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Molecular Theory of Acyl Chain Packing in Lipid
and Lipid-Protein Membranes
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I. INTRODUCTION

In this chapter we describe a molecular level theory of lipid packing and chain statistics in membrane
bilayers and demonstrate some of its recent biophysical applications.!? The central quantity in this “mean
field” theory is the singlet probability of lipid tail conformations. The singlet probability distribution
function is derived by minimizing the system free energy subject to the relevant packing constraints on
lipid conformational statistics. As will be shown in the next section, these packing constraints can be
expressed in a simple mathematical form, based on one reasonable and commonly accepted physical
assumption — namely, that the hydrophobic score of the lipid membrane (in its fluid state) is uniformly
packed by chain segments at liquid-like density.3-> This assumption implies packing constraints which
depend on the aggregation geometry, that is, on the curvature of the hydrocarbon-water interface and on
the average area per headgroup, as measured at this interface. This yields a mathematically simple
expression for the singlet probability distribution, with the aid of which one can calculate any desired
conformational property and, in the mean field approximation, any thermodynamic property of interest.

Previous applications of this theory include amphiphile chain packing statistics (e.g., bond orienta-
tional order parameters and segment spatial distributions) in micelles, bilayers, and monolayers;!?
curvature and stretching elasticity of pure and mixed membranes;® and a simple model for lipid protein
interaction that will be described in Section 4.7 Recently, the theory has been extended to monolayers of
grafted polymers (“brushes”).?

Being a mean field theory, the approach described here is obviously approximate as far as thermody-
namic properties are concerned. As has been and will be demonstrated (Section 3), its predictions with
regard to “single chain” conformational properties, which depend only on the singlet distribution, show
good agreement with both experiments and large-scale computer simulations. As a molecular level theory
it is certainly more detailed than phenomenological, e.g., continuum theories of the lipid membrane or
models based on geometric packing considerations.>> On the other hand, it is less detailed (yet much
simpler to implement) than many-molecule computer simulations, such as molecular dynamics (MD) or
Monte Carlo (MC) calculations.

In MD simulations of a lipid membrane one solves the classical equations of motion governing the
dynamics of all the atoms of all the constituent lipid molecules, as well as those of the surrounding water
molecules (see, e.g., References 9 to 13). To avoid finite size effects the simulated membrane should
include at least several hundred lipids and a similar number of water molecules. The computation times
are enormous even on the fastest present-day computers,® and the corresponding physical times sampled
are rather short (a few hundred picoseconds). Another, inevitable difficulty associated with these
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calculations are the uncertainties involved with the multitude of intermolecular potentials required for
such calculations, especially those governing the interfacial (aqueous) regions of the membrane.!? The
long equilibration times and the uncertainties in interaction potentials can sometimes lead to computa-
tional artifacts but, most importantly, considerably limit the number of systems and conditions (e.g.,
membrane shapes) which can be faithfully modeled. Nevertheless, with the fast advent of computers and
computing algorithms, MD simulations are rapidly becoming more common and more reliable and will
certainly play an increasing central role in providing information on the dynamics and structure of
complex many-molecule systems, including lipid and lipid-protein membranes.

The uncertainties in intermolecular potentials also affect the applicability of MC simulations. In these
simulations, unlike in MD, one does not solve the equations of motions, but, rather, tries to sample as
many equilibrium configurations of the system in question as possible (see, e.g., References 14 to 16).
Various algorithms have been developed to efficiently “move” from one configuration to another. A
major difficulty in MC studies of lipid membranes is related to the high, liquid-like density of these
systems and the polymeric character of the lipid chains. These facts impose severe limitations on the MC
sampling procedure, which in some cases may result in “unexplored” phase space regions. Yet, as with
the MD simulations, increasingly sophisticated MC procedures are constantly being developed, and it can
be anticipated that many important (especially structural) properties of lipid membranes will be investi-
gated using these methods.

In mean field theories of the lipid membrane one treats, usually in great detail, the conformational
properties of one “central” molecule, but the effects of neighboring molecules are treated approximately.
They are assumed to provide a “mean field” for the “motion” of the central molecule. In general, the mean
field appears as a variational parameter (or parameters) in the singlet probability distribution of the central
chain and its numerical evaluation involves a solution of “self-consistency” equations. For instance, in
the theory presented in the next section, the mean field acting on the central lipid molecule is represented
by the “lateral pressure profile” exerted on this chain by its neighbors. (As the average area per molecule
decreases, the lateral pressure increases, and the lipid chains are stretched further along the membrane
normal.) The self-consistency equations represent the packing constraints on the lipid chains which, as
mentioned above, reflect the assumption of a uniform, liquid-like, hydrophobic core.

Several mean field theories of chain packing statistics in bilayers have been formulated to account for
structural and thermodynamic properties of lipid membranes. The first theory of this kind was proposed
by Marelja,!”® primarily in order to analyze the fluid-solid (“gel-liquid crystalline”) transition in lipid
bilayers. This theory, formulated in the spirit of the Maier-Saupe theory of the isotropic to nematic phase
transition in liquid crystals,!” assumes that interchain interactions are governed by the anisotropy of the
interaction potential between neighboring chain segments. In this respect it is different from the theory
described below in which excluded volume (packing) interactions are the dominant ones. These interac-
tions also play the decisive role in the lattice theory originally presented by Dill and Flory?® and then
further developed by Dill and Stigter.?! Gruen’s theory,?2% developed at about the same time, is in many
respects similar to ours,?32 as has been discussed in detail elsewhere.>® Another mean field approach,
extensively applied to analyze lipid membrane properties, has been developed by the Wageningen group,
based on the mean field theory of polymeric systems originally proposed by the Scheutjens and the Fleer
(see, e.g..References 33 to 36). Unlike our approach, this theory is based on the assumption that the lipid
chain segments occupy the sites of a given underlying lattice.

Most of the mean field theories mentioned above share several common features and differ in some
other (often subtle) respects. Our intention in this chapter is not to compare the different theories but,
rather, to describe one consistent approach, its possible applications, and some of its achievements as well
as possible deficiencies. To this end, after introducing the basic theoretical concepts in Section 2, we will
describe three different applications of biological relevance in Sections 3 to 5 and conclude with some
preliminary results relevant to the application of the theory to vesicle fusion in Section 6.

II. MOLECULAR THEORY OF MEMBRANE STRUCTURE

In this section we describe a rather simple statistical thermodynamic molecular theory of lipid chain
packing in membranes in their fluid state. As usual, we treat the membrane as a two-dimensional (2D)
film, composed of a central hydrophobic region comprising the hydrocarbon chains (*“tails”) of the lipid
molecules and two interfacial regions containing the lipid polar headgroups (Figure 1). We shall focus
on the conformational properties of the lipid chains. The interactions involving the polar heads will only




131

4 (z)

Figure 1 Schematic illustration of a (planar) lipid bilayer and the quantities appearing in the derivation of the
singlet probability of chain conformations (see Equation 5): ¢(zc)dz denotes the number of chain segments
which, for a chain in conformation a, fall within the shell z,z + dz. The ‘free chain’ is a (hypothetical) chain with
no neighbors around it. The lateral pressure profile n(2) schematically illustrated in the figure accounts for the
pressure exerted on a given (stretched) chain by its neighbors in the bilayer.

be treated in an approximate, “phenomenological” fashion. The main reason for that is the highly specific
nature of these interactions which depend sensitively on the size, charge (e.g., ionic vs. zwitterionic), and
chemical composition of the headgroups. On the other hand, the theoretical treatment of the hydrophobic
region of the membrane is in many respects simpler and more general. This is because the hydrophobic
core is, to a very good approximation, uniformly packed with lipid chain segments at hydrocarbon liquid-
like density.> This basic fact is valid and thus simplifies considerably the theoretical description, even
when the core is composed of different types of acyl chains (e.g., saturated and partially unsaturated or
long and short chains).
The membrane free energy can be expressed as a sum of three terms,

F=F;+1‘1+1‘7‘=2N(f;+fv+ﬁx) (1)

representing, respectively, the contributions of the hydrocarbon tails, the surface free energy correspond-
ing to the hydrocarbon-water interface, and the (solution-mediated) interaction free energy between the
headgroups. f; ( = t,5,h) denotes the corresponding free energies, per molecule, with 2N denoting the
number of molecules in the membrane (N per monolayer, on average). All three terms depend on the lipid
composition of the two monolayers comprising the membrane bilayer and the ambient solution condi-
tions, as well as on the membrane area and curvature. The interplay between these terms dictates the
equilibrium geometry of the membrane (area and curvature), fluctuations around the equilibrium state,
and all microscopic (e.g., chain conformations) and thermodynamic (e.g., elastic) properties of the
membrane. We shall first consider each term separately, devoting most of the discussion to F,.

B. CHAIN FREE ENERGY
The formalism outlined below can be applied to a bilayer membrane of arbitrary lipid composition,
whether symmetric or nonsymmetric with respect to the two monolayers, as well as to an arbitrary
membrane thickness and/or curvature. Also, the theory can be and has been applied to other amphiphilic
aggregates such as micelles (see also Section V), as well as to systems containing hydrophobic solutes
(see Section IV). Yet, to introduce the basic concepts involved and to derive the main working equations
and expressions, let us consider the simplest possible membrane: namely, a planar and symmetric bilayer
composed of a single lipid component. To further simplify the description, let us assume that the lipids
are single (saturated) chain amphiphiles of the form P-(CH,), —CHj, with P symbolizing the polar
headgroup. The generalization to doubly tailed lipids, including nonsaturated lipid chains, is straightfor-
ward, as described in Section IIL

Our goal is to derive an expression for P(ct), the probability of finding the lipid hydrocarbon chain in
conformation o In general, P(ct) is fully specified by the coordinates of all the atoms constituting the tail.
In practice, one can employ rather accurate but simpler schemes like the rotational isomeric state (RIS}
model of acyl chains,” whereby o is specified by the trans/gauche sequence of the CH,~CH, bonds along
the chain and by the overall orientation of the chain (specified by three Euler angles) relative to some
arbitrary fixed system of coordinates (see Figure 1). For a lipid of the form #~(CH,), ,~CH, the number
of trans/gauche sequences is 37! (treating the P—(CH,), bond as a CH,~CH, bond). In the numerical
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examples presented in the following sections, the calculations involve generation of all possible se-
quences, each multiplied by several dozens overall chain orientations as well as several lateral displace-
ments of the headgroup relative to the hydrocarbon-water interface.’!

Knowing the equilibrium P(c) we can calculate any desirable “single-chain” conformational property.
Of particular interest are those properties which can be either measured experimentally or calculated by
detailed computer simulations. In addition to the physical significance of these properties, their calcula-
tion provides a test for the expression which we will soon derive for P(c). The most commonly measured
or calculated conformational properties are the bond orientational order parameters and the segment
spatial distributions to be defined later. Furthermore, P(c0) can be used to calculate various thermody-
namic properties of interest, such as the free energy per chain, f,, and related quantities such as the
curvature elasticity moduli of the membrane.53*4!

The free energy per chain is given, in terms of P(a), as

f,= Y Po)e(0) + kT ) P(o)in P(a) @

where k is Boltzmann’s constant, T is the temperature, and e(a) is the internal (trans/gauche) energy of
a chain in conformation o. More specifically, e(o) = n (e, + n(oe, where n (o) and n(o) are the
numbers of gauche and trans conformers along the chain, with e, and e, representing their respective
energies. One usually sets ¢, =0, implying that e, = 500 cal/mol.

The first term in Equation 2 is the energetic contribution to the chain free energy, while the second
is the conformational entropy contribution. Both depend on the curvature of the membrane, its thickness,
and its chemical composition.

Equation 2 representing the chain free energy as a function of the singlet probability distribution (spd)
of chain conformations, is also the key expression in the variational procedure for deriving the equilib-
rium expression for P(ct). We derive the desired (equilibrium) spd by minimization of f, with respect to
{P(cr)}, subject to whichever constraints P(ct) must fulfill. Except for the trivial normalization condition
(TP = 1) the only additional constraint which we impose on P(c) results from one simple and
common assumption. Namely, we assume that the liquid-like hydrophobic core is uniformly packed by
chain segments. The mathematical expression of this constraint is

J.dso(s)z P(oss)y(r;o,s) =p(r) (allr) (3)

which for a symmetric planar bilayer reduces to

S Plofolzo) +o(-za)]=ap (all2) @

The quantities appear in Equations 3 and 4 are as follows: P(a:s) denotes the spd corresponding to chains
originating from point s of the hydrocarbon-water interface; for simplicity s may be regarded as the
headgroup position. o(s) is the lateral density of headgroups at the interface; i.e., o(s)ds is the number
of chains originating from an area element ds at the interface. It should be noted that the s integration in
Equation 3 includes both interfaces. The quantity W(r;o.s)dr denotes the number of segments of a chain
in conformation , originating at s, which fall within a small volume element dr (around r) of the
hydrophobic core. p(r) is the average segment density at r which, for a “compact” core, is constant: p(r)
= p = 1/v, where v is the average volume per chain segment in the hydrophobic core.

In passing from Equation 3 to Equation 4 we have specifically considered a symmetric planar single-
component bilayer. For this system we have o(s) = constant = 1/a, where a is the average cross-sectional
area per chain, measured at the hydrocarbon-water interface. This important structural characteristic of
the membrane is usually referred to as “the area per headgroup.” Also, for the simple bilayer, P(o;s) =
P(a) is independent of s. We now choose a coordinate system whose origin is at the bilayer midplane,
with its z axis pointing towards the “upper” interface. Clearly, for a chain with headgroup coordinates 6s
= x,y = 0,0 the quantity y(r,os) = y(r,0,0) is only a function of z. Then the left-hand side of Equation
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3 can be integrated over x and y to obtain Equation 4, in which ¢(z;0t)dz = y(r;o)dxdyldz is simply the
number of segments of an a-chain falling within the shell z,z + dz of the hydrophobic core (see Figure
1). The two terms within the square brackets in Equation 4 represent the contribution to the segment
density in z due to chains anchored to the “upper” and “lower” interfaces, respectively. Of course
Equation 4 could be immediately written down for the symmetric bilayer. We have emphasized here that
it is a special case of the more general form Equation 3, which will be of use in Section IV.

To derive P(0)) we now minimize Equation 2 subject to Equation 4 and obtain

Plo) = Lex (00 - ot | ®
with
o= 3 oa] (o) etz ©

representing the conformational partition function of the chain, and B = 1/kT. The quantities {n(z)} in
these equations are the Lagrange multipliers conjugated to the packing constraints Equation 4. They have
the dimensions and the physical significance of “lateral pressures”, as discussed in detail elsewhere! 22425
(see Figure 1).

The numerical values of the {7(z)} terms are determined by the self-consistency equations resulting
from substitution of Equation 5 into the packing constraint (Equation 4). This results in a set of nonlinear
algebraic equations which can be solved quite simply and efficiently for any chain model.

Substituting Equation 5 into Equation 2 we obtain

f,=—kTIlng- apj n(z)dz N

Thus, after evaluating the 7(z) we can calculate any chain conformational property derivable from P(c1)
through Equation 5 or any thermodynamic property derivable from f, using Equation 7. Clearly, all the
results depend sensitively, through nt(z), on the value of the area per headgroup, a.

The results of Equations 5 to 7, corresponding to the symmetric, planar, single-component bilayer, can
be easily generalized to more complex systems. Let us briefly mention a few cases of interest.

Curved bilayers — In this case, instead of a constant cross-sectional area per chain, a, we have a =
a(c;,¢52), where ¢, and ¢, denote the local interfacial curvatures ¢; = 1/R; are the principal curvatures; R;
denotes the radius of curvature). In this case the packing constraints (Equation 4) should be replaced by

Xe 3 Pe(@)0(s0)+ %, P (B)0(ziB) = pale) = a1+ (¢, + ¢ e+ 10,2’ ®)
« i

with Px(cr) and P,(B) representing the spd’s of chains originating at the “external” (E) and “internal” (/)
monolayers comprising the bilayer, e.g., of a vesicle. (Clearly, for a spherical vesicle of radius R,c, = ¢,
= 1/R.) The quantities ¥ and 7, are the “mole fractions” of lipids in the two monolayers; X, = Ng/N and
%y = NJN (xg + % = 1, Ng + N; = N), with N and N, denoting the number of chains originating from the
E and [ interfaces, respectively.

The free energy of the system in this case is given by

F = NEZPE(a)[e(a) +kTIn Py(o)] + N,Zp,(ﬁ)[e([a) +kTIn P, (B)] C))
o ]

Minimization of Equation 9 with respect to Equation 8 yields for Pg(0) = Pg(0ha,c1,¢,) and P/B) =
P,(B:a,c,,c,) expressions similar to Equation 5, except that now n(z) and gg(g,) depend not only on a but
also on ¢, and c,.
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Micelles — Here again, all we need to do is to account for the curvature dependence of a(z). For a
cylindrical micelle, for instance, as will be discussed in Section V, instead of Equation 4 we have

Y P()i(ma) = pa(R)r/ R (10)

where R is the radius of the micelle and r is the radial distance from the cylinder axis. Here again P(o)
has the same form as Equation 5, but now the pressure profile {n(r)} depends on the micellar radius R.
For micelles composed of chains of a given length n the average area per chain at the interface, a(R), is
uniquely determined by R through the geometric packing condition a(R) = 2v/R, where v is the chain
volume. For simple alkyl chains, —-(CH,),_,~CH,, v = (n + 1)v, where v = 27 A3 is the specific volume
of a CH, group.

Two- (or more) component systems - Consider for instance a planar symmetric bilayer composed
of two types of lipid chains, A and B. Then, instead of Equation 4 we write

Xy 2 P[0, (2.0) + 0, (-50)]+ X, > By(B)[0,5(zB) + 04(-2B)) = ap (1n
o i

where X, and X; = 1 - X, denotes the mole fractions of the two types of chains. The free energy of this
system is given by

Fr = N(XA HLA +XB :.B) (12)

with f, , and f, 5 defined according to Equation 2. Again, minimization of Equation 12 subject to Equation
11 yields P,(cr) and Py(B) of the Equation 5 form. The same 7(z) appears in both expressions.

Nonuniform membranes — The presence of a hydrophobic solute in the membrane — say, an
integral protein, — “breaks” the translational symmetry of the planar bilayer. Thus, P(c,s) will depend
on the headgroup position s, as measured, for instance, with respect to the position of the protein. In this
more general case, we have

F, = [dso(s)1,(s) (13)

where f,(s) is the local free energy of a chain originating at s. The relevant packing constraint is now
Equation 3. Minimization of Equation 13 with respect to Equation 3 yields’

P(o;s)= —q—(ls_)- exp[—Be(oz) - Bj dri(r)y(r;o, s)} (14)

with the A(r) corresponding to the Lagrange parameters conjugated to the packing constraints (Equation
3). In this case, due to the lower symmetry of the system, the calculations are considerably more involved
(chains must be generated and classified for different points s), but are feasible, as illustrated in Section
4 for a model of lipid protein interaction.”

B. ADDING F, AND F,

The conformational free energy f,, as given by Equations 2 and 7, decreases as the average cross-sectional
area per chain, a, increases. This follows simply from the fact that as a increases the lateral dimensions
of the chains also increase, allowing for more conformational freedom. More precisely, the energetic
contribution to the free energy (e,) = LP(a)e(ar) increases with a since the average number of gauche
bonds increases. However, the increase in conformational entropy (chain flexibility) overcompensates for
the increase in (g,), resulting in a net decrease of f,. Thus, the conformational free energy corresponds
effectively to a repulsive interaction between chains. This implies a positive lateral pressure
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_ Y
H,-——aa = pjn(z)dz>0 (15)

which tends to expand the bilayer.
The interaction between the headgroups, whether electrostatic or steric, is generally also repulsive; !
ie.,

%>O

I =-
da

h

(16)

where f, = F,/2N is the average interaction free energy per headgroup.

The interfacial free energy F, provides the force which opposes both interheadgroup and interchain
repulsions. The origin of this force is the “hydrophobic interaction”, resulting from the increased
hydrocarbon-water contact area upon increasing o.. f, = F,/2N is usually expressed as a simple surface
energy £, = ya, with 7 (often taken as y = 50 dyn/cm = 0.12 kT/A? at T = 300 K) denoting the effective
surface tension.? With this representation of f, one has

of,
e —
It » y<0 an

¥

The equilibrium area per headgroup, 4, is determined by the balance of the three forces, that is,
I, +10, +I1, =0 (18)

Figure 2 shows the three contributions, f, f. and f,, to the average free energy per molecule

f=hH+fi+h (19)

as a function of the area per molecule in a planar bilayer. The chain contribution f,(a) was calculated using
Equation 6 for three values of chain length (n = 12,14,16). The hydrocarbon tails correspond to simple
alkyl chains, —(CH,),,—CH,, modeled using the rotational isomeric state model. For f, we have used f;
= ya with Y= 0.12 kT/A2 The headgroup contribution is represented here by the simple (and common)
form*37

fi=Cla (20)

where C is a phenomenological constant. For the calculations shown in Figure 2 it has been chosen to
yield a,, = 32 A2 for the n = 14 chains (C = 48 kT).

It should be stressed that Equation 20 is a highly approximate representation of f;. Several authors have
suggested more elaborate expressions for f,» based on detained models for electrostatic and/or steric
repulsions (see, e.g., References 31 and 42 to 49). Unfortunately, these expressions are usually system
specific and contain some poorly known molecular parameters. Thus, in some respects it is more
reasonable to Equation 20 (or alternative phenomenological expressions; see Section 5) and treat C as a
semiempirical parameter, as we did in Figure 2.

A rather common approximation in phenomenological treatments of amphiphile self-assembly is to
set f, to be a constant, independent of chain length and structure as well as of aggregation geometry. Thus,
in bilayers, for example, f, is assumed to be independent of chain length and of the area per headgroup
a. In this case, using Equation 19 for f for Equation 20 for f;, and setting f, = Ya, one finds that a,, = (C/1)'?,
independent of chain length. Experiments suggest that in lipid bilayers a,, is indeed nearly independent
of chain length.>% In the calculations shown in Figure 2 the chain term, f,, is explicitly included and as
can be seen f,(a) depends sensitively on a. Yet the value of a,, varies only weakly with . In fact, based
on simple scaling arguments it can be shown that a,, ~ n* witho. < 1/3, explaining the very slow increase
of a,, with n.2*! Furthermore, our calculations suggest that chain repulsion is actually stronger than
headgroup repulsion, i.e., I, > I,. Thus, the slow variation of a,, with n should not be regarded as
justification for the approximation f, = constant. As noted above, in this approximation, also known as
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Figure 2 (a) The variation of the chain (f,), headgroup (f,) and surface (£) contributions to the average free
energy per molecule, as a function of the average cross sectional area per chain (headgroup), a (see Equation
19). f,is calculated using Equation 20 with C= 48 kT. £, = yawith y= 0.12 kT/A2. f,is calculated using the meanfield
theory for Cyp, Cyy, and Cys chains. (b) The sum of the three contributions above revealing that 8y, (~32 A?)
increases slowly with chain length. (From Ben-Shaul, A., Handbook of Physics of Biological Systerns, Vol. 1,
Lipowsky, R. and Sackman, E., Eds., Elsevier Science, Amsterdam, 1995, Chap. 7. With permission.)

“the hydrocarbon droplet assumption”,** the chain conformational properties are assumed to be independent
of the hydrophobic core geometry. Considering the fact that the dimensions of the hydrophobic region are
comparable to the hydrocarbon chain length, there is no a priori justification for this assumption.

From the variation 8f(a) = f(a) - f(a,,) of f(a) around the equilibrium area, a = d,, one can evaluate
the area compressibility modulus x, defined by3*
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From the data in Figure 2 it follows that x, ~ 0.2 kT/A2 One can also calculate df(a,ci,cy) = flacned —
F(@, 95 and thus derive explicit expressions and numerical values for curvature elasticity moduli.
The relevant formalism and its applications have been described in detail elsewhere.26 The calculation
of membrane elastic moduli is a particular thermodynamic application of the theory outlined in this
section. Other thermodynamic applications are described in Sections 4 and 5. Clearly, these calculations
are only approximate, since the free energy is calculated using the singlet probability distribution function
P(c) rather than the multichain distribution P(0y,...,0ty) 1t should be stressed that these “mean field”
calculations of the free energies and related thermodynamic functions are approximate even if P(cr) were
the exact singlet distribution

Plo) = z P, 0,0y, Ol s Oly ) (22)

0gnenly

The variational derivation of the singlet probability distribution (Equation 5) started indeed with the
mean field free energy expression (Equation 2). However, an alternative derivation of Equation 5 is
possible, based on expansion of the many chain configurational partition functions, lending further
theoretical support to the accuracy of this form for the singlet probability distribution.?

In the next section we briefly describe the application of P(a) for calculating single-chain conforma-

tional properties and compare the results obtained to experimental and computer simulation data.

lil. CHAIN CONFORMATIONAL PROPERTIES

One of the most familiar characteristics of conformational chain statistics in membranes is the bond
orientational order profile of the C—H bonds along the lipid hydrocarbon tails.55155 The orientational order
parameters are commonly measured by nuclear magnetic resonance (NMR) methods, using selective (or
nonselective) deuteration of the chains. Specifically, the measured quantity is the orientational order
parameter of the C,-H (CD) bond for —(CH,), ~CH, chains, k=1,...,n), defined as

S, = <P2(c039k)> = Zp(oz)pcos2 8, (o) -1]/2 @3)

where Py(x) = (3x* - 1)/2 is the second Legendre polynomial and 8,(c) denotes, fora chain conformation
o, the angle between the kth bond and the membrane normal (the “director”). The C-H order parameters
can be related to the skeletal order parameters, S,, corresponding to the vectors ¥y rs1 connecting carbons
k-1and k + 1 of the chain: S =—25; for all k except for the terminal methyl group (~CHa), for which
S, =-38,%

The orientational order parameter profiles provide a measur® of chain flexibility, reflecting the
“fluidity” of the hydrophobic core. In the perfectly ordered state of the membrane, when all lipid chains
are in their all-trans conformation, with the chain axis along the membrane normal, one has S, =-0.5(8,
=m/2)or S,=1,fork=1....n= 1. In the opposite limit, where bond orientations are random, S; = S,
=0.

Typically, bond order parameter profiles of (saturated) lipid chains in planar bilayers aré characterized
by a roughly constant value of S, for about the first half of the chain (the “‘plateau region™), followed by
a monotonic decrease of S, towards the chain terminus. The last chain segments, those which reach and
possibly cross (“interdigitate” through) the bilayer midplane, are characterized by Sy~ 0, indicating nearly
random bond orientations. This behavior also indicates “high fluidity” in the central part of the hydro-
phobic core, as compared to the regions bordering the interface, where chain orientational ordering is
relatively large. The magnitude of Sy in the plateau region increases as the membrane thickness d increases
or, equivalently, a8 the average cross-sectional area per chain, a, decreases. This behavior is to be
expected, since as d increases, the hydrocarbon chains must be further stretched out, resulting in a higher
degree of chain ordering along the membrane normal. Note that this trend is a direct consequence of the
tight (fluid-like) packing condition of the chains within the hydrophobic core. In other words, the packing
constraints rather than, say, the relative trans/gauche energy of the chains are the important determinant
of chain ordering in membranes. These qualitative trends have been quantitatively analyzed and con-
firmed by molecular level calculations based on Equation 5.8
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Figure 3 Orientational order parameter profiles of the C-H bonds along the palmitoyl (a) and oleoy! (b) chains
of DMPC (adapted from Reference 31). A — experimental results,5 [J — molecular dynamics calculations,® o
— meanfield theory. (From Fattal, D. R. and Ben-Shaul, A., Biophys. J., 67, 983, 1994. With permission.)

Orientational bond order profiles calculated using Equation 5 for P(o) have been calculated for various
sytems, including “pure” (i.e., single-component) and mixed micelles and membranes. For single-chain
amphiphiles the results have been compared, whenever possible, to experimental data and computer
simulation results, showing generally very good agreement.’? Similarly, good agreement has been
obtained with respect to other conformational properties such as segment spatial distributions and
conformational energy or entropy per chain. In Figure 3 we show two sets of bond order parameter
profiles, corresponding to the two hydrocarbon chains of palmitoyl-oleoyl-phosphatidylcholine (POPC).3!
Here the palmitoyl chain is a saturated —(CH,),,—CH, alkyl chain whereas the C,,(17-carbon) oleoyl chain
contains one cis double bond, between carbons 8 and 9: ~(CH,),~(CH=CH)—(CH,);—CH,. The two chains
are connected through the glycerol backbone, which is also connected to the switterionic phosphatidyl-
choline headgroup. The results shown in Figure 3 correspond to POPC molecules packed in a bilayer of
(hydrophobic core) thickness d = 30.0 A at'T =300 K. Simple packing considerations (see below) imply
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that this thickness corresponds to an average cross-sectional area per headgroup of a = 60.5 A2, which
is also the average cross-sectional area of the lipid tail (composed of one oleoyl and one palmitoyl chain).

The POPC bilayer has been chosen primarily in order to compare the predictions of the mean field
theory (Equation 5) with those of a most comprehensive molecular dynamics (MD) simulation of the
same system.? The MD results as well as (partial) experimental results for the POPC bilayer® are also
shown in Figure 3. The agreement between these sets of results is quite satisfactory considering the
complexity of the system modeled. The typical “plateau” region of the saturated chain is reproduced, as
well as the very distinctive drop in the orientational order parameter at the double bond region of the
oleoyl chain. Differences in the S, values appear mainly for the first few C—H bonds of the oleoyl chain.
This is probably due to the approximate mean field treatment of the glycerol backbone of the lipid from
which the two chains emanate. In fact, in the mean field calculation of the POPC bilayer the hydrophobic
core of the membrane has been modeled as an equimolar mixture of palmitoyl and oleoyl chains satisfying
a packing constraint of the form in Equation 11. In other words, the connectivity of the oleoyl and
palmitoyl chains through the glycerol backbone has not been explicitly taken into account. This approxi-
mation is consistent with the assumption that the interactions between chains originating from the same
headgroup are no different from those originating from different headgroups. The reason for this
approximation is “technical”. As noted in the previous section, the calculation of P(c) involves the
generation of all possible conformations of the chain considered. Thus, for a pure aggregate composed,
say, of saturated ~(CH,),~CH chains, the number of possible (RIS) conformations is of the order of 3".
For each conformation generated one counts and classifies the ¢(z;0.) terms into groups of degenerate
conformations corresponding to their distribution within the hydrophobic core. For a mixture of «(CH,),—
CH, and ~(CH,).~CH,3 chains this is done separately for each type of chain. The number of conformations
enumerated is thus 37 + 37 On the other hand, the total number of conformations corresponding to two
chains originating from the same headgroup is 37 - 3". This, of course, implies an enormous numerical
effort. Furthermore, there is no real reason for treating the correlations between two chains belonging to
the same headgroup more accurately than those originating from different headgroups. After all, the
chains comprising the hydrophobic region are tightly packed and correlated. The mean field theory treats
these correlations only indirectly, through the packing constraints, Equations 4 or 11.

We note that despite the inherent approximations involved in the mean field analysis its predictions
compare well with those derived from MD simulations. The difference in computation time between the
two approaches is enormous. Obviously, MD simulations provide much more detailed information,
including information on dynamic propetties, which the mean field equilibrium theory cannot treat at all.
Yet, even with the best interaction potentials known and the fastest computers available, the number of
systems which can be studied in detail by MD methods to date is limited, and even those are followed
over relatively short periods of time. On the other hand, the mean field approach described above, though
approximate, can be easily applied to a very wide range of systems (e.g., different lipid compositions) and
a wide range of conditions (e.g., membranes of different curvatures). Thus, as noted already in Section I,
while the quality of large-scale computer simulations is rapidly growing, there are many systems and
properties (e.g., curvature elastic moduli) which can only be studied by approximate mean-field theories.

Another measurable structural characteristic of lipid membranes is the distribution of different chain
segments across the bilayer hydrophobic core. Figure 4 shows the distribution (number of segments per
unit length) of terminal (CH,;) groups, double-bonded carbons (~CH=), and the sum of all methylene (-
CH,-) segments comprising the two hydrophobic tails of dioleoyl phosphatidylcholine (DMPC). The
lipid tail of these molecules is composed of two —~(CH,),~(CHACH)—~(CH,);~CH, chains. One set of
curves represents experimental results obtained by X-ray and neutron scattering.’57 The other represents
the predictions of the mean field theory.3! The thickness of the hydrophobic region, defined as the average
distance between the lipid carbonyl groups on opposite interfaces of the membrane, is d = 32 A. The
agreement between the measured and calculated results is quite satisfactory, at least with respect to the
peaks of the various segment distributions. The main difference appears in the width of the CH,
distribution, showing wider “wings” of the experimental results. Yet it should be noted that no attempts
were made to fit the calculated results to experiments. The only input into the calculation was the
thickness of the membrane, allowing, as in other calculations of this kind, for small fluctuations of the
lipid headgroup around the hydrocarbon-water interface. Further details of this and other calculations are
discussed in Reference 31.

The only input parameter in the mean field calculations is the hydrophobic thickness of the membrane,
d. It enters into the packing constraints (see, €.g., Equation 4) through the average cross-sectional area
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Figure 4 The distribution of lipid chain segments across a POPC bilayer (adapted from Reference 31). e, B,
and 4 represent the results calculated by the mean-field theory for, the (sum of all) CH, segments, CHj; groups,
and CH=CH groups, respectively. The dashed lines are the experimental results.5” (From Fattal, D. R. and Ben-
Shaul, A., Biophys. J., 67, 983, 1994. With permission.}

per chain, a. The relationship between d and a follows immediately from the assumption that the
hydrophobic core is uniform and liquid like. Namely, using v to denote the volume occupied by the
hydrocarbon tail, it follows immediately that a = 2v/d. The tail volume can be calculated by adding the
specific volumes of the various segments comprising the chain, as measured for bulk liquid hydrocarbons,
e.g., V(CH,) = 27 A3, v(CH,) = 54 A%, and v(-CH=) = 21.5 A3 (Reference 31, see also Reference 58). It
should be noted, however, that these values are only used to convert from d to a. The quantity which
actually enters the calculation is the hydrophobic thickness, d, rather than the area a. Only the relative
values (not the absolute ones), e.g., v(CH,/v(CH,), are important for implementing the packing con-
straints. For further details see, e.g., Reference 31.

We conclude this section with another comparison between experimental results and mean field theory
calculations. Figure 5 shows the lateral (in-plane) fluctuations of the CH, segments of DPPC (dipalmitoyl
phosphatldylcholme) tails, packed in a planar bilayer with four different areas per chain, ranging from o =
25.5 t0 31.3 A2 (the corresponding areas per headgroup are twice these values). More explicitly, the figure
shows @,,, the root-mean-square (rms) deviations, in the xy plane (parallel to the membrane), of carbons k
= 1 to 15 along the palmitoyl chain —~(CH,),,~CH,. The rms deviation of carbon k is calculated using

ZP (o) { x,(0) = (, >] [yk (o) - (yk)]z} =(x2)+(») (24)

with x(c) denoting the x coordinate of the k segment when the chain is in conformation o. Using (o
= (y,) = 0 to denote the headgroup position, then for a fluid membrane (x) = (y,) = 0 for all chain segments
k. ¥ is thus a measure of the lateral fluctuations of the kth segment around the membrane normal
(originating from the headgroup). We note, as expected, that as k increases (i.e., towards the chain
terminus), cr‘ also increases, indicating a higher degree of chain flexibility and lateral mobility. Further-
more, and again as expected, the amplitude of the fluctuations increase as the average cross-sectional area
per chain, g, increases. All these findings are consistent with those inferred from the behavior of the
profile of orientational bond order parameters.

The o have been measured for DPPC chains by incoherent quasi-elastic neutron scattering.” These
measurements suggest, for a = 29.6 A2, that o} varies nearly linearly from ~0.6 Afork=1to O,y ~7 A
for k = 15. The calculated results shown in Flgure 5 are in good agreement with these findings.
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Figure 5 The jateral fluctuations {root mean square, in-plane, deviations) of the carbon atoms (k= 1,...,15) of
DPPC calculated by the mean field theory (adapted from Reference 31). o, O A and ¢ correspond to
membranes in which the average cross sectional area per chainis a=25.5, 26.6, 29.6,and 31.3 Az, respectively.
The straight lines are linear fits. The calculated results show good agreement with experiments.® (From Fattal,
D. R. and Ben-Shaul, A., Biophys. J., 67, 083, 1994. With permission.)

‘We have shown in this section that the predictions of the mean field theory outlined in Section 2 show
generally good agreement with observed experimental and computer simulation data. Good qualitative
and often quantitative agreement has also been found with respect t0 other measurable properties, such
as curvature elastic constants of mixed monolayers and bilayers.® Encouraged by these confirmations of

the simple mean field theory we turn, in the following sections, to describe some of its applications to
more complex phenomena.

{V. LIPID-PROTEIN INTERACTION

The presence of a hydrophobic “golute”, such as the hydrophobic part of an integral protein, modifies the
conformational properties of the lipids around it. In general, this “perturbation” increases the free energy
of the surrounding lipids, so that when two or more hydrophobic solutes are in close proximity to each
other the lipid—mediated interaction between them is attractive, thus favoring solute aggregation. The
driving force for this aggregation is the tendency to minimize the contact area, and hence the extent of
lipid perturbation, between the hydrophobic solutes and their surrounding lipid chains.

Various theoretical models have been proposed to describe and calculate the effects of an integral
protein, usually treated as rigid hydrophobic perturbation, on the lipid environment.”#672 Some of
those are continuum theories, based on treating the lipid bilayer as an elastic sheet of finite thickness.
Several other statistical thermodynamic theories invoke Landau-type expansions of the free energy in
terms of some order parameter, €.8., the “hydrophobic mismatch” (the difference between the protein and
bilayer hydrophobic thickness’"), addressing such issues as the effect of proteins on the solid/fluid (“gel-
liquid crystal”) transition temperature of the membrane. Very few models have considered the lipid-
protein interaction on a molecular level. One such model, based on the molecular theory presented in
Section II, will be outlined in this section.” Before turning to a more detailed description of this model
it should be stressed that, as is often the case, the different theoretical approaches to the very complex
issue of lipid-protein interaction should be regarded as complimentary rather than contradictive. For
instance, the continuum clastic theories,2® which are inherently valid for perturbations which are large
on a molecular scale, are useful for understanding long-range elastic interactions between inclusions.
Simple phenomenological approaches, such as the “mattress mode”, ! are useful for understanding the

qualitative trends on membrane phase transitions as a function of the hydrophobic mismatch. Molecular
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Figure 6 Schematics of the lipid-protein interaction model described in the text {(adapted from Reference 7).
Bottom panel is a “side view” of the bilayer, depicting the protein as a rigid wall of thickness dj, either larger (right,
“positive mismatch”) or smaller (left, “negative mismatch”) than the unperturbed bilayer thickness d?. The chains
in the vicinity of the protein are either stretched (when dp > d°) or compressed (when dp < d°} in order to bridge
over the hydrophobic mismatch. The top panel is a “top view” of the membrane illustrating the corresponding
changes in the average cross sectional area per chain as a function of the distance from the protein. (From Fattal,
D. R. and Ben-Shaul, A., Biophys. J., 65, 1795, 1993. With permission.)

models of the type presented below can provide numerical estimates on the lipid-protein interaction free
energy, the range of perturbation of the lipid environment, and the origin of its dependence on the
hydrophobic mismatch. Finally, it should be noted that all types of models mentioned above, including
the one described below, expose only one aspect of the very complex and diverse phenomenon of lipid-
protein interaction. More explicitly, by treating the protein as a rigid hydrophobic solute, we ignore not
only the details of its complex structure but also the various electrostatic and steric interactions prevailing
both in the core and in the interfacial regions.

Let df denote the thickness of the lipid hydrophobic core. It is commonly assumed that when a rigid
protein (or other inclusion) of hydrophobic thickness dp ~ df is incorporated into the membrane, the
flexible lipid chains around it will adjust their length so as to shield the protein from direct contact with
the surrounding water (see Figure 6). Using d,(x) to denote the bilayer thickness at a distance x from the
protein, this assumption implies that d;(0) = dp. The variation of d;(x), between dp at x = 0 are dj’ at x
— oo, will be modeled as

d,(x)=d} + (d,, - d?)exp(—xlﬁ) (25)

with & measuring the range (or the “coherence length”) of the perturbation. The model treats Easa
variational parameter whose value is determined by minimization of the total perturbation free energy.
The exponential variation of the membrane thickness profile (Equation 25) has been derived by some of
the Landau-type theories of lipid-protein interaction.t’¢® Yet in the present model it should only be
regarded as a convenient parametrization of d;(x). In fact, some of the continuum elastic theories of lipid-
protein interaction predict more complicated, including nonmonotonic, functional forms for d,(x).%*%
In the model illustrated in Figure 6 the protein is treated as a rigid cylinder embedded in the membrane.
The diameter, D, of the cylinder cross section is assumed to be much larger than the average lateral
dimension of the lipid chains, i.e., D >> a'2, where a is the average cross-sectional area per chain.
Accordingly, to the lipids in its periphery the protein appears as a planar wall. Free energy calculations
have been performed assuming that the protein wall is flat and is extending normally and symmetrically
around the bilayer midplane.” Other geometries, ¢.g., a conical inclusion, can be treated similarly.
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Assuming that the protein wall is parallel to the zy plane (z is the direction normal to the membrane
plane), the lipid-protein interaction free energy per unit length of the protein perimeter (along the y
direction) is given by

aF =2 do(x)f(x)-0f"] (26)

where f(x) is the local free energy per molecule at distance x from the protein and o(x)dxdy is the number
of molecules originating from a small area element dxdy of one of the two membrane interfaces. (More
precisely, dxdy is the projection of this area element onto the bilayer midplane.) ¢° and f© are the
corresponding quantities for the unperturbed membrane; that is, 6" = 6(x) and f° = f(x) as x —> eo. The
factor 2 in front of the integral accounts for the two leaflets of the bilayer.

In the planar bilayer ¢” = 1/a", where a® = 2v/d} is the average area per chain; v denotes the volume
of the hydrophobic tail. Assuming, as we did throughout this chapter, that the hydrophobic core is uniform
and liquid-like, we have o(x) = 2v/d,(x). Note, however, that except for the planar bilayer o(x) # la(x),
where a(x) is the average local interface area per chain in the vicinity of the protein. This latter quantity
is given by

1/2
2 1(2d,(x) :
a{x) = —————dL B 1+ 4(__—8): ) @n

As in Section 2, the free energy per molecule can be expressed as a sun of tail, surface, and headgroup
contributions:

£(x) = £,(x)+ £,(x) + £,(x) (28)

The tail free energy and the corresponding spd are given By equations 13 and 14, respectively, withs —
x and T — x,z. The numerical calculation of f(x) is considerably more complex than in the planar bilayer
case, since A = A(x,z) varies along both x and z, whereas for the planar bilayer A —» 1t(z) is only a function
of z. Nevertheless, the calculations are feasible and representative numerical results will be shown below.
In these calculations the surface free energy is modeled as f, = ya(x), with Y= 0.12 KT/A?, and f,(x) is
represented by the simple form f,(x) = Cla(x), with a(x) given by Equation 27. The parameter C was
chosen such that for a planar bilayer composed of C,4(P-(CH,)~CHs) lipids the equilibrium area per
chain is g, = 32 A? (see Figure 2).

The perturbation free energy AF of the C,, bilayer is shown in Figure 7 for three choices of the
headgroup interaction parameter: C = 48 kT, 12 kT, and 0. First we note that AF # 0 even for the case
where no hydrophobic mismatch occurs, when dp = df. In this case there is no contribution to AF from
the surface (AF, = 0) or headgroup (AF, = 0) terms; only AF,> 0. Even though there is no change in the
average chain length, the presence of the impenetrable protein wall reduces the conformational freedom
of nearby chains, resulting in excess chain orientational ordering and non-negligible positive contribution
to F,. These notions are confirmed by explicit calculations of bond orientational order parameter profiles,
showing increased (Sj) values for chains near the protein as compared to those away from it.” The chain
conformational calculations also show a finite (though small) average tilt angle of the chains (away from
the wall). It should be noted that the first molecular model of lipid-protein interaction, which was
proposed by Marcelja, has been formulated for the dp = df case.'® In Margelja’s model, like in the one
presented here, AF, > 0 due to the loss of lipid chain conformational freedom in vicinity of the protein.'*

When dp > df the lipid tails are stretched beyond their length in the unperturbed membrane, resulting
in AF,> 0. In paraliel, the average area per headgroup decreases® and consequently AF, < 0. The opposite
behavior characterizes the case dp < df. The contribution of headgroup repulsion (AF,_ to AF is, at least
according to the model described, small compared to AF, and AF,. Thus, since as dp — df increases AF,
increases whereas AF, decreases, the minimum of AF = AF, + AF, + AF, = AF, + AF, is generally around
d, — df = 0. However as seen in Figure 6, the minimum of AF shifts to a negative dp — df value when
the strength of headgroup repulsion increases. In other words, negative hydrophobic mismatch can in fact
relieve some of the lipid-protein interaction free energy when headgroup repulsion is strong. Similarly,
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Figure 7 The lipid-protein interaction free energy (per unit length of perimeter length) for a bilayer of C,, chains,
as a function of the hydrophobic mismatch (adapted from Reference 7). o, B, and A correspond to three different
choices of the headgroup repulsion strength, C= 0, 12, 48 kT, respectively. (From Fattal, D. R. and Ben-Shaul,
A., Biophys. J., 65, 1795, 1993. With permission.)

positive mismatch can reduce AF (compared to the case dp = df) in the case of strong chain repulsion.
This effect has recently been predicted by Safran and Dan using a continuous elastic theory for the effect
of hydrophobic inclusions on membrane properties.®8 Its origin, according to their analysis, is the
nonzero spontaneous curvature of the monolayers comprising the bilayer. To understand the effect it is
worthwhile to elaborate on the role of spontaneous curvature in lipid bilayers.

Consider one of the two monolayers comprising a lipid bilayer and assume it is planar, The three
forces, headgroup repulsion, surface tension, and chain repulsion, balance each other at some equilibrium
area per chain, a,,. These forces also exert moments which may prefer a finite “spontaneous” curvature
for the monolayer. The curvature may be either positive (the hydrocarbon-water interface convex towards
the water), negative, or zero. Large moments of headgroup repulsion will tend to induce positive
spontaneous curvature. Large moments of chain repulsion will act in the opposite manner. When two
monolayers are brought into contact to form a planar bilayer, both are “frustrated” energetically since
their curvature is not the optimal (spontaneous) one. Yet the planar bilayer geometry usually involves the
least curvature energy cost for the two monolayers. Now suppose that headgroup repulsion is strong
enough to favor positive spontaneous curvature for the monolayer. If d, < df then the lipids around the
protein wall are packed with positive spontaneous curvature (see Figure 5), thus relieving some of the
frustration energy associated with the formation of the planar bilayer. The case C = 48 kT in Figure 6
corresponds to strong headgroup repulsion and hence positive spontaneous curvature. Indeed, we note
that for this case the minimum in AF takes place at a negative value of d, — df’. Similarly, stronger chain
repulsion would shift the minimum towards positive dp — d values.

Various other structural and thermodynamic characteristics of the lipid-protein bilayer can be derived
from the model described in this section. One result of particular interest is the spatial range of the
perturbation, &. The perturbation of lipid order by the protein wall extends to ~ 3€. The calculations show
that & ~ 5 A. Since, typically, the lateral dimension of a lipid chain is a'? = 5 to 6 A, it follows that the
range of perturbation corresponds to just a few molecular diameters.

V. THE VESICLE-MICELLE TRANSITION

Most lipid molecules in aqueous solution self-assemble spontaneously into extended 2D bilayers. The
spontaneous (equilibrium, minimal free energy) curvature of bilayers is generally zero; i.e., they tend to
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Figure 8 Schematic illustration of a mixed lipid surfactant bilayer {a) and a mixed micelle (b) (adapted from
Reference 32). af and ag are the bare headgroup areas of the two amphiphilic components, §is the distance from
the plane of headgroup repuision to the hydrocarbon-water interface. (From Fattal, D. R., Andeiman, D., and Ben-
Shaul, A., Langmuir, submitted.)

be planar. To avoid the excess free energy associated with the exposure of their edges to water, the
bilayers often close on themselves to from vesicles, at least in dilute solutions.™ At higher lipid
concentrations they may organize into multilamellar structures.”?* Other, nonlipid amphiphiles, which
in dilute solution self-assemble into high-curvature aggregates such as cylindrical micelles, usually
organize into multilamellar phases at higher concentration. These phases are stabilized by interaggregate
interactions which overcome the intrinsic preference of the molecules to pack in highly curved aggre-
gates.

Surfactant molecules, such as octylglucoside or bile salts, form micelles in dilute solution, reflecting
their high spontaneous curvature.’ Recall that any point of a curved surface can be characterized by
two local principal curvatures, ¢ and ¢,, with R; = l/¢; (i = 1,2) denoting the corresponding radius of
curvature. Thus, for example, the hydrocarbon-water interface of a spherical micelle of radius R is
characterized everywhere by ¢, = ¢; = 1/R, with R < I, where [ is the length of the fully extended
amphiphile tail. Similarly, in cylindrical micelles (except at the hemispherical caps), ¢, = 1/R, whereas
¢, = 0, R, denoting the radius of the cylinder cross section (R, < 1) and R, — e denoting the radius of
the cylinder axis. In planar bilayers ¢, = ¢, =0, and in spherical vesicles of radius R, ¢, = ¢, = I/R, with
R>> 1L

Consider now a dilute binary aqueous solution of lipids whose spontaneous aggregation geometry is
planar (¢, = ¢; = 0) and surfactants which in dilute solution prefer organization in, say, cylindrical
micelles (¢, = W, c;=0). Let x =%, = N/(N,, + Ng) = Ny/N denote the mole fraction of lipids and ¥ =
1 —  the mole fraction of surfactants in solution, Ny, and Ny denoting the number (or concentration) of
lipid and surfactant molecules, respectively. (The mole fractions involve only the amphiphilic compo-
nents, not the solvent; X5+ %, = 1.) In the limits x = 1 and 3, = O the amphiphiles form lipid vesicles (¢
= ¢, = 0) and surfactant micelles, respectively. When a small amount of surfactant molecules is added
to a system composed of lipid vesicles, a certain fraction of them (typically very small, cortesponding to
the cme [critical micellar concentration]'*%) are dispersed as monomers in the solution; the rest are
incorporated (“solubilized”) into the vesicles. As in ordinary binary mixtures, the thermodynamic driving
force for the incorporation of the surfactant into the lipid bilayer is the mixing entropy, which overcounts
the tendency of the surfactant and lipid molecules to pack, separately, according to their energetically
preferred aggregation geometries. Similarly, upon adding small amounts of lipids to a surfactant-rich
system they will be solubilized in the surfactant micelles (hardly any of them will be present as
monomers, due to the extremely low cmc of lipids). Schematic illustrations of a mixed lipid-surfactant
bilayer and a mixed cylindrical micelle are shown in Figure 8.

In ordinary binary molecular solutions, say of A and B molecules, phase separation of an A-rich and
a B-rich phase can take place, provided the effective A-B interaction w = wyg — (Was + Wpp)/2 is repulsive,
e, w> 0; wy( = AB) denotes the interaction energy between I and J molecules (integrated over
distances and orientations or, in lattice models, between neighboring molecules). More precisely, phase
separation occurs below a certain critical temperature T, (proportional to w) and only over a certain range
of (intermediate) compositions, which broadens as T decreases farther from 7.
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An analogous scenario can, and usually does, happen in aqueous solutions of lipids and surfactants.
The analogue of w in these systems is the difference in the packing (free) energy of surfactants and lipids
in a mixed system, compared to their packing in separate aggregates. The coexisting phases in lipid-
surfactant solutions, if and when phase separation takes place, are vesicles with amphiphile composition
x, (v = vesicle) and micelles with composition x,, (m = micelle), such that x,, < x,. The separated phases
appear in different regions of space (vesicles and micelles floating in the aqueous solution) and are
characterized by very different symmetries: nearly planar lipid-rich bilayer vesicles vs. elongated (or
sometimes globular) surfactant-rich micelles.

This qualitative thermodynamic scenario does indeed take place in many lipid-surfactant systems?’-#1
and is of considerable biological importance, e.g., for membrane reconstitution.” What typically happens
is that a lipid vesicle can take up surfactant molecules up to a limit corresponding to a lipid content X,
Beyond that limit the vesicles break into micelles with lipid content x,,. In lecithin-bile salt and lecithin-
octylglucoside mixtures the compositions of coexisting vesicles and micelles are x, ~ 1/2 and x,, ~ 1/4.

A simple qualitative theoretical model of the vesicle-micelle transition has recently been formulated
by Andelman, Kozlov, and Helfrich.** These authors have expressed the free energy of both the (mixed)
bilayer and micelle as a sum of a curvature energy term and a mixing entropy term. Explicitly, the average
(Helmholtz) free energy per molecule in each of the two aggregation geometries is written as

y(x)= -;-K [Cl +c, - co()c)]2 +kT[xInx+(1-x)In(1 - x)] 29)

with x denoting the lipid mole fraction in the aggregate. (Actually in Reference 83 x denotes the area
fraction of lipids, measured at the hydrocarbon-water interface. This difference is irrelevant for the
present discussion and for understanding this phenomenon.) The second term in Equation 29 is an ideal
mixing entropy contribution. The first term is the common, Helfrich form of the bending free energy of
a membrane.?® x denotes the curvature (splay) elastic modulus and c,(x) is the spontaneous curvature of
an aggregate with composition x. The spontaneous curvature has been assumed to vary linearly with x,
say from ¢,(x = 0) = 1/R, corresponding to a cylindrical surfactant micelle of radius R, to ¢y(x = 1) = 0,
corresponding to a planar lipid bilayer (or a very large vesicle). k was treated as a constant, independent
of x or aggregation geometry. Then f(x) is calculated for the vesicle (c, = ¢, = 0) and for the cylindrical
micelle (¢, = 1/R,c, = 0), and by equating the chemical potentials of the lipid and surfactant in the two
geometries (common tangent construction) a general expression can be derived for the lipid composition
of the vesicle and micelle at the transition.

This simple and elegant model can predict some interesting qualitative trends, e.g., the dependence of
the coexisting compositions on cy(x), T and k. Yet it must be remembered that the bending energy term
in Equation 29 is valid only for small deviations, mainly of planar films, around the equilibrium curvature.
Vesicles and cylindrical micelles correspond to very different equilibrium curvatures. It is highly unlikely
that the harmonic (quadratic) form of the bending energy, with the same x for all geometries, can
faithfully describe the geometry dependence of the amphiphile packing free energy. Molecular-level
calculations of the type described in previous sections confirm this question. Furthermore, molecular
calculations of k show that it depends sensitively on x.% (For instance, the bending rigidity of lipid
membranes decreases rapidly upon adding short-chain surfactants to the bilayer.) Interestingly enough,
recent calculations of this kind show that in some mixtures c,(x) varies nearly linearly with x over a wide
range of composition.®

An obvious alternative to the first term in Equation 29 is to calculate the packing free energy of mixed
lipid-surfactant bilayers and micelles using the molecular mean field theory described in Sections 2 to 4.
Thus, instead of Equation 29 one writes

v, (1) = x £ (x)+ (1= x) 3 (x) + kT [xIn x + (1 - x) In(1 - x)] (30)

with f}(x) denoting the packing free energy per lipid molecule in a mixed aggregate of geometry g (g =
vesicle, micelle) and composition x. Then, plotting y,(x) vs. x for the two aggregation geometries one can
evaluate the coexisting compositions, x, and x,,, using common tangent construction.

The results of one calculation of this kind, corresponding to a given set of molecular parameters (see
below), are shown in Figure 9. Also marked on the figure is the composition x, = 0.47, below which the
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Figure 9 The average free energy per molecule in a mixed (C,),/Cy lipid surfactant bilayer () and cylindrical
micelle (s) as a function of lipid mole fraction (adapted from Reference 32). The compositions of the bilayer (x
= 0.47) and micelle {x = 0.29) at the vesicle-micelle transitions are evaluated by common tangent construction
(corresponding to equating the chemica! potentials of each component in both aggregation geometries). (From
Fattal, D. R., Ardeiman, D., and Ben-Shaul, A., Langmuir, submitted.)

vesicle is unstable, and the composition x,, = 0.29, corresponding to the micelles initially formed when
the vesicles break. Conversely, x,, is the maximal lipid content in a cylindrical micelle, beyond which
vesicles of composition x, begin to form.

The results shown in Figure 9 as well as several additional cases are discussed in more detail
elsewhere.32 Here we shall only mention the basic assumptions. The system considered is a mixture of
saturated double-chain lipids P~[(CH,);s~CH;,], and short single-chain surfactants Ps(CH,),~CH,, with
2, and P denoting the lipid and surfactant headgroups, respectively. As in previous sections, the free
energy of the mixed bilayer, and the mixed cylinder, has been expressed as a sum of tail (f)), surface
(f,= Ya), and headgroup contributions. The headgroup contribution to XHx) + (1 -x) S(x) has been
modeled as a steric repulsion free energy:*

ff = —kTn(1 - a, /%) G

Here @¢ = a#(x) is the average area per headgroup in aggregates of geometry g(g = v,/n). This area is
measured at the plane of headgroup repulsion, assumed to be located at distance 8 from the hydrocarbon-
water interface. For a planar bilayer (large vesicle) @' = a*, where a” is the area per headgroup at the
interface; for a cylinder micelle of radius R, am =g (1 + 8/R). The quantity a, = a,(x) = xak + (1 - x)af
is the average bare (hard-core) headgroup area per molecule, at the plane of headgroup interactions. ak
and aj denote, respectively, the bare headgroup areas per lipid and per surfactant molecule.

The surface contribution to the free energy is modeled as

F2(x) = xy(a® —al)+(1-x)v(a* - a))="(a‘a,) 62)

The chain conformational contributions were calculated using the mean field theory for mixed systems,
as outlined in Section 2.

The numerical values used for the specific calculation shown in Figure 9 were Y= 0.12 KT/A, ak =42
A? a3 =50 A2, and § = 1.1 A. The choice of af ensures that the equilibrium average cross-sectional area
per molecule in a pure lipid bilayer is 68 A2, as commonly found for lecithin bilayers.® The numerical
values of aj and & (which in Reference 78 were treated as parameters controlling the spontaneous
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Figure 10 Schematic illustration of the several stages in the fusion of vesicle bilayers (top). The bottom figure
shows in more detail two of the proposed structural intermediates along the fusion pathway.85,86

curvature of the surfactant) ensure that the optimal packing geometry of the C; surfactant molecules in
dilute solution is a cylindrical micelle, with an average area per surfactant headgroup a = 55 Az

The free energy per molecule has been calculated as a function of composition x for both geometries,
and the values of the amphiphile in the vesicles and the micelles at the transition (x* = 0.47 and x” = 0.29)
were determined by common tangent construction. These values for x* and v are in the range observed
experimentally.”# The molecular parameters used (a,a3,,8) are all very reasonable and, moreover, have
been adjusted so as to ensure micelle formation at x — 0 and vesicle formation at x — 1. Nevertheless,
it must be mentioned that the uncertainties involved in choosing these parameters are considerable.
Different choices of, say, ak and 3 can lead to substantial shifts in the values inferred for x, and x,,. The
semiempirical adjustment of such parameters by referring to limiting (i.e., the pure) cases seems, at
present, to be the most plausible procedure. Notwithstanding these reservations, the model described in
this section does account for the basic interactions and trends characteristic of the vesicle-micelle
transition. Other structural transitions, such as from lamellar to inverted hexagonal or cubic phases, can
possibly be accounted for using a similar approach.

Vi. SUMMARY

In some cases, especially in systems of low symmetry such as the lipid-protein membrane, the molecular
mean field theory described in this chapter requires some nontrivial calculations. Nevertheless, the
computational effort involved is still substantially less than that required in large-scale computer simu-
lations. Various other systems and processes in membrane biophysics can be studied and analyzed on a
molecular level using this approach. These include, for example, the thermodynamic stability of mixed
vesicles, pore (and other defect) formation in membranes, and the phase transition from lamellar to
inverted hexagonal phases. Let us conclude this section by mentioning some very preliminary results
concerning an issue of considerable biological relevance: the fusion of lipid vesicles.

Several authors have proposed phenomenological models for the mechanism and the structural
intermediates involved in the process of membrane fusion®# after the initial adhesion process.**" One
of the suggested pathways, the “modified Stalk mechanism” suggested by Siegel,¥ is schematically
illustrated in Figure 10. Siegel has also estimated the excess free energies associated with the formation
of the structural intermediates, using the continuum theory for membrane curvature and stretching
elasticity.?®

We have recently performed calculations of the kind described in Sections 2 and 3 for the excess free
energy of the “Stalk” intermediate (Figure 10) for a pure lipid membrane composed of C,, chains. The
results obtained are AF = 100 KT. These numbers are in surprisingly good agreement with those obtained
using the continuum theory. The agreement is surprising because the structural intermediates involve
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variations of packing geometry extending over only a few molecular diameters. However, additional
calculations are called for before this good agreement can be confirmed.
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