2.9) and to obtain an ordinary differential equation for z in 
each of the aforementioned limits. 

With PL = bL 3/k, T and L /b- 10 - 2, this implies that i 
must exceed lo6 s - ‘, an unphysically large value. From the 
aforementioned we conclude that, for all realizable shear 
flows, the rate constant for breaking is essentially unaffected 
by imposed velocity gradients: 

(3.27) 

This result is really a consequence of the one-dimensional 
nature of our micellar aggregates and the fact that they can 
“hide” from the shear-induced tension effects by aligning 
with the flow. For recall [see Eq. (3.21)], the tension in a 
rod is proportional to the angular factor fi,,n, ( -sin B), 
which goes to zero when (0 ) -+O (specifically, as P - “3). 
For three-dimensional colloidal particles (e.g., microemul- 
sion droplets), on the other hand, the shear flow is always 
able to find (and “grab onto”) a “large” dimension. Note 
also that in elongational velocity gradients, the tension-in- 
duced deformation effect [k j,“’ -+ k, (i) ] is important at 
high flow rates because there the tension is proportional to 
P2 (cos 8), rather than to sin 0, and is maximized by align- 
ment instead of minimized as in the case of shear flow. 

IV. FLOW-INDUCED GELATlON 
In the preceding sections we constructed a rate-equation 

[ Eq. (2.9) ] for the micellar size distribution NL in the pres- 
ence of shear flow. To gain insight into the nature of its solu- 
tions, and to make the equation generally more tractable, we 
make certain assumptions about the form of the size distri- 
bution. Specifically, we insist that it satisfy the detailed bal- 
ance relation (2.14) and, hence, (see Appendix D) that it 
have the form of Eq. (2.16)) with the length z to be deter- 
mined self-consistently, as described later. Recall that 

Define the first moment of the size distribution by 

(L ) -lm dLLN, /s,- dLN, , (4.3) 

and consider first the small Peclet number (I: ( 5) limit. Us- 
ing Eq. (4.2a) for NL in the denominator, and recognizing 
from Eq. (2.2) that the numerator is simply equal to $a, it 
follows immediately that 

(L) =L (4.4) 
and, hence, that 

d(L) dz 
-=-= 

dt dt 
dL&N,. (4.5) 

Now we evaluate the integral in Eq. (4.5) by substituting for 
aNL /at from Eq. (2.9)) using Eq. (4.2a) for NL , and intro- 
ducing 

k,(L IL’)-kj,” (4.6a) 
and 

g(L) = 
k,(L/L) 

2kb(2L/L) * 
Accordingly, for the slow-reaction limit, we have from Eq. 
(3.20) that (since k, c1 k Lo’ for all r of interest) 

I independent of L, 
g(L) = 

Pt Q 1 
--Py-L, PL.) 1 

k,(L IL’)-k, (O)[ 1 ++t:t;L’)] , (4.6b) 

for the breaking and combination rate constants appropriate 
to the PL < 1 slow-reaction limit (see Sets. III A 2, III A 3, 
III B 2, and III B 3). We find (see Appendix E) 

(4.1) dz 
-z= 

-kL”‘Z2+$k:0) 1 +a ( [(gy . (4.7) 

Here, an&henceforth, we drop all numerical factors 8( 1) . 
For L > a, on the other hand, we must use Eq. (4.2b) 

rather than Eq. (4.2a) for NL, and replace Eq. (4.6b) by 

A. Slow-reaction regime 

whereas, from Eq. (3.13’)) 

g(L) = 
independent of L, PL Q 1 
-L 3, PL%l 

for the fast-reaction case. 
Finally, to determine the proportionality constant in 

Eq. (2.16), we impose the mass-conservation constraint giv- 
en by Eq. (2.2). It then follows that 

k,(L IL’)=k:0)2’aj1’3 ;,. (4.6b’) 

[Note that k, is still given by Eq. (4.6a), i.e., by its shear- 
rate-independent value, even at large Peclet number. Indeed, 
as argued in Sec. III B 3, k, deviates from k Lo’ only when i 
becomes unphysically large.] Equations (4.4) and (4.5) 
must now be replaced by 

(~)~ii~l~n2~-11Z;2-~(l/ln2) (4.4’) 
and 
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di? (if/~)“““2’- 1 L2 - 

dt=- 
dL aNL 

9a dt’ 
(4.5’) i 

1 I 

I 

IC;cl 
I 

I/ 
c<<t 

Substituting Eq. (2.9) for (d/c%) NL, and using Eq. (4.2b) 
forN, and Eq. (4.6b’) fork, (L IL ‘), we find (Appendix E) 

dz 
-27 

_ k io’z 2 + k ;09,b’3#a~s (4.8) 

Recall that we are interested in finding the long-time A4 
steady-state solutions for NL, and, hence, the t+ 00 behavior L(o) 
of Eqs. (4.7) and (4.8) for z. To this end it is convenient to 
rewrite both of these equations in the form 

I-- 
dz -= --&V(I). 
dt 

(4.9) 

--); 
0 4 t0-i 

C 

Figure 1 shows (see bottom left) the function V(z) corre- 
sponding to Eq. (4.7), i.e., to the weak-flow (z<Z) slow- 
reaction (c 5 1) regime and also (upper left) that for Eq. 
(4.8), i.e., thez’,Z,cs 1 case. Wecan thinkofzas thevalue 
of a coordinate associated with the overdamped motion of a 
“particle” in the “potential” V(z). This latter quantity is 
the effective potential-the schematic “free energy”-men- 
tioned in the Introduction. Note, however, that V(z) is not 
an actual potential or free energy-even its dimensions 
( length2/time) are “wrong’‘-nevertheless, its z depend- 
ence determines the various steady-state, metastability, and 
runaway natures of the long-time solutions to the kinetic 
equation for micellar length, as discussed later. In particu- 
lar, Z’ct+ CO 1 =Leady State will correspond to the z which 
minimizes V(z), as follows from the dz /dt = 0 solution to 
Eq. (4.9). 

FIG. 2. Average micellar length as a function of shear rate, for the low and 
semidilute ranges of concentration. 

z( t-r CC ) -qSaj’13k rO)“‘/k Lo’ N L (“P i{z,. (4.12) 
Thus the steady-state value of z rises only slowly with 
r( - j1/3), see the right solid curve in Fig. 2, and we would 
need to go to very high shear rates to observe a significant 
increase in Z. 

We conclude that, in the slow-reaction limit, the follow- 
ing occurs. 

For weak flow, we see immediately from Fq. (4.7) that 
V(z) has its minimum at 

z, (,$ak r0)/2k Lo’) 1’2 = L co), 
the average length in the absence of flow [see Eqs. (2.11) 
and (2.12) I. Furthermore, in this limit, the relaxation time 
to equilibrium is 

v-(+0) = (2k ;“L (‘I) - ’ , (4.10) 
as follows from linearization (z 2 +zL (O)) of EL+ (4.7). For 
larger i, but still in the weak-flow (z<ii) limit, the 

?J g3 K >I 
terms in Eq. (4.7) have the effect of displacing the minimum 
in V(z) towards larger values. More explicitly, we can write 

E(t - 03 ) u L (O) ( 1 + const.PLCO, >, (4.11) 
where const. is a numerical factor 9( 1) and PLCo, 
&jL . ““/kT Thus, as expected from discussion in the In- 
troduction, the flow-induced micellar size enhancement is 
controlled completely by the Peclet number. Note, however, 
that the increase in z is modest in the weak-flow regime: 
z( t+ UJ ) remains of order L (‘) for PLCo, 5 1 (see left solid 
curve in Fig. 2). 

z is essentially unaffected by flow until the shear rate i 
becomes comparable to the rotational diffusion coefficient 
D, = kT/r;z (OF associatid with the zero-flow length z (O’. 

In the PL co) < 1 regime, the mean aggregation number z 
increases with flow rate according to a factor ( 1 + P, (oj ), 
with P, (,,) proportional to i and L CO)3 [see Eq. (3.12.) 1. 

In the strong-flow (PL C0j ) 1) regime, the average 
length increases even more weakly with velocity gradient, 
varying as P $, - ;1”. 

iC ED, u kT/rjL (Ok3 . 1s of order lo3 s- * for the dilute 
micellar solutions studied experimentally and, hence, 
i 5 10iC represents an upper bound to the flow rates of phys- 
ical interest. We conclude that there is no flow-induced gela- 
tion in the slow reaction regime. 

The origin of the suppression of the “runaway” at large 
z is the reduction by flow alignment of the reaction cross 
section [see Eq. ( 3.18) I. We now turn to the&t-reaction 
regime, where we argued earlier that this forward alignment 
is “spoiled” by repeated collisions and reactions. 

B. Fast-reaction regime 

Even for strong-flow conditions, it turns out that the 
size enhancement is not dramatic. Specifically, for z$Zi, we 
have from Eqs. (4.8 ) and (4.9) that the minimum in V(z) is 
given by 

In this limit we must use Eq. (4.2~) for NL when zg7i. 
[The z<if regime leads again to Eq. (4.7) for dz /dt, so we 
can now confine ourselves to consideration of the z$-if 
case. ] Again we want to derive an ordinary differential equa- 
tion for z. However, because of the strong inverse depend- 
ence on L of the prefactor [g(L) ] - (m*) in NL, we can no 
longer do so by means of the first moment. In fact, it is 
straightforward to show (see Appendix E) that Eq. (4.2~) 
for NL implies (L “) u a”, independent of E, for n ( 3. For the 
fourth moment, on the other hand, we find (Appendix E) 
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f 

(4.13) 
from which it follows that 

Once more, it remains only to substitute for JNL/& from 
Eq. (2.9)) using there the appropriate (Le., strong-flow fast- 
reaction) forms for k, (L /L ‘) and k, (L /L ‘), and evaluate 
the integral on the right-hand-side of Eq. (4.14) as an explic- 
it function of L. Thus we use 

,JNL 

at’ 
(4.14) 

It follows that ((z - L ‘“‘)‘) is of order L (‘j2. Consequent- 
ly, L * must be of order of, say, 2L (‘) before the metastable 
state can decay via thermal excitations. The condition 
L * 2: 2L (‘) once more coincides with Pt (0, N 1. More expli- 
citly, L * 2: k p’/#aj from above, while k Lo’ -#ak y’/L (OF 
from Eq. (2.12). Accordingly, L *EL (‘I if and only if 
k T’/jL (0” N 1. However, from k /‘)= kT/q this latter 
condition is equivalent to (kT/TL (O)‘)/~E 1 or D, 2: ;. We 

k,(L/L’)-ki”’ 

and 

and find (Appendix E) 
dz 

77 
-kk’f:2+4aki0) 

Recalling Eq. (4.9), we have 
k (0) 

V(&k;“z3-$a+Z4. 
a 

(4.15) 
thus conclude that for PLcO, = 1, the metastable state 
ZE L Co) will notdecay unlessexposed to a largeperturbation. 

Finally, for PL (Oj 2 1, V(z) has no minimum remaining 
(See the upper right Panel of Fig. 1). For any initial mean 

(4.16) length, z(t) diverges after a time of order r(i). It is this 
regime with CZ 1 and P, (O, 2 1 which we identifv with gela- 
tion. The growth is not activated in this part of the phase 
diagram. 

This effective potential, describing the fast-reaction limit, is 
shown on the right side of Fig. 1 in both the small PLcO, 
(bottom) and large PL. tO) (top) flow regimes. 

P LcO, z 1 corresponds to the “crossover” point in the 
sense that the metastable (local) minimum and, hence, the 
barrier in V(z) disappear as i exceeds qL (‘j3/kT, i.e., 
P L ,0, 2 1, or equivalently, L (‘) ,> Z. For smaller i( Pi’)), 
there remains a local minimum at z 2 L (‘) and a maximum 
at z = L *-k :“/&a. From our “particle” analog it fol- 
lows that ifat time t = 0, z S L * it will relax to L (O), while if 
z 2 L * it will continue to increase with time. The equation of 
motion for z > L * can be approximated as 

having solution 
Z(f = 0) 

nt) = [ 1 - t/4411/2 
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z from L (O) in the metastable state can be estimated from the 
Flory-Huggins free energy [see discussion surrounding Eq. 
(2.13) 1 

Recalling our discussion of the analogy between the mi- 
cellar distribution function and that of the percolation phase 
translation, it is clear that we are dealing here with a$rst- 
order gelation transition rather than the expected contin- 
uous phase change. Moreover, the critical parameter con- 
trolling the transition is really the concentration C=+,L 3 
rather than the shear rate. The first-order transition takes 
place for any nonzero shear rate at C- 1. The shear rate 
simply controls the energy barrier which must be overcome. 
At low Peclet numbers the barrier is prohibitively large, 
thereby preventing gelation even though formally the system 
is only metastable. The threshold where the Peclet number 
P L (0, 2 1 coincides with a vanishing of the energy barrier, 
i.e., to the approach of a “spinodal point.“20 By analogy with 
spinodal decompostion, we should expect that when we 
cross the P,cO, R 1 threshold there will appear homogen- 
eously throughout the sample a periodically modulated 
structure with alternating gel and solvent. The characteristic 
length scale of the gel will increase with time until eventually 

with 
r(j)Z(jf++aL2)-1. (4.18”) 

The mean length is thus seen to diverge after a time r(j) 
which depends on the shear rate as discussed in the Intro- 
duction, i.e., r= (iC) - ‘. This divergence of z (t-+ CO) at 
y=yc (P,,o, = 1) for CX 1, i.e., the fast-reaction limit, is 
shown by the dashed curve in Fig. 2. 

(4.18’) 
it will extend throughout the whole sample. 

Finally, we remark that the critical value of i is inverse- 
ly proportional to both concentration 4 and zero-flow size 
L (O). Actually, since in turn [see Eq. (2.12) ] 

L (0’ ,+“2, 
we predict that 

,-,-3/z. 

If z is of order L (‘) initially, then we must overcome an 
energy barrier for the runaway process to start. We thus can 
think of the state EEL (‘) as metastable. In principle, the 
state ZZ L (‘) could thus be destabilized by thermal fluctu- 
ations. The free energy AJ(z) (per rod) cost of deviations of 

While the micellar growth associated with k exceeding i, 
has been shown to be modest (varying as $‘3) in the slow- 
reaction limit, measurements 3S21 of shear stresses and viscos- 
ity (7) magnify this effect since 77 is a strongly nonlinear 
function of rod length.” In the&t-reaction limit, on the 
other hand, the semidilute regime for concentration suggests 
that one should include interaction-induced corrections to 
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the dependence of D, (and q) on rod length.” Clearly, 
much work remains to be done on the general problem of 
micellar size distributions in shear flow. 

Physically, one can understand as follows the “steady- 
state” and “runaway” natures predicted for the slow- and 
fast-reaction limits, respectively. Consider first the “slow” 
regime where q%L 3 4 1. Here-independent of Peclet number 
P= y/D,-the time between collisions (and hence between 
reaction, self-assembly, events) is long compared to the time 
required for the orientational distribution to take on the 
form characteristic of the imposed shear gradient. For large 
P, then, the rods are strongly aligned by the flow; in particu- 
lar, the alignment becomes increasingly peaked along the 
flow direction for P, 1 and the average shear-induced colli- 
sion rate grows only as P “3 [see Eqs. (3.18b) and (3.2Ob), 
with k :‘)= (kT/v)]. In the “fast” regime, on the other 
hand, where collisions occur so fast that a uniform orienta- 
tional distribution of rods is maintained, the combination 
rate is able to increase linearly with P even for P& 1. This 
strong feedback mechanism, i.e., increased rates leading to 
bigger rods (cross sections) and, hence, to accelerated reac- 
tion and bigger rods, etc., then results in the runaway insta- 
bility predicted for micellar size as i- r, with q%L 3 z 1. 
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APPENDIX A: REACTION CROSS SECTION AND 
ORIENTATION-DEPENDENT RATE CONSTANT 
1. Geometric cross section 

C@sideriwo rods with lengths L, and L, and orienta- 
tions fi, and R, , respectively. Recall that the flow direction 
is 2, so that the projections of the rods onto the xy plane are 
L, sin 8, =Zl and L, sin 0, =12, as shown in Fig. 3. The 
dashed parallelogram shows the region inside which the cen- 
ter of rod 2 must lie in order for the two rods to overlap 
(“collide”, and “react”). Whenever the relatiKe y coordi- 
nate is small enough, i.e., 0 <y <x* ( LIJll ,L, ,a, ), the dif- 
ferential cross section do(L, ,a, IL,,Q, ) defined in Sec. 
III A 1 is given by x*dy (see Fig. 3). For y > y*, on the other 
hand, da = x(y)dy with x(y) a linearly decreasing function 
of y. In the following we outline the geterminatiy of the 
constants y* and x*-for arbitrary L, , fi, , L, , and a2 -and 
of the function x(y), thereby specifying completely the dif- 
ferential cross section da. (We note that the geometric con- 
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FIG. 3. Geometric construction showing the cross section between two rods 
of lengths L, and L, and orientations 19, p, and @,p,,, respectively. 
I, = L, sin 8, and I2 = L, sin 0, are the projections of the rods onto the 
plane (xv) normal to the flow directions (z) (.? points into the paper). 

siderations here are closely related to those entering into the 
excluded volume calculations for “grafted rods.“** 

First, we note by inspection of Fig. 3 that 

y* = I, sin pl - I, sin p2 
2 (AlI 

Forx(y), on the other hand, we need to consult Fig. 4 which 
shows the triangle ABC from Fig. 3. From the similarity of 
the triangles ABC and A ‘B ‘C we have immediately that 
I, sin p2/x* = [ I2 sin q2 - (y - y*) l/x, a trivial rewrit- 
ing of which gives 

x(y) =x* - 
X* 

12 sin P2 
(y-y*>. (A21 

It now remains only to determine the constant x* asso- 
ciated withy = y*. For this purpose we again consult Fig. 4. 
Specifically, we express the base length AB = x* as a sum of 
the projections of the triangle sides AC and CB onto the base 
AB:x*=(I,sinp,)cotp, +Z,cos(r 
arrangement of which leads to 

- p2 ), a simple re- 

x*=12 sinp, sin(p2 - p1 1 
sin p, sin p2 ’ (A31 

c 

42 

A 
> 

A’ 

6 x 

El’ 

“-9, 
El 

.P2sin+2 

I 
--- 

Y-Y” --- 
4 X’c - 

FIG. 4. Enlargement of triangle ABC from Fig. 3, showing the relationship 
betweenx(y>y*) andx*=x(y<y*). 
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Equations (3.6)-(3.8) in the text follow immediately 
from the identification of x* with (dc/dy): and 1, sin p, 
and I2 sin p2 with L, sin 19, sin q~, = L, R,, + LiTI,, and 
L, sin 0, sin opt = L, R, + L ‘ai, etc. Note that the afore- 
mentioned discussion pertained toy > 0, an identical devel- 
opment applying toy < 0. 
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However, from Eq. (3.9) we know that F( &,&) is an even 
function with respect to 0 = 7r/2 and 8 ’ = r/2. The factors 
in parentheses are odd, however, from which it follows that 
the integrations in Eq. (B4) give zero identically. Similarly it 
can be shown that the 8( P *) contributions from the cross 
term fly R, n;fl: vanish by symmetry. 

It remains only to evaluate the 9( P 2, contributions to 
kr”‘(L IL) from the 8(P2) terms in each of thef, (6)‘s. 
Again, as with the S(P’) terms, these are easily seen to be 
identical to one another, and we have 

2. Specific bimolecular rate constant 

zo obiain the orientation-dependent rate constant k y’ 
(L,O IL ‘,a’) we need to multiply the differential cross sec- 
tion dcr/dy by the relative velocity i/y] and integrate over all 
y. From the results of Appendix A 1 we have 

y* 

jk:” =j$dyyx*+jj- 
+ l2 sin p2 

dyyx(y). (A4) 
P 

Note that the factor off on the left-hand side arises from our 
including only the contributions from y > 0 on the right- 
hand side. Using Eqs. (Al)-(A3) fory*, x(y), and x*, the 
integrations in Eq. (A4) can be straightforwardly per- 
formed and the resulting expressions simplified to give Eq. 
(3.9). 

APPENDIX B: AVERAGED RATE CONSTANTS 
1. Small Peclet number 

Here we evaluate, for the case of small Peclet number, 
the orientationally averaged bimolecular rate constant 
k, (L IL ‘) defined^by Eq. (2.8b). To do this we substitute 
Eq. (3.11) forfL (R), valid in the P-4 1 limit, and the general 
(al/P) result Eq. (3.9) forky’(L,6IL’,&). 

The P-independent contribut@s to k, (,L IL ‘) come 
from the 1/47r terms in each off, (R) and f t. (a’). Further- 
more, since we shall only be concerned with L ’ = L, we have 

k1”‘(LIL) =~$~~k~)(L,ii,L,i%) +Q(P) 

031) 
or, from Eq. (3.11), 

kLS)(L IL) =aiL3 d6’ sinlq, -p’( - 
4rr 2 sin p sin e, ’ 

x p-@-q + g-q”) + S(jL 3P), 
n,>f-q. 032) 

Here we have used the fact that the averages over the 
n, > fi; and a; > R, spaces are equal since one is trans- 
formed into the other upon exchanging primed and un- 
primed quanties in both the integrand and limits. The nu- 
merical constant c, in Eq. (3.13) is given by the double 
integral in Eq. (B2) and is clearly of order unity. 

Now, what about the 8(P) contributions to 
k$)(L IL)? Writing Eq. (3.9) as 

k in( L,&lL,&) = a;/L 3F( 6,&I) (B3) 
they can be expressed as [see. Eq. (3.11) ] 

- F(&ii’) cn,n, + n;n; 1. In Fig. 5 we show the bead model for a rigid rod of 
length L and diameter b. Drag (viscous) forces will act at all 

(B4) points were the velocity of the solvent is different from that 
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ajL3Pi - - 
s s 

dfi da’ sink - $1 (n2np +fn63) 
4rr 4n 16sing,sinp’ ’ ’ 

x [sz$,2 +gn; -a:> -&I, R,>l-q (B5) 
Thus, the numerical constant c1 in Eq. (3.13) is given by the 
double integral in Eq. (B5) and is once more of order unity. 

2. Large Peclet number 

For,P%,! it is convenient to break up the double integra- 
tion SdWdR’ in Eq. (2.8b) into two parts according to 

k:S’(L IL) = a?L 3 d6 
I I 

dfi’{F(&fi’) 

XfL(si)fL(sit)) (&sit near i) 

+ajL3 
s s 

d& d?i’(+ (ii,&#i). 

(B6) 
Consider first the A$‘z=i contribution. Since the distribu- 
tions over p and e, ’ are very broad, the averages over these 
angles are of order unity. It follows that the first term in Eq. 
(B6) can be written as [see Eq. (3.9) ] 

aiL’(<f$)(sl;> +f(S1;3)), 
where the angular brackets are given by Eq. (3.15~). More 
explicitly, using (0; ) = P - 2’3, (a,) --P - 1’3, and 
(a:) E-P - ’ for P) 1, the aforementioned expression be- 
comes a+L 3 (dP - ’ ) where all numerical factors of order 
unity have been lumped into the constant “d ” appearing in 
Eq. (3.18). 

Now consider the second contribution to Eq. (B6), in- 
volving the orientational distributions ayy from the flow 
direction. Here we use Eq. (3.17a) forf, (R) and find imme- 
diately that the second term in Eq. (B6) can be written as 
[see, again Eq. (3.9) ] 

The double integral over & and 3’ is clearly of order unity 
and corresponds precisely to the constant “e” introduced in 
Eq. (3.18). 

APPENDIX c: SHEAR-INDUCED TENSION AND 
DEFORMATION ENERGY 
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6 
f 

FIG. 5. Bead model for rod of length L and diameter b. r, = nbfi denotes the 
vector from the rod center of mass to the nth bead: - L /2b S n 5 + L /2b. 

of the rod bead at the same point. Let v denote the relative 
velocity. Since the center bead (rod center of mass) moves 
with the solvent (i.e., v = 0  there), we can write 

v = j*r (Cl) 
for the relative velocity at an  arbitrary bead. Here r is the 
bead’s position relative to the center of mass, and  

(C2) 

is the velocity gradient tensor characterizing the homoge-  
neous shear flow of the solvent. For the drag force on  the 
bead at r we then have 

F  = cv, (C3) 
where <is the friction coefficient associated with each bead. 

To  compute the tension in the rod at an  arbitrary posi- 
tion, we need only determine the projection of the drag force 
there along the rod axis, i.e., F-t?. For the nth bead, 
- L/2bSn5 + L/26 , 

(C4) 

It follows from Eqs. (Cl )-( C3) that 
F,,(n) =F.G=&bsinBcos8sinp. cc51 

Integrating this force from the nth bead out to the corre- 
sponding end  of the rod then gives the total force or tension, 
at the position s = nb of the nth bead: 

s 

L/26 

t(s) = 
n 

dnF,,(n) =~l$,n,[($~-?]. (C6) 

Here we have replaced sin B sin q~ cos 0  by fl$,. 
F inally, to calculate the local deformation at 

L ‘( 0  5  L ’ 5  L) in a  rod of length L we simply evaluate t(s) at 
s = L  ’ - (L /2) and write the deformation at s as 
6(s) = t(s)/K, where K is the elastic constant characterizing 

the extension-compression of the rod. Then  the deformation 
energy Ed@. (L,L ‘) at s is given by 
Edef(L,L’) =@[8(s=L’- (L/2))12 

?S’ = -L ‘2(L ’ - L)%l;n; 
8Kb ’ 

(C7) 

as in Eq. (3.21). 

APPENDIX D: FORM OF SIZE DISTRIBUTION 

Iterating Eq. (2.15), starting at L = 2’ = 1  and  pro- 
ceeding through powers of 2  up  to L = 2”, leads to 

ML) = [N(l)l~~(~)g2(~)...~/“(1) (Dl) 

or 

N(L) =exp Lln[N(l)] + C 2  1  g  
l :r: p  n[ (&)]I * 

CD21 
Denote the sum over p by I, and  approximate it by an  inte- 
gral over p from 0  to n  - 1. W ith the change of variable 
x=L/~~+I, we have 

I=L 
s 

L/2 

2In2 1  
dxLlng(x). 

X2 

This integral over x can, in turn, be  written as 

s 

m  

s 

m  
dxf(x) - dxf(x)=J- K, 

1 L/2 

where f(x) = In g(x)/x2. Note that J is independent of L. 
To evaluate K and, in particular, to determine its L depend-  
ence, we integrate by parts and  find 

s 

m  

L/2 

In writing the last steps above we have used the fact that 
g(x) -xn (with n(3) and  taken the lim it of large L. Substi- 
tuting into Eq. (D2) leads directly to Eqs. (2.16) and  
(2.17). 

APPENDIX E: KINETIC EQUATIONS FOR r 

For all of the analysis we shall find it useful to approxi- 
mate integrals of the form 

Q, =J- dL-&eeL/L 

and  

RX= = 
s 

dLLXe-L/” 
ij 

for x > 0  and  specifically for z% ?i. 
Starting first with Q ,, we change variable from L to 

y=L /z, pull out a  factor ofz ’ - *, and  break up  the integral 
over y into 

s 

-dye-Y= 1 m  v” .+1 s s =J, + J,. 
l 

Here E= Z/x 4  1, from which it follows, upon expanding e  - y 
in J, and integrating term by term, that 
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J, = 

As for J, , we note from y > 1 and x > 0 that 

I 

m 
J, < dye-Y=& 

I e 
That is, J2 = YY( 1 ), just like the { * * .} term in J, . We now 
need only consider two cases; 0 <x < 1 and x > 1. 

For 0 < x < 1, all of the powers of e ( 4 1) in J, are posi- 
tive and J, is thus dominated by the e-independent term, 
{ * * *}. This term is, in turn, as we have just noted, compara- 
ble in magnitude, 8(l), to J2. Thus, recalling that - 
Q, =L’-“(J, +J,),wehave 

s 
eo dL ~eeL/i=QxE~l-x, O<x<l, 

a L” 

where z denotes here and henceforth that we have dropped 
multiplicative factors of order unity [in this case, 
(l/(x-- 1)) + (Well. 

When x > 1, on the other hand, the dominant term in J, 
is (l/(x - l))~‘-~) 1, and we have 

s -dL-e 1 -L/i -----, 1 1 1 
B L” -x- 1 5x-l --x-1 x> 1, 

To evaluate the R, integrals, we consider first the case 
0 <x < 1 and integrate by parts. The boundary term gives 
ziiX, where we have specifically used the fact that e - ““z 1. 
The “ - pdu” contribution is of the form XT times a Q,, 
integral, with 0 <x’< 1, thereby giving x= ’ --‘. Thus, 
since x’ = 1 - x, 

s 

02 
dLLxe-L/Z-xTJ’+“--TJ”“, O<x<l. 

I 

For 1 <x < 2, we again proceed to evaluate R, by 
integrating by parts, again finding z?i” for the boundary 
term. Now the “ - Svdu” term is x-x - 1 
=x(x - 1)z; ’ + x,zZX. Thus, 

s 

cc 
dLL”e-LnEx(x- l)z’+x~~‘+X, l<x<2. 

a 
Similarly, we find 

s 

m 
(ILLXe-L/i 

7, 
=x(x- 1)(~-22)~‘+~~‘+~~~~+~, 2<x<3 

and so on. 
The next step is to evaluate the constant of proportional- 

ity in 

NL- l 
g(L)i/l”2 e 

-L/i 

for the slow- and fast-reaction limits, in the regimes ofweak 
and strong flow. We shall also derive, in each case, the ap- 
propriate relationship between z and the moments 
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(L “)-I dLL “N, /j- dLN, 

and, hence, between dz /dt and the moments of dN,/dt - 
with the latter quantity being determined from the kinetic 
equation (2.9), as shown later in this Appendix. 

In all cases, the constant C in 

NL= ’ -L/E 
g(~)l/l”2 e ’ 

with 
Pg 1 slow and fast 

is determined from the mass conservation condition 

1 
g(L)‘“l”2 e 

-L/Z- 
- 4 (El) 

Consider first the P<< 1 case, where g(L) - 1. The inte- 
gral in Eq. ( E 1) is then simply R i -z 2, implying CE4a/E 2 
and, hence, Eq. (4.2a) for NL. For the PB 1 slow reaction 
case, on the other hand, this integral equals Q, with 
x = (l/hi 2) - 1 between 0 and 1, i.e., Q, -z’- (‘n”2). 
Thus Czq5a~(‘An 2, -’ and, hence, Eq. (4.2b) for NL . Fin- 
ally, for the P) 1 fast reaction limit, Eq. (El) becomes 
(C/ir>Q, with x = (3/ln 2) - 1 between 3 and 4. Thus 
C- q4aFi”- ’ = q5aZc3”l” *) - *, from which follows Eq. (4.2~) 
for NL . 

Now we evaluate the first moment of the NL distribu- 
tion, defined by 

(L ) = j- dLLN, /j- dLN, -s. 

Note that NUM = q5a from the mass conservation condition. 
For P< 1, -NL is given by Eq. (4.2a) and, hence, 
DEN = qSa/L, thereby implying, see Eq. (4.4) in the text, 

(L)=zS for P41. 
In the P% 1, slow-reaction limit, using Fq. (4.2b) for NL, we 
find 

DEN = qSaz (‘AI 2, - ‘Q,,,” 2 

and, hence, see Eq. (4.4’)) 
(L) =z wln2)-1~2-~(IAn2), p,1 (slow). 

Finally, for Pg 1 in the fast reaction case, Eq. (4.2~) for NL 
leads to 

DEN = q5aii0”” 2’ - 2Q3,,n 2 clqSa/Z, 
implying 

(L)-Z, P)l (fast) 
independent of z. 

We need to consider, then, the next higher moment in 
this (P) 1, fast) limit. For 
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(L ‘) = I dLL ‘N, /j- dLN, 

the DEN is still +a/& but now 
NUMU~a~(3A”2)-2Q(3,1”2,_2~daSi 

and, hence, 
(L ‘) = z2, 

Finally, we use the expressions derived earlier, relating 
dz /dt and aNL/c?t, along with the kinetic equation (2.9) for 
aN,/dt, to derive ordinary differential equations for z in 
each of the flow and concentration regimes of interest. 

still independent of L. Similarly, we find for the next mo- 
ment that NUMcrq5aZ’ and 

(L 3) = z3. 

First, for P<l (EC@), we substitute for NL, 
&CL/L’), and k,(L/L’) from Eqs. (4.2a), (4.6a), and 
(4.6b) and approximate the integral on the right-hand side 
of Eq. (4.5) by introducing each term in Eq. (2.9) for 
aNL/6’t. From the first term, for example, we have 

For the fourth moment, however, 
NUMU~aSi’3A”2’-2Q~3An2,_,. 

Since Q, here involves 0 < x < 1, it is no longer independent 
ofz: QX-z5--(3A”2) and [seeEq. (4.13)] 

(L4)zZ (3An2)--~5-(3An2), ~$1 (fast). 

It remains only to derive relations for dz /dt in terms of 
JNL/6’t. For the P& 1 case, where (L ) = z, we have directly 
that 

%=$udLLNL/JdLNL)=$(q5a/JdLNL) 

= - [#a/udLN,y]JdL$N, 

= -5 dL&N,, 

as in Eq. (4.5). The last equality immediately follows from 
JdLN, = #a/z in the P4 1 limit. 

For the Pg 1, slow-reaction regime, we consider 

(L) =4a/J dLN,--(‘A”2’-1~2-‘1~22’ 

or, equivalently, 

= --z’ dL( -N,Lkjp’) = +k;O’z2, 

da s 

where we have used $dLN, L = 4a from the mass conserva- 
tion condition or, equivalently, 

-$JdL (%L 

+dL [2k~“‘~m dL’N,.] = - 2kA”‘E2, 

s 
dLN,L = $ 

s 
dLLe- L/i = 

From the second term in (aN,/&) we find the contribution 

where we have integrated by parts, using the fact that 
d m - 

s dL L 
dL’N,. = -NL. 

Thus, the first two terms in ( aNL/&) give a combined con- 
tribution of - k j,‘% 2 to dz/dt. From the third term we 
have 

k;“gJdLNL j-dL’N,(l+$ (;;;) 

-qSaki”[ 1 + ($)‘I , 

z(IAn2)-2 
,(lAn2)-1 

3 

& 
dLN,. 

Note that the power of z on the left-hand side is negative 
(and of order unity), implying that when we differentiate 
both sides with respect to t we pick up a minus sign upon 
dropping all numerical factors 6( 1) : 

dz (,/~)(1A”2) - 1 _ 

I 
JNL 

dt=- #a 

L2 dL-, at 
as in Eq. (4.5’). 

Finally, for the P& 1 fast-reaction limit, we have from 

the last line following from JdLL “e- L’i,zn + ’ for n> 1. 
Finally, from the fourth term in ( aNL/&) we obtain 

- k:O’F dL 
s s 

L’2dL’NL.NL-L. 

/&k:‘)il+($r,. 

Thus, combining these last two terms with the 
fmd the result for dz /dt written in Eq. (4.7). 

- k Ip’z 2, we 

For the Pg 1 slow-reaction case, evaluation of the four 

(L4)=J / dLL4NL ~a~i_ii’3A”2)-l~5-(3An2) 

that 

contributions from Eq. (2.9) to SdL(aN,/&) proceeds 
largely as shown earlier, except that we need to use the R, 
and Q, approximants with the x nonintegral. Moreover, in 
the contribution from the fourth term of Eq. (2.9), we now 
have integrals arising of the form 

z5-(3An2) 
~2-(3An2) 

E 

#a s 
dLL “N, 

and, hence, that (note that the power of z is positive) 

s 

L/2 

dL’ ’ 1 
0 ~‘(1An2) (L-~‘)‘1/1”2’ 

which we approximate by 

dz (&)2- (3An2) 1 

L2 dLL s 

4 aNL 

at’ 
as in Eq. (4.14). 

1 
s 

L/2 

L(lA”2) - 
dL’ ’ N 

L f(l/h 2) 
~~l-(lAn2)1;/2/~(lAn2) 

a 

since (L - L ’ ) varies only from L /2 to L over the range 
C < L ’ < L /2, and we drop all numerical factors of order uni- 
ty. From the first two terms we find 
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z 3-(lAn2) 
_ k (05j2 - 

b 0 ii 

which we write as - kr’z’ in Eq. (4.8), since 
3 - ( l/in 2) C: 1.6. The third and fourth contributions add 
up to + k ~“‘q5a(Z/Z). 

Finally, for the P) 1 fast-reaction case, essentially iden- 
tical considerations apply and we obtain the kinetic equation 
for dz /dt given by JZq. (4.16). (Here the integral powers of 
z are found without any need to round off irrational ones.) 
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