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The elastic behavior of mixed bilayers composed of two amphiphilic components with different
chain length(and identical head groupss studied using two molecular level models. In both, the
bilayer free energy is expressed as a sum of chain, head group and interfacial contributions as well
as a mixing entropy term. The head group and interfacial terms are modeled using simple
phenomenological but general expressions. The models differ in their treatment of the chain
conformational free energy. In one it is calculated using a detailed mean-field molecular theory. The
other is based on a simple “compression” model. Both models lead to similar conclusions.
Expressing the bilayer free energy as a sum of its two monolayer contributions, a thermodynamic
stability analysis is performed to examine the possibility of spontaneous vesicle formation. To this
end, we expand the bilayer free energy as a power sé@igdo second orderin terms of the
monolayer curvatures, their amphiphilic compositions and the average cross sectional areas per
molecule; all variables are coupled, with the molecular composition and areas treated as degrees of
freedom which are allowed to relax during bending. Using reasonable molecular interaction
parameters we find that a second order transition from a planar to a owesdle geometry in a
randomly mixed bilayer is unlikely. Most of our analysis is devoted to calculating the spontaneous
curvature and the bending rigidity of the bilayer as a function of its amphiphile chain composition.
We find that adding short chain amphiphiles to a layer of long chain molecules reduces considerably
its bending rigidity, as already known from calculations involving only the chain contributions.
However, we find that inclusion of head group and interfacial interactions moderates the effect of
the added short chains. We also find that the bending rigidity of pure monolayers is approximately
linear in chain length, as compared to the nearly cubic dependence implied by the chain free energy
alone (at constant head group aje®ur main result involves the calculation of the spontaneous
curvature as a function of composition. We find, for different chain mixtures, that upon adding short
chains to long chain monolayers, the spontaneous curvature first increases nearly linearly with
composition and ther(beyond mole fraction of about 0.5begins to saturate towards the
spontaneous curvature of a pure short chain layer. Qualitative arguments are provided to explain this
behavior. ©1995 American Institute of Physics.

I. INTRODUCTION cellar phases The curvatures of the two monolayers com-
posing a bilayer are opposite in signs, and equal in magni-
A planar bilayer of amphiphilic molecules is composedtude (provided the two monolayers are identicaht least
of two monolayers, stuck to each other through their hydroone of the monolayer curvatures is different from the spon-
phobic interfaces, thus avoiding direct contact between theifaneous one. Thus the formation of a bilayer involves a
amphiphile hydrocarbon tails and wateYet, each mono- “frustration” free energy associated with this difference. In
layer is characterized by an equilibriuspontaneouscurva-  the case of symmetric bilayers, i.e., bilayers composed of
ture which, in general, is nonzero. The sign of the spontaneidentical monolayers, the planar geometry corresponds, by
ous curvature(say positive when the hydrocarbon-water symmetry, to the minimal frustration energy. These qualita-
interface is convex towards the watand its magnitude are tive notions explain why vesicle formation is generally not a
governed by the balance of the moments associated with thspontaneous process, requiring the input of mechanical en-
lateral forces acting in the monolayer. These are the repulsivergy (e.g., by sonicationor by other means.
forces (steric and/or electrostajicoetween the amphiphile From the considerations above it follows that the spon-
polar heads, the entropiconformational repulsion between taneous curvature of thailayer is generally zerdalthough
the hydrocarbon tails, and the attractive hydrocarbon—watefinite thickness effects can lead to spontaneous saddlelike
interfacial tension resulting from the van der Waals attractiorinstabilitie$). This is obviously the case in a putsingle
between the tails. The monolayer spontaneous curvature tgomponent bilayer as well as in a mixed bilayer, provided
generally not very different from the planar one, otherwisethe amphiphile compositions of its two constituent monolay-
the amphiphiles would rather form micellésr inverted mi-  ers are forced to be identical. However, if the compositions
of the two monolayers are allowed to differ then, possibly,
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neous vesicle formation has been experimentally observed imixed monolayer is, at least over a certain range of compo-
several mixed systems. For instance, a few years ago, Kalsitions, a linear function of the short chain mole fraction.
et al® have reported spontaneous vesicle formation in mix-Over this range the effective bending rigidity is a decreasing
tures of surfactants with oppositely charged head groups butinction of the short chain content.
similar hydrocarbon tails. Earlier, spontaneous vesicle for- As in the case of diblock copolymers we find that the
mation has also been reported by Gabriel and Robefts  curvature elastic free energy indeed favors the formation of
mixtures of long and short chain lecithins. In this latter sys-vesicles. However, for the calculated values of spontaneous
tem, the two amphiphilic components have the same heacurvature and bending rigidity we find that this is not suffi-
group but differ in their hydrophobic tail length. cient to overcome the loss in mixing entropy. Based on these
To explain the experiments on the mixed ionic systemsgalculations we conclude that spontaneous vesicle formation
Safranet al®” have formulated a mean-field theory based onin a bilayer composed of amphiphiles which only differ in
a free energy involving an elastic energy term and mixingtheir chain length cannot take place unless the mixing is
entropy contribution. In the elastic energy, nonlinearity of thenonideal.
spontaneous curvature as a function of composition was Our analysis of the bilayer stability with respect to cur-
taken into account by an interaction paramei@ihis is Vvature deformations is based on expanding the bilayer free
equivalent to assuming a spontaneous curvature which varigiergy as a power series involving the curvature and a com-
linearly with composition, and a nonideal interaction energyposition order parameter. The latter measures the difference
contribution to the free energyFor strong enough interac- in the distribution of the short chain component between the
tions an instability of the symmetric bilayer state was pre-two monolayers. Using this expansion we derive a stability
dicted, implying spontaneous vesicle formation. criterion, appropriate only to the occurrence of second order
In a more recent paper, Porte and Ligduhave pre- transitions. The absence of a second order instability accord-
sented a detailed theoretical stability analysis of a mixed biing to this approach does not exclude the possibility of a first
|ayer’ emphasizing the effects of finite membrane thicknesgrder transition. It is well known, for example, that addition
and the coupling between the bilayer curvature and the conff surfactants to lipid membranes can destabilize the
position difference between the two monolayers. They exbilayer® and result, above a certain concentration, in a first
press the free energy as a sum of a mixing term, an interagfder transition to cylindrical or spherical micelles contain-
tion term and a packingelastio free energy. The packing INg a larger fraction of surfactants. It should be noted
free energy is equivalent to a curvature elastic energy with §owever, that this kind of phase transition cannot be accu-
composition independent bending constant and a spontantately analyzed using a single elastic free energy expression
ous curvature which varies linearly with composition. for the very different packing geometries involved in such
Both experimerit and theory® show that the bending transitions:**°
modulus of a mixed amphiphilic layer can vary significantly
with composition. Similar behavior is observed in diblock || THEORY
copolymer layers. Based on a self-consistent field analysis
and scaling arguments Dan and Saffdrave recently shown Consider an amphiphilic bilayer consisting of a long
that lamellar bilayers of diblock copolymers can be destabichain (L) and a short chain§) component, having in mind
lized and form vesicles by adding a small fraction of shortd PhosphatidylcholingPC) mixture of two different chain
chains into the bilayer. In this theory both the bending rigid-lengths’™® By NP'=NE+N§+N{ +Ns we denote the total
ity and the spontaneous curvature depend on the bilaydtumber of molecules in the bilayedf being the number of
composition. The mixing entropy plays a minor role in this, molecules of typé in the external £) mqnolayerN'L being
polymeric, system. Similar behavior has earlier been prethe number of molecules of tygein the internal () mono-
dicted by Wang? !ayer, etc. TQ examine possible transjtions Qf the bilayer f_ro!'n
In this paper we analyze the free energy of a mixedtS Symmetric state to an asymmetric equilibrium state, it is
“binary” bilayer in which the two amphiphilic components Cconvenient to introduce the quantities
have identical head groups but their hydrophobic tails are of m= (NE+NY)/NP,
different length. As usual we write the bilayer free energy as
a sum of two terms corresponding to the free energies of the A =(N§—Ng)/N, 1)
constituent monolayers and allow, as in Ref. 8, for molecular CME L ME I\ /n bl
exchange between the monolayers. Each monolayer free en- X = (NEH+Ns=N = Ng)/N.
ergy is expressed as a sum of an elastic energy and an idgdére,m is the mole fraction of short chain molecules in the
mixing entropy term. In the elastic energy we explicitly con- bilayer, \ is an “asymmetry” order parameter measuring
sider the composition dependence of both the bending modukeir distribution between the two monolayers, gpdnea-
lus and the spontaneous curvature, and calculate them by tvgures the difference between the total number of molecules
approaches. One is based on a detaiealecular (mean- in the two monolayers. When a bilayer of a given composi-
field) theory for chain packing statistics in membranes. Thetion m undergoes a curvature deformation bgtndA can
other one is a simple phenomenologica@lompression vary to reduce the bending free energy involved. It is also
model which accounts for the most relevant qualitativepossible that the bilayer is destabilized, i.e., undergoes a
trends of the molecular theory. One of the central results o§pontaneous curvature deformation associated with a change
our calculations is that the spontaneous curvature of th& these two degrees of freedom. To this end we consider a
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spherical deformation of the bilayer in whia?'=c%'=c%,  f,(a c® m,x,\)
wherec? andcb' are the principal curvatures, measured at

the midplane of the bilayer. At this plane the average area per 1+2c¢ m-+A
molecule isa®=2AP/NP, whereA" is the area of the mid- =(1+ ) fm| @ T+x CP(1=c"), T+yx
plane, around which alN® molecules are assembled. o
Now, we express the free energy of the bilajgr as a . +(1—x)f | 2 —2c g,_cbl(1+cblg)' m— }
sum of the external and internal monolayer free energies 1-x 1-
F,=FEL,+Fl,. Defining free energies per molecule by ©6)
fu=2Fp/N,  f5=FL/(NF+NS), and fl,=F./
(Nl +NY), this reads In writing this equation we have noted that the compo-
sitions of the external and internal monolayers are given by
For= (14 x) fy+ (1= x) Fiy- (2 ¢E=(m+N)/(1+x) andg'=(m—\)/(1- x), respectively,
and that the curvatures of the two monolayers have opposite

Consider now a mixed monolayer composed\af N, +Ng signs.
molecules, and lef denote the monolayer area measured at = 14 g good approximation the area per molecule in the

some dividing surface witt(spherical curvaturec. The free  \nojayer is kept constant during a bending deformation.
energy per molecule in the mixed monolaygf(a,c,¢) is & From Eq.(6) we see that to first order igc” this condition

function of the area per molecuée=A/N, curvaturec, and s fyifilled by coupling the number of molecules to curvature
composition$=Ng/N. We write fr, as a sum of an elastic ,rqyghy=2c"'¢. It can be shown that this condition is sat-
energy term and a mixing entropy contribution isfied if cok/(a3yé)<1. Later on, in Sec. V we confirm this
_ assumption by molecular calculations.
fm(2,€,8)=Tel(,C, )+ Tin( 4)- & Adopting the constant area condition, we find that the
with area and curvature changes of Hiayer are decoupled. Set-
ting a?=a8(m,\) and a=ay(¢) (for each monolayér the

fe(a,c,é) | bil d | f i ind dent.
Iao(d))d’ =§¢(¢)(a—ao(¢))2+2k(q§)(c—c0(q§))2, Dleal:]yciz‘ngn monolayer free energies are area inaepen ent
4 .
@ fo(c®,mn)=fy(ad(m,n),c m,2cP¢N),
fmix(¢) = In(¢)+(1—¢)In(1—¢), )

_ o ~ FmlC,d)=Tm(ag().C,0). )
where in Eq.(5) and hereon all energies will be measured in _ ) o
units ofkgT (kg is Boltzmann’s constant is the Tempera- We find that, to first order ie®£ andX, Eq. (6) reads

ture). In Eqg. (4), the elastic energy is expressed as a powet , _ bleF (Abliq bl 5 bl
series up to second order @ and ¢, where ¥{(¢) is the foi(c”,mN)=(1+2¢”¢)fn(c”(1-c”§),m+\—2c”¢)

stretching constant of the monolayéi(¢) is the bending +(1-2¢"8)F (= cP(1+cPg), m—A
rigidity with respect to a spherical deformatiocy(¢) de- o
notes the spontaneous curvature of a spherically bent mono- +2¢78). ®

layer, anday(¢) is the equilibrium area. All these constants 5y the symmetry of,, it follows immediately that the
may be_funcnons of composition. In E¢4), the d|V|d|ng_ symmetric planar bilayec®=0, A\=0) corresponds to a free
surface is chosen to be the neutral surface, corresponding &ergy extremum. Whether this state is stable or not, can be

the absence of a mixed ter_m(a—ao)(c—co) in Eq. (4)1 determined by the thermodynamic stability conditions in-
We note thatk and ¢, are simply related to the canonical volving the second free energy derivatives

mean curvature modulus’ and the spontaneous curvature

¢y in the Helfrich® form of the bending free energfeng 9%f
= (1/2)K’ (C1+Co— )2 +K'C1Cy. Namely,  k=k’ (M) =| oy K
+k'/2 and co=2cok'/k. =00
The mixing entropy terngs) always favors a disordered a2fb|
state of the system. Later, it will be argued that in a mixture  o(m)= FoN ) 9
of long and short lipids, both having the same head group A=0,cPl=0
structure, the average area per molecufeasured at the 2%
neutral surfaceis nearly the same for both components. k(m)= ﬂ) )
Therefore, in Eq(5) we have expressefd,, in terms of the I°C) \—0.et1=0

mole fractions rather' than area fracyons. . The stability conditions ares>0, «>0, and k.z>0
We denote the distance of the bilayer midplane from theWhere the effective bending rigidity, is defined b e
neutral surface, of both the external and internal monolayer 9 Mg et y
by & For nonsymmetric bilayers this definition fixes the po- 1 72(m)
sition of the midplane to be in the middle between the mono- 7~ Kest(M) = k(M) —
layers neutral surfaces.
Taking into account first order changes éc” of the This effective bending rigidity expresses the resistance

area and curvature at distangérom the midplane, we write  of the monolayer against curvature deformations for optimal

o(m) (10
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N
FIG. 1. Effective bending rigiditke; of a C-16/C-8 bilayer as a function of \

the short chain mole fraction according to E#0); for k. =8kgT, p=0.7,

a,=30 A2, ands=0.02 A%, Thick line: no couplingk.s=2k). Dashed line: ) )

limit of vanishing monolayer thickness. Full line: finite monolayer thick- F/G- 2. Schematic representation of the average shape of a hydrocarbon
ness. chain in a monolayer and its changes upon bending. The fixed hydrocarbon—

water interface is denoted k. Curvature deformation leads to changes in
the cross sectional area-{~a’) and to a stretching deformatiod-{d").

coupling of changes in to changes in curvature given by

\=—rC/o. Note thatkey reduces to R in Eq. (4) when there This expression was used, together with Eg$.and (7) to

is no coupling betweelk andc. . - A
The stability condition can be expressed equivalently inobtaln the dashed curve in Fig. 1. One of the curves in Fig. 1

terms of an effective resistanee. against chanaes i, that describeskgs(m) with finite membrane effects explicitly
. Ot ag 9 ' taken into account. It has recently been shbwmat first

IS order finite thickness corrections to the bending energy enter
72(m) only through the saddle-splayzaussiajh modulus and not
Te(M)=o(m)— (M) >0. (1) through the splaymean curvaturemodulus in the Helfrich

i _ expression. Recall that the bending constant corresponding
There are still the two unknown functionk(¢) and 4 3 spherical deformation introduced in Ed) indeed con-
Co(¢), contained inkert OF 0. The main part of this paper aingk’; the saddle splay modulus. We note from Fig. 1 that

presents a simple phenomenological model and a moleculgf,. finite thickness corrections strongly reducg, espe-

calculation for determining(¢#) andk(¢). It will be shown  ¢iqy for smallm values. These should be attributedkio

that for a rather wide range af values(¢<0.5), Co varies  niost importantly we note that even with the finite thickness

roughly linearly with¢ correction includedk.s remains positive for alim values.
Co(P) =56, (120  Thus at least according to our model calculations, spontane-

. ous vesiculation in a randomly mixed bilayer of different
wheres is a constantsmaller than the spontaneous curvature

of the short chain component, i.&< co(¢=1)) chain lengths is not a likely possibility.
P OV Finall te that Eq(14; t i -
The expression fok(¢) that will be derived in Sec. llI inally we note that Eqi14) can be used to derive gen

. : ) ; eral expressions fdk.s and o. FOr example,
using the phenomenological compression model is

1 2 /1
k(¢p)=k S+(1- +(1-¢))*, 13 - - 2 2 | _—_
() =k [ $p*+ (1= B)(bp+ (1 $)*] 19 2oum g 2B k(m))
with p=(kc/k, )Y wherek, andkc denote the bending ri-
gidities of the long and short chain components. + 4agco(m)k(m) d?co(m) (15
We use Eqs(12) and(13) to illustrate the softening ef- 0~0 dm?

fect of the composition degree of freedoxn Reasonable
values for mixtures of say 16 and 8 carbon cha&i®<l6/C-§ IIl. COMPRESSION MODEL FOR A MIXED
arek, =8kgT, p=0.7,a,=30 A% ands=0.02 A"%. The last MONOLAYER

value implies a radius of curvature of 50 A for the pure short Th h f a hvd b hain | |
chain monolayer if extrapolation ¢i.2) to ¢=1 holds true. € average shape of a hydrocarbon chain In a planar
monolayer is that of a cylinder of lengtti, equal to the

Figure 1 shows the effective bending rigidity as a function of | thick d tional ared bend
the short chain mole fraction in the bilayer. One calcuIation.monf[)h""yerr1 Ic nfetshs, anl Cross sec !c(;g? tﬁr' pon eg i
takes explicitly into account the finite thickness of the mono-N9: 1€ Shape ot the volume occupi e averageby

layer, £ The other corresponds to the lingit>0, often taken the chain becomes wedgelikier cylindrical deformatiohor

as a first order approximation in phenomenological mc)_truncated conelike(for spherical deformation Thus the

dels®”1?The thickness of the mixed monolayer correspond-Splaylike deformation of the chain due to bending can be

ing to the distance of the neutral surface from the b”aye'related to the changes in its average length, fibta d’, and

; . o its area, froma to a’; see Fig. 2. These considerations, to-
g;g&?r}fééséﬁifgyaf;é)(f)(eaiosn?g'sy In the £—0 limit the gether with the assumption that the hydrophobic region is

8 8 . incompressible have been u$étb derive a simple scaling
fo(c® mN)=f(c®m+N)+f(—c®,m=\). (14 relation for the bending rigidity in terms of the chain length
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FIG. 4. Normalized bending rigiditk/k, as a function of compositio
according to Eq(13) for: p=0.3 (full line), p=0.5 (dashed ling andp=0.7
(thick line).

FIG. 3. Schematic representation of a mixed planar monolayer. The mono-

layer is divided into two regions; a mixed chain region of thickrigssnd a

long chain region of thickness—|g. The average cross sectional area per +(1— is th b f t hai
molecule in the mixed chain region is denotedaay The long chain has an ( ¢)nL IS tne average number of segments per chain.

average cross sectional amain the monolayems andn, are the shortand  1he average free energy per chéjp may be written as
long chain volumes, respectively.
Ns n.
fon~¢ 72+ (1-¢) 3. (18
as a,

n and the area, for pure surfactant layers. In this section We yere a1 js the short chain cross sectional area measured in
generalize these |de_as to derive a simple scaling form fof,.o middie of the mixed chain region. Similarlg is the
k(¢) andco(¢), for mixed layers. average area of the long chain, measured in the middle of
the monolayer. We consider now a bent monolayer. As
A. Chain contribution to the bending rigidity above, we assume Fhe interfacial area per molecule to be
o o constant. Changes in the cross sectional areas are deter-
We begin with the long chain limit for a flat, one com- .. geometrically, implying ai~ag(1—1c/2) and
ponent, monolayer. The free energy per molecijg of a/~a,(1—dc/2). This leads to the scaling
chain stretching can be derived based on random walk

arguments?® It scales as Ns n
J ak($)~ I +(1-$)d? . (19
d2 n ag ap
fmi~ 1~ @2 (16 Molecular calculations of chain packing in mixed bi-

layers® reveal that the average areas of long and short chain
near the interface are roughly the same. Therefore, we use
he approximatiorag=a, which leads taa, =an, /n. Using
hese expressions fag anda, in Eq. (19) yields the scaling

whered is the monolayer thickness,is the number of chain

segments, and’ the area per chain measured, say, in th
middle of the chain region. Since the hydrophobic core ist
incompressiblead=a’d’ =nv with v denoting the volume

per chain segmerfhereafters=1) and the other quantities as form (13) for the bending rigidity of the mixed monolayer.
defined above, see Fig. 2. We assume that the neutral surfapore that Egs(13) and(19) reduce tok($=0)=k_~ni/a

- : : SRdk(¢=1)=ks~n¥a®, as expected. The variation of the
commdgs with the hydrocarbon-water mterfape, S0 thai)ending rigidity with¢ is depicted in Fig. 4 for three differ-
a=a, is kept constant in curvatu,re deformations. For 8ent chain mixtures. It can be seen that inclusion of a small
monolayer of curva}ture we havea’~a(1-dc/2). Theg’ amount of short chain molecules is very effective in lowering
comparing the scaling relatid16) to f/a=(k/2)(c-co) k as already found experimentally and predicted by detailed

: 7
one finds molecular calculation®’
n3
k~—x (17
a® B. Spontaneous curvature

Consider now the mixed monolayer. It can be roughly  The elastic monolayer enerdy) can be separated into
divided into two regions, of thicknesg andd—1Ig. The first  chain, head group, and interfacial contribution§,,
is occupied by both long and short chains, the other only by=f,+f;+f,,,. The minimum off with respect toc dic-
long chains, as shown in Fig. 3. tates the spontaneous curvature. Fgrwe use the simple
Leta, andag denote the average cross sectional areas drm f,,=ya;, with y=0.12kT/A? denoting the effective
the long and short chains, respectively. The average is takemydrocarbon water surface tensidhanda,, is the area per
over the whole monolayer for the long chain component, anehain measured at the interface. The chain contribution was
only over the mixed chain region for the short chains. Chairalready discussed in the previous section. For simplicity we
incompressibility impliesagls=nhg anda,d=n . Leta be  assume that chain repulsions are concentrated in only one
the average interfacial area per head group. Then, compadtiteraction plane for each chain type, as in Etf). In the
ness of the monolayer requiresd=n, where n=¢ng  system considered here, all molecules have the same head
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group structure, thus the head group interaction term is inde-  hg=h, =h. (24)
pendent of composition. But even in this case, head group
interactions are difficult to model. Therefore, qui;% often
head group interactions are written as a series exp&rision e
1fany. In order to keep the system analytically solvable weII(E'-:k(zq;:O) dad;;pt ce?aldn given valuesee Sec. Y. From
chose the form‘hg~1/aﬁg, whereay, is the head group area gs.(22) and(24) we fin

per molecule. A similar approximation has been used by k =2ybh/5. (25

Ennis?! Using B to measure the head group interaction . B .
strength andB the proportionality constant in Eq18) we Now, using Eq_s(ZZ), (24), and(25) all for ¢=0, we obtain
for the remaining unknown constants

write for the elastic energy

We find the remaining constants in such a way that for a
pure long chain systena, =ay(¢=0), ¢, =cy(¢=0), and

2k
B nS nL = _L,
fo=yaim+ = +B| ¢ 2 +(1-¢) 73| (20) Sby
Ang as a. —
a
Letb, h, , andhg denote the distances of the head group, B= L,
2(b+h)

long chain, and short chain interaction planes from the inter-
face, respectively. Also, lgtdenote the distance between the a?yb
interface and the neutral surface, taken to be positive if the g= 2n(b<h)
neutral surface lies inside the chain region. The areas per L
molecule at the planes of interaction change as a function of The volumes of the acyl chainag andn, in Egs.(20)

the (spherical curvaturec and the area of the neutral surface and (23) are calculated using the common formula for
a according to —(CH),n_1—CHs chains: n=(N+1)r with »=27 A310
Once, k., b, anda,_ are determined the other relevant pa-
ang=a(1+2c({+b)+c%({+b)?), rametersh, B, and3 can be calculated from E¢6), for all
ap=a(l+2cs+c2¢?), combinations of chain lengths. Calculations based on this
21) procedure are reported in Sec. V.

(26)

ag=a(1l+2c({—hg)+c*({—hg)?),
IV. MOLECULAR MEAN-FIELD CALCULATIONS

n

a/=a WL (1+2c({—h))+c?(Z—h)?), In this section we outline a detailed molecular theory of

chain packing in amphiphilic aggregates, which in Sec. V is

where we have used again the approximatéyFa and used to calculate the elastic properties of the monolayers
a_=an_/n. The free energy Eq20) is now used to find the composing a bilaye?® The sole assumption of this mean-
elastic constants in E¢4), as well asay andc, as a function  field theory is that the hydrophobic bilayer core is liquidlike
of composition. and hence uniformly packed by chain segments. Our goal is

Treating the monolayer as a part of a slightly bent bi-to apply the molecular chain packing theory to calculate the
layer, we expand Eq20) with respect toc anda around spontaneous curvatuog(¢) and bending rigidityk(¢) of the

c=0 anda=a,. This yields monolayer. To this end we must also include in our free
energy expression the contributions due to head group repul-
agzz Go, CO:L‘JZ, sion, surface tension and the mixing entropy. Thus we write
Y 5G,Go—4G] fo=Tfent FrgT Fin+ frmix- All these terms except, are cal-
G2 culated as in the previous section. The calculation of the
_7 1 __7 chain contribution is outlined next.
k= Gy (502 G ) ES 33" (22

A. Theoretical background

where we have defined The average conformational free energy per molecule in

_ A n? _ the mixed bilayer is given by
Gi=Bb'+ 8| ¢ng(—hg)'+(1—-¢) — (=hy)'|;
| > oot foh= (L L5 St (1= ¢5) 6, 1+ (1= x)
i=1,2,3. (23 X[¢|th,S+(1_¢l)th,L]
We also find that the position of the neutral surface is :(1+X)f5h+(l_)()flch! (27)

given by {(=—(2G,)/(3Gy).

To implement Eq(20) we need to chosel anda; . A Wherefg,  is the (composition dependentree energy per
reasonable choice for the chain interaction planes is the pdong chain in the external monolayer, etc. In the mean-field
sition of maximal lateral pressure for each component insidéheory fg,  is given by?
the hydrophobic cor&® Molecular level calculations reveal
that this plane remains, roughly, at the same position for all ffh,L=2 PE(a)[€(a )+ P(a))In PE(a)].  (28)
chain lengths. We use this fact to keep the chain interaction L
planes simply at constant distankefrom the hydrocarbon- Here,PE(«a,) denotes the probability of finding a long chain
water interface, namely, in the external layer in conformatiom . () is the inter-
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nal, tranggauche energy for conformatiory_ . The expres- £ c e d . .
sions forfg, s as well as forfy,, andfl, s are defined analo- foh=¢ ( —Ings— fﬁdw(x><<bs(x)>dx +(1-¢%)
gously. The chains must fill up the volume of the hydro-
phobic region, which changes its shape in the course of a e (¢ £
bending deformation. This shape can be expressed by a func- X| =Inac- de(X)<®L(X)>dX) : (33)

tion a(x) wherea(x)dx is the volume of a thin shek,x

. . . E bl ~bl H H
+dx: x denoting the normal distance of this shell from the ~ Note thatfg(a”,c”, ¢F) is expressed as a function of

ture c?'=cb'=cY', we have

a(x)=a(1+ 2cx+(c"x)?). (29

We denote by®dE(x,«,) the number of segments be-

longing to a long chain in conformatiag originating at the
external monolayer. Analogously we defin®5(x,ag),

@l (x,a), and P(x,as). Summing up over all possible
conformations gives the average number of segments at p

sition x, that is

(PE(X)=2 PE(a)®E(x,ay). (30)
aL

bilayer midplane. If measured with respect to area and cur-
vature at the position of the neutral surface of the monolayer,
we may usef5(a”,c”, ¢F) = f(a,c,¢) as the chain con-
tribution to the monolayer free energy. This can be compared
to Eqg. (4) in order to findcy andk as a function of compo-
sition.

As already pointed out, we use a1Hependence for the
head group interactions. Then the free energy per molecule
in the monolayer is

0_

B
fm(a,c,¢)=yam+ 7 +fe(a,c,d) +frix(d). (34

ang

The elastic part in this free enerdye., its first three
termg is analogous to the compression model free energy
(20), except that here the chain contribution is calculated in

With these definitions, the packing constraints on thedetail. The area per molecule at the interface and the head

singlet probability distributionsPE(«a, ), etc., are

a(x)=(1+ )[pHPE(X))+ (1— ¢E)N(PE(X))]

+(1= [P PX))+ (1= (DL (x))]. (3D

Minimization of f2 for all —d<x=d subject to Eq(31)
yields

Pt(ay) ! € fd
=-—fgexg—e—
Llap QE € 4

m(X)PE(x,a)dx|, etc.

(32

Here, the Lagrange multipliers(x) represent the lateral

group interaction plane are given by EG1)

V. RESULTS AND ANALYSIS

In this section we present numerical calculations for the
bending rigidityk(¢) and the spontaneous curvatagge) as
a function of composition in different mixtures of long and
short chain amphiphiles, ranging from C-6 to C-16. We first
discuss the results obtained using the molecitegan-field
calculations and then compare them to the compressional
model.

In the mean-field treatment the calculations include the
entire bilayer, but we focus on the free energy of one of its
constituent monolayers.

pressure profile that forces the chains to adopt, on average, a Once the elastic characteristics of such a monolayer are

geometry dictated by E429). In Eq.(32), qF is the partition

known, the bilayer energy can be evaluated via &j. In

function of the long chain component in the external mono-most of the continuum models the elastic energy of the
layer. The lateral pressure can be evaluated by substitutingnonolayer is represented by a quadratic expansion in curva-
Eq. (32) into Eqg. (30) and this into the packing constraints ture f/aq=2k(c—cy)?. Here,c, is the curvature for which

(31). The result is an integrdbkelf-consistencyequation for

the monolayer energy is minimal. This expression provides a

(X) that can be solved numerically. For this, a convenientreasonable approximation to the monolayer free energy in a
procedure is to divide the bilayer core into a number of lay-planar bilayer provided, is small, that igc,d| <1 whered

ers (usually of width~1.5 A). All possible bond sequences is the monolayer thickness. Note thiat, and X are the

for a given chain length are generated according to the RlISoefficients of the linear and quadratic termsfgf If |c,d|

(rotational isomeric stajeschemé&® For each bond se-
guence, soméusually 20—30 combinations of the overall
chain orientation and head group altitu@dandomly chosen
within a region of£1 A from the interface are sampled.

is not small, the elastic free energy of a moderately loest,
c¢~0) monolayer can still be expanded in power series,of
but now arouncc=0. Now the coefficients ot? andc can
be used to define agpparentbending rigidity and spontane-

Then, each conformation for both the long and short chain i®us curvature, but these will differ from theandc, corre-
classified according to its segment distribution and internabponding to expansion around the spontaneous geometry.
energy. Given this chain model, the only input parameters itMost of the results presented below fdip) andcy(¢) refer

numerically solving the integral equation aa andc”.
After inserting PE(«a,), etc., back into Eq(28), the

chain free energy per molecule in the external monolayer

f5,, as defined in Eq27), becomes

to thoseapparentcurvature elastic constants. Eventually we
will also compare the apparent and “real” quantities.

In all our molecular calculations we have fixed the head
group interaction paramete® and b at B=1300kgT A*
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Co(A™h)

0.002

-0.002

FIG. 5. Bending rigidity as a function of of a mixed monolayer, for
several combinations of long and short chai@#) Molecular calculations.
(B) Compression model calculations.

FIG. 7. Comparison of regtliamond$ and apparen(riangles spontaneous

. curvature in a C-16/C-8 monolayer as a functiongof
andb=2.25 A. These values were chosen to calibrate a puré Y o

C-12 monolayer to have vanishing spontaneous curvature.

This implies that pure monolayers composed of longer

chains will have negative spontaneous curvat{(steonger lation and the simplified compression model. We note that
chain repulsion Similarly, monolayers of shorter chains will despite the rather crude approximations involved in formu-
have positive spontaneous curvatures. Of course, choosingting the compression model, its predictions reveal reason-
another chain length to have zero spontaneous curvatugbly good agreement with the more detailed molecular cal-
would simply shift the set of results but would not modify culations.

the qualitative trends. The main result of our calculations involves the compo-

Using the above numerical values lofandB for C-12  sition (¢) dependence of the monolayer spontaneous curva-
chains also imply an equilibrium area per chain of 32.6 A.turecy(¢), as shown in Fig. 6. As noted in previous sections,
We may use these values as input parameters in the compres-is often assumed in phenomenological moti&ié
sional model. In this model, as in the molecular calculationsof membrane elasticity that,(#) varies linearly withg; in
we assume that a C-12 monolayer has a vanishing spontanedr case fronts= cy(¢=0) to c5=cy(¢=1). From Fig. 6 it
ous curvature. From Eq26) we obtain a head group inter- is apparent that a linear variation of(¢) is indeed a rea-
action parameteB=1600kgT A* which is somewhat higher sonable approximation for low, up to moderate, mole frac-
than the one used in the molecular calculations. tions of the short chain component, especially for mixtures

The apparent bending rigidity of several different com-with small chain length disparity. At higher values of short
binations of mixed monolayers are shown in Fig. 5. Thechain mole fractionscy(¢) exhibits a saturation behavior,
corresponding spontaneous curvatures of these mixtures, anften passing through a weak maximum on the way to
several additional ones are shown in Fig. 6. The figures corey(4=1)=c§. From Fig. 6, which showk(¢) vs ¢ we note
trast the results obtained from the detailed molecular calcuthat a similar behavior characterizes the bending rigidity. Af-
ter a rapid falloff ofk(¢) at low ¢ values the bending rigidity
approaches, slowly, the short chain lirkit¢p=1)=Kkg.

From these results it follows that adding a small amount
of short chains into a layer of long ones modifies the elastic
behavior of the film to a considerably larger extent than in
the opposite caséof adding long chains to a short chain
monolayey. The lowering of the bending rigidity of long
chain amphiphilic films by adding short chaicosurfactant
amphiphiles has already been noted theoretitallgiso for
diblock copolymer bilayeré’d and observed experi-
mentally? On the other hand, our findings concerning the
dependence af; is, to our knowledge, new.

An approximate, qualitative explanation of tiiedepen-
dencies ofy(¢) andk(¢) may be given as follows. The short
chain amphiphiles incorporated into a layer of long chains
can be visualized as wedges, or spacers, pushing apart the
head groups of the long amphiphiles and the first few chain
segmentgthose connected to the head groudshey hardly
affect the terminal parts of the long chains. Accordingly, the
monolayer tends to bend ‘inwards’, towards the hydrophobic
region, implying apositive increase in the monolayer spon-
taneous curvature. Also, beyond the region where the short
FIG. 6. Spontaneous curvature as a functiogdr a mixed monolayer, for and long chains overlafi.e., away from the interfagethe

several combinations of long and short chaif#s) Molecular calculations. ~@VErage cross SeCtior.‘al area of the |0r‘g chains incrésses
(B) Compression model calculations. Fig. 3) implying a rapid decrease i with ¢.
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TABLE I. Bending rigidities and spontaneous curvatures for pure monolayers of different chain lengttd
c§ are derived from the compression modeT, andcg' refer to the molecular calculations.

Chain C-7 C-8 C-10 C-12 C-14 C-16
k/kgT 4.8 5.2 5.9 6.4 6.9 7.3
k™ kgT 3.8 4.2 5.2 6.4 7.2 8.1
c§ (A™Y 0.0090 0.0065 0.0030 0 —0.0022 —0.0040
e (A 0.0120 0.0080 0.0030 0 —0.0020 —0.0040

On the other hand, when a small amount of long chaim dependence implied by the chain calculations alone. The
amphiphiles are incorporated into a short chain monolayettrends observed for the spontaneous curvature are quite ob-
their terminal parts will protrude beyond the short chain re-vious. Calibratingc,y to be zero for C-12 chains, it is ex-
gime. (In a bilayer the protruding segments will interdigitate pected that as the chain lenghnd hence chain repulsipn
into the opposite monolayer and/or occupy the central regioincreases beyond=12 the monolayer would tend to bend
of the bilayer, around the midplane, see Fig. Bhus, the negatively, with an opposite trend for<12.
area per chain and the lateral pressure profile in the short
cha_|n regime will hardly be affected, and one dqes not expev\t/l. CONCLUDING REMARKS
a significant change ircy(¢) or k(¢) as ¢ begins to fall
below 1. In Sec. | we have presented a thermodynamic stability

Another result of our calculations concerns the changesanalysis to examine the possibility of spontaneous vesicle
in molecular areas during bending deformations. Recall thatormation in mixed bilayers composed of amphiphiles of dif-
in our analysis of the bilayer stability with respect to bendingferent chain length. Using reasonable molecular values for
deformationgSec. 1) it was assumed that the average crosshead group and chain interactions we concluded that a sec-
sectional area per molecule is kept at its equilibrium valuepnd order transition from a planar to a curved vesicle geom-
independent of composition. The results shown in Fig. 1 aretry in such systems is unlikely in a randomly mixed bilayer.
based on this assumption. The constant area assumption hdewever, this does not exclude the possibility of spontane-
not been employed in our compression model nor in theous vesiculation in nonideally mixed layers. It would there-
molecular mean-field calculations. Namely, the area has bedpre be of interest to formulate a molecular level model
allowed to adjust so as to minimize the curvature free energywhich may predict nonideal chain mixing and subsequent
Yet, in both types of calculations it was found that the con-lateral phase separation in mixed amphiphilic monolayers. It
stant area assumption is fulfilled to a high accuracy, and fois also possible that the bilayer to vesicle transition will be of
all compositions. Typically, whea=a,~30 A? for the pla-  first order, especially in view of the experiments reported in
nar layer the variations ia during bending were no more Ref. 4, where the two aggregation geometries were found to
thanAa~0.5 A2 coexist in solution. Theoretical calculations of first order

Earlier in this section we have commented on the differ-transformations have recently been presented for the vesicle
ence between the real and apparent spontaneous curvatutesmicelle**® transition and could in principle be also ap-
and bending rigidities. In Fig. 7 we compare the apparenplied to the transition from a planar bilayer to a vesicle.
spontaneous curvature and the real one. Since the curvatures As noted at several junctures in previous sections the
involved are small compared to the thickness of the monospontaneous curvature of mixed amphiphilic layers is often
layer we expect the quadratic expansion of the free energgodeled as a linear combination of the spontaneous curva-
with respect to curvature to be a good approximation. In Figtures of the pure components. Our molecular level calcula-
7 we show, for the case of a C-14/C-8 mixture that this istions suggest that this is a reasonable approximation up to
indeed the case. moderate short chain mole fractions, with a saturation behav-

Another interesting aspect of the calculations concerngor towards the pure short chain limit. These results, apart of
the chain length dependence of the elastic properties of pudgeing of interest in their own right, could be implemented in
monolayers. In Table | we present the numerical values obsubsequent phenomenological models of mixed amphiphilic
tained using the compression model and the mean-fielthyers.
theory for the bending moduli and spontaneous curvatures of
pure C-7 to C-16 monolayers.

Apart from the satisfactory agreement between the tw
types of calculations we note thitincreases roughly lin-
early with chain length. This should be contrasted withrifie We would like to thank D. Lichtenberg, S. Safran, Z.-G.
dependence of the chain contribution to the bending rigidityWang, I. Szleifer, W. M. Gelbart, and W. Helfrich for helpful
suggested by the compressional model, see (Eg). The comments and discussions. The financial support by the Is-
difference should be attributed to the inclusion of the headael Science Foundatioi.B.S), the Yeshaya Horowitz as-
group and interfacial contributions to the bending free ensociation (A.B.S) and the Sonderforschungsbereich 197
ergy. Qualitatively, since these two contributions are inde{S.M.) are gratefully acknowledged. S.M. would also like to
pendent of chain length, they obviously moderate the stronthank the Minerva Stiftung for a student exchange fellow-
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