Conformational chain statistics in a model lipid bilayer: Comparison
between mean field and Monte Carlo calculations

Daniel Harries and Avinoam Ben-Shaul
Department of Physical Chemistry and The Fritz Haber Research Center,
The Hebrew University of Jerusalem, Jerusalem 91904, Israel

(Received 9 August 1996; accepted 16 October 1996

A comparison between a mean field theory of chain packing in membranes and micelles and Monte
Carlo simulations is presented for model lipid bilayers. In both approaches the “lipids” are modeled
as freely jointed(but self-avoiding chains of spherical segments. The first segment of the chain
represents the head group, anchored to the bilayer interface by a harmonic binding potential. The
simulations are performed for symmetric bilayers composed of 200 chains, with periodic boundary
conditions. Both pure and mixed bilaygimmposed of long and short chajrese analyzed. In the
simulation nonbonded segments interact via Lennard-Jones potentials, ensuring nearly uniform
segment density in the bilayer core, as assumed in the mean field theory. The lateral pressure
profiles governing the probability distribution of chain conformations in the mean field theory are
related and compared to the tangential pressure profiles calculated from the simulations using
Kirkwood—Buff's molecular theory. The two pressure profiles show very good agreement. We also
calculate two conformational chain properties: end-segment distributions and orientational bond
order parameters. The end-segment distributions calculated by the two approaches show excellent
agreement. The order parameters compare somewhat less satisfactorily, yet we found that the order
parameters derived from the simulations depend rather sensitively on the details of the interaction
potential. In general, the results of the simulations support the use of the mean field theory as a
(simple tool for studying conformational chain statistics in confined environments and related
thermodynamic properties, such as membrane curvature elasticityl99® American Institute of
Physics[S0021-960807)50604-0

I. INTRODUCTION dictions to experimental results and simulation
studiest2?®7 These comparisons involve, usually, measur-
A number of molecular mean field theories have beemple conformational chain properties such as orientational
proposed in the last two decades or so, in order to explain thgond order parameters and spatial distributions of the hydro-
molecular organization and conformational statistics of lipidphopic tail segments. However, most comparative studies be-
bilayers;® Related theories have been proposed for polymefyyeen mean field theories and computer simulations, are lim-
brushes:® The proliferation of these approximate theories ited to few special cases, and are based on similar but not
reflects the difficulty of studying these complex, many-qantical molecular models.
molecule, systems by large scale computer simulations. Al-
though the number of accurate simulation studespecially

molecular dynamics, MD, simulationss growing steadily,

thev are still limited to a few ific svstems under select granes with Monte Carl@MC) computer simulations for the
ey ares €ad 10 a few Specilic systems under SEIeClee, o molecular model, and for a wide range of conditions.
conditions. Apart from some of the inherent difficulties as-

.Since our primary objective is to compare these two compu-

sociated with computer simulations, such as uncertainties i Ltional schemes. we have chosen a verv simole model for
the intermolecular potentials used and the limited time scaleg_‘ e ' I very b
lipid” molecules constituting the bilayer. We treat them

followed, there are certain phenomena which cannot be stué— €

ied by these approaches, at least not in the foreseeable futuf®> flexible“Iinear ’c‘:hains, consisting ofidentica! spherical
Among those are, for instance, slow spontanegiosg segments(“beads”), connected by bonds of fixed length.

wavelength curvature fluctuations of lipid membranes, or Nearest neighbor beads can rotateggle) freely with re-
the process of protein incorporation into a lipid bilayer. spect to each other, except for exclud_ed volu_me interactions
Thus, although computer simulation studies will obviouslyPetween nonbonded segments. The first chain segment, rep-
further develop and contribute to the understanding of memtesenting the polar head group is anchored to the membrane
brane structure, dynamics and thermodynamics, it is alséiterface by a strong harmonic binding potential. Ideally we
clear that approximate, partly analytical, theories will con-should have modeled the chains, as in the MF calculations,
tinue to play an important role in analyzing these systemsas chains of hard spheres. However, unlike in hard sphere
especially in predicting and explaining general trends andluids, achieving uniform density in a bilayer composed of
qualitative behaviors. such chains is only possible at very higiearly close pack-
Some of the mean fieltMF) theories have been tested, ing) segment densities. At such densities the system is essen-
generally with considerable success, by comparing their pretally frozen (“glassy”) and it is impossible to reach true

Our goal in this paper is to compare the predictions of
one, widely applied, mean field thedrpf lipid in mem-
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Free Chain

FIG. 1. Schematic illustration of a membrane bilayer, of thicknd3sparted into 2 sublayers. The quantit$,(«;) denotes the number of segments of a
chain in conformatiorny; whose centers fall within sublay&r The conformations of chains in the bilayer are generally more elongated as compared with a
free (non-interacting chain.

dynamical equilibrium. Thus in the MC simulations of the Il. MEAN FIELD THEORY
bilayer, we have replaced the hard sphere interactions be-
tween nonbonded segments by 6-12 Lennard-Jones poten- The theory outlined in this section and its applications to
tials. The attractive parts of these potentials should provideuch issues as membrane curvature elasticity, monolayers,
the uniform attractive background and the short range repuland lipid-protein interaction have been described in consid-
sive interactions should govern the chain packing statisticsrable detail elsewhere® Therefore, in this section we
i.e., the molecular conformations. For comparative purposeshall only mention the essential assumptions and expressions
we have also performed simulations using “sticky-ball” in- relevant for the derivation of our expression for the probabil-
teraction potentials between nonbonded segments, i.e., haity distribution of chain conformations. In Sec. IV we shall
core repulsion and® attraction. elaborate on the significance of the lateral pressures which
It should be emphasized that in the MF calculations theappear in the MF calculations and, in a somewhat different
interaction potential appears only indirectly, through the asform, in the MC calculations.
sumption of uniform chain segment density in the hydropho-  The only assumption underlying the mean field theory is
bic core of the membrane. It also should be noted that whilehe existence of a well defined hydrophobic region, uni-
in the simulations nonbonded chain segments, includindormly packed by chain segments. The segment density may
those belonging to the same chain, interact via Lennardbe identified with that of a bulk liquid hydrocarbon com-
Jones potentials we do not include these interactions in thposed of the lipid tails. Subject to this assumption one can
MF theory. The reason for this apparent difference, is that irderive an explicit expression for the probability distribution
the simulated system the attractive potentidstween all  of chain conformatiorP(«), for a hydrophobic core of arbi-
kinds of nonbonded segmeptare necessary to achieve uni- trary geometry(In fact, one need not assume a uniform den-
form monomer density. On the other hand, in the MF theorysity throughout the hydrophobic core. It is sufficient to know
uniform monomer density is assumed at the outset, and thetbe density profilg. Among these geometries are those of
is no justification to distinguish between different kinds of spherical and cylindrical micelles, invertéel.g., cubig lipid
nonbonded interactions. phases and vesicles of any curvature. Here, however, we
In Sec. Il we briefly outline the MF theory and in Sec. Il shall only be concerned with planar bilayers, as schemati-
we describe the bilayer and chain models, as well as the M€ally depicted in Fig. 1.
simulation algorithm. Sec. IV is devoted to a discussion of  Consider a planar and symmetric bilayer(bfydropho-
the lateral pressure profile appearing in the MF expressiobic) thickness 2D and a total arda(at each interfage Thus
for the probability distribution of chain conformations. In the the membrane volume ¥=2AD. For computational pur-
MC simulations we calculate the tangential pressures usingoses it is convenient to divide the volume of the hydropho-
the molecular theories of Kirkwood—Bdf! and bic core into 2. parallel sublayers, each of thicknessLet
Harasima® In Sec. IV we elaborate on the relationship be-M,=\A, denote the volume of sublaykr with A, denoting
tween the two types of pressure profiles. In Sec. V we comits total area. In the planar bilayé&l,=M and A=A are
pare the results obtained by these two approaches for pummnstant; later on it will prove useful to trelt, andA, as
(single componentbilayers as well as for mixed bilayers variables. Suppose there aihe chains (head groups an-
composed of both short and long chains. chored to each of the two bilayer interfaces. Thus the av-
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erage area per head group in the bilayemis A/N. The
average volume per chain ¥§2N=aD= v. If the bilayer is FIN=2 P(a)[e(a)+KT In P(a)]
composed ofh-segment chains them=nv where v is the “
average volume per segment.

We Sha” Useal, cen oy OANGANL Ty - ,a—zNEaNEN to +E— P(a_)[e(a_)+ kT In P(a_)]' (4)
denote a particular, many-chain, configuration of the mem- ) ‘ )
brane, withe; denoting the conformation of chain origi- where, again, the two terms on the right account for the free

nating at one of the two bilayer interfaces, amfdenoting ~ €N€rgies, per molecule, of chains originating from opposite
the conformation of chairj originating from the opposite mterface;(qu a symmetric, single component, p|layer_these
interface. Note that chains originating from opposite inter-tWO contributions must be equiln the last equatioe(«) is

faces can inter-digitate, i.e., they can cross the bilayer midthe internal energy of a chain in conformatiar(e.g.,trans/
plane. gaucheenergy in the case of alkyl chalnsk is Boltzmann’s

Let ¢ («;) denote the number of segments of chain constant andl the absolute temperature. In the model con-

which, when this chain is in conformatian , (the centers of sidered'in this study we 531(“_)50 and hence the free
which) fall within sublayerk of the bilayer. Since the seg- €N€rgy involves only the entropic contributidh=—TS.
ment density in the hydrophobic core is uniform, we must ~ Minimization of Eq.(4) subject to Eq(3) yields

have 1 2L
N N P(a)= aexp[ —Be(@)= B2, mchid(a) ®)
0+ a)=My/ 1
izl Plen) i§=:1 dday) K @ with the (isothermal-isobaricpartition functionq ensuring

the normalization oP(«). The ms are the Lagrange mul-
tipliers conjugate to the packing constraii®; , can be
interpreted as the laterdbr tangentigl pressure acting in
_ sublayerk on a given chain by its neighbors. In a hypotheti-
P(a)= E _ 2 _ Plag, ..., axn) ) cal bilayer composed of non-interactirifyee, or “ghost”)
Garr ON AL an chains all them,’s vanish identically and hencB(a) is a
denote the probability of finding chain 1 in conformation simple canonical distribution. If in addition a(«)=0 then

for all the possible many-chain configuration8aN.
Let

a;=a, with P(ay, .,.. , ay) denoting the probability of P(a)=1/Q, i.e., the distribution is microcanonical with all

the many chain configuration. Since all chains are equivalerallowed conformations being equally probable.

P(«a;) is the same(single) probability distribution for all In a real membrane the chains are squeezed by their

chains { or j). Now, multiplying Eg. (1) by Eqg. (2) and neighbors and are thus stretched along the membrane nor-

summing over alN, o™, we find mal, resulting in non-zero lateral pressures. The smaller the
cross-sectional area per chain in the membrane, the larger are

_ N oy the m’s. Them’s are generally large near the interfaces and
(o =(d+{dw ; Pm)m(d”% Pla)éda) decrease towards the bilayer midplane; reflecting the fact that

the average shape of a free chain is that of a “turnip”—wide
= P(a) (@) + do —rr1(@)] near the interface and narrowing down towards the bilayer
a midplane. Since thé,’s are dimensionless the,'s have the
&) dimensions of energy. Thus,/v has the dimensions of
energy/volume and can be interpreted as an “ordinary” tan-
wherem,=M,/N=a.\, with a,=A,/N. In passing to the gential pressure. Similarlyr, (\/v) can be interpreted as the
second equality we have used the symmetry propertiekteral pressuréenergy/arenin layer k. We shall elaborate
P(a)=P(a) and¢,(a) = ¢, _r+1(a) with @ anda denot-  on these interpretations in Sec. IV.

=my/v (all k),

ing mirror image conformation§.e., « is the same chain The numerical values of the,’s are determined by sub-
conformation asy except that the chain originates from the stituting Eq.(5) back into the packing constrain(8), thus
opposite interface obtaining a set of B, self-consistency equations which can

Equation(3), expressing the condition of uniform seg- be solved numerically for ther,'s. In a symmetric bilayer
ment density, represents a set of packing constréims for ~we must havemr,= m, _,. 1. Note also that sincéfor all
each sublayerk) on the singlet probability distribution «)Z¢y(a)=n, the number of chain segments, one can add
P(a). Note that only 2 —1 of these constraints are inde- an arbitrary constant to all the m,’s without affecting
pendent, sinc& () =2n wheren is the number of chain P(a); [since the sunX, m¢,(a) appears also ig]. Thus as
segments. In a symmetric planar bilayer the number of indenoted above, the number of independent equations that need
pendent constraints is only— 1 since({ )= (o _111)- to be solved id. —1 rather than 2. [In general the lowest

Among the manyP(«a) which satisfy(3), the “true” T corresponds to the bilayer midplahes L or L —1 in Fig.
distribution is the one which minimizes the free energy func-1. In fact, it can be shown that in adsorbédangmuin
tional F({P(a)}) subject to the packing constraif®. Ex-  monolayers allw,'s are non-negative; the lateral pressure
plicitly, the conformational Helmholtz free energy, in the vanishes towards the chain eHdThe numerical solution of
mean field approximation, is given by the self-consistency equations involves the generation and
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enumeration of a very large number of chain conformations
(typically many millions, from which one determines the
{¢(@)} required for the evaluation of the,’s.

It should be emphasized that while the uniform density
assumption underlies the packing constraii®s the actual
density does not enter our calculations. Equati@nonly
states that ¢, ) =n/L=n(\/D)=constant, i.e., the average
number of segments is the same at any distance from the Interface
interface. Thus ther,’s depend on the chain length and
membrane thickned3. Assuming that the hydrophobic core
is liquid-like we can infer the average area per head group
from a=(nv)/D wherev is the average segment volume in
the bulk liquid hydrocarbon. Note, however, that neither
nor v are required for calculating the,’s.

OnceP(«) is known, we can calculate any desired con-
formational (single chain property, such as bond orienta-
tional order parameters and spatial distributions of different
chain segments. Similarly, using E@) one can calculate
the. free energy per chain anc.i related _thermOdynamIC proH:_IG. 2. lllustration of the modified Pivot-algorithm used in the Monte Carlo
erties(such as curvature elastlc?by In this paper, however, simulations. A chain segmenBj is selected at random to serve as a pivot
we shall focus on conformational properties. Calculations Oboint. Then an attempt is made to rotate the whole part of the chain ema-
such properties for puren&10 segment long chaipsand nating at that point by a small angl8C—BC’). This trial move is ac-
mixed (n=10, m=>5) systems will be described in Sec. V. cepted or rejected according to the Metropolis scheme.

Finally, it should be mentioned that the probability dis-
tribution function,P(«) of Eq. (5), which was derived here

by minimizing the mean field free energy subject to the rel-cjyded volume interactions between nonbonded chain seg-

evant packing constraints, can also be derived on the basis gfents. These restrictions are slightly different for the MF
a more general statistical thermodynamic apprda?dlm. this  and MC simulations, as detailed below.

approach one starts from the many-chain partition function, ] i
corresponding to a particular conformatienof one “cen- A Mean field calculations
tral” chain, and expands this partition function in powers of  |n the mean field calculations the lipid molecule is mod-
the ¢y(a)’s. Equation (5) is then obtained in the limit eled as a chain of hard spheres of diameterAll (non-
N>1. The assumption underlying this derivation is that thejntersecting chain conformations are allowed, provided no
conformational statistics of the chains are dominated by thgegment(cente) protrudes beyond the bi|ayer boundaries.
repulsive (excluded volumg interactions between(non-  Subject to this restriction and, of course, to chain connectiv-
bonded segments belonging to different chains. The longity, every segmentspherg can pivot freely around its neigh-
range van der Waals forces only provide a uniform attractiveyors. A large number of chain conformatioftgpically be-
background, ensuring uniform segment density throughoufyeen 1 and 2 million are generated as follows: We
the hydrophobic core. randomly choose one of the firat-1 chain segment§.e.,
excluding the terminal segmegnSuppose this is segment
We then attempt a small random rotati@sy 7/22) of the
Il. MODEL rest of the chain(segments + 1, ... ,n) around this seg-
ment. The new conformation is accepted provided there is no
In all our simulations and mean field calculations, for violation of excluded volume or boundary restrictions. In
both pure(single componentand mixed systems, the bilayer addition to bond rotationgéchain pivoting or wiggling, we
is planar and symmetric, i.e., containing the same number daflso allow the head group to oscillate within the harmonic
chains in each monolayer. In the case of a pure bildyer restoring well, accepting or rejecting the move according to
chains originate from each of the tw(@‘hydrocarbon- the standardMetropoli9 MC procedure. This is a modifica-
water”) interfaces. The lipids are modeled as single chaingion of the Pivot(or wiggling) algorithm used in some simu-
of n identical segments, with the first segment representingations of polymeric system$*’
the polar head group, Fig. 2. The head group is anchored to For every conformation sampled we calculate the seg-
the interface by a harmonic potential, allowing small dis-ment distribution{¢,(«)} which is then used in the self-
placements of the chain along the membrane norfvde  consistency equations for thg's. Note that we sample all
have also performed calculations for a square-well bindinghe allowed chain conformations with equal probabilities.
potential, the results being similarThe distance between However, their actual statistical weight is governed by
successive segments, i.e. the bond lengtrs fixed. We use  P(a) which, in turn, depends on the,'s. Qualitatively, the
the bond lengtlr=1 as our length unit. There are no restric- smaller the cross sectional area per chaiflarger D), the
tions on inter-bond angles, except for those arising from exfarger the lateral pressures and, as expected, stretched out

C'
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chain conformations are more probable than expanded comlso compared the laterébngential pressure profiles in the

formations. membrane, as obtained by the two approaches. This com-
parison involves certain assumptions, as will be discussed in
B. MC simulations Sec. IV.

In the MF calculati ahat th td () End segment distribution.
e calcurations wassumeana: 1e segmen’ den” Let z(a) denote the normal distance of th segment

sity is uniform throughout the hydrophobic core. We thusof some (arbitrarily chosejp chain in conformatiorn origi-

require that the uniform density condition |s.also satlsflgd mnating, say, at the lower bilayer interface from the bilayer
the simulated system. Note, however, that in the MC simu-

idpl Fig. D; (i=1 he h i h
lations the segment density is an outcome of the lateral chaimldp ane(Fig. 1 i denotes the head group andn the

End segment Thenz/ () =z, (a) — z1(«a) is the normal dis-
packing density (H) and the intermolecular forces between . ! ! L ) .
(nonbondedl chain segments. Thus uniform density is nottance of thath segment from the head group. Sigéa) is

automatically satisfied and must be checked confined to a very narrow range aroungd P(«) is essen-
In all the MC simulations we have modeled bilayers oftIaIIy independent ofzy(a). We defineQy(z’) as the end

X : L . group distribution, i.e.Q,(z')dZ is the probability of find-
200 chainsN=100 chains originating at each interface. The; s ; , ,
distance Zl)\l between the tv%/]o inte?faces was adjusted in"9 the end segment within the interl 2’ +dz'. Formally
order to achieve uniform segment density in the hydrophobic N .
core. The same value & was used in the MF calculations. Qn(z )_g P(a)8(z' = 2y(a)) ®)
Periodic boundary conditions in thxe (bilayen plane ensure ) ) . . .
the integrity of the membrane. with §(x) denoting Dirac’s delta function. In practice we

The parameters used for the Lennard-Jones potentigiculate Qn(z') by dividing the core into sublayers
u(r)=4€[(olr) 2= (a/r)] were o=1 (i.e., equal to the Z, et \ (Fig. 1) and monitoring the frequency of observing
bond length between chain segmerdsd /k=88 K. The tNe end segment in thiés sublayer.

head groups are bound to the interface by a harmonic poten- (1) Orientational order parameters
tial, with a force constark/k=768 K/a2. This corresponds Let 6(«) denote the angle between the membrane nor-
to an oscillation amplitude o(zi)lm:(kT/K)1’250.67a. mal and the vector connecting segmekitsl andk+1 of a

The value ofe in the Lennard-Jones potential between chainCh&in in conformationx. We define the(skeleta) orienta-

segments corresponds to the depth of the potential well bdional order parameters by

tween CH segments in liquid hydrocarboh%In general, a

nearly uniform monomer density in the bilayer was achieved = ; P(a)P;(costy(a)) =(Pz(costy)), )

at a volume fractiop=0.44(~ 0.6 of the close-packing den-

sity). The value ofp=0.44 corresponds tpo3=0.84 which ~ Where P,(x)=(3x*~1)/2 is the second Legendre polyno-

is typical for liquid-like densities. mial. For a fully stretched"all- trans’ ) chain parallel to the
Beginning with some arbitrary allowed chain configura- membrane normag=1 for all k, whereas for a random

tion, simulation steps were carried out according to the saméistribution of bond orientation§,=0. Note that in a mem-

pivoting (wiggling) procedure described for the MF calcula- brane, due to the existence of an impenetrable interface, the

tions. In the MC simulations we have also allowed for headSc's are not necessarily zero even in the absence of inter-

group displacement within they plane, thus mimicking lat- chain interactions.

eral diffusion of the chains. Flip-flop movements were not

allowed. Starting at a very high temperaturex(80° K) the

system was cooled down slowly to 350 K, a temperature stillV. LATERAL PRESSURE PROFILES

higher than the expected temperature of the liquid- i .

crystalline—gel transition. The system was “aged” until the The lateral pressure profilem, or m(2) if we use a

potential energy fluctuations stabilized at about Olozcontinuous representation, uniquely determines our mean
field conformational distributionP(«), and hence all the

kT/chain with constant values for configurational averages. ; tional and th d : ties derived f
We assume that at this stage the system has reached equil xhformational and thermodynamic properties er|ve, rom
this function. It would be interesting to compare theg's

rium. At equilibrium we have sampled conformational prOp_With a corresponding function which might be derived from

erties over long periods of MC time, only for the innermostt MC simulati Th tural choi £ thi tity is th
36 chains in the simulation box. Samples were taken ever{{‘e simufations. The natural choice of this quantity 1S the

25 MC steps. In most calculations at least 5 sets, each co angential pressure profiley(2), familiar from the theory of
sisting of about 1000 samples were taken ' phase boundaries and surface tensfofhus in the next sec-

tion, we present numerical results and comparisons of the
™S with p1(z), the latter calculated using the molecular
theories of Kirkwood—Buff and Harasim® (KBH). The

To compare between the MF and MC calculations wecomparison of the two quantities is, however, not entirely
have chosen two common conformational properties, directlgtraightforward becauséa) the MF and MC models are not
derived fromP(«): The spatial distributiorialong the mem- strictly identical, andb) the membrane interface, at least in
brane normal of the terminal chain segment, and the bondour calculations, is not a simple phase boundary, namely, it
orientational order parameter profile of the chains. We havés sharply defined and in principle tensionless. To clarify

C. Conformational properties

J. Chem. Phys., Vol. 106, No. 4, 22 January 1997



1614 D. Harries and A. Ben-Shaul: Chain statistics in a lipid bilayer

these statements we shall now briefly reiterate the relevant
forces acting in a lipid membrane and their relationship to  —
the lateral and tangential pressure profiles.

Suppose we change, at constdntthe membrane area
from A to A+dA, keeping its total volumé&/=2DA con-
stant, so thatiD= — (D/A)dA. By definition, the work done
on the system in this processd®V=2I" dA, wherel is the
effective surface tension of the membrane and the factor
accounting for the fact that the bilayer has two interfaces
(We use the term “effective” foll" to distinguish it from the

hydrocarbon-water surface tensipithis work can also be The derivative in Eq(9) corresponds to an area change

e>_<pressed as dWZdF_ZAp_N dD:_dF+2(1/D)pN dA " of the bilayer at constant volume, which implies a change
with dF denoting the change in the internal free energy of;

. . . . ) in the membrane thickness, namelydD=d(v/a
the membrandincluding the interaction potential between yd (v/a)

; hai A 4 th _ =—(v/a?)da=—(D/a)da. In our discrete representation of
surface chain segments and the aqueous s9l PNIS — the bilayer as a stack of sublaygiaf constant width\) a
the external pressure acting normal to the membrane inter.

. ) = change inD=L\ corresponds to a change lin i.e., in the
faces. Since/ andT are constant it follows thaft = F(A) “removal” of sublayers whera increases. We could extend
and hence dF=(dF/9A)y 1+ dA=2(df/9a),t dA with

_ - X : the formalism of Sec. Il to allow for a change in but this
f=F/2N anda=A/N denoting, respectively, the frge ENeI9Y \would introduce another Lagrange multiplier, representing a
and the average head group area per molecule in the m

€Rormal component of the conformational pressure. Instead of

12L

:Zz Tk

k=1

Jf .
Ja

amy

v

where them,’s are the differential volumes corresponding to
the different sublayers of the hydrophobic core. Tings are
legitimately treated here as variables, but it should be re-

embered that in a planar symmetric bilayerrall=m are
gqual, and®,m,=2Lm=2v wherev=nv is the chain vol-
ume. In the second equality in E¢Q) we have used the
symmetry relationm = 5 1.

brane. Thus this awkward procedure we employ the following scheme.
of Since them,'s are defined up to an arbitrary additive con-
I'=|—| +Dpy., (8) stant we choose this constant so that the lowgss zero. In
Jsaj, general, we find that the lowest lateral pressure is at the

) ) . bilayer midplane, implyingz7 = _,1=0. This choice is
where it should be noted that, formally, this equation rEferSsupported by MF calculations for adsorbed monolayers
to one of the two identical membrane monolayers.  yhere there is no normal conformational pressuaed

_The free energy per molecul, involves several contri-  ,shed?® where one finds that the lateral conformational
butl_ons_. One of those,_the conformational free _enerfgy, pressure drops to zero, identically, towards the chain end
(which in our MF model is fully entropichas been discussed regime. Furthermore, numerical calculations of/da

in Sec. Il. Additional contributions arise from inter-head _ — (M)3,m, (see belowyield the same results as those
group repulsions, chain-chain attractions and chain-watef,ined withar_ =0. Suppose now that we increasavhile
(“hydrophobic”) interactions. In our model the head groups gepingd constant and ensuring that the segment density in
are simply the first chain segments and hence their interagy sublayers, except andL + 1, remains constant. Then for
tipns are includgd irfc', which .already account@lbeit in- o} these sublayersin, /#a) = (dm/da) = \. The number of
directly) for chain-chain repulsions. segments in the two central sublayetsl(+1) necessarily

From our assumption that the chain segments in the hy lightly. i 4 _ -
drophobic region are uniformly packed, it follows that the gﬁfr:iazgi szlg ttr):i,s lﬁi':s«fég aféchtmliavafurgLéia / (92’
sum of the attractive forces inside the core and the interacl—.hus returnLing 'Eo Eq(9), we can write e

tion between(surface chain segments and solvent can be
expressed, approximately, &s=g+ ya. Here,g is a con-
stant attractive term which may be set to zero anid the
surface (hydrocarbon—water contacfree energy per unit
area, often identified with the water—hydrocarbon surfac
tension. Thus, according to our MF theofy=f .+ fs="f

+ ya, implying df/da=df ./da+ y.

From the equations derived in Sec. Il, it follows
that gf.=2,P(a)In P(e)=—In g—BZmdy and B(¢pi)
=—(dIn g/dm). Hencedf,= — 3, md( ), revealing that
df. is a generalized PV” work, and confirming the inter-
pretation of them's as lateral(or tangentigl pressures. In D
Sec. Il we noted tha®(«) and thusf, remain invariant upon FZJ' df pn—7c(2)]+ y. (11
adding an arbitrary constant to all thg's. This also follows °

from the last expression fodfc: changingmy to mc+C  This equation closely resembles the familiar expression for
yields dfe=—Zymd{ ) —cZd(di) = —Zmd(be) be-  the surface tensionr, between two bulk phasEs
cause,  d{ ) =d3(¢py=dn=0. Now, for a symmetric

i fo=— =—
?r:;[yer Afo=—Zmd d(di) +d( b 1= —Zmdmy, so 0=de[DN—DT(Z)] (12)

Jf.
Ja

A < D
:‘(;>§1 me - |, gz (10

v

Svith the second equality representing the continuum limit
NL<1, (z=kA,D=LA\). We shall refer tor(2) = m /v as
the conformational contribution to the tangential pressure in
the bilayer.

We noted earlier that =f.+ ya. Thus using Eqs(8)
and(10), we can write
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with py denoting the normal pressure apg(z) the tangen- In our calculation ofpr(z) the particles are the different
tial pressure. The integration in E¢L2) extends from one chain segments, and the interactions involve all non-bonded
bulk phase £— —») to another ¢— +=); in both limits, = segments belonging to either the same or different chains.
pt(z) =pn - In practice only a narrow interfacial region con- We modelu(r) as a Lennard-Jones potential and hence
tributes to the integral. p1(2) involves both attractivénegative and repulsiveposi-
Comparing Eqgs(11) and (12) we can identify 7.(2) tive) contributions. Unlike in the MF calculations we do not
— yID=I11(2) as the tangential pressure profile in the mem-expect the attractive contributionse(z) to be independent
brane. Furthermore, recall that,(z) in the MF theory ac- of z, because the density may vary slightly wizhIn turn
counts only for the conformational, inter-chain, pressurethis variation may also affect the repulsive contributions to
which we attribute to the repulsive, excluded volume, inter-p(z). Thus the most meaningful comparison between the
actions between neighboring chains. Thug/D can be in- MF and MC calculations should involve.(z) + y/D on the
terpreted as thénegative contribution to the tangential pres- one(MF) hand and+(z) on the otheMC) hand. However,
sure, arising from the attractive parts of the inter-chainsince in both the MC and MF calculations we simply impose
potential. In our MF theory we assume uniform segmenta given membrane thicknes®2rather than allowing the
density(i.e., the segment density is the same forzalivhich ~ membrane equilibrate, we do not really kngwor py . [We
explains the constant contribution of the attractive potentialgould assume, of course, that the membrane is balanced and
to I11(z). The uniform density assumption is of course aninfer the value ofy+Dpy from Eq. (13).] Accordingly, the
approximation. It was made to allow us to calculate the condifference betweenr.(z) andp+(z) involves an arbitrary,
formational chain statistics, i.eP(«), which is dominated unknown, constant. There is also an uncertain, multiplica-
by the repulsive interactions. Clearly, however, even smaltive, constant in the definition af.(z), namely, the effective
density gradients may strongly affect the attractive contribusegment volumey [see Eq.(10)]. Thus in the comparisons
tion to the tangential pressure. betweenp+(z) and 7.(z) reported in the next section we
Lipid bilayers are generally tensionless. Namely, the re-have adopted the following procedure: We have adjusted the
pulsive (inter-tail and inter-head grolipnteractions exactly minimum of 7,(z) andp1(z) to coincide(thus eliminating
balance the attractivé'hydrophobic”) forces. This balance v) as well as their maximunithus determining), for one
determines the equilibrium thickneBs(and hence the arga particular membrane thicknegs. The value ofv evaluated
of the membrane. For a tensionless membrire0 and by this procedure was then used in all other calculations for
from Eq. (11) we find both pure and mixed bilayers. As we shall see, the value
obtained forv is quite reasonablécomparable to that of a
D chain segmentand the shapes af.(z) andp+(z) are gen-
fo dz me(2)=Dpyty. (13 erally very similar to each other.

_ The ef_fe_ctlv_e hydrocarbor_1—wate_r surf_ace tens!on, apProy; RESULTS AND DISCUSSION
priate for lipid bilayers and micelles is typically estimated as
y=50 dyn/cm. Thus withpy=1 atm=1C® dyn/cn? and Monte Carlo simulations and mean field calculations
D=10 A=10"" cm we findDpy<vy. In other words, the were carried out for pure n=10) and mixed =10,
repulsive chain interactionsm{.(z)), which tend to increase m=5) bilayers, using the chain model described in previous
the membrane area, act mainly against the surface tensi@ections. All simulations were performed for bilayers com-
v which acts in the opposite direction. posed of 200 chains, 100 per monolayer, with periodic
In the MC simulations presented in the next section weboundary conditions in they plane. The head groups were
calculate the tangential pressure profile using the moleculaanchored to the interfaces by a harmonic binding potential,
theory of Kirkwood—Buff and Harasim&® This quantity, allowing only small amplitude fluctuatior{sf approximately
here denoted as+(z), is given by 2/30) of the chain along the axis. In all cases the bilayer
thicknessD, and hence the average area per head gequp
@ was adjusted so as to achieve nearly uniform segment den-
P (r12,2,2+25p sity within the hydrophobic core, and yet allow the chains to
(14) sample as many conformations as possible on the time scale
of the simulations. We found that this balance depends rather
with u’(r) denoting the derivative of the intermolecular po- sensitively on the inter-segment interaction potential. For ex-
tential between two particles with respect to their distanceample, using 6-12 Lennard-Jones potentials, as we did in
r. X12,Y12, andz;, denote the Cartesian componentsrgf  most simulations, uniform segment density was rather easily
andp®(r,,2,z+2,,) is the two point distribution function, obtained. On the other hand it was difficult to achieve uni-
which is proportional to the probability of finding one par- form density(and reasonable chain dynamigghen we used
ticle at distancez from the (mathematical phase boundary a “sticky-balls” potential,(i.e., — 1/r® attraction and infinite,
and the other at distancet z;, from this boundary, at dis- hard core, repulsion For the pure systems the membrane
tancer 1, from the first particle(The interface is parallel to thicknesses studied ranged frdn=v/a=5¢ to =7q, cor-
the xy plane) The calculation ofp; from the simulation responding to areas per head group frars2.440% to
results is similar to that used in Ref. 3. a=1.6%2. In all cases the segment volume fraction was

2 .2
X2t Y12

M2

1
pr(2)=— ZJ drq; U,(rlz)(
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FIG. 3. Segment density along tkeaxis for two bilayers composed of 10
segment chainsD=4.90 (solid circles and D=6.40 (squares head
groups being bound by a harmonic potential to the interface. The arrow
marks the membrane midplane.
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0.20

p= 0.44, corresponding tpo>=0.84. This value is typical
of liquid-like alkane densities at ordinary temperatures. 'tQ(Z’)
must be noted however, that for comparison with the MF

0.15

results we only require uniform segment densities. Slightly 0.107 1
lower or higher values op should yield similar results, as
long as the density within the simulated bilayer is uniform. 0.05 .
Several compositions of mixed chain systefused to com-
pare the lateral pressyrevere also considered, again main- 000

X X X X ! 10.0

taining a constanp.
A. Segment density

As noted in Sec. lll B the demand for a uniform segmentFIG. 4. End segment distribution for the same two systems mentioned in
density isa priori in the MF calculations, while it is not so in Fig- 3:D=6.4s (top) andD=4.9 (bottom. In each case, the MC results
the MC simulation. It was thus a primary requirement thais "Ae4 b crcles, ih enorbar for 5 suersgng e, and e U
the uniform density condition be satisfied in the MC simula-mjgplane for each case.
tion. As can be concluded from Fig. 3, which shows the
density profile in the bilayer obtained for a system with LJ
interaction potentials, this assumption is valid within reason- ~ We note that the MF/MC agreement is better for the
able deviations from the mean. For a system governed bgmaller membrane thickness. This may be correlated with the
“sticky-ball” potentials (Fig. 6a below, it was difficult to  fact that for this system the uniform density condition is
satisfy this condition. This system was still used for refer-better satisfied, Fig. 3. Indeed, as we incred3etthe agree-
ence, due to the fact that some of the chain properties conment between the MC and MF results became gradually less
pared better to the MF calculations. impressive, as did the deviation of the MC density profiles
from a uniform distribution. In general, it was more difficult
to satisfy the uniform density condition in the simulations as
we increased the membrane thickn&s This reflects the

The end segment distribution along the membrane nortact that as the area per head group decreases the conforma-
mal in a bilayer composed af=10 chains is shown in Fig. tional (and concomitantly the motionalfreedom of the
4 for two values of the membrane thickneg€s=4.90 and  chains is reduced. In other words it takes longer and longer
6.40. (The maximal value oD for 10-segment chains is for the chains to equilibrate on a reasonable simulation time
9.50, corresponding to a solid-like membrane of fully scale.
stretched chains, all along the membrane noynikthe re-
sults in Fig. 4 show very good agreement between the MIE
theory and the simulations.

In both systems the end-segment distribution peaks at Orientational bond order parameters calculated by the
the membrane midplane, and reveals considerable interdigMF and MC schemes are shown in Fig. 5, for the same two
tation (monolayer crossingof chains belonging to the two cases considered in Fig. 4. Although the trends and magni-
monolayers. tudes of the order parameter profiles are similar, the agree-

B. End segment distribution

. Orientational order parameters
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FIG. 5. Orientational order parameters for the two systems mentioned in

Figs. 3 and 4(i) D=4.90, solid squares denoting MC results, and solid line

denoting MF calculations(ii) D=6.4c, circles denoting MC results and 0.80
dashed line marking MF calculations.

ment between the MC and MF results is not as good as we 060 A ]

found for the end segment distributions. TBgs derived
from the MC simulations are generally higher than those S
obtained from the MF calculations.

We do not have a simple explanation for this discrep-
ancy. Yet it should be noted that the orientational order pa- 0.20 -
rameters are very sensitive to the simulation model used. For
instance, if instead of the LJ potential we use a sticky-balls IIS
interaction potential, the agreement between the MC and MF 0.00 = " 4-0 2 =
rgsults improves cpn&dgrab(!l}lg. 6), even thou_gh the den- Bond Number, k (k-1,k+1)
sity profile in the simulations is not exactly uniform. In fact,
it was shown e_lseWhere' that the agreement between Oljdng. 6. Results for a system using a “sticky-balls” potenti@ Segment
parameter profiles computed by our MF scheme, for chaingensity along the axis, for a bilayer of thicknes®=6.7c, composed of
modeled using the rotational isomeric state scheme, compaf@-segment chains. The chain heads are bound to the interface by a square
very well with molecular dynamics simulations of similar well potential.(b) Orientational order parameters for the same system, tri-

. 156 . . . angles denoting MC results and solid line denoting MF calculations. The
(though not exactly the samehains.™"Rotational iSOMeric 4o marks the membrane midplane.
chains are considerably stiffer than thifreely rotating
chains simulated here, hence their conformational phase
space is considerably smaller than in our present model, and ] ) ] ) ]
sampling their conformational space is simpler. In otherSPond to mixed bilayers, in which the long chain mole frac-
words, it is possible that, despite the very long times of oufions arex=2/3 and 1/3, respectively. In all four systems we

2
simulation runs, the system has not reached complete eqUf€€P the area per head group constant 2.42r )’fnd en-
librium. There still remains a question as to why certainSUré constant segment densityolume fractionp=0.44).

properties(like end-segment distributionshow smaller dif- Accordingly, the membrane thickness varies frorm=4.90

ferences between the MC and MF calculations. One possibif9" the long chain bilayer, t®=2.4% for the short chain
explanation is that the MC simulations have in fact reachegYStem. , ,

equilibrium but there are some inherent differences between _AS réasoned in Sec. IV we have adjusted the scale of the
the two approaches, which are reflected only in certain propMF pressures to that of the MC calculations as follows. We

erties; after all, the MF theory neglects inter-chain correlaMultiply the MF lateral pressures by a constant &n “ef-

tions. But then it is not obvious which quantities will be fective volume per segmenf'to adjust the scale to that of
more sensitive to such correlations. the MC results, and then add a constant to fit the minima of

the two profiles. Using a single value of=1¢°, corre-
sponding to a volume fractiop=(4/3)(0/2)* v=0.52,
we obtained good agreement between the MF and MC re-
The results of the MF and MC calculations for the tan-sults for all four casegas well as for several other cases
gential pressure profiles are shown in Fig. 7 for four reprewhich are not shown hereRegardless of this adjustment it
sentative systems. Two of these, Figs. 7a and 7d, descritshould be noted that the MC and MF pressure profiles appear
the results for pure bilayers composed of lomg=(10) and  similar, except for some deviations near the interfacial re-
short (m=5) chains, respectively. Figs. 7b and 7c corre-gions (where segment crowding tends to take place in the

kK 040 [

D. Lateral pressures
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FIG. 7. Lateral pressure profiles for bilayers composed of larig10) and/or shortri=5) chains(a) A pure bilayer of long chains@{=4.9¢). The dashed

line denoting MC results and the solid line denoting MF calculations. Also shown is the tangential pressure profile obtained by simulations of a system where
all segments are disconnectédbt-dashed line (b) Lateral and tangential pressures for a mixed bilayer. The mole fraction of long chaisGE7
(D=4.10). (c) x=0.33 D=3.30). (d) x=0, i.e., a pure bilayer of short chaind)€2.5). As in(a) the solid and dashed lines iiv)-(d) correspond,
respectively, to the MF and MC simulations.

simulationg. The somewhat jagged appearance of some opected for a system packed at liquid like density. This im-
the MC profiles reflects a tendency for segment layering inplies enhancement of thénearly hard core repulsive
duced by the existence of the interfacial “wall” boundaries. interactions, in the simulated system. This trend, i.e., the
Although we treatedv as an adjustable parameter, its dominance of the repulsive interactions is confirmed by the
numerical value is actually very similar to what we should high (positive values of the MC tangential pressures, as fol-
have expected. Recall first, from Sec. Il, that this parametelpws directly from Eq.(14).
representing the average volume per segment in the mem- In the MF calculations the doubly peaked pressure pro-
brane, does not really enter our calculation of the MF presfile reflects, exclusively, the lateral stress profile associated
sure profile. It only appears, as a conversion factor, if wewith the restricted conformational freedom of the tightly
insist that the condition of uniform segment dengitgnstant  packed chains in the membrane. This conformational pres-
¢\'s) also implies liquid like density. On the other hand, thesure is a direct result of chain connectivity. In order to test
actual segment volume can simply be evaluated from ouwhether the similar, double-peak, tangential pressure profile
MC model, namely fromv=V/(2Nn), whereV is the mem- in the simulations is also associated with chain connectivity,
brane volume andI&n is the total number of segments in we have performed one set of simulations for “disconnected
this volume. This givesr=1.203. Thus the “effective” v  chains.” That is, we disconnected all bonds between chain
derived from the fitting procedure is in fact just slightly segments, thus obtaining a simple LJ fluid of the same den-
smaller than the real segment volume. sity and boundary condition@wo interfacial wall$ as the
Although the difference between the two valuesvof  connected system. The resulting tangential pressure profile is
not very significant, the smaller value of the “effective” shown in Fig. 7a. The interesting point that concerns this
volume, suggests that the average distance between nodisconnected system is that the lateral pressure profile is
bonded chain segments is somewhat smaller than that erearly uniform in the bulk fluid(becoming irregular only
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near the boundary walls, due to the crowding of segments imations. Moreover, the lateral pressures appear explicitly in

that region. the molecular expressions for the various thermodynamic
properties, e.g., the stretching and bending moduli of lipid
VI. CONCLUDING REMARKS membranes:*
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