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We study the two-dimensional (2-D) structural and thermodynamic changes in smectic-A/lamellar 
phases of self-assembling surfactant systems, in which the rim associated with a bilayer edge has a 
preferred curvature. This property was not considered in previous studies of 2-D aggregation, where 
an infinite bilayer emerges already at very low concentrations. A lattice Hamiltonian is used to 
describe the bending energy of the rim: An occupied lattice site corresponds to a minimum, disklike, 
micelle, and a bending energy penalty is associated with corners and straight edges depending on the 
value of the spontaneous curvature. When the spontaneous radius of curvature of the rim is small 
and the bending modulus is large, we find that the “condensation” transition-i.e., the “collapse” 
of the finite aggregates into a continuous bilayer-is postponed to high concentrations. At low 
concentrations the bending energy leads to an effective repulsive interaction between the aggregates, 
which in turn can result in ordered (modulated) structures for not too large ratios of thermal energy 
to bending energy (which is the expected situation in most systems of interest). Our model should 
be applicable to the systems of decylammonium chloride and cesium perflourooctanoate studied by 
Boden and co-workers (NMR and conductivity measurements) and Zasadzinski and co-workers 
(freeze fracture), where monodisperse micellar disks are observed to layer in stacked planes. In the 
latter.system a 2-D order of disk-shaped aggregates appears within the smecticd layers, which is 
also consistent with our theory. Experimental studies of the structural evolution under further 
condensation of the system are not yet available. 

I. INTRODUCTION 

Self-assembly in surfactant solutions has been studied 
extensively in the past two decades.lm5 This field evolved 
separately from the older, broader, area of “ordinary” col- 
loids and liquid crystals, because the self-assembled 
aggregates-micelles-do not maintain their size and shape 
upon concentration of the system. Moreover, a simple argu- 
ment, first introduced by Israelachvili et al.’ and further 
elaborated by others,7*8 shows that two-dimensional (2-D) 
aggregation leads to the formation of an infinite bilayer at 
concentrations close to the critical micelle concentration 
(CMC), via a first-order phase transition. Indeed, smectic- 
A-lrryered-phases typically appear in surfactant solutions 
in the form of lamellar sheets of bilayers. 

It has therefore been surprising to find that in some sys- 
tems, studied in particular by Boden et al.’ and Zasadzinski 
and co-workers,” disklike micelles, which appear at the 
CMC, retain approximately their size and shape at relatively 
large concentrations and persist even into the nematic and 
smectic-A phases. The smectic-A phase thus appears to con- 
sist of disklike micelles organized in planes. Nevertheless, 
the origin of this phenomenon-and the apparent inconsis- 

$Present and permanent address: Department of Materials and Interfaces, 
Weizmann Institute of Science, Rehovot 76100, Israel. 

tency with the “general” argument mentioned above---has 
not been addressed theoretically (although a few related 
theoretical studies have been described”“2). 

In this paper, we argue that when a bending energy of 
the rim, namely a curvature dependent “line tension” which 
includes a preferred (“spontaneous”) curvature, is intro- 
duced, it is possible to obtain micellar disk phases with 
rather wide stability. We develop a lattice Hamiltonian for- 
mulation specifically designed to describe the smectic-A 
phase. This model allows us to study both the self-assembly 
structure within the planes and the first-order transition to a 
continuous bilayer which ultimately must occur upon con- 
centration increase. Starting with a dilute 2-D system of ag- 
gregates with a strongly preferred curvature, one expects a 
few scenarios to compete with each other upon further con- 
centration. Fist, the disklike aggregates can “crystallize” 
with (say) an hexagonal order which increases their packing 
entropy, much as is found in the freezing of a system of hard 
core disks. Second, the aggregates might elongate their shape 
into ellipses or ribbons, which also will increase their pack- 
ing efficiency, while paying some penalty in bending energy. 
These ribbonlike aggregates, which are likely to be polydis- 
perse in size, may then organize into 2-D smectic (‘%ripe”) 
or nematic phases. And third, the free energy can be lowered 
by a 2-D phase separation into a continnous-i.e., infinite- 
bilayer phase and a “dilute” micellar disk phase. The advan- 
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tage of the approach we develop is that it allows us to study 
the competition between these several scenarios using a 
single Hamiltonian. 

II. BENDING ENERGY IN THE SELF-ASSEMBLY 
APPROACH 

Simple theories of self-assembly often start with the free 
energy F written in the fern? 

F=kBTx n,(ln n,CE,- l), 
s 

(1) 

where n, is the number of aggregates with s molecules (s 
aggregates), and k,TE, is the free energy of an s aggregate. 
The total number of molecules N is fixed by the constraint 

c sn,=N. (2) 
s 

The equilibrium distribution, which we still denote by n, , is 
obtained by minimizing F- k,TpN (with k,Tp being the 
molecular chemical potential) with respect to pz, to obtain 

n =,-P,-Pd s (3) 
For 1-D aggregation Es=.??cyls + Ecaps , where E,.Yl is the en- 
ergy (in units of k,T) per molecule in the cylindrical body of 
the rodlike micelle, and k,TE,, is the energy of its (hemi- 
spherical) caps. Clearly one can never have E,,=p because 
the sum in (2) wouId diverge. This suggests that it is not 
possible to get an infinitely long rod coexisting with finite 
rods, and reflects the fact that there is no phase transition in 
1-D.‘3*‘4 However, for 2-D aggregation the situation is quali- 
tatively different. More explicitly, for disk-shaped aggregates 
and for large s we have (dropping numerical factors of order 
unity) 

Es- Ebils + Z’c, PS”~, (4) 
with 

- - 
Zh= Eh- Ebil (5) 

and where ~.bil and ktim are essentially the energies (standard 
chemical potentials) of a surfactant molecule in bilayer and 
rim geometries, respectively, and p is (roughly) the number 
of surfactant molecules in a rim cross section: ps’” is the 
total number Nfii, of molecules in the rim of a (large) disk. 
Thus an “infinite” bilayer appears when ,u=.&,~ and the sum 

C sn,== C s exp[ - .Zrimpsl”] (6) 
s s 

reflects the number of molecules in the finite aggregates co- 
existing with the bilayer. 

Suppose now that the rim has a spontaneous (preferred) 
curvature for which the rim energy per unit length is a mini- 
mum. For an arbitrarily shaped rim and for sufficiently small 
curvatures, the rim energy can be described by the bending 
Hamiltonian’5T16 

(7) 

Here %  is the position along the rim,- K is a 1-D bending 
modulus (with dimensions of “energyxlength”), R(Y) is the 
local radius of curvature, and RO is the spontaneous radius of 
curvature; y is the rim energy per unit length (relative to the 
bilayer energy) when the local curvature is identical with the 
spontaneous one. Thus, for a disk-shaped aggregate, Zti, in 
Eq. (4) takes the form (with so the number of molecules in a 
disk of radius Ro) 

(8) 

where Eo= yr2/21 (r being the radius of the head group) and 
21 is the bilayer thickness. Inserting this expression in Eq. 
(6) we see that the largest contribution to the sum comes 
from terms with s-s0 rather than from s=O (which latter is 
the case for constant, s independent, e”,+&. Thus, if Eo4 K/I 

one can have in this case many more molecules belonging to 
the finite disks rather than to the infinite bilayer-see (6). 
This implies that the “dilute” phase, namely the phase which 
corresponds to finite aggregates, has a wider concentration 
range of stability. 

The self-assembly approach described above, although 
being rather primitive, can be relatively easily generalized to 
more -complicated situations (e.g., adding aggregate- 
aggregate interactions,8 or incorporating 3-D configurational 
entropy contributions8T17 to E,). But it suffers from the clear 
disadvantage of being unable to account on the same footing 
for both long range order and fluctuations of aggregate size 
and shape, and, in particular, for the case of infinite bilayer. A 
more flexible, lattice, formulation, which can overcome this 
difficulty, is described next. 

III. ISING LAlTlCE-GAS HAMILTONIAN 

It is possible to describe without modification self- 
assembly systems in the language of the well-known lattice- 
gas model,14 so long as one does not need to include 3-D 
configurational entropy for flexible objects or 3-D interag- 
gregate interactions beyond those of the short-range type. 
(Such effects can be described using field theoretical formal- 
isms, e.g., as in the study by Huse and Leibler18 of defects in 
the sponge phase.) In the Ising lattice-gas model the Hamil- 
tonian is given byi 

H = - ~pairC SiSj ) (9) 
04 

where Si=1 (vs 0) describes the occupation of a site by a 
particle, and the sum is over all nearest neighbors (NN). A 
particle here corresponds to a micellar aggregate so it must 
be at least as large as a spherical or minimum disk micelle in 
3-D and 2-D situations, respectively. (Note, however, that the 
3-D Ising model is not relevant to surfactant aggregates.) For 
the 2-D case of interest to us we shall see that the energy 
parameter erair plays the role of the rim energy, i.e., when 
two aggregates become nearest neighbors they fuse into one 
particle and convert “rim” molecules into “body” molecules 
(see 2-D estimate given immediately below for the case 
where g,&O). Note that this model exhibits a particle-hole 
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symmetry: Under the transformation Si+ 1 -Sj the Hamil- 
tonian is invariant except for terms which are linear in the 
average concentration c = (Si) . 

For a 2-D square lattice-and for E,,.&+--this model 
exhibits a first-order condensation transition for TCT, 
whereI kBTcsepair (the equality holds in the mean-field ap- 
proximation). The coexistence and spinodal curves are sym- 
metric around c=1/2, as a consequence of the particle-hole 
symmetry. Since epair-Ndm k . nm then with e”,.&O. 1 k,T and 
NrimZ1OO for a small disk we have that ~~.&l Ok,T and so 
the temperature regime which is applicable here corresponds 
to T*T, . (For Zti negative, on the other hand, no conden- 
sation will occur, unless additional interactions-such as the 
many-body terms discussed below-are incorporated.) Since 
the coexistence curve is very steep near c=O (or c = 1) the 
concentration at which phase separation (from micellar to 
bilayer phase) begins to occur is vanishingly small. In this 
respect there is a complete correspondence between this 
viewpoint and the more naive approach described in the pre- 
vious section, i.e., infinite bilayer appears at a very low con- 
centration of surfactant. It should be kept in mind however 
that the third dimension could be crucial: the phase separa- 
tion in 2-D allows in principle, for example, that in 3-D a 
single phase consisting of infinite bilayer(s) and finite aggre- 
gates would be stable. 

IV. THE BENDING LAlTlCE-GAS HAMILTONIAN 

A. Coupling constants 

In order to describe the stability of concentrated solu- 
tions of disklike micelles, we want to follow the ideas pre- 
sented in Sec. II and assume that the rim is associated with a 
spontaneous (nonzero) curvature for which the rim energy is 
a minimum. This special curvature is taken as a parameter of 
the theory, which in turn depends on the experimental con- 
ditions, such as salt concentration, temperature, and chain 
length. To treat these effects, the Ising lattice gas is no longer 
appropriate, and one has to construct a lattice Hamiltonian 
which can distinguish between different curvatures. More 
specifically, we distinguish on a 2-D square lattice between 
“positive,” ” negative,‘.’ and zero curvature configurations 
(see Fig. 1) and assign them different energies: eP, e,, , and 
EY, respectively. Now, in order to minimize further the num- 
ber of free parameters, we can relate these en&gigs to the 
bending Hamiltonian Eq. (7), noting that a corner of an oc- 
cupied site (surrounded by empty sites) corresponds to a 
quarter of a circle. Ignoring the difference in the length of a 
quarter of a circle (ra/4) ad a quarter of a square (a), 
where a is the diameter (equal to the lattice constant), we 
find 

ep=(K-b)‘, 

en=(K+b)2, ‘I 

ty= b’, 

where 

K=V”Z&Z, 

W-N 

(11) 

(12) 

113) 
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p 

FIG. 1. Schematic representation of the possible four-site configurations on 
a square lattice, with their associated energies. Note that configuration (ii) 
corresponds to two separate disks and thus to an energy penalv2e,. 

(14) 

For the Ising energy parameter epair [cf., Eq. (9)], we find 
similarly 

epti= 2 ya, 115) 

where y is again the optimum-curvature rim energy per unit 
length, relative to bilayer. If epti is neglected, e.g., if y is set 
equal to zero, we are left with only two energy constants, K 
and b, one corresponding to the bending energy (K 
- &) and the other to the spontaneous bending curvature 
(b- l/R,). Our lattice model is similar to those used by 
Safran and co-workers1g to describe microemulsion phases, 
but differs from theirs in several ways due to the different 
underlying physics.20 

B. Mean-field free energy 

The free energy per lattice site fo= FIN, is easily ob- 
tained in the mean-field approximation as the sum of the 
entropy of mixing contribution and the energies epair, eP , e,, , 
and 4; each weighted by their random mixing probabilities: 

fo=25air4.( 1 -c)+4(K-b)2c( 1m-c)2 

+4(K+b)2c3(1-c)+4b2c2(1-~)2 

+kBT[c In c+(l-c)ln(l-c)], (16) 
with 

, c=(Si)=Nav(No. iI_71 

It can easily be checked that under the transformation 
c--+ 1 -c, f. is not symmetric unless b=O. This is more 
readily seen when one transforms to the “magnetization” 
variable m=2c- 1 which leads to (omitting constants -and 
terms linear in m which do not effect any physical quantity) 
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.fa= -&4ir +(K-hj2+b2]m2-2bKm3 

-$(K2+2Kbjm4fkBT 

(-4) b=O e,.,,= 0 

x [~ln(;~)+~ln(~)].- (18) 
1.2 

From this representation it is clear that if b=O, the coeffi- 
cient of m3 vanishes and f. is a symmetric function of m. 
Thus the spontaaeous curvature parameter b tunes the asym- 
metry between holes and particles in this model. 

We now proceed to calculate the spinodal and coexist- 
ence lines for this free energy. The chemical potential can be 
obtained from ,u= (dFldN,JN, J= [a(FIN,) Id(N,,INo)] T 
=(Jf/dc),= 2(8flam)T and we get 

- 12Kbm2-2(K2+2Kb)m3. (19) 
This chemical potential shows a twiddle shaped curve (“van 
der Waals loop”) below a certain critical temperature T,, 
marking the onset of a (first-order) condensation phase tran- 
sition. The spinodal curve for this transition is given as usual 
by (d~/dc)~=O, from which we find 

4c(l-c) g 21, i20) R 
where 

ee,=epairS(K-b)2-tb2+12Kbm+3(K2+2Kb)m2. 
i20 

The coexistence curve is obtained in the usual way by equat- 
ing both the chemical potentials and the osmotic pressures 

rI=cp-f(-J (22) 
of the two phases. 

C. Phase behavior 

The resulting phase diagrams are shown in Figs. 2(A)- 
2(C) for the special case where $&=O (i.e., y=O), for three 
different choices of spontaneous curvature b, 0 G b =G K. For 
b =0 the phase diagram is symmetric, but it is not Ising-like: 
see Fig. 2(A). There are two critical points (of equal tem- 
perature T,), and a stable middle phase appears below T, in 
a narrow temperature regime. The two coexistence curves 
(solid, vs the dashed spinodals) join in the middle in a eu- 
tecticlike point. Note that kBT/K2al corresponds to 
T-T,,,, since we estimate K 2 MkBT,oom .‘* 

As b increases from zero the right-hand (RH) T, in- 
creases, while the left-hand (LH) T, gets lower and moves to 
lower concentrations. For b greater than some value b” the 
two critical temperatures are no longer connected by a single 
spinodal curve: see Fig. 2(B) for b = K/3. (b * g 0.3 K 
--corresponding to a spontaneous radius of curvature of 
R,= ia-is the value of b for which the middle minimum of 
the spinodal curve lies at T=O.) These two spinodals give 
rise to the two coexistence curves shown. As can be seen, the 
small LH coexistence curve is merastable with respect to the 
large condensation transition (resulting from the FU3 spin- 

j 
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PIG. 2. Phase diagrams for three different values of the asymmetry param- 
eter b: (A) b =0, (B) b=K/3, and (C) b = K. (%&=O in all cases.) The 
dashed lines denote the spinodals’, the full-thick lines are the coexistence 
curves. In (A) D denotes the dilute phase, B denotes the bilayer phase, and 
M  denotes a middle phase. In (B) note that the coexistence regime on the 
bottom-left side is metastable with respect to the larger coexistence curve. 

odal) into a bilayerlike phase. In this metastable sense, the 
LH coexistence curve can be (partially) viewed as describing 
a first-order “fusing” transition from single-site “disks,” 
into “disks” which are a few times larger. (However, as de- 
scribed in the next section, the low temperature part of this 
transition corresponds to condensation into an ordered stripe 
phase, rather than into an isotropic disklike phase.) 

As b is further increased, there is a value of b (-0.5 K) 
for which the LH spinodal disappears completely. For the 
extreme case of b = K, which is the case when disks of the 
size of one lattice site are preferred [recall from Eq. (14) that 
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b = K only when a =2R,J, the phase diagram is even more 
markedly nonsymmetric around c =0.5: see Fig. 2(C). (b = K 
is in fact the largest that b can get in this model, since 
2R,>a.) Moreover the spinodal curve [cf. Eq. (20)] now 
ends at a finite concentration c-O.46 [for which %ff of Eq. 
(21) vanishes] rather than at zero. Thus, in summary, for 
temperatures of interest (T* T,&, increasing concentration 
leads to either: successive “condensations” (if R, is large 
enough) from small disks to bigger objects and then to infi- 
nite bilayer; or a single disk-to-bilayer transition. 

V. FLUCTUATIONS AND LONG-RANGE ORDER 

A. The Hamiltonian 

Next we look at the free energy which incorporates spa- 
tial variations of the concentration within a mean-field ap- 
proximation. To derive this free energy, let us first write out 
the single-site Hamiltonian Hi, i.e., the sum of all terms in 
the total Hamiltonian of the system that include site i explic- 
itly. This Hamiltonian is straightforwardly obtained from our 
assignment of energies in Sec. IV to the different four-site 
configurations depicted in Fig. 1. For convenience (and clar- 
ity) we transform the representation of Hi from the lattice- 
gas variable SI =0, 1 to the Ising variables ui-= - 1,l (omitting 
constants and terms linear in ai). The resulting Hi can be 
written as a sum of products of two, three, and four spin 
variables: 

H.=H{2)+H;3)+H!4) I I ’ _ (23) 

where 

Hj2)= - u. e,&2(K- b)’ 
I 4 

(Uifxf Ui-x+ Ui+y +~Ui-y) .- 

+ b2-(K-b)2 
4 (“i--x--yfui+x-y+ui-x+y 

-I- ui+x+y .)I* (24) 

Hi3)= -pi y [Ui-x(Ti-vf Ui+x(+i-y+ fli-xui+y 

+ cTi+xgi+,y + CT{-x(Ui-x-y+ Ui-s+y) + Ui-y(Ui-x-y 

+ ui+x-yl + (Ti+xCPi+x-y+ cri+x+yj+ (+i+y((+i-x+y 

+ % -x+y)lr (25) 

ffi4)= -u. 
hr2i-2Kb 

I 4 [Ui-xUi--yUi-x--y+ fli+x”i--yui+x-y 

+ (+i-.xUi+yci-x+y+ ui+xgi+yui+x+yl- (26) 
Once again, we see that if b =O, Hj3) vanishes and the 
Hamiltonian is symmetric under. the transformation 
Oj” - oI. Note that the total Hamiltonian H,, is not simply 
the sum of H, because the two-spin terms would be counted 
twice, the three-spin terms thrice, and so on; more explicitly 

H,,=; c Hj2’+; 2 Hi3’i$ F Hi4),= -~ (27) 
i i I’ 
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FIG. 3. 2-D structure factor S(p,,q,) for two values of the asymmetry 
parameter b showing: (a) a checkerboard instability, and (b) a stripe insta- 
bility. Both cases are for c+~=O and c=O.2. Other parameters: (a) 
b2=K2=k,T13; (b) b=K/3, K2=k,T. 

(We note that this treatment of curvature energy is similar in 
spirit to the multispin models considered for microemulsions 
by Widom,22 Schick and co-workers,a3 Chen‘et al.,“4 Daw- 
son et al.,” Matsen and Sullivan,a6 and others.“) 

6. The free energy 

Unlike in Sec. IV we now allow for spatial variation of 
the average spin value ( ui) = mi . The mean-field free energy 
is obtained by introducing the local entropy of mixing Si 

si= +B[,!+ l,j !-$?) +!$ ln( F)], (28) 

whereupon the (averaged) entropy per site is given by 

(2% 

and the mean-field free energy (per site) is 

f=$ [Htoti{mJ) - Ts({mJ>ly (30) 

where H&{mi}) is simply the H, given by Eqs. (24)-(27), 
but with each jkctuating spin variable (aj) replaced by its 
local average (mj). Since this is still a complicated expres- 
sion, we analyze it using a I Landau-Ginzburg type 
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expansion. 28*29 Specifically, we separate the local average 
concentration ci= ( 1 + mi)/2 into two contributions, the glo- 
bal average c and a local fluctuation r#+ : ci=c+ 4i (or 
mi= m + 2 &). We assume that the {4i}‘s are sufficiently 
small to justify a Taylor expansion off in their powers, with 
higher-than-sixth-order terms neglected. To further simplify 

the result, we introduce a (lattice) Fourier transform whereby 

+i= C +qeiq% 
q+o 

f can then be written in the form (all q’s are nonzero, here 
and henceforth) 

f=fof ; W-C S(s)-‘C,4-,+A c r3(ql,q2)~q1~q2~-(q,+q2) 
9 91.92 

+A c r4hA2.43~~q14q24q34Yql+q2+q3~+~ c rscq1 ,q2,q3rq4)~ql~qz~q3~Ps4~-fql+q2+93+94) 
91792.93 * q1*q2437¶4 

1 
+sr c ~6(~1~~,q3,q4~q5)~q,~q2~q3~~~qs~-(q,+q2+q3+~+q~,+“’ ’ (31) 

91.42 393 A4 45 

where we have omitted sums over reciprocal lattice 
vectors.28 (These latter sums give rise to “umklapp” terms,28 
but are clearly a lattice artifact for our purposes.) In Eq. (31) 
f o is the homogeneous part of the free-energy as given in Eq. 
(16) or (18). The other terms are the contributions from the 
spatial variations in density, and we now focus on these sepa- 
rate terms in turn. 

C. The structure factor 

According to the equipartition theorem, and within the 
Gaussian approximation, the coefficient of the & term is 
proportional to the reciprocal of the structure factor S(q) and 
for this, simple square lattice, model, is given by 

kBT 
__ =ao(T- T”), 
S(q) 

with 

kB 
ao=aoCc)=,o 

and (with all wave numbers henceforth in units of l/u) 

tcos(s,> +cNz,)l 

+ E2 cos(9,)cos@J . I 
Here e1 and e2 are effective NN and NNN (respectively) cou- 
pling constants and are given by 

e1=epair+2(K-b)2+8Kbm+2[K2+2Kb]m2 (35) 

and 

E,=-K2+2Kb+4Kbm+[K2+2Kb]m2. 06! 

This is precisely the structure factor of a lattice gas with only 
pair (two-site) NN (et) and NNN (~2) interactions, except 
that here--due to the three- and four-spin interactions-these 

coeficients are functions of the concentration c. J.f one puts 
qX = q,, = 0, then this structure factor diverges on the spinodal 
curve given by Eq. (20) [since E~+E~=E~~,.+ b2 
+(K-b)“+~12Kbm+3[(K+b)2-b2]m2=e,& as gener- 
ally required from it being equal to the compressibility dcl 
$.L. [See Figs. 2(A)-2(C) for examples of these spinodals 
with Epair =O, OcbsK.] 

We now focus on the extreme case of b = K, again taking 
epti=O. Recall that epair=O corresponds to y=O, i.e., to there 
being no energy change upon moving molecules between 
bilayer and optimum-rim micellar environments, and that the 
choice b=(a/2Ro)K=K implies Ro=a/2, i.e., the sponta- 
neous (and therefore optimum) rim curvature equals that of 
the minimum disk. For these values of b and erair, the effec- 
tive NN and NNN interactions given by the preceding equa- 
tions take the form e,(c)lK2=24(c-$)(c+$ and 
e2(c)lK2= 12c(c-$), so that el is positive for c>O.5, and 
negative for c <0.5. This implies an effective repulsive inter- 
action between NN particles, at low concentrations. Since in 
our model NN particles are considered as fused (to make, 
say, a piece of ribbon) this means that in this “low” concen- 
tration regime particles like to keep their integrity and not 
fuse, consistent with the large value of b (=K). For CC& e2 
also becomes negative. This can be understood in terms of a 
three body effect: If two particles stay close enough--i.e., as 
NNN’s-then the appearance of a mutual NN particle will 
create a configuration of higher bending energy. Obviously, 
this should be a weaker effective interaction than the NN 
one, as indeed it is. This will be more clearly demonstrated 
below, when various ordered mesophases are considered. 

Thus we conclude that for the case b= K and epti=O 
there are three regimes of concentration on which it is natural 
to focus: O<c<f where both et and e2 are negative; ~CC 
<f where et<0 while +O; and $<c<l where both are 
positive. For the high concentration eI,e2>0 regime it is 
clear that T*-and hence S(q)-is a maximum for 
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I.,=% ,( $-q +;]. 
where 

s=ia, >a,)={W~. F or all lower concentrations, however 
(both OCc<$ and f<c<$, it turns out that S(q) has its 
maximum at q={g,?r} [see Fig. 3(a)], corresponding to a 
“checkerboard” pattern with wavelength I&. Accordingly, 
for O-CC<& the coefficient ao( T- T*) of the quadratic term 
in the free energy expansion (in powers of ~~5~9, vanishes 
when T approaches T* (c;q=(n;r}) from above: at this tem- 
perature the uniform system becomes unstable with respect 
to the evolution of a (“checkerboard”) spatial inhomogene- 
ity with wavelength I&Z. 

e3=48[2Kb+(K2+2Kb)m], 

eq=96(K2+2Kb), 

and where (not bothering to symmetrize) 

For other values of the elastic constants K, b and of ePti, 
more complicated scenarios arise for this instability from 
uniform to modulated states. For b small enough, for ex- 
ample, there are concentration regimes where the maximum 
in S(q)-and hence in T*-occurs [see Fig. 3(b)] for 
s=IO,J (or -hOI), corresponding to a “stripe” pattern along 
y (or x), with wavelength 2a. As an example, consider the 
case where b= $K-i.e., Ro= $a-with ePti=O still. Then 
for 0.122<c<O.478 a stripe instability occurs at T”, 
whereas for higher concentrations the maximum in S(q) ap- 
pears again at q={O,O}. 

More generally, the competition between stripe and 
checkerboard instabilities is determined according to the dif- 
ference [ell-21gl=2b2-4(K-b)‘-,z,,ti (with both e1 and 
e2 assumed negative). When this difference is positive, the 
checkerboard instability dominates; when it is negative- 
stripe dominates. Note that this difference is independent of 
concentration; it is determined only by the energy param- 
eters of the model. Intuitively, one could guess that it is the 
energy penalty for comers vs flat edges that should deter- 
mine whether stripe or checkerboard instability dominates. 
Indeed, equating eP with 4 gives b * * = K/2 for the value of 
b at this crossover while solving (say, for ePair=O) E~=~E? 
yields-as the prediction of our mean-field theory 
-b**=(2- d8/2)K=0.59K. The stripe instability persists 
also for positive el so long as e2 is negative and the 
difference q--2/e2~=~,,+2b2+16Kbm+4(K2+2Kb)m2, 
which is now a function of concentration, is negative. [When 
this latter difference becomes positive, and e1 is also posi- 
tive, the maximum of S(q) is back at q={O,O}.] 

The coefficients JY3 and r4 reflect the competition between 
energy and entropy and may, in principle, be either positive 
or negative. Indeed, a negative I?, requires that we expand up 
through the sixth-order term (for stability). The coefficients 
rs and r6 are independent of wave vectors since they arise 
purely from the entropy, with no direct contributions from 
energy terms (which latter are nonlocal in the ~i’S, thereby 
leading to wave vector dependence of the r’s). 

E. Ordered phases 

The analysis of the relative stability of various ordered 
phases is clearly limited by our use of a specific lattice. Nev- 
ertheless, the square lattice does permit us to examine the 
stability of ordered phases vs the isotropic phase, and even 
the stability of 2-D order--e.g., the checkerboard phase-vs 
I-D order-e.g., the stripe phase (along the x or y axes). 
These ordered structures are natural for the square lattice, 
i.e., no frustrations are introduced. 

For simplicity we allow only the first harmonic for each 
type of order. In general this is written as (here e is a dimen- 
sionless amplitude) 

&r)=ez ev[iQ,.rl, 
” 

We have been concerned here with the q positions of the 
S(q) maxima, for different concentrations and for different 
spontaneous curvatures, because in the following sections we 
will argue that the relevant/dominant spatial orderings (fluc- 
tuations) are those with q maximizing the structure factor. 

where Q, is the nth NN reciprocal lattice vector. More spe- 
cifically, for the checkerboard phase we have Q,=k(i +5) 
and Q2=-k(i+j>, implying 

$(r)=2e, cos[k(x+y)] (46) 
and, similarly, for the stripe phase (along the x axis, say) 

q5(r)=2e, cos(kx). (47) 
In Fourier space these fluctuations correspond to 

~q=e,[6(q,-k)S(qy-k)+~(qX+k)~(qy+k)l (48) 

and 

D. Higher-order terms 

The higher-order coefficients in the Landau-Ginzburg 
expansion F@. (31) are given by 

Ti(Wl’)=k,T[ (Il,)~-~]-r3~~(q,q’), (37) 

Wv-Ld~~=%T[ il:cj3 ++m(q.s’,q?, 

08) 

rFbk,T[( I iej4-$]. (3% 

(41) 

(42) 

(43) 

(45) 

The strategy is then to insert these forms into the 
Landau-Ginzburg expansion (3 1),29 and minimize over both 
the wave number k and the amplitudes e, and e, . But if the 
analysis is limited to regions near the “disorder line” (see 
below) where the amplitudes are small, one can neglect the 
higher than quadratic terms (in 4, or--equi\ialently-in e) in 
minimizing over k. This corresponds to looking for the maxi- 
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mum in S(k) [see above discussion of S(q)]: the preferred 
wave vector is just the one that maximizes the structure fac- 
tor. (For the checkerboard and stripe instabilities we have 
verified that, in fact, the higher-order terms in the expansion 
do not alter at all the value of k obtained from the structure 
factor; these terms merely produce new maxima, rather than 
minima, in the plot off vs k). Thus, for example, the check- 
erboard phase can appear (i.e., necessary but izot sufficient 
condition) only for e,<O. 

For the regime where both E, and eZ are negative, con- 
sider first the case where 2b2-4(K-b)2- 7ti=le11-21eZl is 
positive (e.g., when b=K, ~~~‘0 and c<$. For this case 
k=r for both the checkerboard and stripe phases, but the 
checkerboard phase should be the stable ones since its S(q) 
value (above the transition) is higher. After summation over 
the q’s we obtain for the corresponding free-energies 

1 A 4 ~fi-sfc-fo=- ~-~ez+~ e:+- 4, 
2 4 6 

1 A* & Sfs=fs-fo=- rse,2,-l--- e%+- ez, 
2 4 6 

where 

2kBT 
r =-----S(Ez-El), c c(l-c) 

and, with k=?r(i+j) (checkerboard) or k=& (stripe), 

(52) 

(53) 
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FIG. 4. Phase diagram for the b = K case. Full and short-dashed lines denote 
coexistence and spinodal curves involving isotropic phases. The low 
tetiperatureflow concentration continuation of the coexistence curve (full 
line) cannot be calculated within the approxiniations used in the text. The 
shaded area denotes a checkerboard phase, which is partly metastable. The 
line with circles denotes a second-order transition between a (dilute) isotro- 
pic phase and the checkerboard phase. The line with squares denotes a 
similar first-order transition. (Note that most of this line is metastable with 
respect t& condensation.) t denotes a tricritical point. The long-dashed line is 
the coexistence curve calculated with the assumption of no ordering [i.e., 
identical to the full line in Fig. 2(C)], and is shown only for comparison. 

A,=h,=r,(k,k,-k)=2k~~(l~c)3 +-+,; (54) 

kBTIK2= 1.60 in the b=K case) is thus a tricritical point. 
Note that whenever the transition between isotropic and 
checkerboard phases is first order, there is a discontinuity as 
well in the concentration (c), but we have chosen not to 
consider explicitly the associated coexistence curves here. 
(Details of this kind are treated, for example, by Andelman, 
Brochard and Joanny, 3o in their study of spatially modulated 
phases of Langmuir monolayers.) 

4= S,=W[ (1 lcj5 +-$I. 

Because 7,)~~ [i.e., 2b2-4(K-b)“-%ti>O], and the rest 
of the coefficients (X and s) are the same for the stripe and 
checkerboard modulations, the stripe free energy lies below 
the’checkerboardfree energy, and the twopee energies never 
cross one another. Thus only the checkerboard phase should 
appear. This particular detail is clearly an artifact of our 
choice of a checkerboard modulation to represent the 2-D 
order. (Indeed, if the checkerboard qrder were replaced by an 
hexagonal order, regimes of first-order coexistence of isotro- 
pic hexagonal and hexagonal stripe should appear, as further 
discussed in Sec. VI.) 

Note that both 7c and X, (or 7s and 1,) can become 
negative. For small c (~(0.225 in the b= K case), the line 
~,=0 lies above the line h,=O, so that the transition from the 
isotropic to checkerboard phase (the “disorder line”) is sec- 
ond order and is given by r,=O. On the other hand, above a 
certain value of c (c>O.225 in the b,=K cas,e) A, becomes 
negative before 7c (as the temperature is lowered) and this 
transition is fust order; the checkerboard-order amplitude e, 
jumps from zero to a finite value [ez= -3hJ(4 S,)] just 
below this line (although the free. energy is continuous, of 
course). The transition is determined by X:= (16/3)r,S,. 
The point for which both Q-= and X, vanish (c=O.225, 

This isotropic-checkerboard transition line is shown in 
Fig. 4; the line with circles corresponds to the second order 
transition, and the line with squares represents the first order 
t&&ion, with the tricritical point denoted by t. We also see 
(Fig. 4) that the coexistence curve for the condensation tran- 
sition, calcuIated with the assuinption of an isotropic dilute 
phase [as in Fig. 2(C) J, en ers t ( see long-dashed line) into the 
ordering-checkerboard regime. Therefore, this regime of the 
coexistence curve has been recalculated (see full line) apply- 
ing a Maxwell construction to the free energies of the check- 
erboard and of the condensed-isotropic phases. We see that 
the equilibrium regime of checkerboard ordering has become 
wider, which is due to the fact that the checkerboard free 
energy is lower than the previously used free energy corre- 
sponding to isotropic structure. The part of the checkerboard 
order which is inside the coexistence curve is of course only 
metastable. 

A different scenario occurs when 1e11-21g2,1 is negative 
(and both e1 and e2 are negative), as can happen for small 
enough b or large enough ePti. From the maximum of the 
structure factor we can anticipate that stripe ordering should 
be preferred over checkerboard ordering. For the stripe 
modulation the preferred k is again 7r so that Q-~ is still given 
by Eq. (53). For the checkerboard the preferred k is now 
given by cos k = - E,/(~E. =(corresponding to wavelengths 
longer than the lattice constant). The values of rc and A, in 
Eqs. (52)-(54) ar e c h anged accordingl?1 so that now we 
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FIG. 5. Phase diagram for the b = K/3 case. The shaded area is a metastable 
stripe phase. The line with squares denotes a first-order transit& between a 
Imetastable) isotropic phase and the stripe phase. Other lines are the same as 
in Fig. 2(B). 

have T~<T~ and A,<&. This indeed means that the free 
energy of stripe order is lower than the free energy for check- 
erboard order (as explained above), and below the isotropic- 
stripe transition line we can find only a  stripe phase,  as an- 
ticipated. This transition can be either first or second order, 
as explained above. 

In Fig. 5, we consider the case stir=0 and b = K/3 [as in 
Fig. 2(B)]. The stripe phase is seen to be stabilized-only in 
a metastable sense-by the bending Hamiltonian with small 
spontaneous curvature. The isotropic-stripe transition is 
found to be purely first order for this case [calculated accord- 
ing to Xz = ( 16/3) 7s S,]; there is no regime of second-order 
transition. But the stripe phase appears between the two spin- 
odals (for condensation) and is entirely metastable with re- 
spect to global condensation; there is no equilibrium stripe 
phase! Of course, this does not rule out the possibility of an 
equilibrium stripe phase for other values of cpair--see Sec. 
VI A. 

VI. DISCUSSION 

A. Estimate of parameters 

So far we have hardly given any direct physical 
estimates”’ for the model parameters b, K, and ePair (or, 
equivalently, for RO, K and $ for Systems of experimental 
interest. An a  priori molecular theory is barely feasible even 
for very simple surfactants and thus is not so attractive. An 
alternative approach is to try to express these parameters in 
terms of other independently measurable quantities, for ex- 
ample, relating them to the elastic moduli describing the 
bending energy of a 2-D surfactant film (in a 3-D space). 
This energy is given by8V’6 kc; , I 

(56) 
B. Lattice and mean-field artifacts 

where k and ke are the mean and Gaussian bending moduli 
(respectively), and Co is the 2-D spontaneous curvature of 

An important problem arising in lattice models, which 

the film. In Eq. (56) we have subtracted kC$2 in order to 
serve to approximately describe continuum phenomena, is 
the question of lattice artifacts. The calculation described in 

obtain the rim energy relative to that of the bilayer. (Note 
that we have used Ru to denote the 1-D spontaneous radius 

the previous section, for example, shows that for sufficiently 
large spontaneous curvature, spatial ordering (“crystalliza- 
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of curvature. The 2-D spontaneous radius of curvature is 
obviously 2/C0 .) Assuming this bending energy to hold even 
for the high curvature associated with the rim, one can use it 
to calculate the energy of an “ideal” disk whose thickness is 
21 and whose diameter (2R) is much larger than its thick- 
ness. Comparing this to a calculation based on the 1-D elas- 
ticity theory given by Eq. (7), we obtain the following rela- 
tions: 

fc=(rr/2)kl, 67)  

(59) 

Note that stability of a 2-D fi1m’6*32 requires a negative k in 
the range -2 k< k< 0. In addition, molecular-level 
calculations33’34 suggest that lkl <k in most circumstances. 

Equation (57) indicates that the length relating the l- and 
2-D bending moduli is a molecular one, as expected. Equa- 
tion (58) simply shows how one can pass from (energetic) 
preference for disks (positive RO) to preference for holes 
(negative Ro), of any size, by either tuning the 2-D sponta- 
neous curvature of a hypothetical film Co or changing k. 
Most important for our estimate is Eq. (59): For (the rather 
large) values of Co corresponding to Co-Z, we see that y is 
negative; for typical values of R, (say, Ro=5Z) y== -d12 so 
that (taking, say, a Ed 2E) Epairw -K2. [This can lead to other 
interesting results, such as ribbon-(rod-)like micellar growth 
and stripe structures, but these will not be discussed here.] 
On the other hand, for smaller, more typical values of Co 
corresponding to Co4111 (and for large, atypical, values of 
k corresponding to ] k] M  k-which can make again a positive 
R ) 

s 
epair is positive and its magnitude is again of the order of 

K . (Obviously, such values of epti can suppress completely 
the checkerboard phase and lead to an early condensation, 
as in the usual Ising case.) This suggests that epati in our 
model can assume in fact any value between --K2 to 
-K’; values of ePti=O (i.e., Ieptij+K2), such as the one used 
for the numerical results discussed earlier, are thus reason- 
able choices for application to experimental situations. Fi- 
nally we note that, in addition to the connections outlined 
above between our lattice Hamiltonian coupling constants 
and I- and 2-D elasticity properties, it should also be pos- 
sible to relate them to the considerations introduced by Is- 
raelachvili, Mitchell, and Ninham6 in their discussion of mi- 
cellar shapes in terms of surfactant volume-to-length ratios 
and relative sizes of molelcular heads and tails. But these 
latter types of argument would require generalization to in- 
chide biaxiality of molecular shapes, in order to account for 
different preferred curvatures along the orthogonal directions 
of micellar surface. 
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tion”) will occur before condensation. Furthermore, the tran- 
sition from the isotropic to the checkerboard phase was 
found to be second order for most relevant (equilibrium) 
regimes: This is because the +3 term vanishes for this par- 
ticular symmetry. However, an off-lattice calculation is likely 
to change this transition to a jirst-order transition between 
isotropic and hexagonal (triangular) phase. The results of our 
lattice-gas model can therefore apply only in a qualitative 
way to real surfactant systems. 

One tentative way to eliminate these lattice artifacts is to 
perform suitable angular averagings. This corresponds to ap- 
proximating the sums in (31) as in, say, the following way 

C m-l4,~-,--C (W-%~q~-q. (601 
9 4 

The structure factor S(~)-‘=(S(q)-‘)B now becomes isotro- 
pic. Following this procedure, we have searched again for 
qmax--the wave number that maximizes S(q)-and have 
found that it is only weakly dependent on c in the range 
O<c<O.5, with all values lying near qmax=4. We have also 
calculated the new disorder line marking the onset of a#rst- 
order transition from an isotropic to hexagonal phase. But 
this calculation cannot be regarded as reliable, mainly be- 
cause all the transition lines (including the coexistence curve 
for condensationj can be quite different for a continuum ver- 
sion of the model. (Recall, for comparison, that hard-core 
disks freeze ofilattice into hexagonal order at ~~0.69-0.73 
and that a closely packed structure is obtained at ~-0.91.~~) 

In addition, we have used here only a combined mean- 
field/Landau-Ginzburg approach, which assumes small con- 
centration tiuctuations. Thus, even within the lattice model, 
exact critical temperatures and transition lines are expected 
to lie at lower temperatures than those obtained here. For 
example, the termination of the transition line from the iso- 
tropic to the checkerboard phase at vanishing concentration 
as T--+0 (see Fig. 4) is evidently wrong. Specifically, one 
expects that this line should reach (as T+O) the critical con- 
centration for random percolation of the checkerboard sub- 
lattice,, which should be at36 c-0.59/2=0.30. 

In principle, one could resort to more sophisticated theo- 
retical tools in studying our lattice Hamiltonian by using, 
say, the quasichemical (Bethe) approximation to calculate the 
free energy. Additional fluctuations, which are controlled by 
the higher-than-quadratic-order terms in the Landau- 
Ginzburg expansion, can be also taken into account follow- 
ing the approach of Brazovskiis7 He used a self-consistent 
“Hartree approximation” to obtain a renormalized propaga- 
tor (structure factor). This renormalization was shown to be 
important in determining the disorder line.37 Indeed, we may 
expect that such a calculation will shift the disorder line to 
negative values of r=?’ Hence the new transition line (from 
isotropic to checkerboard) will lie below the mean-field line, 
and this transition will become first-order. However, these 
corrections cannot make this line cut the T=O axis at a finite 
concentration, as we have just argued that it should. 

Preliminary Monte Carlo simulations3* suggest indeed 
mat the checkerboard phases do not appear until the concen- 
tration is high enough for percolation to occur, i.e., for the 
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FIG. 6. Typical Monte-Carlo configuration from equilibrated 100X 100 sys- 
tem at a temperature of k,T/K2= 1.0 and a concentration (area fraction) of 
0.4. Here K=b, and 1+~=0, as in most of our mean-field examples in the 
text. 

checkerboard clusters to become infinite on one sublattice or 
the other; furthermore, the temperature must be low enough 
for (minimum) disks to remain the dominant micellar shape. 
At a temperature of k,TIK’=OS, for example, and for b= K 
and ~~~“0, the Fourier-transformed density does not have a 
peak at q={m,n;) until the area fraction c exceeds about a 
third. Upon increasing c further one finds coexistence with ti 
bilayer phase, i.e., with “condensed”/“fused” disks which at 
this low temperature have essentially no “holes” or “cracks” 
in them; the relative number of occupied sites associated 
with the bilayer phase increases with c in the usual way 
according to the level ruIe. At slightly higher temperature, 
one sees essentially the same scenario as the concentration is 
increased, but now the dilute phase involves some “fusion” 
of disks since the energy cost associated with having other- 
than-optimum rim curvature becomes more tolerable: Figure 
6 shows this situation for k,TIK2= 1.0 and c =0.4, again for 
b = K and E~~=O. At still higher temperatures (in particular, 
above the critical temperature for the condensation to bilayer, 
tentatively located at k,TIK”=4j, the low-c phases show 
much more fusion (e.g., appearance of ribbons and big disks 
and even some highly ramified mice&r shapes), while the 
high-clbilayer states become riddled with holes and cracks. 

C. 3-D coexistence 

So far the discussion has been restricted to interactions 
and phase transitions in two dimensions. But when one con- 
centrates the smectic-A phase, the system can choose be- 
tween either increasing the concentration within-each layer, 
or decreasing the separation d between layers. The relation 
between the three variables-the total volume fraction of 
surfactant in the system Cp, the in-layer concentration (area 
fraction) c, and the interlayer spacing d-follows from ge- 
ometry: 

c(S/dj=@, iw 
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with 8=2Z the hilayer (disks) thickness. Using freeze- 
fracture experiments (like those reported by Sammon 
et aZ. lo), it should be possible, to a certain extent, to obtain 
diiectly the in-plane concentration. This information can also 
be deduced from x-ray measurements of the interlayer spac- 
ing d as a function of the overall surfactant volume fraction 
ip.s9 Nevertheless, it remains a theoretical challenge to ob- 
tain the 3-D phase diagrams, where the only inputs are the 
composition and temperature. For such a calculation it is 
crucial to know the free-energy density of the (persumably 
repulsive) interaction between layers, which we denote in the 
following as fi”,(c,d>. The total free-energy density is thus 
given by 

f (d .)=f(cj -t-f 3D 1 da int 7 

where f(c) is the free energy per site that was obtained for 
the 2-D model and a is the lattice constant (as before). 

For the condensed bilayer phase one can expect that fi,t 
follows the power law associated with, say, Helfrich undula- 
tion repulsions, which scales as dm3 but is otherwise inde- 
pendent of concentration?’ On the other hand, for the “di- 
lute” checkerboard phase, for example, we expect an explicit 
dependence of the interaction on the in-layer concentration 
c 41 and this can complicate the 3-D phase diagram. In gen- 
e&l, in order to be able to calculate the 3-D phase diagram 
one needs to relate the chemical potential ,X and osmotic 
pressure II in the 3-D system to those obtained in the 2-D 
model (ho and &u/a’). Fist, we note that the thermody- 
namic relation between c and Q, can be determined by mini- 
mizing fxD (d,@) with respect to d at constant @, and using 
the relation (61).42 (This thermodynamic relation42 shows 
that, in equilibrium, the 2-D osmotic pressure has to be equal 
to an effective pressure arising from the interlayer interac- 
tion.) Then, if fi,t is only a function of d, straightforward 
manipulations show that43 p=fi-(LzD (as obviously required if 
the system is in equilibrium) and that the 3- and 2-D osmotic 
pressures are related by 

n2D J-J=;1;;2-fint+~ 2 = -d f$-fint. 
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D. The experimental situation 

In freeze-fracture experiments on decyl-ammonium 
chloride (DACl) systems carried out by Sammon, Zasadzin- 
ski, and Kuzma,” one can clearly see disklike micelles or- 
dered in the lamellar planes, as suggested in the present theo- 
retical study. The authors, however, describe their freeze- 
fracture pictures in terms of a “row’‘-like order, namely 1-D 
order, rather than the 2-D order suggested by our theoretical 
work. It is possible to explain this apparent descrepancy in a 
few ways. First, we note that the real-space pictures and their 
Fourier transforms (e.g., Fig. 2 in Ref. 10) appear to suggest 
a 2-D order. Second, it is possible that the system is not truly 
in equilibrium, which will then account for a (metastable) 
stripe phase. And third, it may be that our choice for the 
parameter cpair (~,i,~K2) is not appropriate to this system, 
although our estimates do imply so. As both experimental 
and theoretical situations are not yet certain, we cannot rule 
out any of these possibilities. In any case, it is quite compel- 
ling that an ordered structure of any kind, involving layered 
disks, is observed, which is itself an interesting and non- 
trivial result. 

VII. CONCLUSIONS 

Recall that we are interested in the possibility of a coex- 
istence between two different (3-D) smectic states, each 
characterized by its own values of interlayer spacing d and 
in-plane concentration c [and hence @--see Eq. (61)]. Ac- 
cordingly, we equate the osmotic pressures of the two 
phases, using the second equality in Eq. (63). If 
-dafi”Jad-.fi,t is monotonic, as in the case of a power-law 
decay (resulting, say, from purely repulsive interactions), this 
equation implies dl = d2, i.e., the two smectic-A phases have 
the same interlayer spacing. Consider now again the case 
where fi”t is only a function of d. Then, since the “3-D” 
chemical potential is equal to the “2-D” one, one can map 
directly the 2-D coexistence curve to the 3-D one. The 
phases seen in the 2-D phase diagram will also appear in the 
3-D one, since the d spacing is not changed through the 
transition. Such calculations are, however, beyond the scope 
of this paper, especially because in practice the explicit de- 
pendence of fint on c must be taken into account. 

In this paper we have studied, for the first time, the ef- 
fects of a line (rim) bending energy, i.e., a curvature- 
dependent-rather than constant-line tension. We have fo- 
cused on the case of nonzero spontaneous curvature, 
mapping the continuous bending Hamiltonian onto a two- 
dimensional lattice-gas model, which has been solved using 
the mean-field approximation and a Landau-Ginzburg ap- 
proach. We have shown that, in the absence of spontaneous 
curvature, the conventional self-assembly condensation to an 
infinite bilayer emerges already at vanishingly small concen- 
trations; this is qualitatively the same result obtained by us- 
ing a bare (noncurvature-dependent) line tension. However, 
for large spontaneous curvature, this condensation is post- 
poned to significantly larger concentrations and can even be 
preempted by freezing of the disklike aggregates into an or- 
dered structure. The calculation described in Sec. V suggests 
in particular that the disklike phase would freeze into a 2-D 
ordered structure, exemplified by a checkerboard modula- 
tion, before ultimately condensing into an infinite bilayer 
phase. This is a highly nontrivial scenario which merits fur- 
ther investigation. Simulations to test the predictions made 
herein are currently underway.38 
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