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A two-dimensional lattice model, originally introduced by Gramlal.[J. Chem. Physl01, 4331

(19941, is used to demonstrate the intricate coupling between the intramicellar interactions that
determine the optimal aggregation geometry of surfactant molecules in dilute solution, and the
intermicellar interactions that govern the phase behavior at higher concentrations. Three very
different scenarios of self-assembly and phase evolution are analyzed in detail, based on Monte
Carlo studies and theoretical interpretations involving mean-field, Landau—Ginzburg,
Bethe—Peierls, and virial expansion schemes. The basic particles in the model are “unit micelles”
which, due to spontaneous self-assembly or because of excluded area interactions, can fuse to form
larger aggregates. These aggregates are envisaged as flat micelles composed of a bilayerlike body
surrounded by a curved semitoroidal rim. The system’s Hamiltonian involves one- through
four-body potentials between the unit micelles, which account for their tendency to form aggregates
of different shapes, e.g., elongated vs disklike micelles. Equivalently, the configurational energy of
the system is a sum of micellar self-energies involving the packing free energies of the constituent
molecules in the bilayer body and in rim segments of different local curvature. The rim energy is a
sum of a line tension term and a 1D curvature energy which depends on the rim spontaneous
curvature and bending rigidity. Different combinations of these molecular parameters imply
different optimal packing geometries and hence different self-assembly and phase behaviors. The
emphasis in this paper is on systems of “curvature loving” amphiphiles which, in our model, are
characterized by negative line tension. The three systems studied) #&etilute solution of stable
disklike micelles which, upon increasing the concentration, undergoes a first-order phase transition
to a continuous bilayer with isolated hole defects. An intermediate modulated “checkerboard” phase
appears under certain conditions at low temperatuyiigA system of unit micelles which in dilute
solution tend to associate into linear micelles. These micelles are rodlike at low temperatures,
becoming increasingly more flexible as the temperature increases. Upon increasing the
concentration the micelles grow and under@o 2D) a continuous transition into nematic and
“stripe” phases of long rods. At still higher concentrations the micellar stripes fuse into continuous
sheets with line defectgiii) A system in which, already in dilute solution, the micelles favor the
formation of branched aggregates, analogous to the branched cylindrical micelles recently observed
in certain surfactant solutions. As the concentration increases the micelles associate into networks
(“gels”) composed of a mesh of linear micelles linked by “T-like” intermicellar junctions. The
network may span the entire system or phase separate and coexist with a dilute micellar phase,
depending on the details of the molecular packing parameteré9@5 American Institute of
Physics.

I. INTRODUCTION uidlike hydrophobic core while the polar headgroups are lo-

cated at their surface, facing the aqueous surroundings. Con-

The rich and diverse phase behavior of aqueous surfagsequently, in all aggregation geometries, at least one spatial
tant solutions is associated with the fact that the solute Palimension must be less thar @herel is the length of a

ticles in these complex fluid systems are molecular aggre;

; fully stretched amphiphile. For the three “canonical”
gates rather than simple moleculés.The aggregates ruct h lind d bil h ber of mi
(micelles, bilayers, vesicles, etcare thermodynamically structures—spnere, cylinder and bilayer—the number of mi-

stable structures, but can change their size and shape in fg-0Scopic dimensiong=2l) is 3, 2, and 1, respectively. Most
sponse to changes in concentration, composition, temper&icellar aggregates can be regarded as combinations or
ture, or other ambient conditions. In all these aggregates theéariations of these three basic structures. For instance, a rod-
hydrocarbon tails of the constituent amphiphiles form a lig-like micelle is typically described as a spherocylinder,
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namely, a cylinder capped by two hemispherical ends. Diskformed only at very high concentrations, where they present
like or ribbonlike aggregates are composed of a central bithe most efficient way of packing large amounts of am-
layer body surrounded by a semitoroid@ke., bent, half- phiphile. Upon diluting the lamellar phase pore and/or line
cylindrical) rim. Similarly, the lips of pore or line defects in defects will evolve in the bilayers, owing to the lower pack-
bilayer sheets are also made of semitoroidal rims, but theiing energy of the molecules at the semitoroidal lips of such
(line) curvature is negative or zero, as compared to the posidefects> 8 Eventually the hole defects will “percolate,” re-
tive curvature of micellar rims. A less familiar structure, sulting in disintegration of the bilayer sheets into many finite
which we shall feature in the present work, is that of a “T- (e.g., ribbonlike micelles or in a transition into an hexagonal
like” (or “Y-like” ) junction between cylindrical micelles, in phase of rods.
which the local packing geometry of the amphiphiles is ap-  The exact scenario of phase evolution in the concen-
proximately saddlelike. trated solution regime depends sensitively on the interplay

The optimal aggregation geometry for a given kind of between the optimal packing geometry, and the interaggre-
amphiphile is dictated by molecular packing considerationgjate forces. Interactions between micelles whose constituent
(volume/area ratigs and their specific intermolecular surfactant molecules do not strongly prefer, say, rod- or dis-
interactions’ Most double-chain phospholipids, for example, klike shape, can lead to especially rich phase behaviors. Tay-
prefer the planar bilayer geometry, whereas most single-talbr, Berger, and Herzfefthave considered the particular case
ionic surfactants favor packing in spherical or cylindrical mi- of no intrinsic preference for one local curvature or the other
celles. The optimal micellar geometry is manifested by theand have shown how increase in concentration can result in a
shape and size of the aggregates formedlilnte solution,  succession of different micellar structures and long-range or-
that is, in the absence of intermicellar interactions. For in-derings: First an aligned phase of rodlike micelles appears,
stance, the appearance of rodlike micelles, above the criticalnd then a layered state of disklike aggregates. In a related
micelle concentratioricmg), reflects the preference of the investigation, Taylor and Herzfeldhave treated separately
constituent surfactants to pack in the cylindrical body. Thosehe situations of rod- and disk-forming surfactants, deriving
molecules in the hemispherical end caps involve highein each case the sequence of isotropic-to-nematic-to-
packing free energy, typically a few tenths of kT/molecule,hexagonal(columnaj and smectic/lamellar states, respec-
implying an excess edge free ene@y10 kT per end cap® tively. They also examined there, for the first time, the strong
Linear, rodlike or wormlike, micelles are one-dimensionalcoupling of micellar size to concentration and degree of or-
(1D) objects. Consequently, their size distribution in dilutedering in the columnar and layered phases, chronicling the
solution is polydisperse with a finite average size which in-“growth” (and eventual divergencef average aggregation
creases monotonically as a function of the total surfactanbumber in the high concentration limit.
concentration. On the other hand, bilayers are 2D objects and The spatial ordering in semidilute solutions of cylindri-
their formation by monomer association involves a real firstcal micelles depends on tigkne) flexibility of the micelles'
order phase transitioft.* For instance, most lipid molecules If they are rigid, a nematic or an hexagonal phase will be
aggregate spontaneously into extended, essentially infinit@referred; if they are flexible they may entangle, forming a
bilayer sheets already in very dilute solution. dense solution of “living polymers.” The rigid-rod micelle

In this paper we shall be primarily concerned with solu-work goes back to early discussions of the “sphere-to-rod”
tions of “curvature-loving” surfactants, namely, those which transition in isotropic phaséd,and to treatments of the cou-
in dilute solution assemble spontaneously into either globulapling of micellar size and alignment at the isotropic-to-
(spherical or small disklikemicelles or into elongated cylin- nematic transitiod®4The role of micellar flexibility in sta-
drical micelles. In the first case, above the cmc, when théilizing the nematic phase has been specifically addressed by
concentration of free monomers is low and practically con-Odijk*® and more recently by van der Schoot and Cates|
stant, increasing the surfactant concentration results, mainlgf whom consider it to be a crucial ingredient in understand-
in the formation of additional micelles. In the second casejng the orientationally aligned phase. The bending flexibility
both the number of micelles and their size increase with conef cylindrical micelles plays a perhaps still more dramatic
centration. Upon further increasing the concentration, interrole in explaining properties of the isotropieven low con-
micellar forces set in and can modify the size distribution ofcentration solutions of surfactants which prefer cylindrical
the micelles, their spatial ordering and even their shape. It igeometry so strongly that they form extremely long micelles
well known for example that at high concentrations cylindri- just above their cmc. These systems have been shown experi-
cal micelles tend to align and form hexagonal phases of rodsnentally to behave much like solutions of linear, flexible
sometimes through an intermediate nematic pRa$his  polymers, insofar as their viscosities and associated relax-
alignment can induce further micellar growth. At still higher ation behavior are concernéfiTheir properties have been
concentrations, a transition from the hexagonal phase to studied quite systematically in theoretical investigations
lamellar phase of bilayers can take place, due to excludedhich specifically exploit the polymer analodfy.
volume and/or electrostatic interactions. Such evolution Yet another scenario is also possible. Inspired by rheo-
demonstrates the coupling between intermicellar forcesogical studies, several groups have recently sugg&sted
which determine the long range spatial ordering and the relahat certain surfactants may forbranchedcylindrical mi-
tively short ranged intermolecular forces which dictate thecelles, involving the above-mentioned intermicellar junc-
local packing geometry. tions. These predictions were most recently confirmed by

Lamellar phases of curvature loving surfactants aredirect imaging, using cryoelectron microscdpy The for-
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8766 Bohbot et al.: Phase evolution in surfactant solutions

mation of these structures requires special “tuning” of thevestigated the possible appearance of modulated, “checker-
spontaneous packing geometry, e.g., by changing the concebeardlike” (CB) and “stripe” phases. Preliminary Monte
tration of added salt or alcohol. Upon increasing the concen€arlo (MC) simulations were also presented for one case.
tration, or lowering the temperature, the branched micelles Curvature-loving surfactants prefer the rim over the flat
appear to associate into connected networks, conjectured tblayer geometry and hence, in our model, can be character-
be precursors for the formation of lamellar phases ofized by y<<0. In systems of this kind, on which we focus in
bilayers®® this paper, continuous bilayers will only appear at high con-

In the following sections, with the aid of Monte Carlo centrations, due to micellar packing constraints, via fusion of
(MC) simulations and approximate theoretical approaches;edge rich” (e.g. disk- or rodlikg micelles. Several systems,
we shall analyze several different scenarios for phase evolwll characterized by=<O0, will be studied in detail using MC
tion in self-assembling surfactant systems. Our calculationsimulations. The results of the simulations will be analyzed
are based on a 2D lattice model which has already been us&dth the help of several approximate analytical approaches,
to study a limited class of systems in Ref. 1, where we havavhich include, in addition to the MF and LG schemes, a
also discussed its relation to other lattice models of self-16-site version of the Bethe—Peie(BP) approximation and
assembling systems. The formulation of this model has beed Virial expansion(VE) approach.
motivated by experiments of Holmes and Charv8iBoden In Sec. I, we outline the lattice model, comment on the
and co-worker€® and Zasadzinski and co-workérson sys- MC simulations and some of the analytical approaches, and
tems of surfactants whose optimal aggregation geometry igotivate the choice of systems to be studied in the following
that of small oblatedisklike) micelles. These micelles per- Sections. The systems discussed in Secs. IlI-V involve solu-
sist as stable particles up to intermediate concentration$ions of surfactants characterized by different optimal pack-
where excluded volume interactions become significant. Aihg geometries. In Sec. Ill, we consider a system which in
these concentrations the micelles organize in a smectic-Adilute solution contains disklike micelles which, upon in-
like phase, which upon further increase in concentration cafreasing the concentration, undergo an entropically driven
evolve (“percolate”) into a continuous bilayer phase. Ac- transition to a continuous bilayer. In Sec. 1V, the aggregates
cordingly, the smallest particles in our model are disklikeformed in dilute solution are linear micelles giving rise, as
micelles which, upon increasing concentration, can fuse tghe concentration increases, to orientationatigmatig and
form larger 2D structures composed of a central bilayer bodyositionally orderedstripe) phases. Finally, in Sec. V, we
surrounded by a flexible, possibly tortuous, semitoroidal rim consider the formation of branched micelles which at high
The micelle internalfree) energy has been expressed as sconcentrations associate into connected networks.
sum of a line tension term and(Bne) curvature energy of
the rim. The line tensiony, measures the packing energy ||. MODEL
(per unit length of molecules comprising an optimally
curved rim, relative to their energy in the bilayerlike body.
The elastic curvature energy, of the forrfc—cg)? ac- The 2D lattice model is illustrated in Fig. 1. The smallest
counts for deviations of the locélim-) curvaturec from its  particles in the system are “unit” disklike micelles of diam-
optimal (“spontaneous] value ¢y, with « denoting a 1D eter D, with as<D=<av?2, a denoting the lattice constant.
(rim-) bending modulus. On the square 2D lattice, this en{Hereaftera=1 will be used as our unit lengfhWhenever
ergy scheme becomes equivalent to that of an interactingyvo unit micelles occupy nearest neighkdiN) lattice sites
lattice gas with two-, three-, and four-body interaction potenthey overlap and hence fuse to a dimer micelle. Similarly,
tials. when several micelles occupy a connected cluster of NN

Our model, albeit approximate, is quite general and alsites they form one larger aggregate, composed of a flat cen-
lows one to examine a wide range of self-assembly phenontral body surrounded by a curved rim. We do not include in
ena, by varying its three molecular parametetsy, andc,. ~ our model surfactant monomers whose concentration, well
Although the model is two-dimensional it provides some im-above the cmc, is small and constant.
portant general insights into the phase behavior of 3D sys- Since separate micelles do not interact with each other,
tems. Furthermore, even in the 3D systems, several phenorthe total energy of a given lattice configuration is a sum of
ena are essentially two dimensional. These include, fomicellar “self-energies.” The self-energy of a micelle is, in
instance, the transition from a smecficphase of disks to a turn, a sum of molecular packing free energies in its different
continuous bilayéf?” and the evolution oflefectsin bilayer ~ regions, namely, the bilayer body and the curved rim. For
lamellae®~® Surfactant monolayers adsorbed at water-air in-convenience, we shall séf,, the packing free energy per
terfaces provide examples of real 2D system in which mi-molecule in a bilayer, equal to zero. Then the micelle energy
celle formation and growth might take place. This idea hads its rim energy, which can be expressed as
recently been invoked in order to explain monolayer 1
pressure-area isotherrffs, Erimzf dg{ v+ > k[c()—col?t, (1)

Our analysis in Ref. 1 focused on the special cas®
andc,=2/a, wherea is the diameter of the minimal micelle. with { denoting the position along the micelle perimetgr,)
Based on mean-fiel(MF) calculations we analyzed the tran- the local(1D) rim curvature ¢, the optimal(“spontaneous’
sition from the smecti& phase of disks to a continuous curvature,x a 1D bending modulus ang a line tension
bilayer phase. Using Landau—Ginzbitds) analysis we in- measuring the energy, per unit length, of an optimally curved

A. Hamiltonian
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FIG. 1. Schematic illustration of the 2D-lattice model. A “minimadisklike) micelle occupies one lattice siteeft). Micelles occupying nearest neighbor
sites fuse into a larger aggregate, characterized by a flat bilayer body, surrounded by a cufw@dals). On the square latticgight) the local rim curvature
is either straight“flat” ), or “positive” or “negative.”

rim (c=cy) relative to the bilayer energy. If there are  vacant, lety;=(S;,S,«,S;,S«+y) denote the configu-
molecules along a unit perimeter length thenration of the four-site block in whichis the left-bottom site,
y=m[f (cy)—f], wheref,(cy) is the packing free energy i+x is its NN to the right, etc. Then the system Hamiltonian
per molecule in an optimally bent rim. Depending on thecan be expressed as

molecular system consideregl,can be positive, negative or

zero. In this work we shall consider the cages0 andy<O. 4

(When y>0 continuous, essentially infinite, bilayers are  H({S})=>, e(¢)=>, > h. 3
formed already in very dilute solution, as briefly discussed in : Pok=1

Sec. lll)

On the square lattice the micelle perimeter can be repre-ere (#) is the energy corresponding to quartet configura-
sented as a sum of line segments, each of leagta=1).  tion ¢, e.g., (y;)=0 wherey;=(0,0,0,0, (i),)=¢, where
The center of each segment coincides with one lattice verte#,=(1,0,0,0, etc.[There are 2=16 quartet configurations,
(four-site junction on the rim contour. The rim segments can all of which, except the fully occupied and fully vacant ones

take one of three possible curvature) “positive,”  are degenerate; e.gis=(1,1,0,0 is fourfold degenerate and
c,=2/a=2; (i)flat” c;=0, and (i) “negative,” #,(1,0,1,0 is twofold degeneratéThe second equality i(B)
c,=—2/a=—2. (More generally, we could take,# —c,, indicates, symbolically, that the lattice Hamiltonian can be

e.g.,c,=2/D andc,=—2/D' whereD andD' denote the expressed as a sum of one-, twN and NNN), three-
diameters of a unit micelle and “unit hole,” respectively. (€.9., S$SS;+y), and four-body terms, corresponding to
Rim segments of unit length and different curvatures are ask=1—4. For instance the contribution to the Hamiltonian

sociated with different energig¢see Fig. 2 From (1) it fol- corresponding to the penultimate configura_\ti_on in Fig. 2 is
lows directly that these energies can be expregggmbring S5 +xSi+yX (1= S x+y) X €,. The sum over includes all
constants of the order of unityn the form M lattice sites or, equivalently, overlapping quartets. The

MC simulations as well as the MF, LG, and BP approxima-
&=y+(K=b)%, e=y+b?% e=y+(K+b)? @ tions involved in our analysis are all based on the Hamil-
withK = y2k andb = cy\/x/2 = Kcy/2. Thetotalrimenergy  tonian (3).
is now a sum of segment energi€®, involving a sum of
segmentcurvature energies, and éine tensioncontribution
yL, with L denoting th_e total p_erimeter Ieng'_[h. B. MC simulations

The energy of a given lattice configuration can also be
expressed as a sum over the four-site configurational ener- Most of the MC simulations described in Secs. IlI-V
giesl see F|g 2. Using site Occupation numt&lx_;l or O to were performed on 2D lattices of six¢=100x100, impos—

denote, respectively, if sité of the lattice is occupied or ing periodic boundary conditions in the usual manner. In
some cases larger lattices were used in order to examine

finite size effects. Complete equilibrium of the various sys-
tems modeled was usually achieved aftet®® MC steps.
Particle moves, of unrestricted range, were generated accord-
ing to the familiar Metropolis algorithm. Both canonical
(hereafteN,M,T or ¢,M,T; c=N/M) and grand-canonical

e= 0 & & 2 & 0 (#,M,T) ensemble simulations were carried out. Simulations

in the canonical ensemble allowed us to identify regions of

FIG. 2. Four-site(vertex configurations and their corresponding energies CO€Xisting phases. The grand-canonical simulations enabled
[see Eq(2)]. to study the behavior of the chemical potential—
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concentration isothernfg:(c)], and resolve whether a given
phase transition is of first ordgindicated by the discontinu-
ity of the u(c) curveq, or continuous one.

C. MF and LG approximations

The simplest(MF) approximation for calculating the
system free energfs=E—TS, is obtained by assigning ran-
dom occupation probabilities to all lattice sites. That is, the
energyE=(H) is calculated agH)=MZX ,Po(#)e(4) with
P(¢) denoting the mean-field probability of the quartet con-
figuration . For instance, Py(0,0,0,0)=(1—c)%
Po(1,0,0,0=¢c(1-c)%, Po(1,1,0,0)=c*(1-c)? efc., [ 3. The 16-site colony used in the Bethe—Peierls calculations. The
wherec=(S) is the fraction of occupied sitdsee Fig. 2 grand canonical partition functidiEq. (6)] of this open subsystem is calcu-

Using (2) and(3) to express the energie&p) in terms of lated by taking into account all interparticle interactions within the colony.

. . - Particles on peripheral sites also interact with the rest of the system, with
7_/’ K, andb, and addmg an ideal m|X|ng entropy term, one different effective interactions for particles on sites A or B.
finds for the MF free energy, per site,

fold=yc(l—c)+c(1—c)](K—b)2+c3(1—c)(K+b)?

16
+c3(1-c)?b?+kT[c Inc+(1—c)In(1—c)], (4 E=> A exp{— BIE(N,¢)+Na(1) da
N=0 v
with k denoting Boltmann’s constant affidthe temperature.
Note that when the 1D bending modulus,is zero(hence +Ng(¥) ¢gl}- (6)
K='b:O),9Eq.. (4) reduces to the MF free energy of & 2D pere g=1/kT and A=exp(Bu) is the absolute activity(x
lattice gad® with NN interactionsw=2e;—4€,=—27. being the chemical potentialE(N, ) is the energy corre-

In order tp accqunt for local concentration fluctuationsSpondmg to a colony containiny particles in configuration
and the possible existence of modulated phases the free €}; and ¢, is the effective interaction of any of the, par-

ergy has been expanded, beyond the MF approximation, in g.jeg (0<N,<4) with its surroundingsig , Ng , (0<Nz<8)
LG form." To this end theS’s appearing in the Hamiltonian 4a gefined analogously.
(3) have been replaced by local concentration variables, Fqr given temperaturd;, and overall particle concentra-

(S)=c—¢; with ¢ denoting the local fluctuation. Then, (on ¢ the quantities\, ¢, and ¢ are determined by the
Fourier transforming thej’s in H (and, similarly, in the  hree self-consistency equations requiring that the average
entropy contribution té-) the free energy has been expandedqccypation number of any of the four central sites, as well as
up to sixth order in terms of the lattice Fourier componentsy,5t of anyA and anyB site, will be equal tac. That is, we
¢q- The coefficients in th'e expansion are functionxafnd require (N)=16c, (Ny)=4c and (Ng)=8c. We calculate
T and depend, parametrically, on K, andb. The possible  {hese averages numerically, using exact counting of all the
appearance of ordered, checkerboard and stripe, phases was sssible colony configurations, with their energies calcu-
examined by imposing on the, the symmetry of these |yted using(2). (Of course, many of the colony configura-
structures. This results in a LG free energy of the form  ions are degenerajeFrom these calculations we obtain
1 1 1 chemical potential-concentratioriw—c) isotherms and
f=fo+ 2 re’+ 2 Aet+ 5 5e® 5 pressure—concentratiomr—c) isotherms. First-order phase
transitions are identified by the appearance of van der Waals
with the order parametee denoting the amplitude of the |oops in the isotherms.
modulated phase. The coefficients\, and é are functions
of ¢, T and the molecular parameteysK, andb. Different E. Systems studied

forms of these coefficients correspond to modulated phases
of different symmetries. In our previous papérthe MF and LG schemes were

applied to analyze the phase behavior of systems yitB.
The cases considered webe= K (favoring the formation of
minimal micelles in dilute solution b=K/3 (larger mi-

The basic idea of this approach is to calculate in detaikcelleg, andb=0 (favoring rodlike micelles in dilute solution
the statistical properties of a small open subsystem and treaind straight hole defects or “cracks” at high concentratjons
in a mean-field fashion, its interaction with the rest of theln all three cases a first-order transition from a micellar to a
systent? Since our model Hamiltonian involves all possible bilayer phase was predicted upon increase in concentration at
interactions within a quartet of sites we have chosen as bw enough temperature. The critical temperatiiie was
subsystem a square “colony” ofX44 sites, composed of a found to increase with/K. The most interesting cases= K,
central quartet surrounded by 12 periphery sites; see Fig. &orresponds to the transition from a smediphase of disks
The peripheral sites are of two kinds: four “corne(dr, to alamellar phase with isolated hole defects. For this system
A-type) sites and eight “edge{B-type) sites. The grand ca- a narrow region of a stable CB phase was predicted to exist
nonical partition function of the ¥4 (open subsystem & at low T and lowc.

D. The BP scheme
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In Sec. lll, we consider again the=0, b=K system, but

this time using MC simulations and our BP approximation.
As we shall see, these two approaches yield very similar 8O F [ ziéﬁ
phase diagrams. These, in turn, differ in several respects j"_’"_‘z::‘fs
from the phase diagram predicted by the MF and LG theo- Tor '
ries, e.g., the MC simulations do not exhibit a CB phase for 6o |
these molecular parameters. However, we shall see that when
v is slightly negative a stable CB phase is also observed in 50 L
the MC calculations. This will be shown for the case T*
y=—(1/2K? b=K. 40 t
In Secs. IV and V, we analyze systems with<0, b=0
andy <0, b<0, respectively. In the first case, the aggregates 30T
formed at lowc and low T are rodlike micelles which un- S0l
dergo a transition to a stripelike phase upon increasing the ' [
concentration. The analysis of this system includes, in addi- 10k / :;"/-’
tion to the MC and BP calculations, a virial expansiMi) fi
scheme outlined in Sec. IV. We shall also comment on the 0.0 . T :
0.0 0.2 04 0.6 0.8 1.0

LG analysis of the transition from a micellar to a stripe
phase. Finally, the systems considered in Sec. V exhibit the
formation of branched aggregates and micellar networksgg, 4. spinodal curves for the disk to bilayer transition calculated accord-
The results of the MC simulations of these systems will bang to the mean field approximatigiq. (7)] for b=K and several values of

) . e - . : N h . P _ >
interpreted based on simple qualitative considerations. ~ the line tension:y=—1, 0, 0.5, 1(in units of K%). T*=kT/K*. For com-
parison we also show th@ymmetri¢ spinodal curve, corresponding to an

ordinary 2D-lattice gas with attractive nearest-neighbor interactions; this
IIl. THE DISK TO BILAYER TRANSITION particular curve corresponds to the limiting cake=b=0, implying
€p= €= €,= . For this curveT* =kT/4.
At very low concentrations the smallest particles in the

system are always preferred on entropic grounds. In our

model these are the minimal micelles. Whea K, which is

the case to be considered in this section, the minimal milinuous bilayers takes place at extremely low amphiphile
celles also involve the least curvature energy, as follow§oncentrations, as is indeed observed for lipid bilayers. The
from (2): e,=y <ey=y+K?<e,=y+4K2 The calcula- second term ir{9), resulting from the curvature energy con-

tions presented in this section are for the case 0. tribution (or, equivalently, from the additional two-, three-,
o . ] and four-body potentials affects the values of the critical

A. MF and qualitative considerations temperature and concentration, but not the qualitative behav-

For the sake of comparison, we first briefly consider alor of such systems.

system withb=K and y >0. In this case the rim energy is The influence of the rim energy and its rigidity K on

higher than that of a planar bilayer and a first-order transitiothe micelle to bilayer transition are demonstrated, albeit ap-

from a dilute micellar system to a continuous bilayer sheeProximately, by the MF spinodal curves, as shown in Fig. 4.

(with a few isolated hole and line defertwill take place  The special cas&=0, b=0, corresponding to a simple 2D

below a critical temperatur&,. The MF approximation for lattice gas, is shown for comparison. The other curves, de-

the spinodal curve is obtained by calculatifigs T(c) from  scribing the spinodals fob=K reveal the shift inc. to

aulac=0, usingu=df/ac with f, given by (4). We find higher concentrations, reflecting the resistance of the disklike
micelles to fuse into bilayers. We note that the disk to bilayer
4c(1-c) Eeff _ 1 @) transition takes place for both positive and negative values of
kT v and that, as expected, the critical temperature increases and
with the critical concentration decreasesydascreaseslower sta-

bility of the micelles. The asymmetry of the spinodal curves
€eii=27y+4(K—b)?—2b?—12K?c+12(K?+2Kb)c?,  (with respect toc=1/2) can also be related to the lack of
(8) hole—particle symmetry whem=K 0. It is easily seen, for
which, for K=b yields example, that the energy change when two micelles fuse into
a dimer, AE,,=2¢e;—4e€,= —2y+2K?, is higher than that

— 2 2__ _
€off=2y+2K(18c"~6c—1). ©) corresponding to hole—hole associatioNE,=2¢;—4¢,
For an ordinary 2D lattice gas with attractive NN =—2y—6K?2.
interactiond® K=b=0 and e.s=2y is the strength of the When b=K and y=< 0 the minimal micelles are pre-

attractive potential, yieldinkT.=2y for the critical tem- ferred not only entropically but also energetically over any
perature and.=1/2 for the critical concentration. For typi- other aggregation geometi§fhe bilayer will be next on the
cal bilayer forming amphiphiles such as lipids, simple mo-energy scale, providegi+K?>0.) As noted above, the lower
lecular considerations suggest that= 10 kT at room is v, the stronger is the resistance of micelles against fusion.
temperatures. Thus, regardless of the valu& af follows In the experiments of Boden and co-workéren aqueous
that at room temperature a spontaneous formation of corsolutions of cesium pentadecafluorooctano@@sPFQ, it
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(2) (®) ©

FIG. 5. The disk to bilayer transition: three typical MC snapshots corresponding to a system=withand y=0. (a) T*=kT/K?=1.0, ¢=0.4; at this
relatively low temperature, a micellar phase of minimal digks0.3) coexists with a nearly perfe¢ie., free of hole defectdilayer phasdsee Sec. Il .

(b) T*=2.5,c=0.6; at this higher temperature the dilute phase contains larger aggregates, in addition to isolated minimal micelles. Similarly, the condensed

bilayer phase contains more hole defe¢t$.T*=3.6,c=0.834; a typical configuration of the system near its critical point.

was found that small disklike micelles survive as isolatedculated by numerical integration of the-c curves, namely,
aggregates up to very high volume fractiqgabove 1/2. At 7=Jc du. The phase boundaries are found as usual by com-
the high concentration regime the micelles arrange in liquicparing the chemical potentials and the pressures in the two
crystalline, nematic and smectic-phases. In other words, phases. Figure 7 shows the temperature—concentration,
the micelles resemble particles in thermotropic systems. Thi$* —c, phase diagram for tHe=K, y=0 system as obtained
must be attributed to the high stability of the disklike mi- from the BP calculationsT* =kT/K? denoting our reduced
celles, which according to our model should hare0. Prior  (dimensionlesstemperature scale.
to fusing into continuous bilayerevhen they “run out of The critical temperature according to the BP approxima-
space’) the disks could form an ordered 2D phase. Our MCtion is T} = 3.65,somewhat higher than the MC simulation
simulations for the case=K, y=—(1/2)K2 indeed show, at valueT} =< 3.6. Thecritical concentration is.=0.84. These
low T, the appearance of a CB-like phase of disks, undergoresults, as well as thE* — ¢ diagram angu—c isotherms are
ing a first-order transition into a continuous bilayeee be- accurate to within a few percent, due to finite size effects in
low). Coexisting lamellar and disklike phases have been ob-
served experimentally by Zasadzinski and co-worKkérs,
suggesting that in their systefaqueous solutions of decy-
lammonium chloride/ammonium chlorige<0. 17}
The special case=0, b=K has previously been studied
using MF and LG analyses. In this system the minimal mi-
celles and the continuous bilayer aemergetically equally 12 ¢
favorable. All other structures such as finite micelles or hole
defects in bilayers involve higher energiésnce their rim

energies includes;=K? and e,=4K? contributions which 07} ]
are larger tharg,). Since there is no energetic incentive for u*

the micelle to bilayer transition it can only be driven by

entropic or, more precisely, by packing considerations. We 02t 1

shall elaborate on these considerations after presenting the
MC and BP calculations for this system.

B. MC and BP calculations

In Fig. 5 typical snapshots fromc(M,T) MC simula-
tions of theb=K, y=0 system, illustrate the coexistence 0.0
between a micellar phase and a continuous bilayer phase.

Figure 6 shows several chemical potentlal—concentre(umn FIG. 6. Chemical potential-concentration isotherms for lieK, 1/K?=0

—c) isotherms, calculated by MC Sim_UIati_onS in theM, T ~ system; the chemical potential scale g =pgu/K%. Symbols (crosses,
ensemble, as well as the corresponding isotherms predicteticles represent the results of grand canonical MC simulations; the con-
by the BP approximation. The good agreement between thiénuous curves are calculated according to the BP approximafibs2.0,

. . - . . illed circles and dashed lineT*=3.0, crosses and dot—dashed line;
two calculation schemes is not t0o surprising ConSIdenng thé*=3.7, open circles and solid line. Both calculations predict a similar

|arge.(4><4 siteg colony used as a SUpSyStem in the BP cal-gitical temperatureT* = 3.6, the MCcritical temperature being slightly
culations. The BP pressure—arga—c) isotherms were cal- lower.
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40 ' . . ' and ¢, to be larger than their values foy=0. It is also
possible that a stable intermediate ordered phase will exist at
s | AT low enough temperatures. The MC simulations of the
‘/ \ YIK?=—1/2, b=K system, of which typical snapshots are
30 L rd ) shown in Fig. 8, confirm these notions. Indeed, at low tem-
’/ { peratures, the transition from the isotropic micellar phase to
25 | y { the continuous bilayer phase passes through an intermediate
/ CB phase(as predicted by the LG analyis Upon raising
T 50| K ) the temperature the CB phase becomes unstable, as indicated
/ by the coexistence of the continuous bilayer and the isotropic
15+ / | micellar phase. The critical temperature and concentration
for this system ar@; = 3.3, andc,=0.85.
10 f
C. Low T behavior
05 F The low temperature limit of the phase diagram shown
in Fig. 7, especially thdinite concentration of the micellar
99,5 07 oa o o3 To phase at the transition, can be explained by the following
C “semi-quantitative” arguments. Whebh=K and T—0 the

minimal micelles are far more stable than any other micellar
FIG. 7. Temperature-concentration phase diagram according to the BP agtructure. These micelles can avoid fusion into larger struc-
proximation, for the systerh=K, y=0 (see also Figs. 5 and).6The con- tures by not Occupying NN sites. ThUS, as a first-order ap-

tinuous dashed line is drawn to guide the eye. The low density brancrtbroximation let us assume that the system is governed by

corresponds to an isotropic phase of disklike micelles coexisting with arf™" ", _ . .
ordered bilayer phase which fa¥ <2 is essentially free of defects. infinite NN repulsions. At very low concentrations this re-
striction does not severely reduce the configurational entropy
of the system. Ax—1/2 the micelles can still avoid fusion
the MC simulations and to the limited accuracy of the nu-by occupying only sites belonging to one of the two NNN
merical integration used in the BP scheme. The critical temsublattices of the original lattice. However, full occupation of
perature obtained from the MC and BP calculations is conall the sublattice siteG@tc=1/2) implies zero configurational
siderably lower than that predicted by the MF analy&g.  entropy for the system. Thus, instead of reaching this “satu-
(9)], T; = 7.45,whereas the critical concentration predictedration” limit, the system may prefer to separate into two
by the MF approximation c.=0.81, is quite close to the MC phases: a bilayer with few hole defects and a diligte 1/2)
value cited above. The MF prediction of a higj is not  phase consisting of micelles restricted to the sites of one
surprising, considering the similar error known for the sublattice. Recall that fop=0 the fusion of micelles to form
simple 2D lattice ga$’ a bilayer does not involve an energetic c@gtart from edge
In Ref. 1 we have also presented a LG analysis to inveseffectg, and note that the entropy per particle in the dilute
tigate the possible appearance of a modulated CB phase. ghase increases asfalls below 1/2.
was predicted that a second-order transition from a dilute  More quantitatively, let; andc, denote the densities of
micellar phase to a CB phase should take placeT’at the micellar and bilayer phases, respectively. Assuming that
< T%/5 with T = 7.45denoting the MF critical tempera- the micelles are restricted to occupy the sites of only one of
ture. The onset of the transition is@=0 whenT*=0, end- the two NNN sublattices, then the micellar phase can be
ing up at a tricritical poin{joining the micelle—bilayer tran- regarded as a noninteracting lattice gas with effective con-
sition) at T*/T; = 1/5 andc=0.22. The simulations and BP centration 2,. Using the familiar equations for the chemical
results shown in Figs. 5—7 are at variance with these conclupotential and pressure of such a system, we*find
sions. Indeed, from Fig.(8) which shows a typical low tem- _
perature lattice configuration, we note the existence of short- Bra=In2e,/(1=2¢y)], (10
range CB order in the system, yet no true long-range orderis  Bz;=—(1/2)In(1—2c,). 11

observeq. Long-range CB order correqunds 0 preferentiarlhe particle concentration in the bilayer phaseciss1.
occupation of one of the two NNN sublattices of the Squarel’here can be only few isolated hole defects in the bilayer,

lattice. This, in turn, requires the appearance ofiafinite) since their energye,= 4e,=16K2, is very high. Thus, the

ercolation cluster on one of the sublattices. In all our simu-_. . ;
P bilayer can be treated as a very dilute 2D gas of noninteract-

lations the transition from the micellar to the continuous bi—.n holes. The canonical partition function of a 2D svstem
layer took place below the percolation threshold. Several'9 "0€sS. par Y Y
?nS|st|ng of M —N) holes with “internal energy’s;,, ran-

simulation runs have indeed shown a metastable CB phase 2 . : A
low T for concentrationc<0.4. However, this phase disap- %32Ige?'Stg?meigi\:jésthMcosr']t;iﬂna bII?KS(Nb?S; grt?se
peared upon introducing a small nucleus of the bilayer phas P 9 £

On the other hand, from the qualitative analysis pre-eb:[M!/(M_N)!N!]eXp[_B(M_N)Eh]' The particle

sented earlier in this sectioiBec. Il A) we can anticipate chemical potential and pressure in this system are easily cal-

enhanced stabilization of the micellar phase against fusioﬁmated’ yielding
wheny is negative. In other words we expéct to be lower Bur,=In[cy/(1—cCy)]— Bep, (12
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(@) (b) ©

FIG. 8. Typical MC simulation snapshots for the céiseK, y=—0.5K?, illustrating the configurational changes corresponding to a change in temperature
at constant concentratioft=0.6). () T*=1.0, (b) T*=2.0, and(c) T*=3.0. At low temperature$T*=<1.5) a modulated checkerboardlike phaggth
defects of disklike micelles coexists with a bilayer phase. The long-range order of the micellar phase gradually disappears upon raising the temperature.

By=—In(1—c,)— Bep, (13 celles are even slightly further stabilized, namely by having

. . . L . v slightly negative.
with ¢c,=N/M denoting the particle concentration in the bi- v SHghtly neg

layer.
Equating the chemical potentials and the pressures of they- LINEAR MICELLES, STRIPES, AND DEFECTS
two phases one finds In this section we consider the phase behavior of a sys-
4cf+2clc§—c§=0 (14) tem !n which the prefgrred' aggregation geometry in dilute
solution is that of straight linear micelles, analogous to cy-
and lindrical micelles in 3D systems. In our model such systems
(1-2¢,)Y2=(1-c,)exp Bep). (15) are characterized by vanishing spontaneous curvature of the

micellar rims, i.e.b=0, and negative rim energy<O0, en-
From these equatiorts andc, can be evaluated numerically suring lower packing energy in thstraigh} rim compared
as a function ofl. Clearly, however, a¥—0 we havec,—1 g the bilayer body:e;=y<e,=0. Sinceb=0 we have
and hence, front14), 4c2+ 2¢,—1=0, from which we find =€ =7+ K2, implying particle—hole symmetry of the
¢,~0.31. Using this value iff15) it is found that for, say, system free energy, arount=1/2. Thus, for instance, in
T*=KT/K?=1 the concentration of holes in the bilayer is complete analogy to the growth of linear micelles with in-
~107". In other words, the bilayer is essentially perfect, Cer-creasing concentration in the dilute solution reginfe?
tginly on the length scale of the lattices used in our simula(c=(), we expect the growth of line defects upon dilution in
tions. the high concentration regifiéc<1). We shall be mostly

The value found for the concentration of the dilute phase:oncerned here with intermediate concentrations, where in-

at coexistence with the bilayéat T—0) is just slightly lower  termicellar (interhole interactions can influence micelle

than the value estimated from the simulations=0.33. The  (hole) size, and induce the formation of orientationally and
difference can be attributed to our assumption that the Miyrgnsiationally ordered phases.

celles in the dilute phase are strictly restricted to only one _

sublattice. Locally, as we see in Figiah the micelles pref- A Energetics

erentially occupy one of the two sublattices but, globally,  To ensure that the flat bilayer is the least favorable ag-
both sublattices are equally populated. Differently put, thegregation geometry we requieg<< €= €n<€,=0, implying

fact that we have not observed true long-range CB order in-,>K?2. Furthermore, to ensure linear micellar growth in
our simulations indicates that the effective concentration omjilute solution we require that the end cap energy of a
any of the two sublattices must be less than 0.59, the valugtraight linear micelle will be positive. In general, the inter-
corresponding to the site-percolation threshold for the 2Dhal energy of a linear micelle is of the forBy= as+ & with
square latticé! The possibility of observing this behavior at g denoting the aggregation number, or the length of the ag-
very low temperaturefower than the lowest temperature in gregate measured in some suitable uhits?In our model a
the simulationsT*=0.5) cannot be ruled out. However, at |inear micelle of sizes is composed of a string af (fused
these low temperatures finite size effects can play a signifiynit micelles, for which

cant role in determining the fine details of the phase transi-
tion. (Note for example that the condensed phase at very low ~ Es=2(S™ D&t de,=asts, (16)
T appears as a finite perfect domain, free of hole defectsyhere a=2¢=2y and

whereas it is obvious that such defects should appear at an

nonzero temperatupeAlternatively, as we have seF()aFr)1 in Fig. g o=4ep—2€=2(y+2K?) (17)
8, true long-range order is easily established once the miwith the second equality following fror2).
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(a) (b) © (d)

FIG. 9. Typical MC snapshots illustrating the phase evolution inkth®, y=—1.5K? system, upon increasing the concentration at constant temperature,
T*=0.3. The concentrations corresponding to configuratamns,d are, respectivelyg=0.15, 0.30, 0.46, 0.70a) At moderately low densities the system
consists of relatively short and isotropically oriented rodlike micell@sAt c~0.3 long-range orientational order sets in, inducing further micellar growth and
ultimately the formation of an ordered, stripe, phasgA stripe phase consisting of very long rods with few hole defects. At this temperatureases,

the system is a perfect modulated stripe phédeAbove c=0.5, particles and holes exchange roles, due to the particle—hole symmetry of this system.

When § >0 the association of two micelles into a longer a phase transition from the isotropic micellar ph&seiso-
one is energetically favorabl&,+E, —E¢, o =8>0. Thus tropic phase of hole defects in the bilayénto a spatially
8 >0 enhances micellar growth. In ordinary micellar solu-modulated stripelike phase &t <1.23. The appearance of a
tions the weight average micelle size in dilute solution in-stripe phase at intermediate concentratitarsl T* <0.86) is
creases  with  concentration  according  to(s) confirmed by our MC calculations. However, the LG analy-
= 2./c exp(8/kT). A similar behavior is expected in our sis(to which we return at the end of this sectjcaiso pre-
model (see below, the fact that our linear micelles are em- dicts that the transition from the isotropic to the stripe phase
bedded in a 2D rather than a 3D medium being irrelevant. is of first order at highT™* (0.45sT*=<1.23 and of second

Combining our two requirements, (i) € <e, order at lower temperatures. On the other hand, the MC
=e€,<ep=0 and(ii) 6=4e,—2¢; > 0, we find using(2), simulations indicate a second-order transition atTallRe-
1<—4/K?<2. Accordingly, in the numerical calculations call, however, that at loW a transition to an orientationally
presented in this section we have useg/K?=1.5, implying  ordered phase can also take place. Based on the MC simula-
8=K? and e;= —1.5K?, €,=€,= —0.5K?. The phase dia- tions our conclusion is that orientational order sets in prior to
gram corresponding to this case is very different from that opositional order, so that the transition to the stripe phase
the system considered in the previous sectior K, v+#0). actually occurs from the nematicather than from the iso-
First, as noted above, it is symmetric around1/2. Second, tropic) phase. We shall further elaborate on this issue in the
consistent with the qualitative arguments given above refollowing discussion.
garding the requirementd—y/K?, our MC simulations con-
firm that a phase transition from a dilute micellar phase to a
condensed bilayer phase, indeed, does not take place in this .
system. This conclusion is also consistent with the predic-B' MC and BP calculations
tions of our approximate MF theory. More explicitly, from Figures 9 and 10 show two series of MC snapshots ob-
(8) we find that forb=0, y/K?=—1.5 the effective pair in- tained fromc,M, T and u,M, T simulations. Figure 9 illus-
teraction energy ise=—K?[12c(1—c)—1]. Hence, ex- trates the progression of phases upon increasing the concen-
cept at very low or very high values af (|c|<0.092 the tration, at a relatively low temperatufig =k T/K?=0.3. At
spinodal curve corresponds 10<0. [Two “critical points” low ¢ the system consists of a dilute isotropic phase of rods
are predicted by7), atc=0.04 and 0.96 with very low criti- [Fig. 9a)]. As c increases, still in the isotropic phase, the
cal temperature§;* = kT./K? = 0.08.These should be re- rods grow and form aligned domaifiig. 9b)]. Then, over
garded as artifacts of the MF approximatibn. a short concentration range, the system develops into a stripe

The absence of a condensation transition does not exyhase characterized by long range orientational and transla-
clude the possibility of phase transitions from the isotropictional order[Fig. 9c)]. Finally, whenc>1/2 the stripes fuse
micellar phase to orientationally and/or spatially orderedto a continuous sheet with line defe¢tEg. 9d)]. Note the
phases. In fact, since at low temperatures, the predominaparticle—hole symmetry, as reflected by Figb)9(c=0.3
aggregation geometry is that of linear rodlike micelles weand Fig. 9d) (c=0.7).
expect the appearance of an isotropic—nematic phase transi- Figure 10 describes the transition from the higtiso-
tion. This conclusion is, indeed, corroborated by our MCtropic phase to the low anisotropic stripe phase upon low-
simulations, as well as by a virial expansion treatment of theering T* at constant concentration=1/2. The stripe phase
system free energy. Both approaches predict a second-ordappears al*=0.86. It should be noted that* =k T/K? can
phase transition. be varied by changing eithdr or K. In real surfactant solu-

A LG analysis of theb=0, y/K?=—1.5 system predicts tions the bending rigidity K) can be tuned by varying, for
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FIG. 10. Typical MC simulation snapshots of the systes0, y=—1.5K2. Here the concentration is held constant&0.5, and the temperature is lowered
across the isotropic-stripe phase transition. Configuratans, and ¢ correspond, respectively, {6*=0.84, 0.85, and 0.9. Abov&*~0.86 the order
parametery, as defined in Eq(18) vanishes, indicating the loss of orientational order.

instance, the salt concentrati@n ionic systemsor by add- must be noted however that the BP scheme is not expected to
ing a cosurfactant. be accurate once the typical rod size exceeds any of the
Figure 11 shows two sets @i—c isotherms, one calcu- linear dimensions of the open subsystem; namely, four lattice
lated based on the BP approximation and the other evaluatesites in our present calculations, see Fig. 3. This typically
from MC simulations in theu,M,T ensemble. The isotherms happens at the concentration corresponding to the onset of
are continuous but shovbetweenc=0 and 0.5 and then the isotropic—anisotropic transition, beyond which the rods
betweenc=0.5 and ) changes in slope, involving flat re- begin to grow rapidly. It is not surprising that at these con-
gions which narrow down a&* increases. The MC simula- centrations the BP isotherms start deviating from the ones
tions did not show separajg(c) branches and we thus con- derived from MC simulations, as seen in Fig. 11.
clude that the transition from the isotropic to the To characterize the isotropic—anisotropic transition in a
orientationally anisotropi¢nematic or stripgphase is not of more quantitative fashion we define an orientational order
first order. Consistent with this conclusion, the BP isothermgparameter,y=7(c,T), in terms of the(thermally averaged
are monotonic, i.e., not showing van der Waals-like loops. Inumbersn(x) andn(y) of “bonds” between NN pairgof
fused unit micelles along thex and y directions of the
square 2D lattice:
12.0

90 |

_Ino=n(y)|

- on(x)+n(y) (18

6.0

3.0 f
This order parameter, which ranges between 0 and 1, mea-

sures the extent of orientational anisotropy of the system:
7=0 for an isotropic system ang=1 for a system of rodlike
micelles or stripes, all pointing along tkeor they direction.
Figure 12a) shows the variation ofy betweenc=0 and 0.5
for the two temperatured;* =0.3 and 0.45, corresponding to
the two MC isotherms shown in Fig. 11. The calculations
show that =0 up to a critical concentratio=_¢c(T*)
above which it increases sharply, but continuously wath
o€ For the two temperatures considereds0.31 and 0.37 for

00 01 02 03 04 05 06 07 08 09 LO T*=0.3 and 0.45, respectively. The value<¢T*) coincide

¢ with the points in Fig. 11 where the—c isotherms change

FIG. 11. Chemical potential-concentration isotherms for the0, their slqu. Our Calcu'.a“ons also reveal that ﬂ;le mqreaSﬁ n .
y=—1.5K2 system,u* =Bu/K2. Shown are the results of grand canonical beyondc is acc_ompanled, as _eXpeC'_:ed' by as 6_1I’p Increase in
MC simulations(symbol$ and calculations based on the BP approximation the average size of the rodlike micelles. In Fig.()2we
(continuous curvesT*=0.30, open circles and solid line; 0.45, crosses and show the change iy with T* atc=0.5, corresponding to the
dot—dashed line; 0.60, triangles and dashed line. The change in slope of tféﬁmulations shown in Fig. 10. Again we note a sharp, but
MC isotherms which, for the above three temperatures, takes place a . ; . e . '
£~0.31, 0.36, 0.41, marks the transition from an isotropic to an orientationCONtiNUOUS, increase inasT" falls below 0.86, marking the
ally ordered phase of rodlike micelles. transition from an isotropic to a stripe phase.
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order. We now turn to a somewhat more quantitative analysis

s
f,ﬁ of the low T andc regime of the phase diagram, based on a
08 plo—eTr=045 SA virial expansion of the system free energy.
,"f SupposeT is sufficiently low that all the micelles are
oer fi] linear rodlike aggregates, possibly touching each other, thus
n s - . - oo S
04l s t ] forming (with small probability T- or L-like junctions; see
s f‘ Fig. 9. Let ps(Q2) denote the density of rods of sizeand
o2 | [ S orientation(). In our 2D square lattice mod€él=x ory. The
- [ . . . . .
J#n number of unit micelles associated intg() rods is
@ 00 ot SR VO 4 Rl N(Q)=sps(Q)M whereM is again the area of the system
00 01 02 03 04 05 (total number of sites Then, clearly
C
> sps(Q)=c. (19
10 ' . 5,Q
08 _ | For a given size-orientation distribution of rofjs(Q2)}, the
Helmholtz free energy of the syster, including intermi-
06 + j cellar interactions in the second virial approximation, is
Ui given by
04 |
BF
02| . W= 2 Q)| In py()— 1+ BE,
s,Q)
® 002 05 06 07 08 09 , ,
T + 2 pe(Q)Beg(2,Q) | +p1 2. (20
s'Q’

FIG. 12. (a) MC calculations of the orientational order parametgras a . S
function of concentratiorg, for the system considered in Fig. 9, for the two Here Eg denotes the energy of @) micelle (which is in-

temperature§*=0.30 and 0.45(b) Order parameter vs T* for c=0.5,  dependent of)) as given by(16), and
corresponding to the system in Fig. 10. The sharp increasg below
T*~0.86 indicates the appearance of an orientationally ordered stripe phase.

j dr dr’

Bee(Q,Q)

C. Low T behavior: VE analysis X{exi — fUsg (r.Qir",001)] =1} (20)
The increase of with T is a reflection of the intricate is the contribution to the second virial coefficient of the sys-
interplay between micellar growth and intermicellar interac-tem from interactions between rods of sigeand s’ with
tions. In the model system analyzed here, the predominamfiven orientations) and ', respectively.Uy (r,Q;r',Q0")
aggregates at loWw and low ¢ are rodlike micelles. It is =U([r—r’|,y) denotes the total interaction potential be-
easily seen that the energetic penaltieg, of forming other  tween the rods, including both excluded volume and “self”
structures, such asT+like” junctions between two perpen- (rim) energy contributiongsee beloy, y=4Q,Q)) is the
dicular micelles, or a L-like” bend in a linear micelle, in- angle between the two rods. In our lattice model the integra-
crease sharply @b decreases; hence, their statistical weightstion overr,r’ is replaced by lattice summation.
decrease exponentially witAE/kT. (For these two ex- The first two terms in the sum it20) represent the
amples AE/kT=[2e,— (2€;+2€,)]/kKT=3/T* and AE_  “mixing” entropy of the system, with rods in different ori-
=[(epten)— Zef]/kT 2/T*, respectively, where we have entations treated as distinct species. Writing(Q)
usedef —1.5K?, e,=€,= —0.5K?) On the other hand, as = p.f{(Q) with f,(Q) denoting the normalized orientational
noted earlier, Imear association of rodlike micelles is a favordistribution of s rods one can rewrite the entropy as
able process, WitAE/kT=—§/kT=—1/T* implying a S pdIn p;—1+2,f(Q)In f{(Q)] thus separating the size-
(weight average micelle size which, in dilute solution, polydispersity and orientational contributions to the entropy.
scales ags) ~ \c exp(@/kT) = c exp(1T*).Atlow Tandc  The third term 2 p(Q)Es, is the internal“chemical”) en-
the micelles are rodlike, interacting via excluded area repulergy of the system and the last term in the sum accounts for
sions. The average excluded area per particlés of order intermicellar interactions. The summation overextends
(s)? (see below while the average density of rods gs=c/  from s=1 to=; the last term in20) corrects for the fact that
(s). The isotropic—anisotropic transition is expected to occuunit micelles(s=1) do not involve orientational entropy, i.e.,
whenp=p=_¢&/(s)~1/v, implying &~(s) ! or, for our spe-  p;(x)=p,(y)=p4/2 and hence their contribution to the en-
cific systemc~exp(—1/2T*). This simple and familiar scal- tropy is simplyp,(In p,—1).
ing argument explains the decreasecofith T at low tem- The equilibrium distributiof{ps({2)}q is found by mini-
peraturegwhen the micelles are predominantly rodlikbut  mizing (20) subject to the conservation conditi¢t®), yield-
it does not indicate whether the transition is of first or highering the self-consistency equations
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pil )= 5 g exp( ~Bs-23 psm')Bss/(n,n')), 80

s'Q’ ——-VE

(22) O MC

with g,=2 for all s=2 andg,=1. In deriving this equation

we have uset = as+ 5 [see(16)] and definech=exd B(u 4

—a)] with u denoting the chemical potentigber unit mi- o

celle) of the systemy enters(22) as the Lagrange multiplier

conjugate ta(19). w00 L i — |
In the limit of ideal solution(of noninteracting rodsthe ==

second term in the exponent {@2) vanishes and we recover T

the usual expression for the size distribution of self- /‘_,/ ---

assembling rodlike micellés>3? That is, py(X)=ps(y) ol &7

=p/2 with g

¢
Ps=0s\° exp(—B8)=0gs(p1/91)° exd — B(Es—sEy)]. é
(23)
S . e -12.0 ‘ ‘ : :
In this limit the chemical potential is given by the common 0.0 0.1 0.2 03 0.4 0.5
expression Bu=Bul+(1/s)In ps, with sBul=-Ingg ¢
+ BE, denoting the “standard chemical potential” of a&n
FIG. 13. Threeu—c isotherms, all for theb=0, y=—1.5K? system, at

h _ —5 i . . )
micelle. (NC}tehthath 2’. for Sg 2.’ IS the (;‘).;:fntlatlonar: de T*=0.3. Shown are the results obtained from grand canonical MC simula-
generacy of the rod)sUsmg (19, it is not difficult to show tions, the virial expansion calculation scheme and, for comparison, an iso-

that for 86>1, the weight averaged size is given by therm corresponding to an ideal systefithe ideal system corresponds,
5 formally, to B¢ (Q2,Q")=0 in Eqg. (20).]
>s ps~\/—
(s)= Sspe 4c exp(Bo) +1. (24 |arger rod. The explicit expressions for these functions are:

i o fi(s,s)=(2+s+s)—(2p+s+s —1)g¥ +2(> —1)/
For the most probable sizg;, and the number averaged size (1-g) for s=s'>2, where q=exp2B8¢) and
s=3sp/Zp, one findss* ~s~(s)/2. Our MC calculations p=exg28(e,—€)], and f'(s,s')=(s+s —4)(q—1)
of the size distribution and the average size in dilute solution+4pq_ Bothpfunctions vanish age|—0, (e,= €,< €;<0).
are, not surprisingly, in excellent agreement wWi##8) and Equations(22) were solved numericall; usin@5) and
(24). ) ) ) ) (26), for the three temperatures considered in Fig. 11. For

To account for intermicellar interactions we have t01*—045 and 0.6 we found isotropic  solutions,
solve (22). These equations, valid for a system of long rOdSps(x)sz(y), up toc=0.5. This is not too surprising con-
(where third and higher virial corrections are negligible gjgering that the average rod length in the system is rather
cannot be solved exactly even for a monodisperse systemmga|| e.g.{s)~6 for T*=0.45 atc=0.3. Only at the lowest
Before commenting on their numerical solution, it should betemperature analyzed* =0.3, was an anisotropic solution
noted that in dilute(but not ideal solution we expect that found, appearing at=0.3. Theu—c isotherm correspond-
inter-rod interactions will modify the size distributidips},  ing to this calculation is shown, along with the MC isotherm
but not the orientational distribution, i.e., the system remaing, Fig. 13. The VE and MC isotherms show good quantita-
isotropic ps(x) = ps(y) =ps/2. Anisotropic (nematig solu- e agreement up to rather high area fractians.25, be-
tions, ps(x) # ps(y), are only expected at higher concentra-yong which point they start diverging. Both calculations in-
tions, whenc(s)~1, as noted above. _ . dicate a change in the slope pfatc=¢~0.3, suggesting a

Since (=x,y is restricted to two orientations th@"  gecong(or highe) order, isotropic—anisotropic, phase transi-
summation in(22) involves oHnIy two terms. We also note oy This is consistent with the order parameter calculations
thatBsy (X,X) = Bsg (¥,Y) = Bgy @andBsg (X,y) = Bsy(¥.X)  in Fig. 12a), which show a change im at this value ofc.
= B, . Using(21) the “parallel” and “perpendicular” virial  Similarly, the change in slope of the VE curve occurs at the
coefficients corresponding to our model are found tdfbe  point where an anisotropic solution t@2) first appears. It
€n= €p)- was found that once an anisotropic solution is a minimum of
the free energy, the isotropic solution becomes a maximum,
confirming that the transition is of second order.

It is also interesting to compare the size distributions,
P(s), obtained from the VE and MC calculations. These are
The first terms in each of these two equations correspond tshown in Fig. 14. At the lowest concentration shown,
(one half of the excluded area of the two rods, assuming that=0.25, the agreement is excellent. At higher concentrations
the rods, or portions thereof, are not allowed to occupy NNthe agreement becomes less and less impressive, as could be
sites. These are the excluded areas corresponding to low temaxpected from the growing difference in tlevs ¢ plots in
peratures. The second termq#®b), (26) account for two-rod  Fig. 13. Yet, it should be noted that the overall shape of the
configurations involving NN contactexcluding two parallel  distributions is quite similar. Figure 1), for instance,
rods touching at their ends, a configuration representing onghows

B!, =2(s+s)—fl(s,s), (25)

ss’

By =3[SS +3(s+s')+1]—f(s,s"). (26)
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transition is most likely of second order. This has been con-

023 F T T T

020 | ¥ ——ic ] cluded to be the case based on a virial expansign to
o1s | 13\ o Mdeat ) | seventh orderof the free energy in a monodisperse system
015 : \ | of rods which, as in our system, are restricted to only two
Py ] allowed orientations® A similar result follows also from a
P(s) giz u'.‘}g\ | Landau-type expansion of the free energy corresponding to
008 6':' g\ | the secondvirial app_roximatior'ﬁ6 We briefly outline this
00s | \o\ . | analysis pecause of its .reIevance to our present calculatpns.
0os I o\o\ | Consider a monodisperse system of rods, all of size
0.00 %2;%.8! | (axial ratio y. The rods are restricted to two allowed orien-
@ 0 5 10 15 20 25 30 tations, along either the or they directions. Introducing the
S orientational order parametey, defined asp(x)/p=1/2+ 7,
p(¥)p=1/12— 7, [p=p(x) + p(y) ], we can express the second
virial free energy per rodp=F/(Mp), as
0.06 T T T T T T T
——- C=0367 (MC) Bo= E_,_ )|n E_,_ +(£_ )|n E_ >_2 2,AB
{ &
0.04 I; %.% y + const. (27)
P() 003 it Y 1 The constant terms here depend @rbut not on 7. Also
00 b AB=B'-B' where B'=B(x,y)=B(y,x) and
! B'=B(x,x)=B(y,y).
001 P Minimization of ¢ with respect top yields[in analogy to
0.00 e (22)]
®) 0 10 20 30 40 50 60 70 80 1427
S |n<—1_27]) =47pAB. (28)

FIG. 14. Micellar size distributions obtained from the VE analysis and MC . . . . . .
simulations for ther=0, y=—1.5K2 system, afl*=0.3. () Both the VE | h€ isotropic solution,7=0, is always a solution of this

and MC distributions correspond t=0.25, at which concentration the equation. It is a minimum, i.e., the equilibrium solution, for

system is still isotropictb) MC- and VE-size distributions in the anisotropic - densitiesp lower than a critical density,. At p=p, the

phase, corresponding to=0.37 andc=0.45, respectively. . . . .
minimum of ¢ corresponds to the anisotropic solutions
|71#0, with |7| increasing continuously frory=0, the iso-

size distributions at high concentrations, when the system iopic solution eventually becoming a maximum. The critical

already in the anisotropic phase. We see that the size distrilensity is found from?e/gn’=0 (at =0), yielding

bution derived from the MC simulations fa=0.37 nearly =1/AB (29)

. . Pc .

overlaps the one obtained from the VE calculation at a some-

what higher concentration=0.45. Both the MC and the VE The variation of the order parameter with respecp fa the

calculations show a rapid increase in the average rod siz&nisotropic phase, near the transition point, is given by

once orientational order sets in. This “alignment induced V3 P

growth” in the nematiglor, more precisely, stripgophase had n== (—) \/——1. (30)

been suggested by earlier latfitand virial expansiotf 2 Pe

treatments of the isotropic—nematic transition in 3D self-Using (25), (26) with y=s=s’, we find (neglecting the

assembling systems. fl £+ correction$ AB=(y—1)%2 and hencep,=2/(y—1)°.

From the VE calculations we have also evaluated théThe critical area fraction ¢, is thus given by

orientational order parameter in the nematic phase as a func,=2y/(xy—1)>~2/y. Estimating y for our self-assembling

tion of the rod size. We find that the longer rods are moresystem as y ~ (s) = 2ycexpBd) we find

strongly aligned, and the degree of alignment increases with,~exp(—B6/3) =exp(—1/2T*) (the last equality holds for

concentration. Qualitatively similar behavior was found in §=K?), as we found earlier fot=c, based on simpler con-

virial expansion treatments of the isotropic—nematic transisiderations.

tion in 3D self-assembling systerfs.

D. Transition order E. LG analysis

It is well known that in 3D systems of rodlike particles The virial expansion treatment detailed above is appli-
the isotropic—nematic transition is of first ord@rThis has cable at low temperatures where the micelles are predomi-
been shown to be the case for a variety of models and syswantly rodlike. This treatment analyzes the appearance of
tems, including systems governed by attractive and/or repulerientational order in the system. In Figs. 9 and 10 we
sive interactions, for lattice and restricted orientation modelslearly note a stripelikepositional order aroundc=0.5,
of monodisperse systems, as well as for polydisperse anghich at lowT appears only after orientational order has set
self-assembling systeni$In monodisperse 2D systems the in. The LG theory mentioned in Sec. Il is applicable at all
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becomes negative whileis still positive, the transition is of

30r N 1 first order, describing a discontinuous jumperirom 0 to a
// \'\ finite value. In order tha¢® will be real it is required that in
»s | X_O‘___*,' \ il addition to being negative\ should also satisfy A/\?<1.
B ! 4 This condition marks the local stability limit of the stripe
R s—0 ) "\ phase; foc=1/2 ityieldsT = T} = 9/7,Fig. 15.
20 X \ 1 The curves corresponding to the stability limits of the

isotropic and stripe phases cross each other whenT)
=\(c,T)=0. The solution of these equations marks a tric-
ritical point. For the system considered in this section we
find two such points, symmetrically located aroucet0.5
(because of the particle—hole symmetrynamely, at
€c=0.22,Ty, = 0.44 andc,.=0.78,T;, = 0.44. Thecurve
fo="fs, along which the free energies of the isotropic and
stripe phases are equal, also passes through the tricritical
points. From the LG expression for the free energy it follows
that f,=f implies 16:\/3\?=1. This last equality yields a

T* vs ¢ curve reaching a maximum af* =1.24 atc=0.5.
From these calculations one concludes that a second-order
FIG. 15. The Landau-Ginzburg phase diagram for the systen®,  transition from an isotropic to a stripe-modulated phase
y=—1.5K2 The solid and dashed curves mark the stability limits of the should take place at low temperaturd®<T*<0.44),

isotropic and stripe phases, respectively. Along the dotted curve the fre ; * — i
energies of the two phases are equal. Ab®V¥e=0.44 the transition is of Whereas at hlgher temperatur(éB44sT 1.24 the transi

first order, below this temperature it is of second order. tion is Qf first order. ) ) )
A direct comparison of the LG analysis with our other

calculations is not simple, at least not at IGwwhere an

temperatures. It should be noted, however, that since it iotropic—nematic I(-N) transition also takes place. The

only concerned with the establishment of positional order, i§imulations indicate that the stripe phase develops from the

should be regarded as a complementary approach rather thBgmatic phaseas “alignment induced growth? On the

an alternative to our VE treatment. The application of the LgOther hand, atrelatively) high T the stripe order develops

scheme to our 2D lattice model has been described in detairectly from the isotropic phase. At these temperatures the

in Ref. 1. Here we shall only briefly outline its predictions LG analysis predicts a first-order transition whereas the MC

for the systemb=0, y/K?=—1.5. results suggest a continuous transition. Yet it must be stated
The LG free energy, per unit area, is given(By, with e that the analysis of the MC calculations is not sufficiently

denoting the amplitude of a stripe phase characterized by @etailed to discern between a “strong second-order” and a

density modulation along, say, theaxis, c(r)=2e coskx). weak first-order” transition.

Based on considerations detailed in Ref. 1, it can be shown

that for b=0, y=—1.5K? the optimal (minimum free en-

ergy) stripe modulation corresponds k&=, i.e., alternating

V. MICELLAR JUNCTIONS AND NETWORKS

occupied and vacant stripes, as in Figc)9For these model In Secs. Il and IV we have considered systems com-
parameters it is also found that the coefficients, andéin posed of micelles with positiveb=K>0) and zerab=0)
(5) are given by spontaneous rim curvature. We now turn to systems with
7=2T*/c(1—c)—32c(1—c), (31) b<0 which implies lowe,, i_.e., favoring the nggative rim
curvature[see(2)]. In the high concentratioitbilayen re-
A=2T*[1/(1—c)3+1/c3]—96, (32)  gime, lowering the energy of a “negatively curved” rim en-

5= AT*[1/(1—c)5+1/c5], (33 hanges the format.ion dfole defects]n dilute solutionb<0
implies low (possibly even negatiyefree energy change
with all energiegi.e., f,7,\,6) measured in units &% These  when linear micelles associate to fobranchedaggregates.
expressions, together witly, from (4) are now inserted into  Upon increasing the concentration these micelles can associ-
(5), yielding an explicit expression fd in terms ofc, T* ate into a network“gel” ) which may, or may not, separate
and the order parameter as a condensed phase coexisting with a dilute miceller solu-
The extrema off with respect toe correspond to an tion. The exact scenario of the phase evolution depends on
isotropic phasee=0 and f=f,, and a stripe phase with the delicate balance between the energy parameers,,
order parametez® = —(\/28)[1 + V1—478/\°] and free ¢, and g, which, in turn, depend on the line tensignthe
energyf,=fy(e). The curver=(d*f/7e?),_,=0 marks the bending rigidityK, and the spontaneous curvatiweSimilar
local stability limit of the isotropic phase; this yields complex behavior, reflecting the intricate interplay between
T*=16c%(1—c)? see Fig. 15. Foc=1/2 this impliesT  molecular packing energies in different micellar microenvi-
= Tg = 1. If upon loweringT* at a givenc, the coefficientr  ronments, characterizes the phase evolution in real surfactant
changes sign from positive to negative whilas still posi-  solutions.
tive the transition is of second order. If, on the other hand, The model systems considered in this section have been
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(a) (b) ©

FIG. 16. Typical MC snapshots for the case — K, y=—4K?2 The configurations shown correspond to the same concentratidh3, but the temperatures
are different:T*=0.1, 1.0 and 2.0 fom, b, andc, respectively. At the lowest temperature héapa stable 2D network of linear micelles spans the entire
system, as discussed in Sec. V B, c$eUpon raising the temperature bonds in the network breatbufeading eventually to the formation of an isotropic
phase of small, bent and branched, mice{®s

chosen in order to demonstrate the possible formation ofute solution and their association into networks upon in-
branched micelles and networks by “controlling” the pre- creasing the concentration. We have chosen to present here
ferred spontaneous curvature and bending rigidity. The existwo sets of simulations, both correspond &g< <€,

ence of such structures and phases which, until recently, had e,=0. Explicitly, for one system, hereaftéy: y/K?=—4,

not been considered as a likely possibility, is now evidencegh— — K implying €,/K2=—4, /K?=—-3, €,=0. The pa-

by both direct*** and indirect experimental methot’s  \3meters corresponding to systeii) are: YF}Kz:_g b=

Porte suggestédthat their appearance requires special am-—_ K implying e,/K2=—8, e/K2=—5, €,=0. In Fig’s. 16
bient conditiongadded salt or cosurfactanwhich favor the and 17, we shva two seis :n:f,M,T si,mSIation snapshots.

formation of]unctlonsbetvyeen cylindrical mlcelle_s. Th_'s 'S’ Both sets describe the structural evolution of the system at
because the local packing geometry at the junctions is

) . ) iofc=0. isi h
saddlelike and requires rather special values of the spontanggmsmmt conf entrat|02(c 0.3) upon raising the(reduce
) : . emperaturel * =k T/K“.

ous curvature. In our 2D model, junctions will form when Th ; d ibed in Figs. 16 and 17 diff Vi
b<0 andy<0. Due to the low symmetry of the square lattice h Ie SYystems ¢ ezcrl € md gs- 2” giff imer-only in
the junctions are necessarily T-like. Notwithstanding thesé _e relative _magmtu ?S o, ande;, yet t 'S_ ierence |m-.
provisos our calculations strongly support the suggestion thaﬁues a qualitatively different phase behavior upon lowering
branched micelles and networks are indeed possible. T*. In the first case, Fig. 16, the system is isotropic at high
temperatures, containing bent and branched isolated mi-
celles. AsT* decreases the micelles associate into larger

Given that bothb and y are negative many,b,K com-  aggregates, thereby gradually getting rid of the unfavorable
binations can give rise to branched micelle formation in di-end cap energye, is large compared tey ,€,). No free ends

A. MC simulations

(a) (b) ©

FIG. 17. Typical MC snapshots for the= —2K, y=—9K? system, all for concentration=0.3, but the temperatures are differefit:=1.0, 2.0 and 3.0
for a, b, andc, respectively. At high temperatures the system consists of isolatadched, bent and even some looplikgcelles(c). As T is lowered the
micelles associate into larger aggregdt®scontaining both large and small micellar loops. At the lowest temperaturg@eirenetwork consisting of small
loops forms a separate phase which coexists with a dilute micellar phase.
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are left at the lowestT* considered, where a connected net-Taking, as usual, the perfect bilayer as a reference for calcu-
work of linear micelles spans over the entire lattice. A dif- lating the energy, the average energy per loop is
ferent phase evolution is observed whgK?=—9, see Fig. 4e,+4(L—2)¢;.
17. Here, again, at highl* the system contains finite The network entropy can be estimated by regarding it as
branched micelles, but we also note the appearance aomposed of segmentsr loops, or sides of rectanglesf
“loops.” Upon lowering T* the loops(or “holes”) associate different lengths,|, with size distributionP(l) satisfying
into a dense network coexisting with an extremely diluteXIP(I)=L. (Note that the most condensed network corre-
micellar solution. sponds td =2, hence in all sum$=2) For a givenc, and
The formation of loops is not surprising since each loophence a giver, the entropy of the system is proportional to
involves (at least four energetically favorables,’'s. While  the average entropy per segmenk=P(l)In P(l). Maxi-
this is true for both systems shown, only one system exhibitsnizing this expression subject &P (1) =L it can be shown
macroscopic phase separation; the other equilibf@e®w  that the entropy, per loop, is given by
T*) by forming a uniform network which spans the entire 1
lattice, with a mesh size depending on the overall concentra- > ak{In(L=2)+(L=Dn[(L=D/(L=2)]}- (34)
tion ¢ (see below. We also note that in both cases, uponThis actually is an upper bound to the entropy, since we
lowering T* (or increasinge), the condensed phase formed ignored correlations between different segmelifs better
is isotropic, as opposed to the formation of the stripe phasestimate of the entropy, which corrects for the fact that the
characterizing théb=0 system considered in the previous rod segments are joined at the junction points is given in Ref.
section. 22) A lower bound ons may be obtained by assuming that
In our model, the appearance of branched micelles andach segment can be freely moved ovdt —1) positions
networks of linear(rigid or flexible) micelles requires that corresponding, on the average, to the distance between two
the energetic change associated with the fusion of two rodreighboring segments. This yields, per loop
like micelles into a T-like micelle is negative, i.e., _
AE;=2¢,~2(¢+e,) = —2y—2(b?— 4bK)<0. For the s=kin(L—1). (35)
systems considered in Figs. 16 and 17 we fivigh= — 2K? Note that both estimates give=0 for the “minimal” loop
and —6K?, respectively. Not surprisinghAE is consider- ~ size,L=2, (c=0.75. It turns out that for the systems con-
ably lower for the latter system, reflecting its stronger ten-sidered in this section the qualitative conclusions from the
dency to form junctions and loops. stability analysis which follows, are the same for batpper
The free energy changAF, involved in the association and lower boung estimates of the entropy. We shall thus
of rigid (rodlike) and flexible(wormlike) micelles into con- employ the simpler on€35).
nected networks was estimated by Drye and Gatessed on Using (35) for s we find that the free energy, per unit
mean-field and scaling arguments. The energetic contributioarea, is given by
was calculated by considering the energy change involved in 4 >
the a§soc!at|on of f.ree.end caps to form a junction of a given  pf= P_ [e,+(L—2)ef]— o In(L—1). (36)
functionality (coordination number The entropy change in-
volves replacing the translational freedom of the micelles byrhe chemical potentigh= df/dc=—[L3/2(L—1)]4f/dl is
the (restricted translational motion of the junctions in the
network. It was shown that the network can be “saturated” Bu= 1 28[en+(L—4)e]—2 In(L—1)+

or “unsaturated” depending on the energetic and entropic L-1 L-1
contributions to the free energy. Unfortunately, testing this (37)
theory for our model is not straightforward, primarily be- and the stability conditiongu/dc=0, becomes

cause this model is two dimensional and hence, for instance,

cannot distinguish between entanglements and junctions. B(2e,—3er)—In(L—1)+ 3L- 0. (39)

—=
Thus in the remainder of this section we present an alterna- 2(L-1)

tive, qualitative and approximate, analysis, attemptingA
mainly to explain the different behaviors characterizing theC

two systems considered in Figs. 16 and 17.

t low concentrationd. ~2/c is large and a stable network

an only exist if3(2e,—3€;)>0. For the two special cases

considered in this section we havé: B(2e,—3¢;)=1/T*

for the system in Fig. 16, an@) B(2¢,—3¢€;) = —1/T*, for

the systems in Fig. 17. For the first system we indeed find a

stable uniform network alT*=2, with L~7. On the other
Suppose the unit micelles constituting the system havéand the second system is unstable; the network shrinks to a

organized into an isotropic network of linear micelles, assmaller size(L~3-4) and coexists with a very dilute micel-

shown in Fig. 16a). Let L denote the average mesh size, i.e.,lar phase. The concentration of the micellar phasecan be

the average length of a rodlike segment connecting twestimated by comparing its chemical potential to that of a

branched points. We assume that the thickness of the lineaetwork, (37). Sincec’ is extremely small it can safely be

segments is one lattice unit, and that there are no free erassumed that the dilute phase contains only unit micelles,

caps. To relaté to the concentratiorg, suppose the network whose self-energy is e}. Thus, its chemical potential is

is composed of rectangular loops. We then findBu=4B¢,+Inc’. Using (37) with, say,L =4, and with the

c=(2L—1)/L2. The number of loops per unit area i3/  energy parameters corresponding to systéim namely,

B. Network stability
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Ben=—8IT*, Bes=—5/T*, =0, we find Inc’~—5/T*.  proximations, as well as by Monte Carlo simulations, the
This explains the vanishingly small concentration of micelledlatter two sets of results agreeing quite closely with one an-
in the dilute phase which, on the scale of our simulationsother.
appears as an empty region of space. We have concentrated on essentially two different sce-
Sincef, as given by(36) corresponds to the free energy narios of micellar structural evolution and phase behavior. In
of a network of mesh sizk, our crude stability analysis only the first, the optimum rim curvature corresponds to small
indicates if the system is stable against phase separation intlisks being favored; here we find a transition from disor-
dilute (L'>L) and concentratedL('<L) networks. How- dered disks to continuous bilayer, with the possibility of an
ever, a dilute phase is more likely to consist of isolatedintermediate phase in which the density of disks shows a
(rather than connectednicelles. This is the reason for com- modulated(“checkerboard?’) spatial structure. On the other
paring, in the last stage of the analysis above, the free enerdyand, when the rim is sufficiently lower in energy than the
of the network to that of a dilute micellar phase. A more bilayer, and specifically when its spontaneous curvature van-
complete stability analysis would require consideration ofishes, then extended ribbonlike micelles are strongly pre-
other possible phases, e.g., concentrated nematic or striperred. In this scenario we pursue two quite different cases:
phases. Indeed, simple energetic and entropic considerationse where straight micelles are dominant; and the other
can be used to explain the higher stability of the networkwhere branched ones appear, involving T-like junctions. The
compared, say, to that of a stripe phdeden e,<e;), as first case is shown to give rise to a progression from isotropic
found in our simulations. to nematic to “stripe” phases, with average aggregation
number increasing dramatically upon increase in surfactant
concentration. The second suggests an evolution from iso-
lated branched micelles in dilute solution to various kinds of
Vl. CONCLUDING REMARKS space-filling network structures at high concentrations and

In this paper we have focused on various scenarios foPW tempere_lture, sgenarios Whi(.:h are now beginning to be
the evolution of micellar structure and long-range order inobservable in experimental siudies.
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