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Abstract 

This article describes briefly several applications of a molecular theory of lipid organization in 
membranes to systems of biophysical interest. After introducing the basic concepts of this mean 
field theory we outline three of its recent applications, i) Calculations of lipid chain conformational 
statistics in membrane bilayers, and comparison of the results (e.g. bond orientational order 
parameters) to experiment and molecular dynamics simulations. Good agreement is found, ii) 
A molecular model for lipid-protein interactions, which explicitly considers the effects of a 
rigid hydrophobic protein on the elastic (conformational) properties of the lipid bilayer. We also 
analyze the role of the 'hydrophobic mismatch' between the protein and lipid bilayer thickness. 
iii) A molecular level calculation of the vesicle to micelle transition, attendant upon the addition of 
( 'curvature loving') surfactant to a lipid bilayer vesicle. Future applications, e.g. to the calculation 
of the free energy barriers involved in membrane fusion are briefly mentioned. 

1. Introduct ion  

In this lecture we outline a mean field theory of lipids in membrane bilayers and 

demonstrate some of its recent biophysical applications [ 1,2]. The central quantity in 

this theory is the singlet probability of lipid tail conformations, which we derive by 

minimizing the system free energy subject to packing constraints on the lipid conforma- 

tional statistics. These packing constraints can be expressed in a simple mathematical 
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form, based on the assumption that the hydrophobic core of the membrane (in its fluid 
state) is uniformly packed by chain segments [3-5] .  The packing constraints depend on 
the aggregation geometry; that is, on the curvature of the hydrocarbon-water interface 
and on the average area per head group, as measured at this interface. Using the singlet 
distribution one can calculate any desired conformational property and, in the mean field 
approximation, any thermodynamic property of interest [ 1,2,6-8]. 

The mean field approach described here is obviously approximate as far as thermody- 
namic properties are concerned. But, as will be demonstrated in Section 3, its predictions 
with regard to 'single chain' conformational properties show good agreement with both 
experiment and large scale computer simulations. As a molecular level theory it is 
certainly more detailed than phenomenological, e.g. continuum theories of the lipid 
membrane, or models based on geometric packing considerations [3-5] .  On the other 
hand, it is less detailed (yet much simpler to implement) than many-molecule computer 
simulations, such as molecular dynamics (MD) or Monte Carlo (MC) calculations. 
(For computer simulations of lipid membranes see e.g. [9-13] ). 

Generally, in mean field theories of the lipid membrane, one treats in detail the 
conformational properties of one, 'central' molecule, but the effects of neighboring 
molecules are treated approximately. They are assumed to provide a 'mean field' for 
the 'motion' of the central molecule. In general, the mean field appears as a variational 
parameter (or parameters) in the singlet probability distribution of the central chain 
and its numerical evaluation involves a solution of 'self-consistency' equations. For 
instance, in the theory presented in the next section, the mean field acting on the 
central lipid molecule is represented by the 'lateral pressure profile' exerted on this 
chain by its neighbors. (As the average area per molecule decreases, the lateral pressure 
increases, and the lipid chains are farther stretched along the membrane normal). The 
self-consistency equations represent the packing constraints on the lipid chains which, 
as mentioned above, reflect the assumption of a uniform, liquid-like, hydrophobic core. 
Some applications of the theory presented here are described in [21-27]. For other 
mean field theories see e.g. [ 14-20,28-30]. 

2. The singlet distribution of  chain conformations 

A bilayer membrane can be treated as a two-dimensional (2D) film, composed of a 
central hydrophobic region comprising the hydrocarbon chains( ' tai ls ' )  of the lipids and 
two interfacial regions containing their polar head groups; Fig. 1. We shall focus on the 
conformational properties of the lipid chains. The interactions involving the polar heads 
will only be treated in an approximate, 'phenomenological' fashion. The main reason for 
that is the highly specific nature of these interactions which depend sensitively on the 
size, charge (e.g. ionic vs. zwitterionic) and chemical composition of the head grouPs. 

The membrane free energy can be expressed as a sum of three terms, 

F = Ft + Fs + Fh = 2 N ( f t  + f s  + f h ) ,  (1) 
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~z ~(z'a)dz -~~z~-_:= clz ~ ~(z) 
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Fig. 1. Schematic illusa'afion of a (planar) lipid bilayer and the quantifies appearing in the derivation of the 
singlet probability of chain conformations, see (5): ~b ( z; a) dz denotes the number of chain segments, which, 
for a chain in conformation a, fall within the shell z, z + dz. The 'free chain' is a (hypothetical) chain with 
no neighbors around it. The lateral pressure profile ~'(z ) schematically illustrated in the figure, accounts for 
the pressure exerted on a given (stretched) chain by its neighbors in the bilayer. 

representing, respectively, the contributions of the hydrocarbon tails, the surface free 
energy corresponding to the hydrocarbon-water interface and the (solution mediated) 
interaction free energy between the head groups. The f i ' s  ( i  --- t, s, h)  are the cor- 
responding free energies, per molecule, with 2N denoting the number of molecules 
in the membrane (N  per monolayer, on the average). All three terms depend on the 
lipid composition of the two monolayers comprising the membrane bilayer and the 
ambient solution conditions, as well as on the membrane area and curvature. The in- 
terplay between these terms dictates the equilibrium geometry of the membrane (area 
and curvature), fluctuations around the equilibrium state and all microscopic (e.g. chain 
conformations) and thermodynamic (e.g. elastic) properties of the membrane. We shall 
first consider each term separately, devoting most of the discussion to Ft. 

2.1. Tail f ree  energy 

The formalism outlined below can be applied to a bilayer membrane of arbitrary lipid 
composition, whether symmetric or nonsymmewic with respect to the two monolayers, 
as well as to an arbitrary membrane thickness and/or curvature. The theory can be 
applied to other amphiphilic aggregates such as micelles (see also Section 5), as well 
as to systems containing hydrophobic inclusions (see Section 4). However, to introduce 
the basic concepts involved, let us consider the simplest possible membrane, namely, 
a planar symmetric bilayer composed of a single lipid component. Furthermore, let 
us assume that the lipids are single (saturated) chain amphiphiles, of the form 79- 
(CH2)n-I-CH3,  with 79 denoting the polar head group. The generalization to doubly 
tailed lipids, including nonsaturated chains is straightforward, as described in Section 3. 

We now turn to derive an expression for P ( o 0 ,  the probability of finding the lipid 
hydrocarbon chain in conformation o~. A common and quite accurate specification of 
ce can be using the rotational isomeric state (RIS) model of acyl chains [31], i.e., by 
the trans/gauche sequence of the CH2-CH2 bonds along the chain, and by the overall 
orientation of the chain (specified by three Euler angles) relative to some arbitrary fixed 
system of coordinates (see Fig. 1). 
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Using P ( a )  we can calculate any desirable 'single chain' conformational property. 
Of particular interest are those properties which can be measured experimentally, or 
calculated by detailed computer simulations. In addition to the physical significance 
of these properties, their calculation provides a test for the expression which we shall 
derive for P ( a ) .  The most commonly measured or calculated conformational properties 
are the bond orientational order parameters and the segment spatial distributions to be 
defined later on. Furthermore, P (o0  can be used to calculate various thermodynamic 
properties of  interest, such as the free energy per chain, ft ,  and related quantities such 
as the curvature elasticity moduli of the membrane [6,32-35]. 

The free energy per chain is given, in terms of P ( a ) ,  as 

f t  = ~ P(a)E(a)  + k T Z  P(ot ) l n P ( c 0 ,  (2) 
OL Ol 

where k is Boltzmann's constant, T is the temperature and e ( a )  is the internal (trans/ 
gauche) energy of a chain in conformation o~. More specifically, e (c0  = ng(OOeg + 
nt(ce)et where ng(ce) and nt(oO are the numbers of  gauche and trans conformers along 
the chain, with eg and et representing their respective energies. One usually sets et - - -  0 
implying eg ~-- 500 cal/mole. The first term in (2) is the energetic contribution to the 
chain free energy, while the second is the conformational entropy contribution. Both 
depend on the curvature of  the membrane, its thickness and its chemical composition. 

We derive the desired (equilibrium) singlet probability distribution (spd) by mini- 
mization of the free energy functional f t  with respect to {P ( a )} ,  subject to whichever 
constraints P (c~) must fulfill. Except for the trivial normalization condition (~-~ P (c~) = 
1 ) the only additional constraint on P (o~) results from the assumption that the liquid-like 
hydrophobic core is uniformly packed by chain segments. The mathematical expression 
of this constraint is 

f dstr(s) ~-~P(a;s)~l,(r;ce, s) = p(r) (all r)  (3) 
OZ 

which, for a symmetric planar bilayer, reduces to 

~-~P(a)[d?(z;ce) + ¢ ( - z ; a ) ]  =ap (all z ) .  (4) 
OL 

The quantities appearing in (3) and (4) are as follows: P(ce;s) denotes the spd 
corresponding to chains originating from point s of the hydrocarbon-water interface; 
for simplicity s may be regarded as the head group position, o-(s) is the lateral density 
of head groups at the interface; i.e. o'(s)ds is the number of chains originating from 
an area element ds at the interface. It should be noted that the s integration in (3) 
includes both interfaces. The quantity ~b(r; a ,  s)dr denotes the number of segments of 
a chain in conformation re, originating at s, which fall within a small volume element 
dr (around r)  of  the hydrophobic core. p(r) is the average segment density at r which, 
for a 'compact '  core, is constant: p(r) = p = l/z, where u is the average volume per 
chain segment in the hydrophobic core. 
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In passing from (3) to (4) we  have specifically considered a symmetric planar, single 
component, bilayer. For this system we have o-(s) = constant = 1/a  where a is the 
average cross sectional area per chain, measured at the hydrocarbon-water interface. 
This important structural characteristic of the membrane is usually referred to as 'the 
area per head group'. Also, for the simple bilayer, P(c~; s) = P ( a )  is independent of 
s. We now choose a coordinate system whose origin is at the bilayer midplane, with 
its z-axis pointing towards the 'upper' interface. Clearly, for a chain with head group 
coordinates s = ( x , y )  = (0,0)  the quantity O ( r ; a , s )  = O ( r ; a ,  0) is only a function 
of z. Then the left hand side of (3) can be integrated over x and y to obtain (4),  
in which q~( z ;a )dz  = ( f ~ ( r ; a ) d x d y ) d z  is simply the number of segments of an 
a-chain falling within the shell z, z + dz of the hydrophobic core; see Fig. 1. The 
two terms within the square brackets in (4) represent the contribution to the segment 
density in z, due to chains anchored to the 'upper' and 'lower' interfaces, respectively. 
Of course, (4) could be immediately written down for the symmetric bilayer. We have 
emphasized here that it is a special case of the more general form (3),  which will be 
of use in Section 4. 

We now minimize (2) subject to (4) and obtain 

1 (5) P ( a )  = - exp 
q 

with 

representing the conformational partition function of the chain, and fl = 1/kT.  The 
quantities { ~ ( z ) }  in tliese equations are the Lagrange multipliers conjugate to the 
packing constraints (4).  They have the dimensions and the physical significance of 
'lateral pressures', as discussed in detail elsewhere [ 1,2,21]; see Fig. 1. The numerical 
values of  the {zr(z)} are determined by the self-consistency equations resulting from 
substitution of (5) into the packing constraint (4). This results in a set of nonlinear 
algebraic equations which can be solved, quite simply and efficiently for any chain 
model. 

Substituting (5) into (2) we obtain 

= - k T l n  q - ap  / 7r(z ) d z .  (7) f ,  

Thus, after evaluating the ~r(z) we can calculate any chain conformational property 
derivable from P (o0 through (5),  or any thermodynamic property derivable from f t ,  
using (7).  Clearly, all the results depend sensitively, through 7r(z), on the value of the 

area per head group, a. 
The results ( 5 ) - ( 7 ) ,  corresponding to the symmetric, planar, single component bi- 

layer, can be easily generalized to more complex systems. Let us briefly mention a few 

cases of interest. 
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(i) Curved bilayers. Here a is not constant, but, rather a = a(cl ,cz ,  z) ,  where Cl and 

c2 denote the local interfacial curvatures. (ci = l /Ri  are the principal curvatures; Ri 
denoting the radius of  curvature). The packing constraints (4) should be replaced by 

XE ~--~ PE( ce)qb( Z; Ot) + ,~l ~--~ P l ( f l )q~(  Z;1~) = pa( z ) 

= a ( 0 ) [ 1  + (cl + c 2 ) z  +ClC2Z 2] , (8) 

with Pe(ce) and Pi(/3) representing the spd's of chains originating at the 'external' (E) 
and 'internal' ( I )  monolayers composing the bilayer; e.g. of  a vesicle. (Clearly for a 
spherical vesicle of radius R, Cl = c2 = l /R ) .  The quantities Xe and XI are the 'mole 

fractions' of  lipids in the two monolayers; XE = NE/N and XI -~ N I / N  ( ,¥E "~- X1 = 1, 

ArE + NI = N) with ArE and NI denoting the number of chains originating from the E 

and I interfaces, respectively. 
The free energy per molecule is now given by 

Jet = XE Z PE( a) [e(ce) + kTlnP~(a)  ] 
OL 

+XI ~ PI(B) [e(13) q- kTlnPl(13) ] . (9) 
/3 

Minimization of (9) with respect to (8) yields for PE(ce) = Pe(o~;a, cl,c2) and 
P1(13) = Pi([3;a, cl,c2) expressions similar to (5),  except that now ~r(z) and qe(qt)  
depend not only on a but also on cl and c2. 

(ii) Micelles. To model micelles is to account for the curvature dependence of a(z  ). For 
a cylindrical micelle for instance, as will be discussed in Section 5, instead of (4) we 
have 

P(c~)~b(r; a )  = p a ( R ) r / R ,  (10) 
OL 

where R is the radius of the micelle and r is the radial distance from the cylinder axis. 
Here again P(ce) is of the form (5),  but now the pressure profile {or(r)} depends 
on the micellar radius R. For micelles composed of chains of  a given length n, the 
average area per chain, at the interface, a(R),  is uniquely determined by R through 
the geometric packing condition a (R)  = 2v/R where v is the chain volume. For simple 
alkyl chains, - (CH2)n- I -CH3,  v ~' (n + 1)u where v ~_ 27/~3 is the specific volume 
of a CH~ group. 

(iii) Mixed systems. Consider for instance a planar symmetric bilayer composed of two 
types of lipid chains, A and B. Then, instead of (4) we write 

X A ~ - ~ P A ( O I ) [ ~ A ( Z ,  OI ) -'1- ~bA ( - - Z  ; a )  ] 
ot 
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+XB ~--~ PB(/~) [@B (Z, fl) + ~B(--Z, fl) ] = a p ,  (11) 

where XA and Xn = 1 - XA are the mole fractions of the two types of chains. The free 
energy of this system is given by 

Ft = N [  X A f  t,A q- XB f t,B ] , (12)  

with ft,a and ft,8 defined according to (2).  Again, minimization of (12) subject to (11) 
yields PA(a) and Pa(/3) of the form (5).  The same 7r(z) appears in both expressions. 

(iv) Non-uniform membranes. The presence of a hydrophobic solute in the membrane, 
say, an integral protein, 'breaks' the translational symmetry of the planar bilayer. Thus, 
P(a; s) will depend on the head group position s, as measured for instance with respect 
to the position of the protein. In this more general case, we have 

F, = f d s o ' ( s ) f t ( s ) ,  (13) 

where f t ( s )  is the local free energy of a chain originating at s. The relevant packing 
constraint is now (3).  Minimization of (13) with respect to (3) yields [7] 

, [ / ] P ( a ; s )  = q - ~ e x p  - B e ( a )  - B  dr ; t ( r )O(r ;a , s )  , (14) 

with the A(r) corresponding to the Lagrange parameters conjugate to the packing 
constraints (3).  In this case, due to the lower symmetry of the system, the calculations 
are considerably more involved (chains must be generated and classified for different 
points s) ,  but are feasible, as illustrated in Section 4 for a model of lipid protein 
interaction [7]. 

2.2. Head group and surface free energies 

The chain free energy f t ,  as given by (2) and (7),  decreases as the average cross- 
sectional area per chain, a, increases. This follows simply from the fact that as a 
increases the lateral dimensions of the chains also increase, allowing for more confor- 
mational freedom. More precisely, the energetic contribution to the free energy (et) = 
y~. P ( a ) e ( a )  increases with a since the average number of gauche bonds increases. 
However, the increase in conformational entropy (chain flexibility) overcompensates the 
increase in (et}, resulting in a net decrease of ft .  Thus, the conformational free energy 
corresponds effectively to a repulsive interaction between chains. This implies a positive 
lateral pressure 

Oft _ of (z)dz > O, (15) Ht - Oa 

which tends to expand the bilayer. 
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The interaction between the head groups, whether electrostatic or steric, is generally 
also repulsive [ 1-3],  i.e. 

afh 
Hh - > 0 ,  (16) aa 

where fh = Fh/2N is the average interaction free energy per head group. 
The interracial free energy Fs provides the opposing force to both inter-head group and 

inter-chain repulsions. The origin of this force is the 'hydrophobic interaction', resulting 
from the increased hydrocarbon-water contact area upon increasing a. f s  = Fs /2N is 
usually expressed as a simple surface energy, f s  = ya, with y (often taken as y = 50 
dyn/cm = 0.12 kT/,~ 2 at T = 300 K) denoting the effective surface tension [3]. With 
this representation of f s  one has 

Ofs 
Hs - = - 3 / <  0. (17) 

0a 

The equilibrium area per head group, aeq, is determined by the balance of the three 
forces, that is, 

/ / t  + / / h  + / / s  = 0.  (18) 

Fig. 2 shows the three contributions, f t ,  f s  and fh to the average free energy per 
molecule 

f = f t  + f s  + fh  (19) 

as a function of the area per molecule in a planar bilayer. The chain contribution f t ( a )  

was calculated using (7) for three values of the chain length (n = 12, 14, 16). The 
hydrocarbon tails correspond to simple alkyl chains, - (CH2)n- l -CH3,  and are modeled 
using the rotational isomeric state model. For f s  we have used f s  = ya with y = 0.12 
kT/ fk  z. The head group contribution is represented here by the simple (and common) 
form [ 3,7,5 ] 

fh = C / a ,  (20) 

where C is a phenomenological constant. For the calculations shown in Fig. 2 we have 
chosen C to yield aeq = 32 ~2 for the n = 14 chains (C = 48 kT). 

It should be stressed that (20) is a highly approximate representation of fh. For more 
detailed models of  fh corresponding to electrostatic and/or steric repulsions see e.g. 
[27,36-43]. 

The free energy change ~ f ( a )  = f ( a )  -f(aeq) defines the area compressibility 
modulus tea according to [32] 

1 8 f ( a )  lte a ( S a )  2 
- -  = - -  . ( 2 1 )  

aeq k aeq ,] 

From the data in Fig. 2 it follows that tea "~ 0.2 kT//~ 2. One can also calculate 
eq eq.~ and thus derive explicit expressions and 6 f ( a ,  cl ,c2) = f ( a ,  cl ,c2)  - f (aeq,  C 1 ,c 2 j 
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Fig. 2. (a) The variation of the chain (f t) ,  head group (fh) and surface (fs) contributions to the average 
free energy per molecule, as a function of the average cross-sectional area per chain (head group), a; see EcI. 
(19). fh is calculated using (20) with C = 48 kT. fs = ya with "y = 0.12 kT//~ 2. ft  is calculated using the 
meanfield theory for q 2 ,  C14 and C16 chains. (b) The sum of the three contributions above revealing that 
aeq (~  32 ~2) increases slowly with chain length. 

numerical values for curvature elasticity moduli. The relevant formalism and its appli- 
cations have been described in detail elsewhere [2,6]. The calculation of  membrane 
elastic moduli is a particular thermodynamic application of  the theory outlined in this 
section. Other thermodynamic applications are described in Sections 4 and 5. 
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3. Conformational properties 

201 

A common characteristic of conformational chain statistics in membranes is the ori- 
entational order profile of the C - H  bonds along the lipid hydrocarbon tails [5,44-48]. 
The orientational order parameters are usually measured by nuclear magnetic resonance 
(NMR) methods, using selective (or nonselective) deuteration of the chains. Specifi- 
cally, the measured quantity is the orientational order parameter of the Ck-H (Ck-D) 
bond (for - (CH2)n - I -C H3  chains, k = I . . . . .  n) defined as 

Sk = (P2(cos Ok)) = ~ P ( a )  [3 cos 2 0k(a)  - 1 ] / 2 ,  (22) 
Ot 

where P2(x) = (3x 2 - 1) /2  is the second Legendre polynomial; Ok(a) denoting, for a 
chain conformation a, the angle between the kth bond and the membrane normal (the 
'director ') .  The C - H  order parameters can be related to the skeletal order parameters, 
Sk, corresponding to the vectors rk-l,k+l connecting carbons k - 1 and k + 1 of the 
chain: Sk = -2Sk for all k except for the terminal methyl group (-CH3) for which 

S, = - 3 S ,  [481. 
The orientational order parameter profiles provide a measure of chain flexibility, 

reflecting the 'fluidity' of the hydrophobic core. In the perfectly ordered state of the 
membrane, when all lipid chains are in their all-trans conformation, with the chain 
axis along the membrane normal, one has Sk = - 0 . 5  (0h = 7r/2) or St = 1, for all 
k = 1 . . . . .  n - 1. In the opposite limit, where bond orientations are random Sk = St = 0. 

Bond order parameter profiles of (saturated) lipid chains in planar bilayers are typ- 
ically characterized by a roughly constant value of St for, about, the first half of the 
chain (the 'plateau region') ,  followed by a monotonic decrease of St towards the chain 
terminus. The last chain segments, those which reach and possibly cross ('interdigitate' 
through) the bilayer midplane are characterized by S~ N 0, indicating nearly random 
bond orientations. This behavior also indicates 'high fluidity' in the central part of the 
hydrophobic core, as compared to the regions bordering the interface where chain orien- 
tational ordering is relatively large. The magnitude of Sk in the plateau region increases 
as the membrane thickness d increases or, equivalently, as the average cross-sectional 
area per chain, a, decreases. This behavior is to be expected, since as d increases, the 
hydrocarbon chains must be further stretched out, resulting in a higher degree of chain 
ordering along the membrane normal. Note that this trend is a direct consequence of the 
tight (fluid-like) packing condition of the chains within the hydrophobic core. In other 
words, the packing constraints rather than, say, the relative trans/gauche energy of the 
chains are the important determinant of chain ordering in membranes. These qualitative 
trends have been quantitatively analyzed and confirmed by molecular level calculations 
based on Eq. (5) [24]. 

Bond orientational order parameters calculations using (5) for P(ce) have been pre- 
sented for various systems. In Fig. 3 we show two sets of bond order parameter profiles, 
corresponding to the two hydrocarbon chains of palmitoyl-oleoyl-phosphatidylcholine 
(POPC) [26]. Here, the palmitoyl chain is a saturated -(CH2)14-CH3 alkyl chain 
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Fig. 3. Orientational order parameter profiles of the C-H bonds along the palmitoyl (a) and oleoyl (b) chains 
of DMPC (adapted from [26] ). A: experimental results [44], [q: molecular dynamics calculations [9], o: 
mean field theory [26]. 

whereas the C17 (seventeen carbon) oleoyl  chain contains one cis  double bond, between 

carbons 8 and 9; - ( C H 2 ) 7 - ( C H = C H ) - ( C H 2 ) 7 - C H 3 .  The two chains are connected 

through the glycerol  backbone which is further connected to the zwitterionic phosphaty-  

di lcholine head group. The results shown in Fig. 3 correspond to POPC molecules 

packed in a bi layer  of  (hydrophobic  core) thickness d = 30.0/~ ,  at T = 300 K. Simple 

packing considerations (see below) imply that this thickness corresponds to an aver- 

age cross-sectional area per head group of  a = 60.5 /~2, which is also the average 

cross-sectional area of  the l ipid tail (composed of  one oleoyl  and one palmitoyl  chain).  
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The POPC bilayer has been chosen primarily in order to compare the predictions 
of the mean field theory, Eq. (5),  with those of a most comprehensive molecular 
dynamics (MD) simulation of the same system [9]. The MD results as well as (partial) 
experimental results for the POPC bilayer [44] are also shown in Fig. 3. The agreement 
between these sets of results is quite satisfactory considering the complexity of the 
system modeled. The typical 'plateau' region of the saturated chain is reproduced as 
well as the very distinctive drop in the orientational order parameter at the double bond 
region of the oleoyl chain. Differences in the & values appear mainly for the first few 
C-H bonds of the oleoyl chain. This, probably, is due to the approximate treatment of 
the glycerol backbone of the lipid from which the two chains emanate. 

Despite the inherent approximations involved in the mean field analysis its predictions 
compare well with those derived from MD simulations. The difference in computation 
time between the two approaches is enormous. Obviously, MD simulations provide 
much more detailed information, including information on dynamical properties, which 
the mean field equilibrium theory cannot treat at all. Yet, even with the best interaction 
potentials known and the fastest computers available, the number of systems which can 
be studied in detail by MD methods todate is limited, and even those are followed over 
relatively short periods of time. On the other hand, the mean field approach described 
above, though approximate, can be easily applied to a very wide range of systems 
(e.g. different lipid compositions) and a wide range of conditions (e.g. membranes of 
different curvatures). Thus, as noted already in Section 1, while the quality of large 
scale computer simulations is rapidly growing, there are many systems and properties 
(e.g. curvature elastic moduli) which can only be studied by approximate, mean field, 
theories. 

Another measurable structural characteristic of lipid membranes is the distribution 
of different chain segments across the bilayer hydrophobic core. Fig. 4 shows the 
distribution (number of segments per unit length) of terminal (CH3) groups, double 
bonded carbons ( -CH=) and the sum of all methylene (-CH2-)  segments comprising 
the two hydrophobic tails of dioleoyl phosphatydil choline (DMPC). The lipid tail of  
these molecules is composed of two -(CH2)7-(CH=CH)-(CH2)7-CH3 chains. One set 
of curves represents experimental results obtained by X-ray and Neutron scattering [ 49-  
50]. The other represents the predictions of the mean field theory [26]. The thickness 
of the hydrophobic region, defined as the average distance between the lipid carbonyl 
groups on opposite interfaces of the membrane, is d = 32/~. The agreement between 
the measured and calculated results is satisfactory, at least with respect to the peaks of 
the various segment distributions. The main difference appears in the width of the CH2 
distribution, showing wider 'wings' of the experimental results. Yet, it should be noted 
that no attempts were made to fit the calculated results to experiment. The only input 
into the calculation was the thickness of the membrane allowing, as in other calculations 
of this kind, for small fluctuations of the lipid head group around the hydrocarbon-water 
interface. Further details of this and other calculations are discussed in Ref. [26]. 

The mean field theory has been used to calculate various other single chain properties 
of interest. For instance, the average lateral fluctuations of lipid chain segments. Here 
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Fig. 4. The distribution of lipid chain segments across a POPC bilayer (adapted from [26] ). e, • and • 
represent the results calculated by the mean field theory for, the (sum of all) CH2 segments, CH3 groups and 
CH=CH groups, respectively [26]. The dashed lines are the experimental results [50]. 

too, good agreement with experiment was found [26]. 

4. A lipid-protein interaction model 

A hydrophobic "solute", such as the hydrophobic part of an integral protein, modifies 
the conformational properties of the lipids around it. In general this 'perturbation' 
raises the free energy of the surrounding lipids, so that when two or more hydrophobic 
inclusions are in close proximity to each other the, lipid-mediated, interaction between 
them is attractive, thus favoring solute aggregation. The driving force for this aggregation 
is the tendency to minimize the contact area, and hence the extent of lipid perturbation, 

between the hydrophobic solutes and their surrounding lipid chains. 
Many theoretical models have been proposed to describe and calculate the effects 

of an integral protein, usually treated as a rigid hydrophobic perturbation, on the lipid 
environment [ 7,15,51-62 ]. Only very few models have considered the lipid-protein in- 
teraction on a molecular level. One such model, based on the molecular theory presented 
in Section 2, is outlined in this section [7]. 

We use d ° to denote the thickness of the lipid hydrophobic core. It is commonly 
assumed that when a rigid protein (or another inclusion) of hydrophobic thickness 
dp ~ d o is incorporated into the membrane, the flexible lipid chains around it will 
adjust their length so as to shield the protein from direct contact with the surrounding 
water; see Fig. 5. Using dL(x) to denote the bilayer thickness at a distance x from the 
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Fig. 5. Schematics of the lipid-protein interaction model described in the text (adapted from [7] ). At the 
bottom is a 'side view' of the bilayer, depicting the protein as a rigid wail of thickness dp, either larger (right, 
'positive mismatch') or smaller (left, 'negative mismatch') than the unperturbed bilayer thickness d °. The 
chains in the vicinity of the protein are either stretched (when dp > d°L) or compressed (when dp < d °) 
in order to bridge over the hydrophobic mismatch. At the top is a 'top view' of the membrane illustrating 
the corresponding changes in the average cross-sectionai area per chain as a function of the distance from the 
protein. 

protein, this assumption implies  dL(O) = dp.  The variation of  d L ( X ) ,  between dp at 

x = 0 to d o at x ---+ oc, wil l  be modeled as 

d L ( x )  = d~ + ( d e  - d ~ ) e x p ( - x / ~ ) ,  (23)  

with ~ measuring the range (or  the 'coherence length ' )  of  the perturbation. The dif- 

ference dp - d o will be referred to as the hydrophobic  mismatch.  The model  treats 

~: as a variational parameter  whose value is determined by minimizat ion of  the total 

perturbation free energy. The exponential  variation of  the membrane thickness profile, 

(23) ,  has been derived by some of  the Landau-type theories of  l ip id-pro te in  interaction 

[ 5 8 - 5 9 ] .  Yet, in the present model  it  is used as a convenient parametrization of  d L ( x ) .  

In fact, some of  the cont inuum elastic theories of  l ip id-prote in  interaction predict more 

complicated,  including non-monotonic,  functional forms for d r ( x )  [54 -56] .  

The model  described in Fig. 5 treats the protein as a r igid cylinder embedded in the 
membrane.  The diameter, D,  of  the cylinder cross section is assumed to be considerably 

larger than the average lateral dimension of  the l ipid chains, i.e. D >> a t/2 where a is 

the average cross-sectional area per chain. Accordingly,  to the l ipids in its periphery the 

protein appears as a planar  wall. Free energy calculations have been performed assuming 

that the protein wall  is flat and extending normally and symmetrical ly around the bi layer 

midplane [7 ] .  Other geometries,  e.g. a conical inclusion, can be treated similarly. 
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We choose the protein wall to be parallel to the zy-plane (z is the direction normal 
to the membrane plane), the lipid-protein interaction free energy, per unit length of the 
protein perimeter (along the y-direction) is given by 

= 2 f dx [ o - (x )  f ( x )  - o-° f  ° ] , ( 2 4 )  AF 

where f ( x )  is the local free energy per molecule at distance x from the protein and 
o-(x)dxdy  is the number of  molecules originating from a small area element dxdy  of 
one of the two membrane interfaces. (More precisely, dxdy is the projection of this 
area element onto the bilayer midplane), o -° and f0 are the corresponding quantities for 
the unperturbed membrane that is, o -° = o-(x) and f0 = f ( x )  as x --+ c¢. The factor 2 
in front of the integral accounts for the two leaflets of the bilayer. 

The head group surface density in the planar bilayer is o -° = 1/a °, where a ° = 2v /d  ° is 
the average area per chain; v denoting the volume of the hydrophobic tail. Assuming, as 
before, that the hydrophobic core is uniform and liquid-like, we have o-(x) = 2V/dL(X). 

Note, however, that except for the planar bilayer o-(x) v~ 1 /a (x ) ,  where a(x)  is the 
average local interface area per chain in the vicinity of the protein. This latter quantity 
is given by 

dL(x----ff \ ~x " (25) 

The free energy per molecule can be expressed as a sum of tail, surface and head 
group contributions, (see Section 2) 

f ( x )  = f t ( x )  + f s (X)  + f h ( x )  • (26) 

The tail free energy and the corresponding spd are given by Eqs. (13) and (14), 
respectively; with s --* x and r --~ ( x , z ) .  The numerical calculation of f t ( x )  is 
considerably more complex than in the planar bilayer case, since a = A(x ,z)  varies 
along both x and z whereas for the planar bilayer A ~ 7r(z) is o n l y a  function of z. 
Nevertheless, the calculations are feasible and representative numerical results will be 
shown below. In these calculations the surface free energy is modeled as f s  = 3/a(x) 

with 3/= 0.12 kT/A 2, and f h ( x )  is represented by the simple form f h ( x )  = C /a (x )  
with a(x )  given by (25). The parameter C was chosen such that for a planar bilayer 
composed of C14 (7)-(CH2)13-CH3) lipids the equilibrium area per chain is a0 ~ 32 
~2; see Fig. 2. 

The lipid-protein interaction free energy AF of the C14 bilayer is shown in Fig. 6 for 
three choices of the head group interaction parameter; C = 48 kT, 12 kT and 0. First 
we note that AF ¢ 0 even for the case of no hydrophobic mismatch, when dp = d °. 

In this case there is no contribution to AF from the surface (AFs = 0) or head group 
(AFh = 0) terms; only AFt > 0. Even though there is no change in the average chain 
length, the presence of the impenetrable protein wall reduces the conformational freedom 
of nearby chains, resulting in excess chain orientational ordering and non-negligible 
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Fig. 6. The lipid-protein interaction free energy (per unit length of perimeter length) for a bilayer of  C14 
chains, as a function of the hydrophobic mismatch (adapted from [7] ). o ,  • and A correspond to three 
different choices of  the head group repulsion strength, C = 0, 12,48 kT, respectively. 

positive contribution to Ft. These notions are confirmed by explicit calculations of bond 
orientational order parameter profiles, showing increased (Sk) values for chains near the 
protein, as compared to those away from it [7]. The chain conformational calculations 
also show a finite (though small) average tilt angle of the chains (away from the 
wall). It should be noted that the first molecular model of lipid-protein interaction, 
that was proposed by Marcelja, has been formulated for the de = d o case [15]. In 
Marcelja's model, like in the one presented here, AFt > 0 due to the loss of lipid chain 
conformational freedom in the protein vicinity [ 15]. 

When de > d ° the lipid tails are stretched beyond their length in the unperturbed 
membrane, resulting in AFt > 0. In parallel, the average area per head group decreases 
[22] and consequently AFs < 0. The opposite behavior characterizes the case d p <  d °. 
The contribution of head group repulsion (AFh) tO AF is, at least according to the 
model described, small compared to AFs and AFt. Thus, since as de --d o increases AFt 
increases whereas AFs decreases, the minimum of AF = AFt + AFs + AFh ~-- AFt + A Fs 
is generally around de - d o = 0. However, as seen in Fig. 6, the minimum of AF shifts 
to a negative dp - d o value when the strength of head group repulsion increases. In 
other words, negative hydrophobic mismatch can in fact relieve some of the lipid-protein 
interaction free energy when head repulsion is strong. Similarly, positive mismatch can 
reduce AF (compared to the case de = d t )  in the case of strong chain repulsion. This 
effect has recently been predicted by Safran and Dan using a continuous elastic theory 
for the effect of hydrophobic inclusions on membrane properties [55-56].  Its origin, 
according to their analysis, is the nonzero spontaneous curvature of the monolayers 
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comprising the bilayer. To understand the effect if is worthwhile to elaborate on the role 
of spontaneous curvature in lipid bilayers. 

Consider one of the two monolayers comprising a lipid bilayer and assume it is planar. 
The three forces, head group repulsion, surface tension and chain repulsion, balance each 
other at some equilibrium area per chain, aeq. These forces also exert moments which 
may prefer a finite "spontaneous" curvature for the monolayer. The curvature may be 
either positive (the hydrocarbon-water interface convex towards the water), negative or 
zero. Large moments of head group repulsion will tend to induce positive spontaneous 
curvature. Large moments of  chain repulsion will act in the opposite direction. When 
two monolayers are brought into contact to form a planar bilayer, both are 'frustrated' 
energetically since their curvature is not the optimal (spontaneous) one. Yet, the planar 
bilayer geometry usually involves the least curvature energy cost for the two monolayers. 
Now, suppose that head group repulsion is strong enough to favor positive spontaneous 
curvature for the monolayer. If  d p  < d o then the lipids around the protein wall are 
packed with positive spontaneous curvature (see Fig. 5), thus relieving some of the 
frustration energy associated with the formation of the planar bilayer. The case C = 48 
kT in Fig. 6 corresponds to strong head group repulsion and hence positive spontaneous 
curvature. Indeed, we note that for this case the minimum in AF takes place at a negative 
value of d~ - d °. Similarly, stronger chain repulsion would shift the minimum towards 
positive d p  - -  d °. 

Many other structural and thermodynamic characteristics of the lipid-protein bilayer 
can be derived from the model described in this section. One result of particular interest 
is the spatial range of the perturbation, ~. The perturbation of lipid order by the protein 
wall extends to ~ 3~:. The calculations show that ( ,-~ 5/~. Since, typically, the lateral 
dimension of a lipid chain is a 1/2 ~-- (5-6)  A, it follows that the range of perturbation 
corresponds to just a few molecular diameters. 

5. The vesicle--mieelle transition 

Lipid molecules in aqueous solution self-assemble spontaneously into extended 2D 
bilayers. The spontaneous (equilibrium, minimal free energy) curvature of bilayers is 
generally zero, i.e. they tend to be planar. To avoid the excess free energy associated 
with the exposure of  their edges to water, the bilayers often close on themselves to 
form vesicles, at least in dilute solutions [ 63 ]. At higher lipid concentrations they may 
organize in multilamellar structures [63,64]. Other, non-lipid, amphiphiles which in 
dilute solution self-assemble into high curvature aggregates such as cylindrical micelles, 
usually organize in multi-lamellar phases at higher concentration. These phases are 
stabilized by inter-aggregate interactions which overcome the intrinsic preference of the 
molecules to pack in highly curved aggregates. 

Surfactant molecules, such as octylglucozide or bile salts, form micelles in dilute 
solution, reflecting their high spontaneous curvature [65,66]. Recall that any point 
of a curved surface can be characterized by two local principal curvatures, Cl and 
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Fig. 7. A mixed lipid surfactant bilayer (a) and a mixed micelle (b) (adapted from [27] ). a ° and a ° are 
the bare head group areas of the two amphiphilic components, 6 is the distance from the plane of head group 
repulsion to the hydrocarbon-water interface. 

c2, with Ri = 1/ci  (i = 1,2) ,  denoting the corresponding radius of  curvature. Thus, 
for example, the hydrocarbon-water interface of  a spherical micelle of  radius R is 

everywhere characterized by cl = c2 = l / R ,  with R _< l where I is the length of  the fully 

extended amphiphile tail. Similarly, in cylindrical micelles (except at the hemispherical 

caps), c~ = l /R1  whereas c2 = 0; R1 denoting the radius of  the cylinder cross section 
(R1 < l) and R2 ---+ ~x~ denoting the radius of  the cylinder axis. In planar bilayers 
cl = c2 = 0 and in spherical vesicles of  radius R, cl = c2 = 1 / R  with R >> l. 

Consider now a dilute binary aqueous solution containing lipids, whose spontaneous 

aggregation geometry is planar (cl = c2 -~ 0),  and surfactants which in dilute solution 
prefer organization in, say, cylindrical micelles (cl  ~ l / l ,  c2 = 0). Let X = XL = 

N L / ( N L  + Ns )  = N L / N  denote the mole fraction of  lipids and Xs = 1 - X the mole 
fraction o f  surfactants in solution; NL and Ns denoting the number (or concentration) 
of  lipid and surfactant molecules, respectively. (The mole fractions involve only the 

amphiphilic components, not the solvent, Xs ÷ XL = 1). In the limits X = 1 and X = 0 

the amphiphiles form lipid vesicles (Cl = c2 -~ 0) and surfactant micelles, respectively. 
When a small amount o f  surfactant molecules is added to a system composed of  lipid 
vesicles, a certain fraction of  them (typically very small, corresponding to the cmc 
(critical micellar concentration) [ 1,3-5] ) are dispersed as monomers in the solution, 
the rest are incorporated ( ' solubi l ized ' )  into the vesicles. As in ordinary binary mixtures, 
the thermodynamic driving force for the incorporation of  the surfactant into the lipid 
bilayer is the mixing entropy, which overcounts the tendency of  the surfactant and lipid 

molecules to pack, separately, according to their energetically preferred aggregation 
geometries. Similarly, upon adding small amounts of  lipids to a surfactant-rich system 
they will be solubilized in the surfactant micelles (hardly any of  them will be present as 
monomers, due to the extremely low cmc of  lipids). Schematic illustrations of  a mixed 
lipid-surfactant bilayer and a mixed cylindrical micelle are shown in Fig. 7. 

In ordinary binary molecular solutions, say of  A and B molecules, phase separation of  
an A-rich and a B-rich phase can take place, provided the effective A - B  interaction: w = 
WAB -- (WAA ÷ WBB) /2  is repulsive, i.e. w > 0; w H ( I  = A, B)  denotes the interaction 
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energy between I and J molecules (integrated over distances and orientations or, in 
lattice models, between neighboring molecules). More precisely, phase separation occurs 
below a certain critical temperature Tc (proportional to w), and only over a certain range 
of (intermediate) compositions, which broadens as T decreases farther from To. 

An analogous scenario can, and usually does, happen in aqueous solutions of lipids 
and surfactants. The analogue of w in these systems is the difference in the packing 
(free) energy of surfactants and lipids in a mixed system, compared to their packing 
in separate aggregates. The coexisting phases in lipid-surfactant solutions, if and when 
phase separation takes place, are vesicles with amphiphile composition xv (v = vesicle) 
and micelles with composition Xm (m = micelle), such that Xm < xv. The separated 
phases appear in different regions of space (vesicles and micelles floating in the aqueous 
solution) and are characterized by very different symmetries: nearly planar lipid-rich 
bilayer vesicles vs. elongated (or sometimes globular) surfactant-rich micelles. 

This qualitative thermodynamic scenario does indeed take place in many lipid- 
surfactant systems [67-72] and is of considerable biological importance, e.g. for mem- 
brane reconstitution [66]. What typically happens is that a lipid vesicle can take up 
surfactant molecules up to a limit corresponding to a lipid content xv. Beyond that limit 
the vesicles break into micelles with lipid content Xm. In lecithin-bile salt and lecithin- 
octylglucozide mixtures the compositions of coexisting vesicles and mieelles are about 
xv ~ 1/2 and xm ~ 1/4. 

A theoretical model of the vesicle-micelle transition has recently been formulated by 
Andelman, Kozlov and Helfrich [73]. These authors have expressed the free energy, 
of both the (mixed) bilayer and micelle, as a sum of a curvature energy term and a 
mixing entropy term. The average (Helmholtz) free energy per molecule in each of the 
two aggregation geometries was written as 

~ ( x )  = lt<[cl + c 2 -  c0(x)] 2 + k T [ x l n x  + (1 - x )  ln(1 - x)]  , (27) 

with x denoting the lipid mole fraction in the aggregate. (Actually in [73] x denotes 
the area fraction of lipids, measured at the hydrocarbon-water interface. This difference 
is irrelevant for the present discussion and for understanding this phenomenon). The 
second term in (27) is an ideal mixing entropy contribution. The first term is the 
common, Helfrich, form of the bending free energy of a membrane [32]. K denotes 
the curvature (splay) elastic modulus and co(x )  is the spontaneous curvature of an 
aggregate with composition x. The spontaneous curvature has been assumed to vary 
linearly with x, say from co(x  = O) = 1 / R  corresponding to a cylindrical surfactant 
micelle of  radius R, to co(x  = 1) = 0 corresponding to a planar lipid bilayer (or very 
large vesicle). K was treated as a constant, independent of x or aggregation geometry. 
Then f ( x )  is calculated for the vesicle (el = c2 ~ 0) and for the cylindrical micelle 
(cl  = l / R ,  c2 = 0), and by equating the chemical potentials of the lipid and surfactant in 
the two geometries (common tangent construction), a general expression can be derived 
for the lipid composition of the vesicle and micelle at the transition. 

The above model can predict some interesting qualitative trends, e.g. the dependence 
of the coexisting compositions on c o ( x ) , T  and K. Yet it must be remembered that 
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Fig. 8. Average free energy per molecule in a mixed (C16)2/C 8 lipid surfactant bilayer (11) and cylindrical 
micelle (*) ,  as a function of  lipid mole fraction (adapted from [27] ). The compositions of the bilayer 
(x = 0.47) and micelle (x  = 0.29), at the vesicle-micelle transitions are evaluated by common tangent 
construction (corresponding to equating the chemical potentials of each component in both aggregation 
geometries). 

the bending energy term in (27) is valid only for small deviations, mainly of planar 
films, around the equilibrium curvature. Vesicles and cylindrical micelles correspond to 
very different equilibrium curvatures. It is highly unlikely that the harmonic (quadratic) 
form of the bending energy, with the same x for all geometries can faithfully describe 
the geometry dependence of the amphiphile packing free energy. Furthermore, molecular 
calculations of  K show that it depends sensitively on x [6,74]. (For instance, the bending 
rigidity of lipid membranes decreases rapidly upon adding short chain surfactants to 
the bilayer). Interestingly enough, recent calculations of this kind show that in some 
mixtures co(x) varies nearly linearly with x over a wide range of composition [74]. 

In view of the above notions we have replaced the elastic energy in (27) by the 
expressions corresponding to the molecular mean field theory described in Sections 2--4. 
Thus, instead of (27) we write 

~bg(x) =xf~(x) + (1 -x ) fS (x )  +kT[xlnx+(1 - x) In(1 - x ) ] ,  (28) 

with fLg(X) denoting the packing free energy per lipid molecule in a mixed aggregate 
of geometry g (g = vesicle, micelle) and composition x. Then, plotting Og(x) vs. x for 
the two aggregation geometries one can evaluate the coexisting compositions, xo and 
Xm, using common tangent construction. 

The results of  one calculation of this kind, corresponding to a given set of molecular 
parameters (see below) are shown in Fig. 8. Also marked on the figure is the composi- 
tion xv = 0.47 below which the vesicle is unstable, and the composition Xm = 0.29 of the 
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micelles formed when the vesicles break. Conversely, Xm is the maximal lipid content 
in a cylindrical micelle, beyond which vesicles of  composition xv begin to form. 

The results shown in Fig. 8 as well as several additional cases are discussed in 
more detail elsewhere [27].  Here, we shall only mention the basic assumptions. The 
system considered is a mixture of  saturated double chain lipids T~L-[ (CH2)15-CH312 

and short single chain surfactants P s - ( C H 2 ) 7 - C H 3 ,  with PL and 79s denoting the 
lipid and surfactant head groups, respectively. As in previous sections, the free energy 
of  the mixed bilayer, and the mixed cylinder, has been expressed as a sum of  tail 

( f t )  surface ( f s  = ya )  and head group contributions. The head group contribution to 
x f ~ ( x )  + (1 - x ) f S ( x )  has been modeled as a steric repulsion free energy [38] 

f~ = - k T l n (  1 - ah /ag) .  (29) 

Here ?tg = ?tg(x) is the average area per head group in aggregates of  geometry g 
(g = v, m). This area is measured at the plane of  head group repulsion, assumed to be 

located at distance 8 from the hydrocarbon-water interface. For a planar bilayer (large 
vesicle) ~v = a v, where a v is the area per head group at the interface; for a cylinder 
micelle o f  radius R, ~m = am(1 + 8 / R ) .  The quantity ah = ah (X)  = x a  L + (1 -- x ) a  S is 

the average bare (hard core) head group area per molecule, at the  plane of  head group 
s denote, respectively, the bare head group areas per lipid and interactions, a~ and a h 

surfactant molecule. 
The surface contribution to the free energy is modeled as 

f~s(X) = x T (  a g - ahL) + (1 -- x ) ? / ( a  g -- ahs) = T ( a  g , ah) . (30) 

The chain conformational contributions were calculated using the mean field theory for 
mixed systems, as outlined in Section 2. 

The numerical values used for the specific calculation shown in Fig. 8 were y = 0.12 
L L = 42 ,~2, a s = 50 ~2 and 8 = 1.1 A. The choice of  a h ensures that the k T / ~  2, a h 

equilibrium average cross-sectional area per molecule in a pure lipid bilayer is 68 A2, as 
commonly found for lecithin bilayers [ 69].  The numerical values of  a s and 8 (which 

in Ref. [27] were treated as parameters controlling the spontaneous curvature of  the 
surfactant) ensure that the optimal packing geometry of  the C8 surfactant molecules in 
dilute solution is a cylindrical micelle, with an average area per surfactant head group 
a - ~ 5 5  A 2. 

The free energy per molecule has been calculated as a function o f  composition x, for 
both geometries, and the values of  the amphiphile in the vesicles and the micelles, at the 
transition (xv = 0.47 and Xm = 0.29) were determined by common tangent construction. 
These values for xv and vm are in the range observed experimentally [69-72] .  The 
molecular parameters used L s (ah, ah, 9/, 6) are all very reasonable and, moreover, have 
been adjusted so as to ensure micelle formation at x --* 0 and vesicle formation at 
x -+ 1. Nevertheless, it must be mentioned that the uncertainties involved in choosing 
these parameters are considerable. Different choices of ,  say, ah L and 3, can lead to 
substantial shifts in the values inferred for xo and Xm. The semi-empirical adjustment 
of  such parameters by referring to limiting (i.e. the pure) cases seems, at present, as 
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Fig. 9. Schematic illustration of the several stages in the fusion of vesicle bilayers (top). The bottom figure 
shows in more detail two of the proposed structural intermediates along the fusion pathway [76,75]. 

the most plausible procedure. Notwithstanding these reservations the model described 
in this section does account for the basic interactions and trends characteristic of the 
vesicle-micelle transition. Other structural transitions, such as from lamellar to inverted 
hexagonal or cubic phases, can possibly be accounted for using a similar approach. 

6. Concluding remarks 

In systems of low symmetry such as the lipid-protein membrane, the molecular mean 
field theory described in this chapter requires some nontrivial calculations. Neverthe- 
less, the computational effort involved is still substantially lesser than that required in 
large scale computer simulations. Various other systems and processes in membrane bio- 
physics can be studied and analyzed, on a molecular level, using this approach. These 
include, for example, the thermodynamic stability of mixed vesicles, pore (and other 
defect) formation in membranes or the phase transition from lamellar to inverted hexag- 
onal phases. Let us conclude this section by mentioning some very preliminary results 
concerning an issue of considerable biological relevance: the fusion of lipid vesicles. 

Several authors have proposed phenomenological models for the mechanism and the 
structural intermediates involved in the process of membrane fusion [75-77],  after the 
initial adhesion stage [78-79].  One of the suggested pathways, the 'modified Stalk 
mechanism' suggested by Siegel [75], is schematically illustrated in Fig. 9. Siegel has 
also estimated the excess free energies associated with the formation of the structural in- 
termediates, using the continuum theory for membrane curvature and stretching elasticity 
[32]. 
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We have recently performed calculations of the kind described in Sections 2 and 3, for 
the excess free energy of the 'Stalk' intermediate (Fig. 9), for a pure lipid membrane 
composed of C14 chains. The results obtained are AF N 100 kT. These numbers are 
in surprisingly good agreement with those obtained using the continuum theory. The 
agreement is surprising because the structural intermediates involve variations of packing 
geometry extending over only few molecular diameters. However, additional calculations 
are called for before this good agreement can be confirmed. 
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