Let f=f(c; =0,c =0, x = 1/2, a = a(0)) denote the free energy per molecule
in the planar symmetric bilayer. We assume that this is the equilibrium state of the
membrane, an assumption which may be removed later on. Consider now a small
bending deformation in which the mid-plane area A(0) = Na(0) remains constant.
This defines the mid-plane as the ‘surface of in-extension’ (or the neutral surface).
Let

of = f(cl,cz, 1/2,a(0)) — £(0,0, 1/2,a(0))

denote the free energy change associated with the deformation. Transforming, for
convenience, from ¢y, ¢; to the ‘sum’ and ‘difference’ curvatures ¢, = ¢; + ¢, ¢ =
¢ — ¢, we find that, to second order in ¢y, c_ and y, the free energy change (per
unit area) can be expressed in the form

Laf—lnc2+lg(c2c2)+l,\( 1>2+w( 1)(; (32)
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The expansion coefficients, representing elastic moduli of the membrane are de-
termined by the appropriate second derivatives of §f, see below. The curvatures
appearing in (32) are measured at the mid-plane. Since §f is symmetric with respect
to ¢j,co — ¢2,¢1 (¢ — —c_) the expansion cannot contain a linear (or any odd)
term in c_.

The choice of the mid-plane as the neutral surface, allows to express the free
energy change associated with an arbitrary curvature-area deformation as a sum of
a stretching term of the form (23), and a bending term of the form (32), without a
‘mixed term’ ~ (a—a(0))(c; +c2). The choice of the neutral surface enters, implicitly,
into the definition of the elastic constants. The coupling between stretching and
bending elasticities of membranes is a rather intricate issue involving, apart from the
choice of the neutral surface (or surfaces), a careful specification of the conditions
under which the deformation takes place [15-19, 92-96].

The constant A appearing in the third term of (32) is closely related to the area
compressibility modulus «, defined in (22). This follows from the fact that a change
in x at constant area and curvature, corresponds to changing the head group areas
in the two monolayers. A simple relationship between x, and A can be derived if
the bilayer is treated as two independent monolayers: For ¢; = ¢; = 0, we have

X = xa = a(0)/2ax, xs =1 —x = a(0)/2ay,
cf. (27). Thus,
5x = (¢ — 1/2) = ~ [a(0)/202]8a, = —(1/2)(6a/ar)

since at equilibrium a, = a(0) = ag. Thus, comparing the expressions for §f
obtained using (23) and (32), we find

A >~ 4dagk,. (33)



measured by x, may be coupled to the change in the bilayer curvature. A change in
x in the course of a curvature fluctuation may be due to lateral diffusion of molecules
within each monolayer (into and out of the section of bilayer under discussion).
Another, much less likely, mechanism on the time scale of membrane fluctuations,
is a ‘flip-flop’ exchange between the monolayers [15-19]. There are cases, e.g.,
when the hydrophilic head groups are chemically polymerized, that the exchange
is ‘blocked’ and x is a constant, independent of ¢i,c,. The opposite limit of ‘free
exchange’ corresponds to the case where x adjusts freely to the momentary curvatures
so as to minimize & f. Thus, generally, one can treat x as a function of ¢; and ¢,
which to first order in ¢y, ¢; is a function of ¢y = ¢| + ¢ since
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with the derivative evaluated at the planar geometry, and with the second equality
serving as the definition of n. (In passing to the second equality we made use of the
fact that for a laterally isotropic bilayer (0x/0c;) = (0x/0cz) = (0x/0cy).) nis a
dimensionless concentration-composition coupling parameter which depends on the
mode of deformation.

Using (34) we rewrite (32) in the form

Lgf:

20) % mci + R(czL — cz_) (35)

=

with the rescaled bending constant
1
K = Kp + wdn + 5 Ad?n?. (36)

The special case of ‘blocked exchange’ corresponds to n = 0, cf. (34), and hence
Kk = Kp. The minimum value of x as a function of n, corresponding to ‘free exchange’,
is obtained when 1 = —w/Ad, in which case

K= Kp — w2 /2 (37)

A third special case of interest corresponds to a bending deformation during which
the areas per head group, at both interfaces, remain constant a, = ap = a(0). In
this case, 6f ~ Jf; is due, almost entirely, to (‘splay-like’) chain conformational
distortion. Using (27) we see that, to first order, a, = a(0) implies x —1/2 = dec, /4,
corresponding to = 1/4 in (34).

A more general form of the deformation free energy, allowing for the case that the
planar bilayer is not the equilibrium geometry (but still serving as a reference state)
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with the second equality expressing the familiar Helfrich form [15-19]. The last
term ensures that § f = 0 for the planar bilayer. Note that the y dependence of ¢ f
is absorbed into k. The constants x, & and ¢y are the familiar splay modulus, saddle
splay modulus and the spontaneous curvature [15-21]. As is well known, and easy
to show, the equilibrium curvatures are given by

cl=c' = =} /2= ke /(26 + F), et =0

Thus, ¢®*1 = ¢y = 0 is the equilibrium condition for the planar bilayer. Thermody-
namic stability requires that k > —k/2 > 0.
From (38) it follows immediately that
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with all derivatives evaluated at the planar geometry, ¢ = c_ = 0 (¢ = &2 = 0).

Notice that f = f(cy,c_) is treated here as a function of ¢, and c¢_ only; the y
dependence has been absorbed into f through (34).

3.2.3. Molecular theory

Application of the general thermodynamic relations (39)—(41) to the tail free en-
ergy fi, as given by (30), yields explicit expressions for the chain contribution to
the curvature elastic constants. After some algebra, involving the use of (11) for 24
and (25 and of the packing constraint (31), one finds [37]

Key = / m(2)zdz, (42)

R / ae (il i (43)



the tails contribution to the elastic constants (which is the contribution explicitly
considered here) comes from —d/2 < z < d/2. By extending the integrals to the
aqueous regions one obtains also the interfacial (head group repulsion and surface
tension) contributions to the xcy and & (see below). Similarly so for the integrals
appearing in the expressions for x as outlined next.

The expression obtained for x (using (39) and (30)) involves three terms[37]:

K:—/(a—ﬂ-) zdz—lnd-/(a—ﬂ->zdz
et /5 2 (0)%
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with all derivatives evaluated at the planar geometry, c;,c— = 0, and it should be

noted that the derivative appearing in the first integrand is evaluated for a bilayer
with constant ‘composition’ x. The three terms in (44) correspond, respectively, to
the three terms in (36). The first and third terms, representing xp, and \d*n?/2 are
positive, while the second (‘coupling’) term is negative. This follows from the fact
that upon increasing ¢ (at constant y) the area per molecule increases for z > 0
and decreases for z < 0, implying that (07/0dc; ), is negative at z > 0 and positive
at z < 0. Similarly, upon increasing y = xa at constant curvature (c. = c_ = 0)
the area per molecule decreases (7(z) increases) in the upper monolayer (z > 0),
and increases (lower 7(z)) in the lower monolayer. Thus the second integral in (44)
is obviously positive. The third is positive because (¢pa(z)) — (¢p(z)) is positive at
z > 0 and negative at z < (. It should be noted that &, unlike %, is independent of
n, 1.e. independent of the mode of deformation [37].

Analogous expressions to (42) and (43), with o(z) = —7(z), representing the
stress profile in the bilayer, have originally been derived by Helfrich based on
thermodynamic-mechanical considerations [17]. (Equation (44) was derived in [37]
and a similar expression in [97].) In Helfrich’s expressions the integrations extend
from —oo to +oo and thus include the contributions to the elastic constants arising
from the interactions prevailing in the interfacial region, f, + fs in our notation.
The integration limits in (42)—(44) can be extended similarly, provided we inter-
pret w(z) = m(z) + 7s(z) + mn(z) as a sum of tail, surface tension and head group
terms [19]. m(z), defined between —d/2 and +d/2, is the chain lateral pressure
appearing in (10) and (11). For f;, using again the simple form (3) we should set

m(2) = —va,0(z — d/2) — yagd(z + d/2),
with a, and ag given by (27). Similarly, the simple model (4) for f, implies

m(z) = (C/a%)8(z — d/2 — 8) + (C/ar)8(z + d/2 + 3),



interface; a, is given by (27) with d replaced by d/2 + 5.

Although we have so far been explicitly concerned with single-component and
symmetric (y = 1/2) bilayers, it should be noted that (42)—(44) apply just as well to
mixed and/or non-symmetric systems. The composition and concentration dependen-
cies of k, & and cg enter through the 7(z) profile. The lateral pressure w(z), in turn,
is dictated by packing conditions of the form (31) which can easily be extended to
mixed bilayers. The only assumptions here are that the compositions (but not neces-
sarily the head group areas) and the (random) lateral distributions in each monolayer
are not allowed to vary in the course of a curvature deformation. Including these
variables as additional degrees of freedom (thus also allowing for lateral segregation
in each leaflet), would result in additional terms in (44).

From (42) we see immediately that for a symmetric bilayer, where 7(z) = n(—=z),
the equilibrium curvatures are ¢! = ¢4 = ¢y = 0, as expected. Using (43) one
can evaluate the saddle-splay constant, &, using the lateral pressure profile m(z) of
the planar bilayer. Numerical calculations of &, the chain contributions to &, reveal
that it is negative [37]. Its magnitude, ||, increases moderately (roughly linearly)
with chain length, n, and decreases very steeply (~ o~ with b ~ 10) as the area
per chain, a, increases (lower m(z)). Typical values of |7, ¢.g., when a ~ 30 A2,
range from ~ 3kT for n = 8 to ~ 20kT for n = 16. In a mixed bilayer of,
say, Cs and C¢ chains, k¢ varies roughly linearly with composition. The surface
tension contribution to < can be estimated using (29). From (29) and (38) we get
Rs = yd? /8 = y1*(n/a)? /4. (At equilibrium, as noted in section 3.1, a ~ nY, hence
ks ~ n* 9, with g ranging between 0 and 1/3.) For n ~ 16, a ~ 30 A? and
y o~ O.l.lﬁT/A2 one finds d ~ 30 A and thus &s ~ 10&T, comparable but smaller
than —g&;. Ignoring Ry, one finds & = R; + ks ~ —10kT. As noted above, —& is
expected to decrease steeply as a increases. Under certain conditions &£ may become
positive, violating the bilayer stability condition and favoring spontaneous saddle-like
structures [20, 21, 92-94]. It should be noted, however, that all model calculations of
k reported so far, including the above, involve considerable uncertainties, reflecting
the high sensitivity of the results to the details of the molecular model used (especially
for head group interactions [19, 84]). The estimates of the splay bending constant,
k, or more precisely its tail component x; seem more reliable.

The bending modulus, x, can be calculated using (46). The curvature and con-
centration derivatives of m(z) appearing in this equation can be evaluated by solving
(numerically) a set of integral equations containing these derivatives, which are ob-
tained by differentiation of the packing constraint (1.31). Additional details are given
in [37].

Figures 5 and 6, both taken from the work of Szleifer et al. [37], show two sets
of calculated (chain part, s of) x for three types of bending deformations. Figure 5
demonstrates, for a pure bilayer composed of Cj¢ chains, how x varies with the
average area per chain, a(0) (= a in the planar geometry) for the three modes of
bending deformations mentioned in connection with (36): a) ‘Blocked exchange’,
corresponding to n = 0 in (36) and (44), in which case x = 1/2 is constant and
Kk = Kp 1S maximal, since no concentration relaxation (e.g., via lateral diffusion)
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Fig. 5. The chain part of the bending modulus as a function of the average area per chain (in the planar
bilayer). a), b) and c¢) correspond to: blocked exchange, constant area and free exchange deformations,
respectively [37] (see text).
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Fig. 6. The chain part of the bending modulus as a function of chain length (dashed lines, upper scale),
and as a function of the short chain fraction X in a mixed bilayer of Cg and Cj¢ chains (full lines,
lower scale) [37]. The three cases considered are the same as in fig. 5 (see text).

accompanies the bending deformation; b) ‘Constant area’ deformation. In this case
x changes in the course of the deformation, ensuring that a, = ap = a(0) stays
constant at all curvatures. As noted earlier this deformation mode corresponds to
n = 1/4. Physically this special case is characteristic of a bilayer in which the
equilibrium area per head group is fully governed by the balance between head
group repulsion and surface tension (i.e. by 7, and 7 in (21), implying ag = ay),
with the chains adjusting to the area prescribed by the interfacial interactions. c) ‘Free
exchange’, in which case x adjusts freely at each curvature, so as to minimize s
(more precisely, (). Here k = rkp—w? /2, cf. (37). In all cases « increases steeply as
a decreases (below a ~ 30 A?), reflecting the strong increase in the magnitude of the



approximate scaling argument, explaining qualitatively the a and n dependence of
is given below). For typical values of the area per chain in phospholipid bilayers,
a ~ 30—35 A2 (~ 60—70 A2 per head group of doubly chained lipids), the results in
fig. 5 show that for C'4 chains k. varies between ~ 70kT in case (a) to ~ 3kT in case
(c). These estimates should be regarded as lower bounds to x, since the calculations
do not include x, — the head group contribution to x. (The surface term, at least
according to (29), is negligible.) Estimates of xy, based on electrostatic or excluded
volume interaction models, are typically on the order of few k7', or less [81-85]. For
bilayers composed of (or containing) short chains (see below), or at relatively large
head group areas, this contribution to x can be most significant, especially in the
case of free exchange. Typical experimental values of x for phospholipid bilayers
are ~ 10-50kT, [15-19, 22-27]. Considerably smaller bending constants, x ~ 1kT",
were measured for bilayers containing short chain amphiphiles [28, 29], or ‘bola’
lipids [25-27]. A possible explanation of these observations is provided by chain
packing considerations, as outlined next.

Figure 6 displays the variation of x = k; with the amphiphile chain length
(n = 8-16), for a fixed value of the average area per chain in the planar bilayer,
a =31.6 A2, Also shown in this figure is the dependence of x on the mole fraction
of short chains in a binary bilayer of randomly mixed C)¢ and Cg chains. In the
latter calculation the composition (Cg/C|¢ ratio) is the same in both monolayers, and
is not allowed to change as a function of curvature. As in fig. 5, the three modes
of deformation considered are: a) Blocked exchange; b) Constant area, and c¢) Free
exchange. In all cases corresponding to the single-component bilayers, ~ rapidly
decreases with n, approximately according to x ~ n® (a ~ 3), reflecting mainly the
increase with n in the range (—d/2 < z < d/2) over which 7(z) > 0. The addition
of small amounts of short chains (Cg) to a bilayer composed of longer chains (Ci¢)
leads to a more dramatic lowering of x, in qualitative agreement with experiment
[25-29]. This behavior reflects the substantial decrease of m(z), or more precisely
of the range over which =7 (2) is large, attendant upon the addition of short chains to
the membrane, as illustrated schematically in fig. 7. The addition of short chains of,
say, ng segments relieves much of the lateral stress on the last ~ n; — ng segments
of the long chains, i.e. those which need not compete for the available volume with
the short chains.

The conclusions derived from fig. 5 regarding the n» and x dependence of x should
be subjected to the assumption that a(0) = a is the same in all cases considered.
However, this is not necessarily the equilibrium area per chain ag (in the planar
bilayer) for all cases. Although we have concluded that a( varies only weakly with
n, this dependence may be amplified in « due to the strong dependence of x on a,
cf. fig. 5. Suppose k ~ n®/a” and ag ~ n9 then, at ag, £k ~ n” with v = a — 3g. A
simple model, outlined below, suggests a ~ 3 and 3 ~ 5 (the numerical calculations
suggest 5 ~ 7 [37]). We have concluded earlier that ¢ varies between 0 and 1/3,
hence v may be as low as 4/3 (or even 2/3 if one uses 3 =7) if g = 1/3, i.e. if qp is
determined only by the balance between chain repulsion and surface tension while
head group repulsion is negligible. In this case the lowering of s by the addition of
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Fig. 7. Schematic illustration of the lateral pressure profile in a single component bilayer (left), and a
mixed bilayer of short and long chains. Note the decrease in the bilayer thickness, and the decrease in
the tail contribution to w(2).

short chains is also expected to be less dramatic. Indeed, recent calculations of x for
a monolayer of diblock copolymers (where only chain repulsion is relevant) suggest
that for a mixture of symmetric diblock chains s varies approximately linearly with
composition [98].

We close this section with an approximate scaling argument which, based on a
simple ‘compressional model’ [36, 99], can explain qualitatively why and how x
increases with n and decreases with a. Consider a cylindrical deformation (¢; =
¢, ¢ = 0) of a symmetric planar bilayer, with a(0) = a¢ denoting the average
area per head group in the planar geometry. From (39), for this deformation, x =
(1/ag)(@*f/9c?). Suppose for concreteness that the bending takes place under the
condition of blocked exchange. Upon bending the bilayer, the average area per head
group in the ‘outer’ (convex, A) monolayer changes from ag to

a, = ag(1 + cd/2) = ap(1 + clo).
Similarly,

ag = ag(l — cd/2) = ag(1 — cly)
with d/2 = ly = v/ay ~ n/ay denoting the average chain length in the planar bilayer.
As in section 3.1, let I, ~ n'/? denote the average length of the ‘free’(unstretched)

chain. Then, f ~ (lo/l.)? is the free energy per chain in the planar geometry (f = f,).
In the curved geometry the average chain lengths are given by

ZA = l()a()/a,A = l()(l — Cl())
and

lB = l()CL()/OLB = Io(1 + clg).



5F = (5f5+8£5)/2 ~ [(1a/1e)* + (Ig/1e)* = 2(10/1c)’]

2
= (lo/lc) 15 ~ (n3/a3)cz.
Hence (the tail part of) the bending constant is

K= (1/a0)(azf/ac2) ~n?/a3.

The arguments given above are obviously rather crude since a bending (splay)
deformation involves a change in the average shape of the chain (from a ‘cylinder’ to
a ‘truncated cone’) and not only in its average cross sectional area. Notwithstanding
this proviso, the approximate model can be used to derive a simple relationship
between x and the area compressibility modulus «, defined in (23), (hence the term
‘compressional model’). For the cylindrical deformation,

da, = a, —ag = apcly
and
dag = ag — ap = —agpcly.

Now, using (23) for each of the two monolayers, and noting 2x, (monolayer) =
r, (bilayer) we find

of = (5fA + 5fB) = K:Aa()l%cz/fz = kagc? /2

with the last equality expressing the bending energy for cylindrical deformation. We
thus find x, ~ x/I} and hence r, ~ n/a} since ly = v/ag ~ n/ay.

4. Lipid-protein interaction

The presence of a rigid hydrophobic solute, such as an integral protein or a choles-
terol molecule in the membrane, introduces additional boundary conditions on its
lipid environment — beyond the usual packing constraints prevailing in the ‘unper-
turbed’ (solute-free) membrane. The rigid solute, say the hydrophobic part of a
trans-membrane protein, restricts the conformational freedom (entropy) of the lipid
chains surrounding it. Furthermore, if the hydrophobic thickness of the protein, d,,
is different from that of the lipid bilayer, d?J, then neighboring lipid chains should

stretch out (if dp > d7) or compress (if d, < d7), in order to minimize the con-
tact area between hydrophobic groups and the surrounding aqueous solution. These
and other factors, such as the detailed shape of the protein, differences between the
‘hydrophobicity’ of the lipid chains and the protein amino acid residues, and the



the nature and the extent of the lipid-protein interaction free energy.

The importance of lipid-protein interactions in controlling the biological activity
of certain membranal proteins and in modifying the physico-chemical properties of
biological membranes [41, 47, 100—102] has motivated the development of many
theoretical models of these phenomena [40-60]. Some of these models are based on
Landau-type expansions of the interaction free energy, with the ‘hydrophobic mis-
match’, dp, — dg, or related quantities serving as the thermodynamic order parameters
in the free energy expansion [40, 41, 43-46]. Other authors have formulated con-
tinuum models, of the kind used in the elastic theory of (smectic) liquid crystals,
representing the influence of the protein [54—-56] by additional boundary conditions.
There are also some computer simulation studies [57-59]. Only a few theoretical
studies have addressed the issues of lipid-protein and lipid mediated protein-protein
interactions from a molecular, statistical thermodynamic, approach. The latter in-
clude the seminal, mean-field, approach developed by Marcelja (for the case d, = dg)
[42], Pink’s ‘ten-state model’ [48] and the ‘mattress model’ of Mouritsen, Bloom
and coworkers [41, 50, 51] which has been extensively applied to a variety of issues,
notably to investigate the role of the hydrophobic mismatch in membrane phase tran-
sitions. Several comprehensive reviews of the theoretical approaches to lipid-protein
interaction are available [40, 41, 100], and there is no reason to repeat their analysis
here. Thus, in this section we focus attention on one very recent and rather simple
model [60] constituting a natural extension and application of the concepts developed
in the previous sections.

4.1. The model

As in most previous models of lipid-protein interaction the protein is treated in this
model as a smooth and rigid solute embedded in the bilayer hydrophobic core, as
illustrated schematically in fig. 8. For concreteness, the hydrophobic part of the
protein may be envisioned as a cylinder of height d, and radius R > a(l)/ 2, with
ag denoting the average area per chain in the unperturbed bilayer. Thus, to the
lipid chains surrounding it, the protein presents an essentially flat and impenetrable
wall. The protein and the lipid chains are assumed to have similar hydrophobicities,
so that lipid-lipid and lipid-protein attractions are the same. Interactions between
the lipids polar heads and hydrophilic groups of the protein are not included in the
model. Consequently, the lipid-protein interaction free energy is due entirely to the
boundary conditions on lipid conformational freedom imposed by the protein wall,
and (when d, # dg), to the elastic deformations of lipid chains associated with the
adjustment of the bilayer thickness to that of the protein.

Let d, (x) denote the bilayer hydrophobic thickness at distances = from the pro-
tein. The condition of hydrophobic matching at the lipid-protein interface requires
d, (x = 0)=d,, see fig. 8. The decay of d| (x) to the unperturbed bilayer thickness,

d; (z — oo) = d}, is assumed to be exponential

dy () = d) + (dp — ) exp (—z/£) (45)
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Fig. 8. Schematic illustration of the lipid-protein interaction model. Negative hydrophobic mismatch
(left) results in bilayer compression and hence an increase in the average area per lipid head group near
the protein. Positive mismatch results in chain stretching in the vicinity of the protein [60].

with £ denoting the ‘coherence length’ of the perturbation. (The range of the pertur-
bation is ~ 3£.) The model treats £ as a variational parameter, determined by mini-
mization of the lipid-protein interaction free energy AF. The exponential form (45)
is predicted by the phenomenological (Landau-type) models of lipid-protein interac-
tion. It should be mentioned, however, that other functional forms for d; (x) have
been inferred by other approaches [53—56]. The model described here is not capa-
ble of predicting the analytic form of d, («), so that (45) should be regarded as a
convenient reasonable parametrization.

Unlike the case of uniform bilayers, the presence of the protein implies that lipid
molecules anchored at different distances from the protein are characterized by dif-
ferent conformational properties and, when d, — dg # 0, by different head group
densities. Accordingly, the free energy per molecule,

@) = fi(x) + ful@) + fs(z) (46)

is now a function of x. The three terms on the right hand side of (46) describe, as
in (1), the tail, head and surface contributions to f.



wall) and length L along the z direction; both Ly and Ly are taken to be large
on a molecular scale, say Ly > a!'/? and Ly > & (As we shall see below, ¢ is
typically of the order of several molecular diameters, i.e. £ is several times larger
than a!'/?). Let dNao = o,(z)Lydz denote the number of chains anchored to the
upper, A, interface, within the distance interval z,z 4+ dz. dNp = ogz(x)Lydz 1s
the number of chains originating, within the same interval, from the lower interface.
Using dV(z) = d; (z)Ly dz to denote the volume of the membrane ‘slice’ Ly dz, we
find oy (x) + 0, (x) = d (x)/v, with v denoting the volume per chain. In a symmetric
bilayer,

o, (@) = op(x) = o(x) = d (x)/2v.

For x > &, o(x) - 09 = dg /2v = 1/ay. Note however that, whenever d? £ dp the
interface is curved and, for small =, o(x) # 1/a(x), where a(x) is the Ifocal head
group area, see below.

The free energy of the lipids in the above slab, per unit length of the protein wall
(i.e. the free energy divided by Ly) is given by

F = / [O’A(HZ)fA(SU) + JB(a:)fB(a:)} dx = Z/J(LU)f(ﬂ?) dx (47)

with the second equality holding for symmetric bilayers. Equation (47) can be
generalized to the case of mixed lipid bilayers, by adding the contributions of the
different molecular species, and by adding a (z dependent) mixing entropy term.
This is an interesting case, especially because of the possibility of protein induced
lipid demixing, i.e. enhanced concentration of one (or more) species in the vicinity
of the protein. However, for the sake of simplicity the following discussion will be
limited to symmetric, single component, membranes.
The lipid-protein interaction free energy is defined by

AF=F_—F'=2 / o(@)| f(z) — f°] da (48)

with f® = F¥/2N denoting the free energy per molecule in the protein free bilayer;
1O =f (@ = o0).

By a straightforward generalization of the phenomenological models for f;, and f
from section 2.1, we obtain

o T2
fs(x) + fu(x) = va(z) + C/a(z) = va(z) {1 — Iﬁ;) } + const (49)

with C' = vai. The average local area per head group, at distance = from the protein,
is given by

1/2

2v dy (z) \ 2
a(x) = 4@ [1 + ( 5 ) ] (50)
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The local chain free energy is given by

flw) = Pla;z)e(e) + kT Plo;z)In P(a; x) = e(w) — Tsi(x) (51)

with P(«; z) denoting the local singlet distribution of chain conformations. Again,
the ‘actual’ P(a;x) can be determined through minimization of

F=2 [ o(2)f() d

subject to the relevant packing constraints on {P(«;x)}. In formulating these con-
straints it should be noted that, unlike the case of an unperturbed bilayer, here the
system, and hence the singlet distribution, is not invariant to translations in the zy
plane but, rather, only to translation along y.

Let p(R) denote the chain segment density at an arbitrary point R=X,Y,Z
within the hydrophobic interior of the bilayer. As usual, we assume that the segment
density is uniform and liquid-like throughout the hydrophobic core: p(E) = p = 1 /v,
where v is the specific volume per segment in a bulk liquid hydrocarbon. Again,
p(E) = p can be expressed in the form of a packing constraint on {P(a;x)}. It
should be noted that the density at E involves contributions from all chains, on both
interfaces, which are within reach of this point. It is not difficult to show that the
appropriate form of the packing constraint for a symmetric bilayer (of width Ly = 1
along the y axis) is

f o(x) Y Plo;z)[¢ale, S;2) + dpla, S32) do =p  (all S). (52)

In this equation S = X, Z denotes an arbitrary point in the zz plane of the membrane.
da(a, S;x)dS/v is the number of segments belonging to a chain in conformation
«, anchored to the A interface at distance = from the protein, whose X, Z coordi-
nates fall within the small area element dX dZ around X, 7 (regardless of their Y
coordinates).

The minimization of F; subject to (52) yields

P(a;x) =

1 . . ﬂ
exp | = ete) = 8 [ NShia, S04 (53
Az)
with {A(g)} denoting the set of Lagrange parameters conjugate to (52). Their values

are determined, as usual, by substitution of (53) into the packing constraints (52)
and solving, numerically, the resulting self-consistency equations. The numerical



because the number of equations that need to be solved is bigger: the X Z plane is
now divided into many ‘boxes’ AX AZ, rather than into several ‘layers’ of thickness
AZ. Second, because the segment density in box AX AZ collects contributions from
(non-equivalent) chains originating at several different points x. Nevertheless, these
calculations can easily be performed using ordinary work stations.

Using (47) and (51)—~(53), one finds

Fy = —2kT / o(z)In 2(z)dz — p f M S)dS. (54)

This, as well as all previous equations in this section reduce to those of the unper-
turbed bilayer when P(«;x) = P(«) and o(x) = o are independent of .

4.2. The role of hydrophobic mismatch

As in section 2, the expressions derived in section 4.1 can be used to calculate both
single chain (conformational) properties and thermodynamic functions of interest.
Some of the qualitative conclusions can easily be explained by reference to fig. 8. For
instance, in the immediate neighborhood of the protein the calculated orientational
order parameters reveal enhanced orientational order when d, > dg and a lower

degree of orientational order in the case of negative hydrophobic mismatch, d, < dg.
This, obviously, is a direct reflection of the enhanced chain stretching in the former
case as opposed to chain compression in the latter. These results are consistent with
experiment [11]. It has been suggested, based on qualitative theoretical consideration
and various experimental observations, that the chains in the vicinity of the protein
should show a finite tilt angle of their ‘director’ (the average end-to-end vector) [10].
The results obtained from calculations based on (53) confirm this prediction revealing
also that the tilt angle is small when d;, > d° and relatively large when d,, < d.

A finite tilt is also observed when d, = dg, resulting from chain repulsion by the
protein wall [60].

Figure 9, taken from the work of D. Fattal [60], shows the results obtained for
the lipid-protein interaction free energy as a function of the hydrophobic mismatch
dp — dOL, for a membrane composed of (saturated) C}4 chains. The asymptotic area

per chain in these calculations is ag = 32 A, corresponding to an area per head group
of 2ap = 64 AV if the bilayer is regarded as composed of double-chain lipids. The
hydrophobic thickness of the bilayer corresponding to this value of ay is dg ~24.5A.
The two curves shown in fig. 9b correspond to two different choices of the interfacial
interaction parameters: v = 0.12kT /A2, a, = 20 A2 and v = 0.08kT/A2, a = 0
(no head group repulsion); both choices yield ag =2 32 A2 for the equilibrium head
group area in the unperturbed bilayer.

The results show that AF' is minimal around d, — dOL ~ 0, yet AF' > 0 even if the
hydrophobic thickness of the lipid and the protein match exactly. In the latter case
(al0 = dp) the head group and surface tension components of AF are zero and, hence,
AF is due entirely to chain distortion. The major contribution to AF' in this case is
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chains in the immediate vicinity of the protein wall. This follows from the fact that
many of the conformations « available to the chains in a protein free bilayer become
forbidden once they are anchored near the protein; namely, all those conformations
which ‘penetrate’ into the protein region. The lipid-protein interaction free energy
for a system characterized by dg = dp, has originally been studied by Marcelja [42].
The conclusions are similar.

A qualitative explanation for the increase of AF with the hydrophobic mismatch,
|dp —d |, is provided by the schematic illustration in fig. 8. When d;, > d the chains
in the vicinity of the protein are highly stretched, losing more of their conformational
entropy, in addition to the loss implied by the presence of the wall. Thus, AF(d, >
dey AF(d, = dOL). As the chains are stretched their average cross sectional area,
1/o(x), decreases. However, since the interface is curved, the decrease in a(x)
and, consequently, the change in AF}, + AF; is marginal, see fig. 9a. Hence, for
dy dg, AF ~ AF, ~ —TAS; [60]. On the other hand, when d, < dg, the bilayer is
compressed (in the vicinity of the protein), implying an increase in the average cross
sectional area per chain (1/0(x) > 1/0¢9 = a¢) and an even larger increase in the
interfacial area per head group, a(z) > 1/o(z) > ag. Thus, the chains recover some
of their lost conformational disorder: AF(d, < dg) < AF(d, = dOL). However,
this gain in the tails free energy is generally over-compensated by the concomitant
increase in the surface free energy AF;. (AF;, decreases, but to a considerably lesser
extent. Note, though, that strong head group repulsion may shift the minimum of
AF to a slightly negative dp, — d‘ﬂ value, as shown in fig. 9 by comparing the curves

for ay, = 20 A? and ap = 0.) These trends are confirmed by the results shown in fig. 4
for the planar bilayer. Namely, when a increases beyond the equilibrium value ay,
the tail free energy decreases rather slowly, whereas the surface tension contribution
increases linearly with a. Thus, for d‘ﬁ > dp,, the excess lipid-protein interaction free
energy is due, mainly, to the increase in AF;, see fig. 9a.

For all the data points shown in fig. 9 the value of ¢ has been optimized by
minimizing AF'. It turns out that in all cases, the range of the perturbation (~ 3¢)
is around 10-20 A, corresponding to only a few molecular diameters. This re-
sult suggests that a microscopic, molecular, approach to the problem may be more
appropriate than a phenomenological continuum theory.

In view of the relatively small number of lipid molecules affected by the pres-
ence of the protein, detailed molecular dynamics or Monte Carlo simulations of
lipid-protein systems seem feasible. Considering the highly specific nature of lipid-
protein interactions, simulation methods seem also to constitute the most appropriate
approach to this problem. Only very few studies of this kind have so far been
published [57, 59].

The model outlined in this section can be extended to bilayers containing a mixture
of lipids, and to other shapes of hydrophobic proteins or other solutes. One interesting
system which can be studied using the above methods is a lipid-cholesterol bilayer.
On the other hand, as far as lipid-protein systems are concerned, it should be kept in
mind that only few proteins can be regarded as simple, rigid, hydrophobic solutes.
Furthermore, the model described above, like most previous models of lipid-protein



to other, more general and possibly more interesting, systems. In view of this fact,
the model should be regarded as a small step towards understanding the intricacy of
biological membranes.

5. Concluding remarks

Biological membranes, the subject matter of this volume, are extremely complex
physico-chemical systems, not to mention their biological aspects. Even the ‘model’
amphiphilic bilayers, which have been considered here and which serve to mimic real
membranes are also very complex many-body systems. In addition to their biological
relevance, these systems are interesting and challenging theoretically, due to the spe-
cial coupling between their microscopic and macroscopic behaviors and due to their
self-organizing characteristics. Most of the relevant information on either biological
or model membranes is, naturally, experimental. Nevertheless, the various theoret-
ical models, ranging from highly qualitative phenomenological pictures to detailed
molecular dynamics simulations also contribute to the understanding of their intricate
nature. In this chapter we have outlined an intermediate approach to certain issues
pertaining to lipid bilayers. Namely, a mean-field theory which takes into consider-
ation some of the basic molecular interactions governing molecular organization in
lipid bilayers but treating approximately the cooperative, thermodynamic, properties.
As we have seen, the mean field approach is capable of predicting quite well certain
single-chain properties (e.g., bond orientational order parameter profiles), as well as
some thermodynamic-mechanical trends, e.g., the role of short chain amphiphiles in
reducing the bending rigidity of bilayers.

Undoubtedly, in the near future computer simulations will become increasingly
more detailed, reliable and efficient, and will yield relevant information on membrane
structure and dynamics. However, computer simulations can not come up with the
ultimate answers to all the interesting issues. For instance, it is hard to imagine,
at least presently, a series of comprehensive molecular dynamics simulations of
a mixed bilayer at different curvatures, performed in order to derive the bending
modulus of the membrane. Also, in computer simulations one studies one set of
parameters at a time. On the other hand, analytical theories, such as mean field
models, often provide the explicit parameter dependence. Furthermore, mean field
theories may also be useful in suggesting which parameters and conditions should
be studied via simulation. Thus, there is still room and need for elaborating upon the
existing approximate approaches. A major improvement towards this direction would
be to treat, simultaneously, and on equal grounds the interactions governing chain
organization within the hydrophobic region and the electrostatic and/or excluded
volume forces prevailing at the membrane interface. As noted earlier, some work
along this line has already been published and more work is in progress.
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