
Monte Carlo and mean-field studies of phase evolution in concentrated
surfactant solutions

Yardena Bohbot and Avinoam Ben-Shaul
Department of Physical Chemistry and The Fritz Haber Research Center for Molecular Dynamics,
The Hebrew University, Jerusalem 91904, Israel

Rony Granek
Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot 76100, Israel

William M. Gelbart
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles,
California 90024

~Received 13 July 1995; accepted 16 August 1995!

A two-dimensional lattice model, originally introduced by Graneket al. @J. Chem. Phys.101, 4331
~1994!#, is used to demonstrate the intricate coupling between the intramicellar interactions that
determine the optimal aggregation geometry of surfactant molecules in dilute solution, and the
intermicellar interactions that govern the phase behavior at higher concentrations. Three very
different scenarios of self-assembly and phase evolution are analyzed in detail, based on Monte
Carlo studies and theoretical interpretations involving mean-field, Landau–Ginzburg,
Bethe–Peierls, and virial expansion schemes. The basic particles in the model are ‘‘unit micelles’’
which, due to spontaneous self-assembly or because of excluded area interactions, can fuse to form
larger aggregates. These aggregates are envisaged as flat micelles composed of a bilayerlike body
surrounded by a curved semitoroidal rim. The system’s Hamiltonian involves one- through
four-body potentials between the unit micelles, which account for their tendency to form aggregates
of different shapes, e.g., elongated vs disklike micelles. Equivalently, the configurational energy of
the system is a sum of micellar self-energies involving the packing free energies of the constituent
molecules in the bilayer body and in rim segments of different local curvature. The rim energy is a
sum of a line tension term and a 1D curvature energy which depends on the rim spontaneous
curvature and bending rigidity. Different combinations of these molecular parameters imply
different optimal packing geometries and hence different self-assembly and phase behaviors. The
emphasis in this paper is on systems of ‘‘curvature loving’’ amphiphiles which, in our model, are
characterized by negative line tension. The three systems studied are:~i! A dilute solution of stable
disklike micelles which, upon increasing the concentration, undergoes a first-order phase transition
to a continuous bilayer with isolated hole defects. An intermediate modulated ‘‘checkerboard’’ phase
appears under certain conditions at low temperatures.~ii ! A system of unit micelles which in dilute
solution tend to associate into linear micelles. These micelles are rodlike at low temperatures,
becoming increasingly more flexible as the temperature increases. Upon increasing the
concentration the micelles grow and undergo~in 2D! a continuous transition into nematic and
‘‘stripe’’ phases of long rods. At still higher concentrations the micellar stripes fuse into continuous
sheets with line defects.~iii ! A system in which, already in dilute solution, the micelles favor the
formation of branched aggregates, analogous to the branched cylindrical micelles recently observed
in certain surfactant solutions. As the concentration increases the micelles associate into networks
~‘‘gels’’ ! composed of a mesh of linear micelles linked by ‘‘T-like’’ intermicellar junctions. The
network may span the entire system or phase separate and coexist with a dilute micellar phase,
depending on the details of the molecular packing parameters. ©1995 American Institute of
Physics.
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I. INTRODUCTION

The rich and diverse phase behavior of aqueous sur
tant solutions is associated with the fact that the solute p
ticles in these complex fluid systems are molecular agg
gates rather than simple molecules.1,2 The aggregates
~micelles, bilayers, vesicles, etc.! are thermodynamically
stable structures, but can change their size and shape in
sponse to changes in concentration, composition, temp
ture, or other ambient conditions. In all these aggregates
hydrocarbon tails of the constituent amphiphiles form a li
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uidlike hydrophobic core while the polar headgroups are l
cated at their surface, facing the aqueous surroundings. C
sequently, in all aggregation geometries, at least one spa
dimension must be less than 2l where l is the length of a
fully stretched amphiphile. For the three ‘‘canonical
structures—sphere, cylinder and bilayer—the number of m
croscopic dimensions~'2l ! is 3, 2, and 1, respectively. Most
micellar aggregates can be regarded as combinations
variations of these three basic structures. For instance, a r
like micelle is typically described as a spherocylinde
/95/103(19)/8764/19/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8765Bohbot et al.: Phase evolution in surfactant solutions
namely, a cylinder capped by two hemispherical ends. Di
like or ribbonlike aggregates are composed of a central
layer body surrounded by a semitoroidal~i.e., bent, half-
cylindrical! rim. Similarly, the lips of pore or line defects in
bilayer sheets are also made of semitoroidal rims, but th
~line! curvature is negative or zero, as compared to the po
tive curvature of micellar rims. A less familiar structure
which we shall feature in the present work, is that of a ‘‘T
like’’ ~or ‘‘Y-like’’ ! junction between cylindrical micelles, in
which the local packing geometry of the amphiphiles is a
proximately saddlelike.

The optimal aggregation geometry for a given kind o
amphiphile is dictated by molecular packing consideratio
~volume/area ratios! and their specific intermolecula
interactions.3 Most double-chain phospholipids, for exampl
prefer the planar bilayer geometry, whereas most single-
ionic surfactants favor packing in spherical or cylindrical m
celles. The optimal micellar geometry is manifested by t
shape and size of the aggregates formed indilute solution,
that is, in the absence of intermicellar interactions. For
stance, the appearance of rodlike micelles, above the crit
micelle concentration~cmc!, reflects the preference of th
constituent surfactants to pack in the cylindrical body. Tho
molecules in the hemispherical end caps involve high
packing free energy, typically a few tenths of kT/molecul
implying an excess edge free energyd'10 kT per end cap.2,3

Linear, rodlike or wormlike, micelles are one-dimension
~1D! objects. Consequently, their size distribution in dilu
solution is polydisperse with a finite average size which
creases monotonically as a function of the total surfact
concentration. On the other hand, bilayers are 2D objects
their formation by monomer association involves a real fi
order phase transition.2–4 For instance, most lipid molecule
aggregate spontaneously into extended, essentially infin
bilayer sheets already in very dilute solution.

In this paper we shall be primarily concerned with sol
tions of ‘‘curvature-loving’’ surfactants, namely, those whic
in dilute solution assemble spontaneously into either globu
~spherical or small disklike! micelles or into elongated cylin-
drical micelles. In the first case, above the cmc, when
concentration of free monomers is low and practically co
stant, increasing the surfactant concentration results, ma
in the formation of additional micelles. In the second cas
both the number of micelles and their size increase with c
centration. Upon further increasing the concentration, int
micellar forces set in and can modify the size distribution
the micelles, their spatial ordering and even their shape. I
well known for example that at high concentrations cylind
cal micelles tend to align and form hexagonal phases of ro
sometimes through an intermediate nematic phase.2 This
alignment can induce further micellar growth. At still highe
concentrations, a transition from the hexagonal phase t
lamellar phase of bilayers can take place, due to exclu
volume and/or electrostatic interactions. Such evoluti
demonstrates the coupling between intermicellar forc
which determine the long range spatial ordering and the re
tively short ranged intermolecular forces which dictate t
local packing geometry.

Lamellar phases of curvature loving surfactants a
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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formed only at very high concentrations, where they presen
the most efficient way of packing large amounts of am
phiphile. Upon diluting the lamellar phase pore and/or line
defects will evolve in the bilayers, owing to the lower pack-
ing energy of the molecules at the semitoroidal lips of suc
defects.5–8 Eventually the hole defects will ‘‘percolate,’’ re-
sulting in disintegration of the bilayer sheets into many finite
~e.g., ribbonlike! micelles or in a transition into an hexagonal
phase of rods.

The exact scenario of phase evolution in the concen
trated solution regime depends sensitively on the interpla
between the optimal packing geometry, and the interaggre
gate forces. Interactions between micelles whose constitue
surfactant molecules do not strongly prefer, say, rod- or dis
klike shape, can lead to especially rich phase behaviors. Ta
lor, Berger, and Herzfeld9 have considered the particular case
of no intrinsic preference for one local curvature or the othe
and have shown how increase in concentration can result in
succession of different micellar structures and long-range o
derings: First an aligned phase of rodlike micelles appear
and then a layered state of disklike aggregates. In a relate
investigation, Taylor and Herzfeld10 have treated separately
the situations of rod- and disk-forming surfactants, deriving
in each case the sequence of isotropic-to-nematic-to
hexagonal~columnar! and smectic/lamellar states, respec-
tively. They also examined there, for the first time, the strong
coupling of micellar size to concentration and degree of or
dering in the columnar and layered phases, chronicling th
‘‘growth’’ ~and eventual divergence! of average aggregation
number in the high concentration limit.

The spatial ordering in semidilute solutions of cylindri-
cal micelles depends on the~line! flexibility of the micelles.11

If they are rigid, a nematic or an hexagonal phase will be
preferred; if they are flexible they may entangle, forming a
dense solution of ‘‘living polymers.’’ The rigid-rod micelle
work goes back to early discussions of the ‘‘sphere-to-rod
transition in isotropic phases,12 and to treatments of the cou-
pling of micellar size and alignment at the isotropic-to-
nematic transition.13,14The role of micellar flexibility in sta-
bilizing the nematic phase has been specifically addressed
Odijk15 and more recently by van der Schoot and Cates,16 all
of whom consider it to be a crucial ingredient in understand
ing the orientationally aligned phase. The bending flexibility
of cylindrical micelles plays a perhaps still more dramatic
role in explaining properties of the isotropic~even low con-
centration! solutions of surfactants which prefer cylindrical
geometry so strongly that they form extremely long micelles
just above their cmc. These systems have been shown expe
mentally to behave much like solutions of linear, flexible
polymers, insofar as their viscosities and associated rela
ation behavior are concerned.17 Their properties have been
studied quite systematically in theoretical investigations
which specifically exploit the polymer analogy.18

Yet another scenario is also possible. Inspired by rheo
logical studies, several groups have recently suggested19–22

that certain surfactants may formbranchedcylindrical mi-
celles, involving the above-mentioned intermicellar junc-
tions. These predictions were most recently confirmed b
direct imaging, using cryoelectron microscopy.23,24 The for-
o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8766 Bohbot et al.: Phase evolution in surfactant solutions
mation of these structures requires special ‘‘tuning’’ of th
spontaneous packing geometry, e.g., by changing the con
tration of added salt or alcohol. Upon increasing the conc
tration, or lowering the temperature, the branched micel
appear to associate into connected networks, conjecture
be precursors for the formation of lamellar phases
bilayers.25

In the following sections, with the aid of Monte Carl
~MC! simulations and approximate theoretical approach
we shall analyze several different scenarios for phase ev
tion in self-assembling surfactant systems. Our calculatio
are based on a 2D lattice model which has already been u
to study a limited class of systems in Ref. 1, where we ha
also discussed its relation to other lattice models of se
assembling systems. The formulation of this model has b
motivated by experiments of Holmes and Charvolin,6 Boden
and co-workers,26 and Zasadzinski and co-workers,27 on sys-
tems of surfactants whose optimal aggregation geometr
that of small oblate~disklike! micelles. These micelles per
sist as stable particles up to intermediate concentratio
where excluded volume interactions become significant.
these concentrations the micelles organize in a smectic
like phase, which upon further increase in concentration c
evolve ~‘‘percolate’’! into a continuous bilayer phase. Ac
cordingly, the smallest particles in our model are diskli
micelles which, upon increasing concentration, can fuse
form larger 2D structures composed of a central bilayer bo
surrounded by a flexible, possibly tortuous, semitoroidal ri
The micelle internal~free! energy has been expressed as
sum of a line tension term and a~line! curvature energy of
the rim. The line tension,g, measures the packing energ
~per unit length! of molecules comprising an optimally
curved rim, relative to their energy in the bilayerlike bod
The elastic curvature energy, of the formk(c2c0)

2, ac-
counts for deviations of the local~rim-! curvaturec from its
optimal ~‘‘spontaneous’’! value c0, with k denoting a 1D
~rim-! bending modulus. On the square 2D lattice, this e
ergy scheme becomes equivalent to that of an interac
lattice gas with two-, three-, and four-body interaction pote
tials.

Our model, albeit approximate, is quite general and
lows one to examine a wide range of self-assembly pheno
ena, by varying its three molecular parameters,g, k, andc0.
Although the model is two-dimensional it provides some im
portant general insights into the phase behavior of 3D s
tems. Furthermore, even in the 3D systems, several phen
ena are essentially two dimensional. These include,
instance, the transition from a smectic-A phase of disks to a
continuous bilayer26,27and the evolution ofdefectsin bilayer
lamellae.5–8 Surfactant monolayers adsorbed at water-air
terfaces provide examples of real 2D system in which m
celle formation and growth might take place. This idea h
recently been invoked in order to explain monolay
pressure-area isotherms.28

Our analysis in Ref. 1 focused on the special caseg50
andc052/a, wherea is the diameter of the minimal micelle
Based on mean-field~MF! calculations we analyzed the tran
sition from the smectic-A phase of disks to a continuou
bilayer phase. Using Landau–Ginzburg~LG! analysis we in-
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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vestigated the possible appearance of modulated, ‘‘checke
boardlike’’ ~CB! and ‘‘stripe’’ phases. Preliminary Monte
Carlo ~MC! simulations were also presented for one case.

Curvature-loving surfactants prefer the rim over the fla
bilayer geometry and hence, in our model, can be characte
ized byg,0. In systems of this kind, on which we focus in
this paper, continuous bilayers will only appear at high con
centrations, due to micellar packing constraints, via fusion o
‘‘edge rich’’ ~e.g. disk- or rodlike! micelles. Several systems,
all characterized byg<0, will be studied in detail using MC
simulations. The results of the simulations will be analyzed
with the help of several approximate analytical approache
which include, in addition to the MF and LG schemes, a
16-site version of the Bethe–Peierls~BP! approximation and
a virial expansion~VE! approach.

In Sec. II, we outline the lattice model, comment on the
MC simulations and some of the analytical approaches, an
motivate the choice of systems to be studied in the following
sections. The systems discussed in Secs. III–V involve solu
tions of surfactants characterized by different optimal pack
ing geometries. In Sec. III, we consider a system which in
dilute solution contains disklike micelles which, upon in-
creasing the concentration, undergo an entropically drive
transition to a continuous bilayer. In Sec. IV, the aggregate
formed in dilute solution are linear micelles giving rise, as
the concentration increases, to orientationally~nematic! and
positionally ordered~stripe! phases. Finally, in Sec. V, we
consider the formation of branched micelles which at high
concentrations associate into connected networks.

II. MODEL

A. Hamiltonian

The 2D lattice model is illustrated in Fig. 1. The smallest
particles in the system are ‘‘unit’’ disklike micelles of diam-
eter D, with a<D<a&, a denoting the lattice constant.
~Hereafter,a[1 will be used as our unit length.! Whenever
two unit micelles occupy nearest neighbor~NN! lattice sites
they overlap and hence fuse to a dimer micelle. Similarly
when several micelles occupy a connected cluster of NN
sites they form one larger aggregate, composed of a flat ce
tral body surrounded by a curved rim. We do not include in
our model surfactant monomers whose concentration, we
above the cmc, is small and constant.

Since separate micelles do not interact with each othe
the total energy of a given lattice configuration is a sum o
micellar ‘‘self-energies.’’ The self-energy of a micelle is, in
turn, a sum of molecular packing free energies in its differen
regions, namely, the bilayer body and the curved rim. Fo
convenience, we shall setf b , the packing free energy per
molecule in a bilayer, equal to zero. Then the micelle energ
is its rim energy, which can be expressed as

Erim5E dzH g1
1

2
k@c~z!2c0#

2J , ~1!

with z denoting the position along the micelle perimeter,c~z!
the local~1D! rim curvature,c0 the optimal~‘‘spontaneous’’!
curvature,k a 1D bending modulus andg a line tension
measuring the energy, per unit length, of an optimally curve
o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



8767Bohbot et al.: Phase evolution in surfactant solutions
FIG. 1. Schematic illustration of the 2D-lattice model. A ‘‘minimal’’~disklike! micelle occupies one lattice site~left!. Micelles occupying nearest neighbor
sites fuse into a larger aggregate, characterized by a flat bilayer body, surrounded by a curved rim~middle!. On the square lattice~right! the local rim curvature
is either straight~‘‘flat’’ !, or ‘‘positive’’ or ‘‘negative.’’
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rim (c5c0) relative to the bilayer energy. If there arem
molecules along a unit perimeter length the
g5m[ f r(c0)2 f b], where f r(c0) is the packing free energy
per molecule in an optimally bent rim. Depending on th
molecular system considered,g can be positive, negative or
zero. In this work we shall consider the casesg50 andg,0.
~When g.0 continuous, essentially infinite, bilayers ar
formed already in very dilute solution, as briefly discussed
Sec. III.!

On the square lattice the micelle perimeter can be rep
sented as a sum of line segments, each of lengtha ~a51!.
The center of each segment coincides with one lattice ver
~four-site junction! on the rim contour. The rim segments ca
take one of three possible curvatures:~i! ‘‘positive,’’
cp52/a52; ~ii !‘‘flat,’’ cf50, and ~iii ! ‘‘negative,’’
cn522/a522. ~More generally, we could takecpÞ2cn ,
e.g.,cp52/D andcn522/D8 whereD andD8 denote the
diameters of a unit micelle and ‘‘unit hole,’’ respectively.!
Rim segments of unit length and different curvatures are
sociated with different energies~see Fig. 2!. From ~1! it fol-
lows directly that these energies can be expressed~ignoring
constants of the order of unity! in the form

ep5g1~K2b!2, e f5g1b2, en5g1~K1b!2, ~2!

withK 5 A2k andb5 c0Ak/25 Kc0 /2.The total rimenergy
is now a sum of segment energies~2!, involving a sum of
segmentcurvatureenergies, and aline tensioncontribution
gL, with L denoting the total perimeter length.

The energy of a given lattice configuration can also b
expressed as a sum over the four-site configurational en
gies, see Fig. 2. Using site occupation numbersSi51 or 0 to
denote, respectively, if sitei of the lattice is occupied or

FIG. 2. Four-site~vertex! configurations and their corresponding energie
@see Eq.~2!#.
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vacant, letc i5(Si ,Si1x ,Si1y ,Si1x1y) denote the configu-
ration of the four-site block in whichi is the left-bottom site,
i1x is its NN to the right, etc. Then the system Hamiltonian
can be expressed as

H~$Si%!5(
i

e~c i !5(
i

(
k51

4

hi
~k! . ~3!

Heree~ci! is the energy corresponding to quartet configura
tion ci , e.g.,e~c1!50 wherec15~0,0,0,0!, e~c2!5ep where
c25~1,0,0,0!, etc. @There are 24516 quartet configurations,
all of which, except the fully occupied and fully vacant ones
are degenerate; e.g.,c35~1,1,0,0! is fourfold degenerate and
c4~1,0,1,0! is twofold degenerate.# The second equality in~3!
indicates, symbolically, that the lattice Hamiltonian can be
expressed as a sum of one-, two-~NN and NNN!, three-
~e.g., SiSi1xSi1y!, and four-body terms, corresponding to
k51–4. For instance the contribution to the Hamiltonian
corresponding to the penultimate configuration in Fig. 2 is
SiSi1xSi1y3(12Si1x1y)3en . The sum overi includes all
M lattice sites or, equivalently, overlapping quartets. The
MC simulations as well as the MF, LG, and BP approxima
tions involved in our analysis are all based on the Hamil
tonian ~3!.

B. MC simulations

Most of the MC simulations described in Secs. III–V
were performed on 2D lattices of sizeM51003100, impos-
ing periodic boundary conditions in the usual manner. In
some cases larger lattices were used in order to exami
finite size effects. Complete equilibrium of the various sys
tems modeled was usually achieved after;106 MC steps.
Particle moves, of unrestricted range, were generated acco
ing to the familiar Metropolis algorithm. Both canonical
~hereafterN,M ,T or c,M ,T; c5N/M ! and grand-canonical
~m,M ,T! ensemble simulations were carried out. Simulation
in the canonical ensemble allowed us to identify regions o
coexisting phases. The grand-canonical simulations enabl
to study the behavior of the chemical potential–

s

o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8768 Bohbot et al.: Phase evolution in surfactant solutions
concentration isotherms@m(c)#, and resolve whether a given
phase transition is of first order@indicated by the discontinu-
ity of the m(c) curves#, or continuous one.

C. MF and LG approximations

The simplest~MF! approximation for calculating the
system free energy,F5E2TS, is obtained by assigning ran
dom occupation probabilities to all lattice sites. That is, t
energyE5^H& is calculated aŝH&5MScP0(c)e(c) with
P0~c! denoting the mean-field probability of the quartet co
figuration c. For instance, P0(0,0,0,0)5(12c)4,
P0(1,0,0,0)5c(12c)3, P0(1,1,0,0)5c2(12c)2, etc.,
wherec5^S& is the fraction of occupied sites~see Fig. 2!.

Using~2! and~3! to express the energiese~c! in terms of
g, K, andb, and adding an ideal mixing entropy term, on
finds for the MF free energy, per site,

f 0 /45gc~12c!1c~12c!2~K2b!21c3~12c!~K1b!2

1c2~12c!2b21kT@c ln c1~12c!ln~12c!#, ~4!

with k denoting Boltmann’s constant andT the temperature.
Note that when the 1D bending modulus,k, is zero~hence
K5b50!, Eq. ~4! reduces to the MF free energy of a 2D
lattice gas29 with NN interactionsw52e f24ep522g.

In order to account for local concentration fluctuation
and the possible existence of modulated phases the free
ergy has been expanded, beyond the MF approximation,
LG form.1 To this end theSi ’s appearing in the Hamiltonian
~3! have been replaced by local concentration variabl
^Si&5c2f i with fi denoting the local fluctuation. Then
Fourier transforming thefi ’s in H ~and, similarly, in the
entropy contribution toF! the free energy has been expand
up to sixth order in terms of the lattice Fourier componen
fq . The coefficients in the expansion are functions ofc and
T and depend, parametrically, ong, K, andb. The possible
appearance of ordered, checkerboard and stripe, phases
examined by imposing on thefq the symmetry of these
structures. This results in a LG free energy of the form1

f5 f 01
1

2
te21

1

4
le41

1

6
de6 ~5!

with the order parametere denoting the amplitude of the
modulated phase. The coefficientst, l, andd are functions
of c, T and the molecular parametersg, K, andb. Different
forms of these coefficients correspond to modulated pha
of different symmetries.

D. The BP scheme

The basic idea of this approach is to calculate in det
the statistical properties of a small open subsystem and tr
in a mean-field fashion, its interaction with the rest of th
system.30 Since our model Hamiltonian involves all possib
interactions within a quartet of sites we have chosen a
subsystem a square ‘‘colony’’ of 434 sites, composed of a
central quartet surrounded by 12 periphery sites; see Fig
The peripheral sites are of two kinds: four ‘‘corner’’~or,
A-type! sites and eight ‘‘edge’’~B-type! sites. The grand ca-
nonical partition function of the 434 ~open! subsystem is30
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject
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J5 (
N50

16

lN(
c

exp$2b@E~N,c!1NA~c!fA

1NB~c!fB#%. ~6!

Here b51/kT and l5exp~bm! is the absolute activity~m
being the chemical potential!, E(N,c) is the energy corre-
sponding to a colony containingN particles in configuration
c, andfA is the effective interaction of any of theNA par-
ticles ~0<NA<4! with its surroundings;fB , NB , ~0<NB<8!
are defined analogously.

For given temperature,T, and overall particle concentra
tion, c, the quantitiesl, fA andfB are determined by the
three self-consistency equations requiring that the aver
occupation number of any of the four central sites, as wel
that of anyA and anyB site, will be equal toc. That is, we
require ^N&516c, ^NA&54c and ^NB&58c. We calculate
these averages numerically, using exact counting of all
216 possible colony configurations, with their energies calc
lated using~2!. ~Of course, many of the colony configura
tions are degenerate.! From these calculations we obtai
chemical potential–concentration~m2c! isotherms and
pressure–concentration~p2c! isotherms. First-order phas
transitions are identified by the appearance of van der Wa
loops in the isotherms.

E. Systems studied

In our previous paper1 the MF and LG schemes wer
applied to analyze the phase behavior of systems withg50.
The cases considered were:b5K ~favoring the formation of
minimal micelles in dilute solution!, b5K/3 ~larger mi-
celles!, andb50 ~favoring rodlike micelles in dilute solution
and straight hole defects or ‘‘cracks’’ at high concentration!.
In all three cases a first-order transition from a micellar to
bilayer phase was predicted upon increase in concentratio
low enough temperature. The critical temperatureTc was
found to increase withb/K. The most interesting case,b5K,
corresponds to the transition from a smectic-A phase of disks
to a lamellar phase with isolated hole defects. For this sys
a narrow region of a stable CB phase was predicted to e
at low T and lowc.

FIG. 3. The 16-site colony used in the Bethe–Peierls calculations.
grand canonical partition function@Eq. ~6!# of this open subsystem is calcu
lated by taking into account all interparticle interactions within the colon
Particles on peripheral sites also interact with the rest of the system,
different effective interactions for particles on sites A or B.
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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In Sec. III, we consider again theg50,b5K system, but
this time using MC simulations and our BP approximatio
As we shall see, these two approaches yield very simi
phase diagrams. These, in turn, differ in several respe
from the phase diagram predicted by the MF and LG the
ries, e.g., the MC simulations do not exhibit a CB phase f
these molecular parameters. However, we shall see that w
g is slightly negative a stable CB phase is also observed
the MC calculations. This will be shown for the cas
g52~1/2!K2, b5K.

In Secs. IV and V, we analyze systems withg ,0, b50
andg ,0, b,0, respectively. In the first case, the aggregat
formed at lowc and lowT are rodlike micelles which un-
dergo a transition to a stripelike phase upon increasing
concentration. The analysis of this system includes, in ad
tion to the MC and BP calculations, a virial expansion~VE!
scheme outlined in Sec. IV. We shall also comment on t
LG analysis of the transition from a micellar to a strip
phase. Finally, the systems considered in Sec. V exhibit
formation of branched aggregates and micellar networ
The results of the MC simulations of these systems will b
interpreted based on simple qualitative considerations.

III. THE DISK TO BILAYER TRANSITION

At very low concentrations the smallest particles in th
system are always preferred on entropic grounds. In o
model these are the minimal micelles. Whenb5K, which is
the case to be considered in this section, the minimal m
celles also involve the least curvature energy, as follow
from ~2!: ep5g ,e f5g1K2,en5g14K2. The calcula-
tions presented in this section are for the caseg < 0.

A. MF and qualitative considerations

For the sake of comparison, we first briefly consider
system withb5K andg .0. In this case the rim energy is
higher than that of a planar bilayer and a first-order transiti
from a dilute micellar system to a continuous bilayer she
~with a few isolated hole and line defects! will take place
below a critical temperatureTc . The MF approximation for
the spinodal curve is obtained by calculatingT5T(c) from
]m/]c50, usingm5] f 0/]c with f 0 given by ~4!. We find

4c~12c!
eeff
kT

51 ~7!

with

eeff52g14~K2b!222b2212K2c112~K212Kb!c2,
~8!

which, forK5b yields

eeff52g12K2~18c226c21!. ~9!

For an ordinary 2D lattice gas with attractive NN
interactions29 K5b50 and eeff52g is the strength of the
attractive potential, yieldingkTc52g for the critical tem-
perature andcc51/2 for the critical concentration. For typi-
cal bilayer forming amphiphiles such as lipids, simple mo
lecular considerations suggest thatg * 10 kT at room
temperatures. Thus, regardless of the value ofK it follows
that at room temperature a spontaneous formation of c
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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tinuous bilayers takes place at extremely low amphiphile
concentrationsc, as is indeed observed for lipid bilayers. The
second term in~9!, resulting from the curvature energy con-
tribution ~or, equivalently, from the additional two-, three-,
and four-body potentials!, affects the values of the critical
temperature and concentration, but not the qualitative behav
ior of such systems.

The influence of the rim energyg and its rigidityK on
the micelle to bilayer transition are demonstrated, albeit ap
proximately, by the MF spinodal curves, as shown in Fig. 4.
The special caseK50, b50, corresponding to a simple 2D
lattice gas, is shown for comparison. The other curves, de
scribing the spinodals forb5K reveal the shift incc to
higher concentrations, reflecting the resistance of the disklik
micelles to fuse into bilayers. We note that the disk to bilayer
transition takes place for both positive and negative values o
g and that, as expected, the critical temperature increases a
the critical concentration decreases asg increases~lower sta-
bility of the micelles!. The asymmetry of the spinodal curves
~with respect toc51/2! can also be related to the lack of
hole–particle symmetry whenb5KÞ0. It is easily seen, for
example, that the energy change when two micelles fuse int
a dimer,DEm52e f24ep522g12K2, is higher than that
corresponding to hole–hole association,DEh52e f24en
522g26K2.

When b5K and g < 0 the minimal micelles are pre-
ferred not only entropically but also energetically over any
other aggregation geometry.~The bilayer will be next on the
energy scale, providedg1K2.0.! As noted above, the lower
is g, the stronger is the resistance of micelles against fusion
In the experiments of Boden and co-workers26 on aqueous
solutions of cesium pentadecafluorooctanoate~CsPFC!, it

FIG. 4. Spinodal curves for the disk to bilayer transition calculated accord
ing to the mean field approximation@Eq. ~7!# for b5K and several values of
the line tension:g521, 0, 0.5, 1~in units of K2!. T*[kT/K2. For com-
parison we also show the~symmetric! spinodal curve, corresponding to an
ordinary 2D-lattice gas with attractive nearest-neighbor interactions; this
particular curve corresponds to the limiting caseK5b50, implying
ep5e f5en5g. For this curveT*[kT/d.
o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



ensed
FIG. 5. The disk to bilayer transition: three typical MC snapshots corresponding to a system withb5K and g50. ~a! T*5kT/K251.0, c50.4; at this
relatively low temperature, a micellar phase of minimal disks~c'0.3! coexists with a nearly perfect~i.e., free of hole defects! bilayer phase~see Sec. III C!.
~b! T*52.5,c50.6; at this higher temperature the dilute phase contains larger aggregates, in addition to isolated minimal micelles. Similarly, the cond
bilayer phase contains more hole defects.~c! T*53.6, c50.834; a typical configuration of the system near its critical point.
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was found that small disklike micelles survive as isola
aggregates up to very high volume fractions~above 1/2!. At
the high concentration regime the micelles arrange in liq
crystalline, nematic and smectic-A phases. In other words
the micelles resemble particles in thermotropic systems. T
must be attributed to the high stability of the disklike m
celles, which according to our model should haveg.0. Prior
to fusing into continuous bilayers~when they ‘‘run out of
space’’! the disks could form an ordered 2D phase. Our M
simulations for the caseb5K, g52~1/2!K2 indeed show, at
low T, the appearance of a CB-like phase of disks, under
ing a first-order transition into a continuous bilayer~see be-
low!. Coexisting lamellar and disklike phases have been
served experimentally by Zasadzinski and co-worker27

suggesting that in their system~aqueous solutions of decy
lammonium chloride/ammonium chloride! g,0.

The special caseg50, b5K has previously been studie
using MF and LG analyses. In this system the minimal m
celles and the continuous bilayer are,energetically, equally
favorable. All other structures such as finite micelles or h
defects in bilayers involve higher energies~since their rim
energies includee f5K2 and en54K2 contributions which
are larger thanep!. Since there is no energetic incentive f
the micelle to bilayer transition it can only be driven b
entropic or, more precisely, by packing considerations.
shall elaborate on these considerations after presenting
MC and BP calculations for this system.

B. MC and BP calculations

In Fig. 5 typical snapshots from (c,M ,T) MC simula-
tions of theb5K, g50 system, illustrate the coexistenc
between a micellar phase and a continuous bilayer ph
Figure 6 shows several chemical potential–concentration~m
2c! isotherms, calculated by MC simulations in them,M ,T
ensemble, as well as the corresponding isotherms pred
by the BP approximation. The good agreement between
two calculation schemes is not too surprising considering
large ~434 sites! colony used as a subsystem in the BP c
culations. The BP pressure–area~p2c! isotherms were cal-
J. Chem. Phys., Vol. 103,Downloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subjec
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culated by numerical integration of them2c curves, namely,
p5*c dm. The phase boundaries are found as usual by co
paring the chemical potentials and the pressures in the t
phases. Figure 7 shows the temperature–concentrat
T*2c, phase diagram for theb5K, g50 system as obtained
from the BP calculations,T*5kT/K2 denoting our reduced
~dimensionless! temperature scale.

The critical temperature according to the BP approxim
tion isTc* > 3.65,somewhat higher than the MC simulation
valueTc* & 3.6. Thecritical concentration iscc>0.84. These
results, as well as theT*2c diagram andm2c isotherms are
accurate to within a few percent, due to finite size effects

FIG. 6. Chemical potential-concentration isotherms for theb5K, g/K250
system; the chemical potential scale ism*5bm/K2. Symbols ~crosses,
circles! represent the results of grand canonical MC simulations; the co
tinuous curves are calculated according to the BP approximation.T*52.0,
filled circles and dashed line;T*53.0, crosses and dot–dashed line
T*53.7, open circles and solid line. Both calculations predict a simil
critical temperature,Tc* > 3.6, the MCcritical temperature being slightly
lower.
No. 19, 15 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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the MC simulations and to the limited accuracy of the n
merical integration used in the BP scheme. The critical te
perature obtained from the MC and BP calculations is co
siderably lower than that predicted by the MF analysis@Eq.
~9!#, Tc* > 7.45,whereas the critical concentration predicte
by the MF approximation,1 cc>0.81, is quite close to the MC
value cited above. The MF prediction of a highTc* is not
surprising, considering the similar error known for th
simple 2D lattice gas.29

In Ref. 1 we have also presented a LG analysis to inv
tigate the possible appearance of a modulated CB phas
was predicted that a second-order transition from a dil
micellar phase to a CB phase should take place atT*
& Tc* /5 with Tc* 5 7.45 denoting the MF critical tempera-
ture. The onset of the transition is atc50 whenT*50, end-
ing up at a tricritical point~joining the micelle–bilayer tran-
sition! atT* /Tc* > 1/5 andc>0.22. The simulations and BP
results shown in Figs. 5–7 are at variance with these con
sions. Indeed, from Fig. 5~a! which shows a typical low tem-
perature lattice configuration, we note the existence of sh
range CB order in the system, yet no true long-range orde
observed. Long-range CB order corresponds to preferen
occupation of one of the two NNN sublattices of the squa
lattice. This, in turn, requires the appearance of an~infinite!
percolation cluster on one of the sublattices. In all our sim
lations the transition from the micellar to the continuous b
layer took place below the percolation threshold. Seve
simulation runs have indeed shown a metastable CB phas
low T for concentrationc&0.4. However, this phase disap
peared upon introducing a small nucleus of the bilayer pha

On the other hand, from the qualitative analysis pr
sented earlier in this section~Sec. III A! we can anticipate
enhanced stabilization of the micellar phase against fus
wheng is negative. In other words we expectTc* to be lower

FIG. 7. Temperature-concentration phase diagram according to the BP
proximation, for the systemb5K, g50 ~see also Figs. 5 and 6!. The con-
tinuous dashed line is drawn to guide the eye. The low density bra
corresponds to an isotropic phase of disklike micelles coexisting with
ordered bilayer phase which forT*&2 is essentially free of defects.
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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and cc to be larger than their values forg>0. It is also
possible that a stable intermediate ordered phase will exist a
low enough temperatures. The MC simulations of the
g/K2521/2, b5K system, of which typical snapshots are
shown in Fig. 8, confirm these notions. Indeed, at low tem-
peratures, the transition from the isotropic micellar phase to
the continuous bilayer phase passes through an intermediat
CB phase~as predicted by the LG analysis1!. Upon raising
the temperature the CB phase becomes unstable, as indicate
by the coexistence of the continuous bilayer and the isotropic
micellar phase. The critical temperature and concentration
for this system areTc* > 3.3, andcc>0.85.

C. Low T behavior

The low temperature limit of the phase diagram shown
in Fig. 7, especially thefinite concentration of the micellar
phase at the transition, can be explained by the following
‘‘semi-quantitative’’ arguments. Whenb5K and T→0 the
minimal micelles are far more stable than any other micellar
structure. These micelles can avoid fusion into larger struc-
tures by not occupying NN sites. Thus, as a first-order ap-
proximation let us assume that the system is governed by
infinite NN repulsions. At very low concentrations this re-
striction does not severely reduce the configurational entropy
of the system. Asc→1/2 the micelles can still avoid fusion
by occupying only sites belonging to one of the two NNN
sublattices of the original lattice. However, full occupation of
all the sublattice sites~atc51/2! implies zero configurational
entropy for the system. Thus, instead of reaching this ‘‘satu-
ration’’ limit, the system may prefer to separate into two
phases: a bilayer with few hole defects and a dilute~c,1/2!
phase consisting of micelles restricted to the sites of one
sublattice. Recall that forg50 the fusion of micelles to form
a bilayer does not involve an energetic cost~apart from edge
effects!, and note that the entropy per particle in the dilute
phase increases asc falls below 1/2.

More quantitatively, letc1 andc2 denote the densities of
the micellar and bilayer phases, respectively. Assuming that
the micelles are restricted to occupy the sites of only one of
the two NNN sublattices, then the micellar phase can be
regarded as a noninteracting lattice gas with effective con-
centration 2c1. Using the familiar equations for the chemical
potential and pressure of such a system, we find29

bm15 ln@2c1 /~122c1!#, ~10!

bp152~1/2!ln~122c1!. ~11!

The particle concentration in the bilayer phase isc2&1.
There can be only few isolated hole defects in the bilayer,
since their energy,eh54en516K2, is very high. Thus, the
bilayer can be treated as a very dilute 2D gas of noninteract-
ing holes. The canonical partition function of a 2D system
consisting of (M2N) holes with ‘‘internal energy’’eh , ran-
domly distributed over theM sites of a bilayer~N being the
number of particles constituting the bilayer!, is
Q5[M !/(M2N)!N!]exp@2b(M2N)eh#. The particle
chemical potential and pressure in this system are easily cal
culated, yielding

bm25 ln@c2 /~12c2!#2beh , ~12!

ap-

ch
n
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FIG. 8. Typical MC simulation snapshots for the caseb5K, g520.5K2, illustrating the configurational changes corresponding to a change in temperatu
at constant concentration~c50.6!. ~a! T*51.0, ~b! T*52.0, and~c! T*53.0. At low temperatures~T*&1.5! a modulated checkerboardlike phase~with
defects! of disklike micelles coexists with a bilayer phase. The long-range order of the micellar phase gradually disappears upon raising the temper
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bp252 ln~12c2!2beh , ~13!

with c25N/M denoting the particle concentration in the b
layer.

Equating the chemical potentials and the pressures o
two phases one finds

4c1
212c1c2

22c2
250 ~14!

and

~122c1!
1/25~12c2!exp~beh!. ~15!

From these equationsc1 andc2 can be evaluated numericall
as a function ofT. Clearly, however, asT→0 we havec2→1
and hence, from~14!, 4c1

212c12150, from which we find
c1'0.31. Using this value in~15! it is found that for, say,
T*5kT/K251 the concentration of holes in the bilayer
;1027. In other words, the bilayer is essentially perfect, c
tainly on the length scale of the lattices used in our simu
tions.

The value found for the concentration of the dilute pha
at coexistence with the bilayer~atT→0! is just slightly lower
than the value estimated from the simulations,c2>0.33. The
difference can be attributed to our assumption that the
celles in the dilute phase are strictly restricted to only o
sublattice. Locally, as we see in Fig. 5~a!, the micelles pref-
erentially occupy one of the two sublattices but, globa
both sublattices are equally populated. Differently put,
fact that we have not observed true long-range CB orde
our simulations indicates that the effective concentration
any of the two sublattices must be less than 0.59, the v
corresponding to the site-percolation threshold for the
square lattice.31 The possibility of observing this behavior a
very low temperatures~lower than the lowest temperature
the simulations,T*50.5! cannot be ruled out. However, a
these low temperatures finite size effects can play a sig
cant role in determining the fine details of the phase tra
tion. ~Note for example that the condensed phase at very
T appears as a finite perfect domain, free of hole defe
whereas it is obvious that such defects should appear at
nonzero temperature.! Alternatively, as we have seen in Fig
8, true long-range order is easily established once the
J. Chem. Phys., Vol. 103,Downloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subjec
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celles are even slightly further stabilized, namely by havin
g slightly negative.

IV. LINEAR MICELLES, STRIPES, AND DEFECTS

In this section we consider the phase behavior of a sy
tem in which the preferred aggregation geometry in dilut
solution is that of straight linear micelles, analogous to cy
lindrical micelles in 3D systems. In our model such system
are characterized by vanishing spontaneous curvature of t
micellar rims, i.e.,b50, and negative rim energy,g,0, en-
suring lower packing energy in the~straight! rim compared
to the bilayer body:e f5g,eb[0. Since b50 we have
ep5en5g1K2, implying particle–hole symmetry of the
system free energy, aroundc51/2. Thus, for instance, in
complete analogy to the growth of linear micelles with in-
creasing concentration in the dilute solution regime2–4,12

~c*0!, we expect the growth of line defects upon dilution in
the high concentration regime8 ~c&1!. We shall be mostly
concerned here with intermediate concentrations, where i
termicellar ~interhole! interactions can influence micelle
~hole! size, and induce the formation of orientationally and
translationally ordered phases.

A. Energetics

To ensure that the flat bilayer is the least favorable ag
gregation geometry we requiree f,ep5en,eb50, implying
2g.K2. Furthermore, to ensure linear micellar growth in
dilute solution we require that the end cap energy of
straight linear micelle will be positive. In general, the inter-
nal energy of a linear micelle is of the formEs5as1d with
s denoting the aggregation number, or the length of the a
gregate measured in some suitable units.2,3,32 In our model a
linear micelle of sizes is composed of a string ofs ~fused!
unit micelles, for which

Es52~s21!e f14ep5as1d, ~16!

wherea52ef52g and

d54ep22e f52~g12K2! ~17!

with the second equality following from~2!.
No. 19, 15 November 1995t¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



e,
FIG. 9. Typical MC snapshots illustrating the phase evolution in theb50, g521.5K2 system, upon increasing the concentration at constant temperatur
T*50.3. The concentrations corresponding to configurationsa,...,d are, respectively,c50.15, 0.30, 0.46, 0.70.~a! At moderately low densities the system
consists of relatively short and isotropically oriented rodlike micelles.~b!At c'0.3 long-range orientational order sets in, inducing further micellar growth and
ultimately the formation of an ordered, stripe, phase.~c! A stripe phase consisting of very long rods with few hole defects. At this temperature whenc50.5,
the system is a perfect modulated stripe phase.~d! Above c50.5, particles and holes exchange roles, due to the particle–hole symmetry of this system.
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Whend .0 the association of two micelles into a longe
one is energetically favorable,Es1Es82Es1s85d .0. Thus
d .0 enhances micellar growth. In ordinary micellar solu
tions the weight average micelle size in dilute solution in
creases with concentration according to^s&
. 2Ac exp(d /kT). A similar behavior is expected in our
model ~see below!, the fact that our linear micelles are em
bedded in a 2D rather than a 3D medium being irrelevan

Combining our two requirements, ~i! e f ,ep
5en,eb50 and ~ii ! d54ep22e f . 0, we find using~2!,
1,2g/K2,2. Accordingly, in the numerical calculations
presented in this section we have used2g/K251.5, implying
d5K2 and e f521.5K2, ep5en520.5K2. The phase dia-
gram corresponding to this case is very different from that
the system considered in the previous section~b5K, gÞ0!.
First, as noted above, it is symmetric aroundc51/2. Second,
consistent with the qualitative arguments given above
garding the requirement 1,2g/K2, our MC simulations con-
firm that a phase transition from a dilute micellar phase to
condensed bilayer phase, indeed, does not take place in
system. This conclusion is also consistent with the pred
tions of our approximate MF theory. More explicitly, from
~8! we find that forb50, g/K2521.5 the effective pair in-
teraction energy iseeff52K2[12c(12c)21]. Hence, ex-
cept at very low or very high values ofc ~ucu,0.092! the
spinodal curve corresponds toT,0. @Two ‘‘critical points’’
are predicted by~7!, at c>0.04 and 0.96 with very low criti-
cal temperatures,Tc* 5 kTc /K

2 > 0.08.These should be re-
garded as artifacts of the MF approximation.#

The absence of a condensation transition does not
clude the possibility of phase transitions from the isotrop
micellar phase to orientationally and/or spatially ordere
phases. In fact, since at low temperatures, the predomin
aggregation geometry is that of linear rodlike micelles w
expect the appearance of an isotropic–nematic phase tra
tion. This conclusion is, indeed, corroborated by our M
simulations, as well as by a virial expansion treatment of t
system free energy. Both approaches predict a second-o
phase transition.

A LG analysis of theb50, g/K2521.5 system predicts
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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a phase transition from the isotropic micellar phase~or iso-
tropic phase of hole defects in the bilayer! into a spatially
modulated stripelike phase atT*&1.23. The appearance of a
stripe phase at intermediate concentrations~andT*&0.86! is
confirmed by our MC calculations. However, the LG analy
sis ~to which we return at the end of this section! also pre-
dicts that the transition from the isotropic to the stripe pha
is of first order at highT* ~0.45&T*&1.23! and of second
order at lower temperatures. On the other hand, the M
simulations indicate a second-order transition at allT. Re-
call, however, that at lowT a transition to an orientationally
ordered phase can also take place. Based on the MC sim
tions our conclusion is that orientational order sets in prior
positional order, so that the transition to the stripe pha
actually occurs from the nematic~rather than from the iso-
tropic! phase. We shall further elaborate on this issue in t
following discussion.

B. MC and BP calculations

Figures 9 and 10 show two series of MC snapshots o
tained fromc,M ,T andm,M ,T simulations. Figure 9 illus-
trates the progression of phases upon increasing the con
tration, at a relatively low temperatureT*5kT/K250.3. At
low c the system consists of a dilute isotropic phase of ro
@Fig. 9~a!#. As c increases, still in the isotropic phase, th
rods grow and form aligned domains@Fig. 9~b!#. Then, over
a short concentration range, the system develops into a st
phase characterized by long range orientational and tran
tional order@Fig. 9~c!#. Finally, whenc.1/2 the stripes fuse
to a continuous sheet with line defects@Fig. 9~d!#. Note the
particle–hole symmetry, as reflected by Fig. 9~b! ~c50.3!
and Fig. 9~d! ~c50.7!.

Figure 10 describes the transition from the highT iso-
tropic phase to the lowT anisotropic stripe phase upon low
eringT* at constant concentration,c51/2. The stripe phase
appears atT*.0.86. It should be noted thatT*5kT/K2 can
be varied by changing eitherT or K. In real surfactant solu-
tions the bending rigidity (K) can be tuned by varying, for
o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



FIG. 10. Typical MC simulation snapshots of the systemb50, g521.5K2. Here the concentration is held constant atc50.5, and the temperature is lowered
across the isotropic-stripe phase transition. Configurationsa, b, and c correspond, respectively, toT*50.84, 0.85, and 0.9. AboveT*'0.86 the order
parameter,h, as defined in Eq.~18! vanishes, indicating the loss of orientational order.
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instance, the salt concentration~in ionic systems! or by add-
ing a cosurfactant.

Figure 11 shows two sets ofm–c isotherms, one calcu
lated based on the BP approximation and the other evalu
from MC simulations in them,M ,T ensemble. The isotherm
are continuous but show~betweenc50 and 0.5 and then
betweenc50.5 and 1! changes in slope, involving flat re
gions which narrow down asT* increases. The MC simula
tions did not show separatem(c) branches and we thus con
clude that the transition from the isotropic to th
orientationally anisotropic~nematic or stripe! phase is not of
first order. Consistent with this conclusion, the BP isother
are monotonic, i.e., not showing van der Waals-like loops

FIG. 11. Chemical potential-concentration isotherms for theb50,
g521.5K2 system,m*[bm/K2. Shown are the results of grand canonic
MC simulations~symbols! and calculations based on the BP approximat
~continuous curves!: T*50.30, open circles and solid line; 0.45, crosses a
dot–dashed line; 0.60, triangles and dashed line. The change in slope
MC isotherms which, for the above three temperatures, takes plac
c̃'0.31, 0.36, 0.41, marks the transition from an isotropic to an orientat
ally ordered phase of rodlike micelles.
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must be noted however that the BP scheme is not expected
be accurate once the typical rod size exceeds any of t
linear dimensions of the open subsystem; namely, four lattic
sites in our present calculations, see Fig. 3. This typical
happens at the concentration corresponding to the onset
the isotropic–anisotropic transition, beyond which the rod
begin to grow rapidly. It is not surprising that at these con
centrations the BP isotherms start deviating from the one
derived from MC simulations, as seen in Fig. 11.

To characterize the isotropic–anisotropic transition in
more quantitative fashion we define an orientational orde
parameter,h5h(c,T), in terms of the~thermally averaged!
numbersn(x) and n(y) of ‘‘bonds’’ between NN pairs~of
fused unit micelles! along thex and y directions of the
square 2D lattice:

h5
un~x!2n~y!u
n~x!1n~y!

. ~18!

This order parameter, which ranges between 0 and 1, me
sures the extent of orientational anisotropy of the system
h50 for an isotropic system andh51 for a system of rodlike
micelles or stripes, all pointing along thex or they direction.
Figure 12~a! shows the variation ofh betweenc50 and 0.5
for the two temperatures,T*50.3 and 0.45, corresponding to
the two MC isotherms shown in Fig. 11. The calculation
show that h.0 up to a critical concentrationc5 c̃(T* )
above which it increases sharply, but continuously withc.
For the two temperatures considered,c̃>0.31 and 0.37 for
T*50.3 and 0.45, respectively. The values ofc̃(T* ) coincide
with the points in Fig. 11 where them2c isotherms change
their slope. Our calculations also reveal that the increase inh
beyondc̃ is accompanied, as expected, by a sharp increase
the average size of the rodlike micelles. In Fig. 12~b! we
show the change inh with T* atc50.5, corresponding to the
simulations shown in Fig. 10. Again we note a sharp, bu
continuous, increase inh asT* falls below 0.86, marking the
transition from an isotropic to a stripe phase.
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8775tion in surfactant solutions
C. Low T behavior: VE analysis

The increase ofc̃ with T is a reflection of the intricate
interplay between micellar growth and intermicellar intera
tions. In the model system analyzed here, the predomin
aggregates at lowT and low c are rodlike micelles. It is
easily seen that the energetic penalties,DE, of forming other
structures, such as ‘‘T-like’’ junctions between two perpen-
dicular micelles, or a ‘‘L-like’’ bend in a linear micelle, in-
crease sharply asT decreases; hence, their statistical weigh
decrease exponentially withDE/kT. ~For these two ex-
amplesDET/kT5[2en2(2e f12ep)]/kT53/T* and DEL

5[( ep1en)22e f ]/kT52/T* , respectively, where we have
usede f521.5K2, ep5en520.5K2.! On the other hand, as
noted earlier, linear association of rodlike micelles is a fav
able process, withDE/kT52d/kT521/T* implying a
~weight! average micelle size which, in dilute solution
scales aŝs& ; Ac exp(d /kT)5 Ac exp(1/T* ).At low T andc
the micelles are rodlike, interacting via excluded area rep
sions. The average excluded area per particle,v, is of order
^s&2 ~see below! while the average density of rods isr5c/
^s&. The isotropic–anisotropic transition is expected to occ
whenr5 r̃5 c̃/^s&;1/v, implying c̃;^s&21 or, for our spe-
cific system,c̃;exp~21/2T* !. This simple and familiar scal-
ing argument explains the decrease ofc̃ with T at low tem-
peratures~when the micelles are predominantly rodlike!, but
it does not indicate whether the transition is of first or high

FIG. 12. ~a! MC calculations of the orientational order parameter,h, as a
function of concentration,c, for the system considered in Fig. 9, for the tw
temperaturesT*50.30 and 0.45.~b! Order parameterh vs T* for c50.5,
corresponding to the system in Fig. 10. The sharp increase inh below
T*'0.86 indicates the appearance of an orientationally ordered stripe ph
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order. We now turn to a somewhat more quantitative analys
of the lowT andc regime of the phase diagram, based on a
virial expansion of the system free energy.

SupposeT is sufficiently low that all the micelles are
linear rodlike aggregates, possibly touching each other, thu
forming ~with small probability! T- or L-like junctions; see
Fig. 9. Let rs~V! denote the density of rods of sizes and
orientationV. In our 2D square lattice modelV5x or y. The
number of unit micelles associated intos,V rods is
Ns(V)5srs(V)M whereM is again the area of the system
~total number of sites!. Then, clearly

(
s,V

srs~V!5c. ~19!

For a given size-orientation distribution of rods$rs~V!%, the
Helmholtz free energy of the system,F, including intermi-
cellar interactions in the second virial approximation, is
given by

bF

M
5(

s,V
rs~V!S ln rs~V!211bEs

1 (
s8V8

rs8~V8!Bss8~V,V8!D 1r1 ln 2. ~20!

HereEs denotes the energy of ans,V micelle ~which is in-
dependent ofV! as given by~16!, and

Bss8~V,V8!52
1

2M E dr dr 8

3$exp@2bUss8~r ,V;r 8,V8!#21% ~21!

is the contribution to the second virial coefficient of the sys
tem from interactions between rods of sizes and s8 with
given orientationsV andV8, respectively.Uss8~r ,V;r 8,V8!
5Uss8~ur2r 8u,g! denotes the total interaction potential be-
tween the rods, including both excluded volume and ‘‘self’’
~rim! energy contributions~see below!; g5g~V,V8! is the
angle between the two rods. In our lattice model the integra
tion over r ,r 8 is replaced by lattice summation.

The first two terms in the sum in~20! represent the
‘‘mixing’’ entropy of the system, with rods in different ori-
entations treated as distinct species. Writingrs(V)
5rsf s(V) with f s~V! denoting the normalized orientational
distribution of s rods one can rewrite the entropy as
Ssrs@ln rs211SV f s~V!ln f s~V!# thus separating the size-
polydispersity and orientational contributions to the entropy
The third term,Srs(V)Es , is the internal~‘‘chemical’’ ! en-
ergy of the system and the last term in the sum accounts f
intermicellar interactions. The summation overs extends
from s51 to`; the last term in~20! corrects for the fact that
unit micelles~s51! do not involve orientational entropy, i.e.,
r1(x)5r1(y)5r1/2 and hence their contribution to the en-
tropy is simplyr1~ln r121!.

The equilibrium distribution$rs~V!%eq is found by mini-
mizing ~20! subject to the conservation condition~19!, yield-
ing the self-consistency equations

se.
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8776 Bohbot et al.: Phase evolution in surfactant solutions
rs~V!5
1

2
gsl

s expS 2bd22(
s8V8

rs8~V8!Bss8~V,V8!D ,
~22!

with gs52 for all s>2 andg151. In deriving this equation
we have usedEs5as1d @see~16!# and definedl5exp@b~m
2a!# with m denoting the chemical potential~per unit mi-
celle! of the system;m enters~22! as the Lagrange multiplier
conjugate to~19!.

In the limit of ideal solution~of noninteracting rods! the
second term in the exponent in~22! vanishes and we recove
the usual expression for the size distribution of se
assembling rodlike micelles.2,3,32 That is, rs(x)5rs(y)
5rs/2 with

rs5gsl
s exp~2bd!5gs~r1 /g1!

s exp@2b~Es2sE1!#.
~23!

In this limit the chemical potential is given by the commo
expression bm5bms

01(1/s)ln rs , with sbms
052ln gs

1bEs denoting the ‘‘standard chemical potential’’ of ans
micelle. ~Note thatgs52, for s>2, is the orientational de-
generacy of the rods.! Using ~19!, it is not difficult to show
that forbd@1, the weight averaged size is given by

^s&5
(s2rs
(srs

>A4c exp~bd!11. ~24!

For the most probable size,s* , and the number averaged siz
s̄5(srs/(rs one findss*' s̄'^s&/2. Our MC calculations
of the size distribution and the average size in dilute solut
are, not surprisingly, in excellent agreement with~23! and
~24!.

To account for intermicellar interactions we have
solve ~22!. These equations, valid for a system of long ro
~where third and higher virial corrections are negligible!,
cannot be solved exactly even for a monodisperse syst
Before commenting on their numerical solution, it should
noted that in dilute~but not ideal! solution we expect that
inter-rod interactions will modify the size distribution$rs%,
but not the orientational distribution, i.e., the system rema
isotropic rs(x)5rs(y)5rs/2. Anisotropic ~nematic! solu-
tions, rs(x)Þrs(y), are only expected at higher concentr
tions, whenc^s&'1, as noted above.

SinceV5x,y is restricted to two orientations theV8
summation in~22! involves only two terms. We also note
thatBss8(x,x) 5 Bss8(y,y) 5 Bss8

i
andBss8(x,y) 5 Bss8(y,x)

5 Bss8
' . Using~21! the ‘‘parallel’’ and ‘‘perpendicular’’ virial

coefficients corresponding to our model are found to be~for
en5ep!.

Bss8
i

52~s1s8!2 f i~s,s8!, ~25!

Bss8
'

5 1
2@ss813~s1s8!11#2 f'~s,s8!. ~26!

The first terms in each of these two equations correspond
~one half of! the excluded area of the two rods, assuming th
the rods, or portions thereof, are not allowed to occupy N
sites. These are the excluded areas corresponding to low
peratures. The second terms in~25!, ~26! account for two-rod
configurations involving NN contacts~excluding two parallel
rods touching at their ends, a configuration representing
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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larger rod!. The explicit expressions for these functions are
f i(s,s8)5 (21 s1 s8)2 (2p1 s1 s8 2 1)qs8 1 2(s8 2 1)/
~12q! for s>s8>2, where q5exp~2bef! and
p5exp@2b(ep2e f)#, and f'(s,s8)5(s1s824)(q21)
14pq. Both functions vanish asubef u→0, (ep5en,e f,0).

Equations~22! were solved numerically, using~25! and
~26!, for the three temperatures considered in Fig. 11. F
T*50.45 and 0.6 we found isotropic solutions
rs(x)5rs(y), up to c50.5. This is not too surprising con-
sidering that the average rod length in the system is rath
small, e.g.,̂ s&'6 for T*50.45 atc50.3. Only at the lowest
temperature analyzed,T*50.3, was an anisotropic solution
found, appearing atc*0.3. Them2c isotherm correspond-
ing to this calculation is shown, along with the MC isotherm
in Fig. 13. The VE and MC isotherms show good quantita
tive agreement up to rather high area fractions,c&0.25, be-
yond which point they start diverging. Both calculations in
dicate a change in the slope ofm at c5 c̃'0.3,suggesting a
second~or higher! order, isotropic–anisotropic, phase trans
tion. This is consistent with the order parameter calculatio
in Fig. 12~a!, which show a change inh at this value ofc.
Similarly, the change in slope of the VE curve occurs at th
point where an anisotropic solution to~22! first appears. It
was found that once an anisotropic solution is a minimum
the free energy, the isotropic solution becomes a maximu
confirming that the transition is of second order.

It is also interesting to compare the size distribution
P(s), obtained from the VE and MC calculations. These a
shown in Fig. 14. At the lowest concentration shown
c50.25, the agreement is excellent. At higher concentratio
the agreement becomes less and less impressive, as coul
expected from the growing difference in them vs c plots in
Fig. 13. Yet, it should be noted that the overall shape of th
distributions is quite similar. Figure 14~b!, for instance,
shows

FIG. 13. Threem2c isotherms, all for theb50, g521.5K2 system, at
T*50.3. Shown are the results obtained from grand canonical MC simu
tions, the virial expansion calculation scheme and, for comparison, an i
therm corresponding to an ideal system.@The ideal system corresponds,
formally, toBss8~V,V8![0 in Eq. ~20!.#
o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8777Bohbot et al.: Phase evolution in surfactant solutions
size distributions at high concentrations, when the system
already in the anisotropic phase. We see that the size di
bution derived from the MC simulations forc50.37 nearly
overlaps the one obtained from the VE calculation at a som
what higher concentration,c50.45. Both the MC and the VE
calculations show a rapid increase in the average rod s
once orientational order sets in. This ‘‘alignment induc
growth’’ in the nematic~or, more precisely, stripe! phase had
been suggested by earlier lattice13 and virial expansion14–16

treatments of the isotropic–nematic transition in 3D se
assembling systems.

From the VE calculations we have also evaluated t
orientational order parameter in the nematic phase as a fu
tion of the rod size. We find that the longer rods are mo
strongly aligned, and the degree of alignment increases w
concentration. Qualitatively similar behavior was found
virial expansion treatments of the isotropic–nematic tran
tion in 3D self-assembling systems.14

D. Transition order

It is well known that in 3D systems of rodlike particle
the isotropic–nematic transition is of first order.33 This has
been shown to be the case for a variety of models and s
tems, including systems governed by attractive and/or rep
sive interactions, for lattice and restricted orientation mod
of monodisperse systems, as well as for polydisperse
self-assembling systems.34 In monodisperse 2D systems th

FIG. 14. Micellar size distributions obtained from the VE analysis and M
simulations for theb50, g521.5K2 system, atT*50.3. ~a! Both the VE
and MC distributions correspond toc50.25, at which concentration the
system is still isotropic;~b! MC- and VE-size distributions in the anisotropic
phase, corresponding toc50.37 andc50.45, respectively.
J. Chem. Phys., Vol. 103, NDownloaded¬05¬Dec¬2003¬to¬132.64.1.37.¬Redistribution¬subject¬
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transition is most likely of second order. This has been co
cluded to be the case based on a virial expansion~up to
seventh order! of the free energy in a monodisperse syste
of rods which, as in our system, are restricted to only tw
allowed orientations.35 A similar result follows also from a
Landau-type expansion of the free energy corresponding
the secondvirial approximation.36 We briefly outline this
analysis because of its relevance to our present calculatio

Consider a monodisperse system of rods, all of si
~axial ratio! x. The rods are restricted to two allowed orien
tations, along either thex or they directions. Introducing the
orientational order parameterh, defined asr(x)/r51/21h,
r(y)/r51/22h, @r5r(x)1r(y)#, we can express the secon
virial free energy per rod,w5F/(Mr), as

bw5S 121h D lnS 121h D1S 122h D lnS 122h D22h2rDB

1const. ~27!

The constant terms here depend onr but not onh. Also
DB[B'2Bi where B'5B(x,y)5B(y,x) and
Bi

5B(x,x)5B(y,y).
Minimization ofw with respect toh yields@in analogy to

~22!#

lnS 112h

122h D54hrDB. ~28!

The isotropic solution,h50, is always a solution of this
equation. It is a minimum, i.e., the equilibrium solution, fo
densitiesr lower than a critical densityrc . At r>rc the
minimum of w corresponds to the anisotropic solution
uhuÞ0, with uhu increasing continuously fromh50, the iso-
tropic solution eventually becoming a maximum. The critic
density is found from]2w/]h250 ~at h50!, yielding

rc51/DB. ~29!

The variation of the order parameter with respect tor in the
anisotropic phase, near the transition point, is given by

h56S)2 DA r

rc
21. ~30!

Using ~25!, ~26! with x5s5s8, we find ~neglecting the
f i, f' corrections! DB5~x21!2/2 and hencerc52/~x21!2.
The critical area fraction cc is thus given by
cc52x/~x21!2;2/x. Estimatingx for our self-assembling
system as x ; ^s& . 2Ac exp(bd) we find
cc;exp~2bd/3!5exp~21/2T* ! ~the last equality holds for
d5K2!, as we found earlier forc̃.cc based on simpler con-
siderations.

E. LG analysis

The virial expansion treatment detailed above is app
cable at low temperatures where the micelles are predo
nantly rodlike. This treatment analyzes the appearance
orientational order in the system. In Figs. 9 and 10 w
clearly note a stripelikepositional order aroundc50.5,
which at lowT appears only after orientational order has s
in. The LG theory mentioned in Sec. II is applicable at a
o. 19, 15 November 1995to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8778 Bohbot et al.: Phase evolution in surfactant solutions
temperatures. It should be noted, however, that since
only concerned with the establishment of positional orde
should be regarded as a complementary approach rather
an alternative to our VE treatment. The application of the
scheme to our 2D lattice model has been described in d
in Ref. 1. Here we shall only briefly outline its prediction
for the systemb50, g/K2521.5.

The LG free energy, per unit area, is given by~5!, with e
denoting the amplitude of a stripe phase characterized b
density modulation along, say, thex axis,c~r !52e cos(kx).
Based on considerations detailed in Ref. 1, it can be sh
that for b50, g521.5K2 the optimal ~minimum free en-
ergy! stripe modulation corresponds tok5p, i.e., alternating
occupied and vacant stripes, as in Fig. 9~c!. For these mode
parameters it is also found that the coefficientst, l, andd in
~5! are given by

t52T* /c~12c!232c~12c!, ~31!

l52T* @1/~12c!311/c3#296, ~32!

d54T* @1/~12c!511/c5#, ~33!

with all energies~i.e., f ,t,l,d! measured in units ofK2. These
expressions, together withf 0 from ~4! are now inserted into
~5!, yielding an explicit expression forf in terms ofc, T*
and the order parametere.

The extrema off with respect toe correspond to an
isotropic phase,e50 and f5 f 0 , and a stripe phase with
order parametere2 5 2(l/2d)@1 1 A124td/l2# and free
energy f s5 f s(e). The curvet5(]2f /]e2)e5050 marks the
local stability limit of the isotropic phase; this yield
T*516c2(12c)2, see Fig. 15. Forc51/2 this impliesT
5 T0* 5 1. If upon loweringT* at a givenc, the coefficientt
changes sign from positive to negative whilel is still posi-
tive the transition is of second order. If, on the other handl

FIG. 15. The Landau–Ginzburg phase diagram for the systemb50,
g521.5K2. The solid and dashed curves mark the stability limits of t
isotropic and stripe phases, respectively. Along the dotted curve the
energies of the two phases are equal. AboveT*50.44 the transition is of
first order, below this temperature it is of second order.
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becomes negative whilet is still positive, the transition is of
first order, describing a discontinuous jump ine from 0 to a
finite value. In order thate2 will be real it is required that in
addition to being negative,l should also satisfy 4td/l2<1.
This condition marks the local stability limit of the stripe
phase; forc51/2 it yieldsT 5 Ts* 5 9/7,Fig. 15.

The curves corresponding to the stability limits of the
isotropic and stripe phases cross each other whent(c,T)
5l(c,T)50. The solution of these equations marks a tric-
ritical point. For the system considered in this section we
find two such points, symmetrically located aroundc50.5
~because of the particle–hole symmetry!, namely, at
ctc50.22,Ttc* 5 0.44 andctc50.78,Ttc* 5 0.44. Thecurve
f 05 f s , along which the free energies of the isotropic and
stripe phases are equal, also passes through the tricritica
points. From the LG expression for the free energy it follows
that f 05 f s implies 16tl/3l251. This last equality yields a
T* vs c curve reaching a maximum ofT*51.24 atc50.5.
From these calculations one concludes that a second-orde
transition from an isotropic to a stripe-modulated phase
should take place at low temperatures~0<T*<0.44!,
whereas at higher temperatures~0.44<T*<1.24! the transi-
tion is of first order.

A direct comparison of the LG analysis with our other
calculations is not simple, at least not at lowT where an
isotropic–nematic (I –N) transition also takes place. The
simulations indicate that the stripe phase develops from the
nematic phase~as ‘‘alignment induced growth’’!. On the
other hand, at~relatively! high T the stripe order develops
directly from the isotropic phase. At these temperatures the
LG analysis predicts a first-order transition whereas the MC
results suggest a continuous transition. Yet it must be stated
that the analysis of the MC calculations is not sufficiently
detailed to discern between a ‘‘strong second-order’’ and a
‘‘weak first-order’’ transition.

V. MICELLAR JUNCTIONS AND NETWORKS

In Secs. III and IV we have considered systems com-
posed of micelles with positive (b5K.0) and zero~b50!
spontaneous rim curvature. We now turn to systems with
b,0 which implies lowen , i.e., favoring the negative rim
curvature@see ~2!#. In the high concentration~bilayer! re-
gime, lowering the energy of a ‘‘negatively curved’’ rim en-
hances the formation ofhole defects. In dilute solutionb,0
implies low ~possibly even negative! free energy change
when linear micelles associate to formbranchedaggregates.
Upon increasing the concentration these micelles can assoc
ate into a network~‘‘gel’’ ! which may, or may not, separate
as a condensed phase coexisting with a dilute miceller solu-
tion. The exact scenario of the phase evolution depends on
the delicate balance between the energy parametersep , en ,
ef , andeb which, in turn, depend on the line tensiong, the
bending rigidityK, and the spontaneous curvatureb. Similar
complex behavior, reflecting the intricate interplay between
molecular packing energies in different micellar microenvi-
ronments, characterizes the phase evolution in real surfactan
solutions.

The model systems considered in this section have been

e
ree
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FIG. 16. Typical MC snapshots for the caseb52K, g524K2. The configurations shown correspond to the same concentration,c50.3, but the temperatures
are different:T*50.1, 1.0 and 2.0 fora, b, andc, respectively. At the lowest temperature here~a! a stable 2D network of linear micelles spans the entire
system, as discussed in Sec. V B, case~i!. Upon raising the temperature bonds in the network break up~b! leading eventually to the formation of an isotropic
phase of small, bent and branched, micelles~c!.
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chosen in order to demonstrate the possible formation
branched micelles and networks by ‘‘controlling’’ the pr
ferred spontaneous curvature and bending rigidity. The ex
ence of such structures and phases which, until recently,
not been considered as a likely possibility, is now eviden
by both direct23,24 and indirect experimental methods.19–21

Porte suggested25 that their appearance requires special a
bient conditions~added salt or cosurfactant! which favor the
formation of junctionsbetween cylindrical micelles. This i
because the local packing geometry at the junctions
saddlelike and requires rather special values of the spont
ous curvature. In our 2D model, junctions will form whe
b,0 andg,0. Due to the low symmetry of the square latti
the junctions are necessarily T-like. Notwithstanding the
provisos our calculations strongly support the suggestion
branched micelles and networks are indeed possible.

A. MC simulations

Given that bothb andg are negative manyg,b,K com-
binations can give rise to branched micelle formation in
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lute solution and their association into networks upon in-
creasing the concentration. We have chosen to present here
two sets of simulations, both correspond toen,e f,ep
5eb50. Explicitly, for one system, hereafter~i!: g/K2524,
b52K implying en/K

2524, e f /K
2523, ep50. The pa-

rameters corresponding to system~ii ! are: g/K2529, b5

22K implying en/K
2528, e f /K

2525, ep50. In Figs. 16
and 17, we show two sets ofc,M ,T simulation snapshots.
Both sets describe the structural evolution of the system at
constant concentration~c50.3! upon raising the~reduced!
temperatureT*5kT/K2.

The systems described in Figs. 16 and 17 differ only in
the relative magnitudes ofen andef , yet this difference im-
plies a qualitatively different phase behavior upon lowering
T* . In the first case, Fig. 16, the system is isotropic at high
temperatures, containing bent and branched isolated mi-
celles. AsT* decreases the micelles associate into larger
aggregates, thereby gradually getting rid of the unfavorable
end cap energy~ep is large compared toe f ,en!. No free ends
FIG. 17. Typical MC snapshots for theb522K, g529K2 system, all for concentrationc50.3, but the temperatures are different:T*51.0, 2.0 and 3.0
for a, b, andc, respectively. At high temperatures the system consists of isolated~branched, bent and even some looplike! micelles~c!. As T is lowered the
micelles associate into larger aggregates~b! containing both large and small micellar loops. At the lowest temperature here~a!, a network consisting of small
loops forms a separate phase which coexists with a dilute micellar phase.
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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8780 Bohbot et al.: Phase evolution in surfactant solutions
are left at the lowestT* considered, where a connected n
work of linear micelles spans over the entire lattice. A d
ferent phase evolution is observed wheng/K2529, see Fig.
17. Here, again, at highT* the system contains finite
branched micelles, but we also note the appearance
‘‘loops.’’ Upon loweringT* the loops~or ‘‘holes’’ ! associate
into a dense network coexisting with an extremely dilu
micellar solution.

The formation of loops is not surprising since each lo
involves ~at least four! energetically favorableen’s. While
this is true for both systems shown, only one system exhi
macroscopic phase separation; the other equilibrates~at low
T* ! by forming a uniform network which spans the enti
lattice, with a mesh size depending on the overall concen
tion c ~see below!. We also note that in both cases, up
lowering T* ~or increasingc!, the condensed phase forme
is isotropic, as opposed to the formation of the stripe ph
characterizing theb50 system considered in the previou
section.

In our model, the appearance of branched micelles
networks of linear~rigid or flexible! micelles requires tha
the energetic change associated with the fusion of two r
like micelles into a T-like micelle is negative, i.e
DET52en22(e f1ep)522g22(b224bK),0. For the
systems considered in Figs. 16 and 17 we findDET522K2

and26K2, respectively. Not surprisingly,DET is consider-
ably lower for the latter system, reflecting its stronger te
dency to form junctions and loops.

The free energy change,DF, involved in the association
of rigid ~rodlike! and flexible~wormlike! micelles into con-
nected networks was estimated by Drye and Cates22 based on
mean-field and scaling arguments. The energetic contribu
was calculated by considering the energy change involve
the association of free end caps to form a junction of a gi
functionality ~coordination number!. The entropy change in
volves replacing the translational freedom of the micelles
the ~restricted! translational motion of the junctions in th
network. It was shown that the network can be ‘‘saturate
or ‘‘unsaturated’’ depending on the energetic and entro
contributions to the free energy. Unfortunately, testing t
theory for our model is not straightforward, primarily b
cause this model is two dimensional and hence, for insta
cannot distinguish between entanglements and juncti
Thus in the remainder of this section we present an alte
tive, qualitative and approximate, analysis, attempt
mainly to explain the different behaviors characterizing
two systems considered in Figs. 16 and 17.

B. Network stability

Suppose the unit micelles constituting the system h
organized into an isotropic network of linear micelles,
shown in Fig. 16~a!. Let L denote the average mesh size, i.
the average length of a rodlike segment connecting
branched points. We assume that the thickness of the li
segments is one lattice unit, and that there are no free
caps. To relateL to the concentration,c, suppose the network
is composed of rectangular loops. We then fi
c5(2L21)/L2. The number of loops per unit area is 1/L2.
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Taking, as usual, the perfect bilayer as a reference for calcu
lating the energy, the average energy per loop is
4en14(L22)e f .

The network entropy can be estimated by regarding it a
composed of segments~or loops, or sides of rectangles! of
different lengths,l , with size distributionP( l ) satisfying
( lP( l )5L. ~Note that the most condensed network corre-
sponds tol52, hence in all sumsl>2! For a givenc, and
hence a givenL, the entropy of the system is proportional to
the average entropy per segment2k(P( l )ln P( l ). Maxi-
mizing this expression subject to( lP( l )5L it can be shown
that the entropy, per loop, is given by

s5 1
2k$ ln~L22!1~L21!ln@~L21!/~L22!#%. ~34!

This actually is an upper bound to the entropy, since we
ignored correlations between different segments.~A better
estimate of the entropy, which corrects for the fact that the
rod segments are joined at the junction points is given in Ref
22.! A lower bound ons may be obtained by assuming that
each segment can be freely moved over;~L21! positions
corresponding, on the average, to the distance between tw
neighboring segments. This yields, per loop

s5k ln~L21!. ~35!

Note that both estimates gives50 for the ‘‘minimal’’ loop
size,L52, ~c50.75!. It turns out that for the systems con-
sidered in this section the qualitative conclusions from the
stability analysis which follows, are the same for both~upper
and lower bound! estimates of the entropy. We shall thus
employ the simpler one~35!.

Using ~35! for s we find that the free energy, per unit
area, is given by

b f5
4b

L2
@en1~L22!e f #2

2

L2
ln~L21!. ~36!

The chemical potentialm5] f /]c52[L3/2(L21)]] f /] l is

bm5
1

L21 H 2b@en1~L24!e f #22 ln~L21!1
L

L21 J
~37!

and the stability condition,]m/]c>0, becomes

b~2en23e f !2 ln~L21!1
3L21

2~L21!
>0. ~38!

At low concentrationsL;2/c is large and a stable network
can only exist ifb(2en23e f).0. For the two special cases
considered in this section we have:~i! b(2en23e f)51/T*
for the system in Fig. 16, and~ii ! b(2en23e f)521/T* , for
the systems in Fig. 17. For the first system we indeed find
stable uniform network atT**2, with L;7. On the other
hand the second system is unstable; the network shrinks to
smaller size~L'3–4! and coexists with a very dilute micel-
lar phase. The concentration of the micellar phase,c8, can be
estimated by comparing its chemical potential to that of a
network, ~37!. Sincec8 is extremely small it can safely be
assumed that the dilute phase contains only unit micelles
whose self-energy is 4ep . Thus, its chemical potential is
bm54bep1ln c8. Using ~37! with, say,L54, and with the
energy parameters corresponding to system~ii !, namely,
o. 19, 15 November 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp
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ben528/T* , be f525/T* , ep50, we find lnc8'25/T* .
This explains the vanishingly small concentration of micel
in the dilute phase which, on the scale of our simulatio
appears as an empty region of space.

Since f , as given by~36! corresponds to the free energ
of a network of mesh sizeL, our crude stability analysis only
indicates if the system is stable against phase separation
dilute (L8.L) and concentrated (L9,L) networks. How-
ever, a dilute phase is more likely to consist of isolat
~rather than connected! micelles. This is the reason for com
paring, in the last stage of the analysis above, the free en
of the network to that of a dilute micellar phase. A mo
complete stability analysis would require consideration
other possible phases, e.g., concentrated nematic or s
phases. Indeed, simple energetic and entropic considera
can be used to explain the higher stability of the netw
compared, say, to that of a stripe phase~when en,e f!, as
found in our simulations.

VI. CONCLUDING REMARKS

In this paper we have focused on various scenarios
the evolution of micellar structure and long-range order
two-dimensional systems of surfactants in water. Our ini
motivation came from the x-ray/NMR investigations b
Holmes and Charvolin6 of possible percolation from micella
disks and ribbons to continuous bilayer in decylammoni
chloride/water/ammonium chloride~DACl/ACl ! solutions,
and from reports of smectic-A phases of disklike micelles
reported by Boden et al.26 for cesium pentadeca
fluorooctanoate/water solutions and by Zasadzinski and
workers~including cryo-electron microscopy studies!, again
for the DACl/ACl system.27 In all of these cases, it is sig
nificant that the changes in micellar morphology, and
onset of positional ordering, essentially occur within the
dividual layers of lamellarlike/smectic phases. According
we have argued that it is appropriate to model these phen
ena via a two-dimensional statistical mechanical theory.
sofar as we need to account for evolving size and shap
micelles—e.g., from small disks to bigger ones or to e
tended, ribbonlike structures—and simultaneously for th
long-range order or percolation into~2D! space-filling bilay-
ers, we have found it natural and useful to employ a lattic
gas model. The elementary ‘‘particle’’ in our model is th
small-disk micelle which dominates the isotropic and ne
atic phases preceding the layered state. When it fuses to
bigger disks or ribbons there is an energy change assoc
with the fact that molecules in the rim of the disk have be
‘‘converted’’ into ones in a bilayer environment. These e
ergy changes are described by two-, three-, and four-site
teraction terms in the lattice gas hamiltonian, whose coe
cients are related to the preference for optimally curved
over bilayer and—more generally—to the curvature elas
ity properties of the surfactant, specifically the spontane
curvature and bending energy. The statistical mechan
phase behavior associated with this Hamiltonian is then
termined by a variety of analytical techniques, includi
simple mean-field, Landau–Ginzburg, and Bethe–Peierls
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proximations, as well as by Monte Carlo simulations, th
latter two sets of results agreeing quite closely with one a
other.

We have concentrated on essentially two different sc
narios of micellar structural evolution and phase behavior.
the first, the optimum rim curvature corresponds to sma
disks being favored; here we find a transition from diso
dered disks to continuous bilayer, with the possibility of a
intermediate phase in which the density of disks shows
modulated~‘‘checkerboard’’! spatial structure. On the other
hand, when the rim is sufficiently lower in energy than th
bilayer, and specifically when its spontaneous curvature va
ishes, then extended ribbonlike micelles are strongly pr
ferred. In this scenario we pursue two quite different case
one where straight micelles are dominant; and the oth
where branched ones appear, involving T-like junctions. Th
first case is shown to give rise to a progression from isotrop
to nematic to ‘‘stripe’’ phases, with average aggregatio
number increasing dramatically upon increase in surfacta
concentration. The second suggests an evolution from is
lated branched micelles in dilute solution to various kinds o
space-filling network structures at high concentrations a
low temperature, scenarios which are now beginning to
observable in experimental studies.
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