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Two structural-thermodynamic characteristics of cylindrical, wormlike micelles in dilute solution are studied
using a molecular-level model: (a) the bending elasticity of the micelles and (b) their tendency to form
intermicellar junctions (branches). The internal (free) energy of the micelles, before and after a bending
deformation and junction formation, are calculated using mean field theories for the free energies of the
molecules constituting these structures. The molecular free energies, which depend on the local packing
geometries, include the contributions of head group repulsion forces, the hydrocarbon-water interfacial energy,
and the chain conformational free energy. We find that when only the head group and surface contributions
to the packing energy are taken into account, the one-dimensional bending constant of the micelles is negligibly
small. When the chain contribution is included, and when reasonable molecular packing parameters are
used, we find that the persistence length, which is proportional to the bending rigidity, is typically a few tens
of nanometers. The free energy change associated with the formation of a trijoint intermicellar junction
upon the “fusion” of one micellar end cap with the cylindrical body of another micelle is found to be small
but positive; about 10kBT at room temperature. This conclusion does not refute the possibility that intermicellar
junctions are metastable transients or that their formation may be favored entropically, due either to
conformational degeneracy or excluded volume interactions between micelles. Our conclusions apply to
aqueous solutions containing one, single-tail, surfactant species.

1. Introduction

Many aqueous surfactant solutions exhibit the formation of
long and flexible linear micelles, commonly referred to as
“wormlike” or “threadlike”.1-7 In most cases these micelles
consist of ionic amphiphiles and appear at high excess salt
concentration. The major effect of the added salt is to screen
the electrostatic repulsion between the charged head groups of
the amphiphiles, thus lowering the optimal area per head group
at the hydrocarbon-water interface of the micelle. This, in turn,
implies an increase in the end cap energy, measuring the
difference between the packing free energy in the highly curved
(approximately hemispherical) end caps of the micelle and its
(moderately curved) cylindrical body.8-12 Consequently, the
average micellar length,〈L〉, which increases exponentially with
the end cap energy, can be dramatically enhanced, leading to
the formation of “giant” micelles.1 Another relevant length scale
in these systems is thepersistence length, ê, measuring the range
(the “coherence length”) of angular correlations along the
micellar axis.1,13,14

As in the case of polymers, the persistence length is
proportional toκ, the one-dimensional (1D) bending modulus
of the micelle (ê ) κ/kBT ) which determines the free energy
cost of linear curvature deformations (kB is Boltzmann’s constant
and T the absolute temperature). Thus,ê, like the end cap
energy, is an intrinsic property of the micelle, governed by the
dependence of the molecular packing free energy on the local
aggregation geometry8-12 (interfacial curvature and area per
head group). Whenê , 〈L〉 the micelles are highly tortuous,
i.e., wormlike. Whenê∼ 〈L〉, they are semiflexible,15 and when
ê . 〈L〉, the micelles can be treated as rigid rods.
Micellar flexibility plays a crucial role in both the thermo-

dynamic (phase) and dynamic (rheological) behaviors of self-
assembling surfactant solutions. For instance, the isotropic-

nematic transition in solutions of rigid (rodlike) micelles is
accompanied by a dramatic increase in the average micellar size
in the nematic phase.11,15-18 Increased micellar flexibility
greatly diminishes this coupling between orientational order and
micellar growth.
Wormlike micelles are often referred to as “living polymers”4-6

because, being relatively “soft” aggregates, their size distribu-
tion, unlike that of normal polymers, is constantly equilibrated
according to the ambient conditions, such as the temperature,
the total surfactant concentration, or the amount of added salt.
This unique property is sometimes reflected in an unusual
rheological behavior. For instance, in several ionic surfactant
solutions, it was found that upon increasing the salt concentration
and hence the average micellar length, the zero shear viscosity
does not increase monotonically but, rather, shows a maximum
as a function of the added salt concentration.6,19,20 As in
ordinary polymer solutions, the initial increase in viscosity may
be attributed to entanglement effects. However, micellar (living)
polymers, albeit at a certain free energy cost, can cross each
other or even cross-link to form branched19,26micelles. Micellar
crossings and the formation of (fluidlike and hence mobile)
intermicellar junctions may explain the decreasing viscosity at
high salt concentrations.5,6,19-22

It has been suggested that at high surfactant concentrations
the intermicellar junctions proliferate to the extent that a cross-
linked network of cylindrical micelles is formed, either spanning
the whole system or separating as a densely connected phase
coexisting with a very dilute phase of small micelles.5,6,19-23 It
is not obvious however whether this network (gel) formation is
driven by energetic or entropic factors or perhaps by both.
Recent cryotransmission electron microscopy experiments have
clearly demonstrated the formation of branched threadlike
micelles in several surfactant systems.25,26 But, again, it is not
fully clear whether these are truly equilibrium structures or
perhaps metastable intermediates resulting from shear stresses
in the course of sample preparation.X Abstract published inAdVance ACS Abstracts,October 1, 1997.
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There has been enormous interest in the elastic properties of
lipid monolayers and bilayers. This has motivated the formula-
tion of both phenomenological and molecular level theories
for the curvature and stretching elasticity moduli of these
systems.27-29 Surprisingly, as far as we are aware of, despite
the great interest in the elastic properties of cylindrical micelles,
no microscopic model has so far been suggested for estimating
their 1D bending modulusκ. One of our two main goals in the
present paper is to present such a model and to provide
numerical estimates for this bending modulus.
Our second, related goal is to present a molecular-level model

and numerical estimates for the free energy change associated
with the formation of an intermicellar junction. A very simple
model of this structure, based on elementary packing (surface/
volume) considerations, was suggested about a decade ago by
Porteet al.30 The model presented in this paper is considerably
more detailed, taking into account all of the relevant (head
group, surface, and chain) contributions to the free energy of
this rather complex (mostly saddlelike) amphiphile packing
geometry.
Spherical and (straight) cylindrical micelles or planar bilayers

are uniform aggregation geometries, in the sense that all the
constituent amphiphiles are (on average) subjected to the same
packing constraints. On the other hand, intermicellar junctions
or bent cylindrical micelles are nonuniform packing geometries,
involving regions of different curvatures and surface volume
ratios. The volumes and hence the number of molecules in these
regions are adjusted so as to minimize the total free energy of
the composite nonuniform structure. This presents some
difficulties in the free energy calculations, especially for the
case of intermicellar junctions. Our way of treating this problem
is discussed in section 4. Beforehand, in section 2, we outline
the basic assumptions and structural models used in our free
energy calculations, and in section 3 we present our model for
calculating the bending free energy of cylindrical micelles.

2. Free Energy

Consider a micellar aggregate, or a section thereof, composed
of N amphiphilic molecules.σ(s) denotes the local surface
density of head groups around points of the hydrocarbon-
water interface (hereafter “the interface”) andf(s) the local free
energy per molecule at this point. In a nonuniform structure,
such as an intermicellar junction or a bent cylindrical micelle,
both the head group density (which depends on the local
surface-volume ratio) and the free energy per molecule are
functions ofs. The total free energy of the aggregate is

Similarly, the total (hydrophobic) volume of the aggregate is

whereν is the volume of the amphiphile hydrocarbon tail, as
measured in the liquid state of the corresponding alkane. As
usual, we assume here that the density of the hydrocarbon chain
segments within the hydrophobic core of the aggregate is
uniform and liquid like.8-12

Another common assumption to be employed throughout this
paper is that, at any local packing environment (s), the free
energy per molecule can be expressed as a sum27

with the three terms on the right hand side representing,
respectively, the average interaction (steric and/or electrostatic)

energy per molecule resulting from head group repulsion, the
surface energy associated with the hydrocarbon-water interface,
and the chain (hydrocarbon tail) contribution to the free energy.
All three terms depend on the local geometry, that is, on (i) the
average cross-sectional area per molecule at the interfacea )
a(s) and (ii) the local interfacial curvaturesc ) c1,c2, with 1/ci
) Ri,(i ) 1, 2) denoting the two local radii of curvature. In
most aggregation geometries, such as spherical or cylindrical
micelles and lipid bilayers, the hydrocarbon tails are oriented
(on average) along the normal to the interface, so thata(s) )
1/σ(s). In more complex structures the chain “directors” may
be tilted with respect to the interface, implying a slightly more
complicated dependence ofσ on a.
A common approximation used in phenomenological models

of amphiphile self-assembly is to setfc ) gwhereg is a constant
depending on the hydrocarbon tail length, but independent of
the aggregation geometry.8-11 On the basis of this “hydrocarbon
droplet assumption”, the packing free energy and hence the
optimal aggregation geometry are governed by the balance
between the two “opposing forces”, namely, the head group
repulsions which favor large head group areasa and the
hydrocarbon-water surface energy which tends to minimize
a. On the basis of this model, one can qualitatively explain
why, for instance, charged single-tail surfactants generally prefer
packing in curved aggregates such as spherical or cylindrical
micelles, whereas double-tail phospholipids spontaneously as-
semble into extended bilayer sheets. However, neglecting the
tail contribution to the free energy is generally insufficient for
explaining certain important phenomena, such as the curvature
elasticity of membranes27 or, as we shall see below, the bending
elasticity of cylindrical micelles.
The chain free energy indeed involves a constant (geometry

independent) term accounting for the attractive, cohesive
(“hydrophobic”) energy of the aggregate. Yet, another important
term arises from the tail internal free energy, whose main
component is the chain conformational entropy. This entropy
generally increases with increasinga and thus provides another
repulsive contribution tof. The force moments of head-head
and tail-tail repulsions are “concentrated” at different planes
(i.e., on opposite sides of the hydrocarbon-water interface).
These forces, together with the (attractive) surface-tension force,
determine the equilibrium surface area and curvature of the
aggregate.27

To calculate the chain conformational free energy, we shall
employ a statistical-thermodynamic mean field theory of chain
packing in amphiphilic aggregates which has previously been
applied to a variety of systems and phenomena.11, 27 This theory
will be briefly outlined below. First, however, we consider the
first two terms in eq 3, which, together with the assumptionfc
) constant, constitute the approximation known as the “oppos-
ing forces model” (hereafter OFM). Usingf ) fo ) fs + fh to
denote the OFM free energy (settingfc ) 0), we shall represent
this quantity based on the common approximation8-10

The first term on the right hand side of this equation is the
interfacial energy, withγ denoting the effective surface tension
corresponding to the hydrophobic-aqueous micellar interface.
The second, head group repulsion term provides an approximate
representation of steric and/or electrostatic forces, withB
measuring the strength of the repulsive forces. We shall treat
B as a variable controling (together withγ and chain repul-
sion forces) the optimal aggregation geometry. Usinglh to
denote the average distance between the interface and the
surface of head group repulsions,ah is the average area per head

fo ) γa+ B/ah (4)

F )∫dsσ(s) f (s) (1)

V) ν∫dsσ(s) ) Nν (2)

f ) fh + fs + fc (3)
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group at this latter surface. Thus,

wherea, as in (4), is the head group area at the interface and
c1,c2 are the two (local) principal curvatures, also measured at
the interface; e.g.,c1 ) c2 ) 1/R in a spherical micelle of
hydrophobic radiusR, and similarly for a cylindrical micellec1
) 1/R,c2 ) 0 .
Typically lh , lc wherelc is the length of the (fully extended)

hydrophobic tail, whileR is generally just slightly smaller than
lc, (R < lc ensures uniforms segment density within the
hydrophobic core); thusah = a. Settingah ) a and minimizing
(4) with respect toa, one finds the optimal area per head group
according to the OFM scheme,ao ) (B/γ)1/2. Ignoring again
the curvature corrections implied by (5) and dropping an
irrelevant additive term, one obtains the OFM free energy per
molecule

As is well-known, according to this model, the amphiphiles
always tend to assemble into aggregates where all, or most,
molecules can be packed such thata ) ao. When geometric
packing constraints on the hydrocarbonchainsallow more than
one aggregation geometry, the molecules will preferentially form
the smallest possible (mostly curved) micelles, so as to maximize
(in dilute solution) the translational (“mixing”) entropy of the
system.8,9 Thus, for example, whenaolc/ν g 3, the amphiphiles
aggregate in spherical micelles of radiusR) 3ν/ao, even though
they could also form cylindrical micelles of radiusR ) 2ν/ao
or planar bilayers of half-thicknessd ) ν/ao. Similarly, when
3 > aolc/ν g 2 and 2> aolc/ν g 1, cylindrical micelles and
planar bilayers, respectively, are the preferred aggregation
geometries. Note, however, that the molecules comprising the
edges of these aggregates cannot be packed witha ) ao. For
instance, the molecules at the (supposedly) hemispherical ends
of a cylindrical micelle are packed witha ) 3ao/2, and their
excess packing free energy can be estimated using (6). This
excess, end cap, energy is the thermodynamic driving force for
the growth of linear micelles.
Geometric packing considerations in the above spirit can be

employed to estimate the relative stability of more complex
structures, e.g., the saddlelike geometry of an intermicellar
junction, bent cylindrical micelles, curved bilayers, or inverted
micellar aggregates. For such structures, curvature corrections
of the kind implied by (5) can be important. Moreover, the
chain contribution to the free energy,fc, may be a crucial
determinant of their thermodynamic stability.
The chain conformational free energy, in the mean field

approximation, is given by

with P(R) denoting the (normalized) probability of finding the
chain in conformationR and ε(R) is the internal energy
corresponding to this conformation. (In the case of simple alkyl
chains described by the rotational isomeric state model,13 ε(R)
is determined by the trans/gauche bond sequence of the chain
skeleton.) The two terms on the right hand side of the last
equation represent the energetic and entropic contributions to
the free energy, both depending on the local aggregation
geometry through the parametric dependence of the probability
distribution of chain conformations ona, c1, andc2.

An explicit expression forP(R) ) P(R; a, c1, c2) is obtained
by minimizing fc subject to the packing constraints expressing
the requirement for uniform segment density within the hydro-
phobic core of the aggregate. These packing constraints depend
on a, c1, andc2. The result obtained for the conformational
distribution function is27

where φ(R,z) dz is the volume occupied by a chain in
conformationR within a shellz, z+ dz, parallel to the micelle
interface, inside the hydrophobic core. (Thus, thezaxis is along
the surface normal of the aggregate; e.g., in spherical micelles
z is the distance from the micellar center, etc.) The (isothermal-
isobaric) partition functionq ensures the normalization ofP(R),
and the functionπ(z) is the lateral pressure profile. It is
evaluated using the self-consistency relationships obtained by
substituting (8) into the equations expressing the constraints of
uniform segment density. The geometry (i.e.,a, c1, c2)
dependence ofπ(z) and henceP(R) enters through the geometry
dependence of the packing constraints. Similar expressions for
P(R) can be derived for more complex (e.g., nonuniform)
packing geometries, as well as for multicomponent aggregates.
Many complex aggregation geometries, including intermi-

cellar junctions and flexible linear micelles, can be treated as
combinations or deformations of the three “canonical” aggrega-
tion geometries, namely, spherical micelles, cylindrical micelles,
and planar bilayers. It is therefore instructive to examine how
the packing free energies in these three types of aggregates
depend upon the relevant molecular and geometric parameters.
Fixing the values ofγ, lh, and the chain length,lc, we shall
focus on the variation off with the strength of head group
repulsion,B, and the thickness,b, of the hydrophobic core (b
denotes the radius of spherical and cylindrical micelles or the
half-thickness of a planar bilayer). Here, as well as in the
following sections, we shall use8 γ ) 0.12kBT/Å2≈ 50 dyn/cm
(at room temperature),lh ) 1 Å, andlc ) 18 Å, corresponding
to -(CH2)13CH3 (C14) alkyl chains.10 The volume of aC14
chain isν ≈ 405 Å3. We shall use this value to relate the area
per molecule to the hydrophobic thickness (i.e.,a) i(ν/b) with
i ) 1, 2, and 3 for planar bilayers, cylinders, and spheres,
respectively). It should be noted, however, that neitherν nora
enters directly into our chain free energy calculations; the
relevant parameters there arelc, b, and the local interfacial
curvatures.
In Figure 1 we showfc as a function ofb, for the three basic

geometries. In these calculations we have allowed for small
roughness fluctuations (∼1 Å) of the hydrocarbon-water

Figure 1. Chain part of the free energy perC14 chain in a bilayer
(f c

bil), cylinder (f c
cyl) and sphere (f c

sph) as a function of the hydrophobic
radius (bilayer half-thickness or micellar radius). The upper limitb )
18 Å corresponds to the fully extended hydrocarbon chain.

P(R) ) 1
q
exp{-[ε(R) +∫dzπ(z) φ(R,z)]/kBT} (8)

ah ) a[1 + (c1 + c2)lh + c1c2lh
2] (5)

fo ) γa(1-
ao
a)2 (6)

fc ) ∑
R
P(R) ε(R) + kBT∑

R
P(R) ln P(R) (7)
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interface. In all casesfc increases steeply onceb is larger than
lc ≈ 18 Å, as this implies the creation of a “hole” in the center
of the hydrophobic region. Note that the minimal value offc
appears at different values ofb in the three geometries:b ≈
10, 16, and 18 Å (corresponding toa≈ 40, 51, and 68 Å2) for
the bilayer, cylinder, and sphere, respectively. More impor-
tantly, at variance with the hydrocarbon droplet assumption
mentioned above, the free energy minima are not the same in
all geometries. These small differences (a few tenths ofkBT )
can be significant for determining the optimal packing geometry.
We now add the surface and head group contributions (as

given by (4), withlh ) 1 Å) to the chain free energy and, for
each value of the head group repulsion parameterB, calculate
f as a function of the hydrophobic thicknessb. Then, for any
givenB, we evaluateb*, the value ofb for which f is minimal,
and identifyf ) fc(b)b*) + fo(b)b*) as the equilibrium free
energy per molecule for that particularB. Since we are mainly
interested in the relative stabilities of the different packing
geometries, it is convenient to choose one of these geometries,
say the cylinder, as a reference: i.e., we setfcyl ) 0 and calculate
∆fg ) fg - fcyl for all B (g) sph, bil). The results obtained for
∆fg and b* as a function ofB are shown in Figure 2a,b,
respectively. From Figure 2a we see that for small values ofB
the planar bilayer is the most stable packing geometry, for
intermediate ones it is the cylinder and, as expected, spherical
micelles provide the optimal aggregation geometry when head
group repulsions become very strong. Moreover, asB increases,
one expects an increase in the optimal area per head group,
and hence a decreasing value ofb*, as confirmed by Figure
2b. The dashed curves in this figure show howbo ) b* varies
with B according to the OFM scheme, i.e., when we ignore the
chain conformational free energy and setf ) fo. The crossing
points of the dashed and solid curves in this figure correspond
to the minima in the chain free energies (Figure 1).

3. Flexibility of Cylindrical Micelles

Consider a long cylindrical micelle of radiusb and suppose
that a segment of lengthL of this micelle is uniformly bent,
thus forming a section of a torus. Letr denote the radius of
the torus, (measured with respect to the cylinder axis, Figure
3), and assumer ∼ L . b.
The curvature deformation free energy of the cylinder,∆F,

can be expanded in a power series of the 1D curvaturec) 1/r.
By symmetry∆F involves only even powers ofc, and for small
curvatures (bc, 1) can be safely approximated by the leading
term,1,13

with κ ) (∂2∆F/∂c2)c)0 defining the 1D bending modulus of
the cylinder.
As mentioned already in section 1, the bending rigidity

dictates the micellar persistence length,ê ) κ/kBT, which
measures the decay length of angular correlations along the
micellar axis. (Alternatively, recall thatP ) exp(-∆F/kBT) is
the probability of a bending fluctuation. This probability is
large, implying the loss of orientational coherence when∆F/
kBT ∼1. From (9) it follows that this happens, for example,
when the micellar axis is changing direction by forming a
circular arc of lengthL ∼ ê and radiusr ) 1/c ∼ ê).
Micellar flexibility is mainly interesting when the persistence

length is significantly smaller than the average micellar length
〈L〉. In dilute solution1,8,9,11

whereX is the total mole fraction of surfactant in solution and
δ ) 2Ncap(fcap- fcyl)/kBT is the 1D growth parameter, or, more
simply, the end cap energy.Ncap denotes the number of
molecules in the end cap;fcap and fcyl are the average free
energies per molecule in the end cap and the cylindrical body
of the micelle, respectively. In the calculations presented in
this section we shall useB/kBT ) 300 Å2, implying strong
preference of the amphiphiles to pack in the cylindrical body
over the end cap (see Figure 2a) and hence large end cap energy
(δ ∼ 42). For thisB we also find that the optimal micellar
radius forC14 chains isb ) bcyl ≈ 16 Å (corresponding to an
optimal area per head groupa ) acyl ) 2ν/bcyl ) 51 Å2). The
above value ofδ implies extremely large〈L〉 already at very
small values ofX. Note, however, that for such “giant”
micelles1 the dilute solution expression (10) is just an ap-
proximation.
Suppose that an imaginary plane, containing the cylinder

principal axis, divides the micelle into two regions. Upon
bending the micelle, in a plane perpendicular to the dividing
plane above, these regions become the “external” (E) and
“internal” (I) parts of the torus, as illustrated in Figure 3. If
the length,L, of the micelle, as well as its hydrophobic radius,
b, do not change in the course of bending, then its volumeV)

Figure 2. (a, top) Difference between the free energy per molecule in
a bilayer (∆fbil ) fbil - fcyl) or a sphere (∆fsph) fsph- fcyl) and that in
a cylinder, as a function ofB. (b, bottom) Corresponding aggregate
thickness. The dashed lines are the optimal thicknesses according to
the OFM approximation, eq 5.

Figure 3. (Left) Toroidally bent micelle, divided into external (E) and
internal (I) parts by a hypothetical surface. (Right) Cut through a bent
micelle showing the extended definitions of the E and I regions. The
radius of the micelle isb, andε describes the asymmetry.

∆F
L

) 1
2
κc2 (9)

〈L〉 ≈ 2(ν/πb2)(Xeδ)1/2 (10)
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VE + VI and hence the number of chains contained in this
volume are constants, independent of the torus radiusr. The
total interfacial area of the micelleA ) AE + AI is also
conserved. Clearly, however, except in the case of the straight
cylinder (c)1/r ) 0), the volume and surface area of the outer
region are larger than those of the inner region;VE g V/2 g
VI, AE g A/2 g AI. Furthermore, the surface to volume ratios
of the inner and outer parts are different; in factAE/VE g V/A
) 2/b g AI/VI, with the equalities holding only for the straight
cylinder.
In the straight cylinder the numbers of molecules in the E

and I parts of the micelle are the same. Also, it can be safely
assumed that, apart from small fluctuations, the chains origi-
nating at the E and I surfaces reside in the corresponding
volumes. SinceVE > VI, it is clear that the above mode of
deformation is only possible if molecules can diffuse into the
E region and out of the I region. We shall assume that such
“easy” diffusion is indeed possible. Yet, there is no reason to
assume that, in the bent micelle, the chains of the amphiphiles
anchored to the E (I) surface are confined to the E (I) volume.
If this were the case, the average areas per head group in the
external and internal surfaces would necessarily be different
from the optimal area per head group, (a) 2ν/b, corresponding
to the straight cylinder). This, according to the OFM scheme,
would inflict a free energy penalty which could easily be avoided
by letting the chains of the E surface protrude into the I volume,
thus optimizing the area per molecule at both surfaces. To take
this possibility into account, albeit approximately, we modify
the definition of the E and I volumes by assuming that, on
average, all chain ends are oriented toward one line, parallel to
and at a distanceε from the cylindrical axis (Figure 3). We
allow ε to depend on the torus curvature and assume, as
appropriate for small deformations, thatε ) ηc. We shall treat
η as a “relaxation” parameter, to be determined by minimizing
the bending free energy. We shall first consider the OFM
scheme and then add the chain contribution to the deformation
free energy.
For the sake of concreteness, and without loss of generality,

we assume that the length of (the axis of) the toroidally bent
cylinder isL ) πr/3, r ) 1/c being the radius of the torus. The
volumes of the newly defined E and I regions are given by

The areas of the inner and outer surfaces of the torus are

In the OFM approximation the free energy of the torus, relative
to that of the straight cylinder, is∆Fo ) NEf o

E+ NIf o
I , whereNE

is the number of molecules in the external part of the torus and
f o
E is the free energy per molecule in this region, as given by
(6), etc. Thus,

whereacyl ) 2ν/b is the area per head group in the straight
cylinder, whereasaE ) νAE/VE andaI ) νAI/VI are the areas
per head group in the external and internal parts of the torus.

Using (12) and (11) to calculateaE,aI, substituting the resulting
expressions into (13), then expanding∆Fo/γ in powers ofc,
and comparing the quadratic term with (9), we obtain

From this equation it follows immediately that forη ) b/3
the bending constant vanishes identically. In other words,
according to the OFM picture, at any curvaturec, the hydro-
carbon chains within the hydrophobic core can adjust their
conformations (according toε ) bc/3) so as to ensure that all
molecules are packed at their optimal area per head groupaE

) aI ) acyl, thus allowing the cylinder to bend at no free energy
cost.
The OFM result,κ ) 0, is obviously unacceptable. One

minor approximation which was used in its derivation involved
settinglh ) 0 in passing from (4) to (6), thereby assuming that
the forces of head group repulsion and surface tension act at
the same plane. This is a reasonable approximation in view of
the fact thatlh , b . The more serious approximation we made
in deriving the OFM result is, of course, the total neglect of
the chain contribution to the bending free energy.
As mentioned in the previous section, the calculation offc

requires specification of the interfacial curvatures (c1,c2 ) and
the area per head groupa. These parameters dictate the average
distribution of chain segments within the micellar core (〈φ(z)〉;
see (8)), which determine theπ(z) and henceP(R) andfc. For
simple geometries like the straight cylinder the calculation of
the micelle free energy is simple, because the boundary
conditions are the same for all of the chains composing the
aggregate. The calculation of the aggregate free energy, though
feasible, becomes considerably more tedious when the aggregate
involves locally varying packing geometries, such as in the case
of a torus. Although we have performed a rather detailed
calculation which takes into account the variation of the local
geometry in a bent micelle, we shall describe here a simpler,
more approximate procedure which yields essentially the same
results. (The detailed, local packing, model is applied in the
free energy calculations of intermicellar junctions; see section
3 and the Appendix.)
Again we divide the micellar core into E and I parts and treat

ε ) ηc as a variational parameter. Suppose first thatε ) 0;
i.e., the E and I chains are confined to their respective
semitoroidal regions. In this case, upon bending, the chains in
the external and internal regions undergo splay deformations
(in opposite directions). These deformations, as shown in Figure
4, involve a relatively small free energy price. Recall however

Figure 4. Average chain energy per molecule in a cylinder (broken
line) as well as in the external (E) and internal (I) parts of a torus of
curvaturec ) 1/90 Å-1 as a function of the cylinder radiusb (for ε )
0).

VE ) πb2

18
(3πr + 4b) + 1

3
πεb2(r - εb

3 )
V I ) πb2

18
(3πr - 4b) - 1

3
πεb2(r - εb

3 ) (11)

AE ) πb(πr + 2b)/3

A I ) πb(πr - 2b)/3 (12)

∆Fo
γ

) AE(1-
acyl

aE )2 + A I(1-
acyl

aI )2 (13)

κo ) 16bγ
9π

(3η - b)2 (14)
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that ε ) η ) 0 implies a considerable free energy penalty,
resulting from the fact that the head groups in both the E and
I regions cannot be optimally packed; see (14).
Now, as we letε increase, the head group excess energy will

decrease. This implies that (on average) the E chains are further
stretched and the I chains are simultaneously compressed. The
extents of stretching and compressing, and hence the additional
chain deformation free energy, will depend on bothc and ε.
Qualitatively, we expect that, for anyc, the sum of chain and
head group free energies will obtain a minimum for some finite
value of ε, or, equivalently, the bending rigidityκ will be
minimal for some finite value ofη. These qualitative notions
are confirmed by the calculations shown in Figure 5.
Briefly, the chain free energy calculations were done as

follows. First, for every value ofε we determine the average
chain length in the E and I (semitoroidal) regions. It can be
shown that to first order inε these lengths are given by

These values are used to calculate the chain contribution to
the bending free energy of two semicylinders; one of radiuslhE
corresponding to the E part of the torus and the other of radius
lhI corresponding to the I part. These calculations were done
for different values ofε (hencelhE, lhI) and different values ofc.
In each case chain free energies,fc, were calculated for different
head group positions along the semitorus circumference and then
integrated to obtain the total micelle free energy.
Figure 5 shows the results of our calculations for the special

case ofC14 amphiphiles with head group interaction parameters
B ) 300kBT Å2, lh ) 1 Å, γ ) 0.12kBT/Å2. For this system,
as we see in Figures 1 and 2, the optimal packing geometry is
a cylindrical micelle of radiusb≈ 16 Å. As qualitatively argued
above, the chain contribution toκ increases, nearly monotoni-
cally, with ηsdue mainly to chain stretching and compression.
On the other hand, the head group contribution (according to
the OFM scheme) decreases monotonically withη, reaching
zero atη = 6 Å (which is somewhat larger than the valueη )
b/3 = 5.3 Å implied by (14), because we have now used a
nonvanishinglh ). The minimal value of the bending rigidity,
ê ) κ/kBT = 160 Å, is found forη = 3.5.
The value we found forê agrees, roughly, with the values

found for the persistence length in some semidilute solutions
of ionic wormlike micelles at high salt concentrations.1 Had
we chosen higher values forlh, we would obtain larger values
for ê. Recall, however, that our molecular model, especially

the representation of head group repulsions, was rather ap-
proximate. Our main goal was to get a reasonable estimate of
the 1D bending rigidity.
The results above could also be obtained using a simple model

from which an expression forκ can be derived in a closed form.
From Figure 2 we note that both the head group and the chain
contributions to the molecular free energy in a cylindrical
micelle are minimal for approximately the same value ofb (b
= 16 Å). Thus, in addition to the quadratic form (6) for the
head group free energy, we can use a quadratic approximation
for fc around its minimum. Now recall that in our calculation
of the chain contribution to the bending energy we have treated
the E and I parts of the torus as semitori of radiilhE, lhI. Thus,
the free energy per molecule in the E part for instance can be
expressed as

with lhE given by eq 15 and withτ evaluated from the curvature
of the chain free energy in a cylinder. (From Figure 1,τ = 1.)
A similar expression can be written for the free energy per
molecule in the inner part of the torus. The total deformation
energy is given by∆F/ν ) VEfE + VIfI, where all factors depend
on the curvaturec. Expanding∆F in powers ofc we getκ
from the second order term. The result is

Minimization with respect toη gives

For τ ) 1, b ) 16 Å, andγ ) 0.12kBT/Å2 we obtainη ) 2.7
Å and κ ) 140 kBT Å, in close agreement with the detailed
numerical calculation.
We conclude this section with two comments. The first

comment concerns the assumption that the bent cylinder forms
a section of a perfect torus, so that its cross-section is a circle.
This assumption is closely related to another assumption we
made, namely, that within this circular cross-section all chain
ends are pointing toward one point. Subject to this assumption
it can be shown by (somewhat lengthy) functional variation that
the optimal shape of the bent cylinder is, indeed, a torus. A
simpler, qualitative explanation of this result can easily be given
for the limiting (but quite common) case where the optimal
radius of the straight cylinder,b, is equal to the length of the
fully stretched hydrocarbon tail,lc. In this case, if the length,
L, of the cylinder does not change in the course of bending (as
appropriate for a pure bending deformation), the cross-section
of the bent cylinder must remain circular, since only this shape
allows all chain ends to meet at one point (which must be at
the center of the circle, i.e.,ε ) 0 in Figure 3.). It is of course
possible that the cross-section of the bent cylinder will not be
circular but, e.g., elliptical, in which case the chain ends will
not meet at one point. We have considered several geometries
of this kind, all leading to larger values ofκ than those we found
for the torus. In conclusion, if a more favorable geometry than
the torus is available for the bent cylinder, then our estimate of
κ should be regarded as an upper bound.

Figure 5. Bending modulusκ and its componentsκch andκhg (all in
units of kBT Å) as a function of the relaxation parameterη for B )
300 kBT Å2. Complete relaxation is found forη ) 3.5 Å.
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Finally it should be mentioned that a crude estimate of the
1D bending rigidityκ can be obtained using the more common
2D bending rigidity of surfactant layers,K, as follows. The
bending energy of a surfactant monolayer of areaA is given by
the familiar (Helfrich) expression31

with K and Kh denoting the splay and saddle-splay bending
constants, respectively, andc0 being the spontaneous curvature.
Recall that the bending free energy is minimal whenc1 ) c2 )
ceq) c0K/(2K + Kh). Suppose now that the cylinder is composed
of two semicylinders, E and I, as in Figure 3. The E
semicylinder can be regarded as a monolayer with one (very)
high principal curvaturec1 ≈ 1/b and one moderate curvature
c2 ≈ 1/r, wherer is the radius of the torus. (Actually, both
curvatures should be measured with respect to the neutral surface
of the monolayer which typically lies somewhere inside the
hydrophobic core, implyingc1 > 1/b. Note also thatc2 ) 1/r
is only approximately valid.) Similarly, for the I semicylinder
c1 ≈ 1/b and c2 ≈ -1/r. Using eq 20 for the E and I
semicylinders and adding their contributions to the bending
energy, we find∆F ) AK/r2 ) LdK/r2, whereL is the length
of the bent cylinder andd∼ b is the width of the semicylindrical
monolayers (d ) πb if the neutral surface is exactly at the
interface). Hence, the 1D and 2D bending constants are related
by κ ) 2dK ∼ bK, a result which could also be guessed by
dimensional analysis. Typically, for lipid bilayers,K ∼ 10kBT,
and, hence, withb ) 15 Å, we find thatκ is of the order of
several hundreds ofkBT Å, consistent with our findings.
Of course, the above expression for∆F is only valid for small

curvature deformations (c1 andc2 close toceq). Hence, using
the (near planar) monolayer value forK to estimateκ is certainly
a far reaching approximation. Yet it is interesting to note that
this crude approximation provides a reasonable order of
magnitude estimate forκ.

4. Intermicellar Junctions

In Figure 6 we show our model for a 3-fold (“Y-like”)
intermicellar junction. The three cylindrical micelles join each
other through matching semitoroidal sections, and the middle
of the structure is completed by a trianangular bilayer “patch”.
The local geometry of the semitoroidal regions is saddlelike.
The bilayer region is “pinched”, thus enabling the amphiphiles

to pack at a larger area per head group, closer to that in the
cylindrical branches. The exact parametrization of the junction
surface is given in the Appendix. The extent of the pinching
is taken into account through a parameterR. WhenR ) 0 the
bilayer thickness exactly matches the diameter 2b of the
semitoroidal regions;b is also the radius of the cylindrical
micelles forming the junction. WhenR > 0 the bilayer
thickness decreases continuously toward the center of the
junction, reaching a minimum value of 2b(1- 2R) in the middle
of each toroidal section. Another important geometrical char-
acteristic of the junction is the radius of the (negatively bent)
semitori r. Both r and R will be treated as variational
parameters, to be determined by minimization of the total free
energy of the junction.
The packing geometry of the amphiphiles constituting the

junction is not uniform, involving locally varying surface to
volume ratios at different points of the structure. Even after
optimization of the junction size and shape with respect tor
andR, it is not possible to pack all amphiphiles with the same
area per head group and (certainly) not at the same local
curvatures of the interface. So, obviously, if the cylindrical
micellar geometry provides the optimal packing conditions, there
is no energetic incentive for micellar branching. It is however
possible that the “fusion reaction” where a junction is formed
by the fusion of an end cap of one micelle with the cylindrical
body of another is energetically favorable. Then one might
expect the appearance of micellar junctions at concentrated
micellar solutions. It is also possible that the saddlelike
geometry which constitutes a considerable portion of the
aggregate provides a convenient packing geometry. If the saddle
energy is substantially lower than that of the cylinder, one
expects the formation of inverted cubic phases already at low
amphiphile concentrations, as indeed observed in some lipid
solutions. If the energies of the cylinder and the saddle are
comparable (i.e., within severalkBT’s), one can expect junction
formation already in dilute and semidilute micellar solutions,
at least as metastable structures. The free energy calculations
presented here are intended to help answer these questions.
Since junctions were experimentally observed in solutions

of wormlike micelles, we assume that the preferred aggregation
geometry of the amphiphiles, at least in dilute solution, is
cylindrical. The fact that, on average, the surface to volume
ratio of the junction (in both its middle and saddle regions) is
similar to that of a planar bilayer suggests that the cylinder
stability relative to the bilayer is only marginal; in our Figure
2 this corresponds toB ∼ 300 kBT Å2 for C14 chains. This
also implies a large end cap energy and hence long wormlike
micelles. These considerations will guide our choice of
parameters in the numerical examples.
Since not all molecules in the junction can pack at their

optimal area per head group, the free energy of junction
formation must be finite, even according to the OFM ap-
proximation which totally ignores the chain contributions. Thus,
here, as opposed to the case of the bent cylinder both the head
groups and the chains will contribute to the packing free energy.
To somewhat simplify the geometrical parametrization of the
junction, we shall treat the middle (pinched bilayer) section as
composed of two regions (Figure 7): a central, triangular piece
of a flat bilayer and three slanted bilayer regions joining the
flat central region with the semitoroidal edges. We shall
designate the toroidal, slanted, and middle bilayer regions as t,
s, and b, respectively.
The free energy of the junction is calculated as the sum of

the free energies of the t, s, and b regions; their absolute and
relative contributions depend on bothr andR. For each region

Figure 6. Surface of the Y-junction model used in the calculations.
For this particular caser/b ) 2 andR ) 0.13 (see text). The middle
part (not shown) is treated as a (pinched) bilayer piece.

∆F
A

) 1
2
K(c1 + c2 - c0)

2 + Khc1c2 (20)
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the free energy is given as an integral over local free energies
per molecule, according to eq 1. Both the head group and the
chain contributions are taken into account. The head group
terms are calculated using (4), with the appropriate local head
group areaa ) a(s). We consider several values ofB, always
with γ ) 0.12 kBT/Å2 and lh ) 1 Å. The calculation of the
(C14) chain free energy in the b region is straightforward. In
the s region it is calculated as the value corresponding to the
average bilayer thickness in this region. A more complicated
procedure is needed for calculatingfc in the semitoroidal sections
(see Appendix). Here, whenR > 0, the inner radius of the
semitori (b(φ)) is not constant, passing through a minimum
between every two cylindrical branches. The chain free energy
is calculated, for everyr andR, as a function ofb(φ), and then
integrated to yield the total semitorus energy.
In Figure 8 we show the total junction free energy∆F, after

minimization with respect tor, as a function ofR; calculated
according to the (locally applied) OFM approximation; i.e., the
chain contribution is not included in this calculation. The energy
is calculated relative to the packing energy in a cylindrical mi-
celle of radiusb ) 16 Å, corresponding to a head group repul-
sion strengthB ) 308 kBT Å2. The global minimum of∆F
occurs forR = 0.13; the corresponding optimal radius isr =
24 Å = 1.5b. In general, the optimal junction sizer does not
vary significantly withB: from 26 Å forB) 270kBTÅ2 to 20
Å for B) 450kBTÅ2. As mentioned earlier, the relevant values
of B are the lower ones (B≈ 300kBT Å2) which correspond to
long wormlike micelles. It should be noted however that∆F
decreases withB: from 22 to 14kBT asB increases from 270
to B ) 450 kBT Å2. Yet, the physically more relevant free
energy difference is∆F̃ ) ∆F - Fec, whereFec is the end cap
energy. ∆F̃ is the free energy change in the end cap-cylinder

fusion reaction mentioned above. The end cap energy, i.e, the
packing free energy in a hemispherical cap relative to that in
the cylinder, increases sharply asB decreases. Consequently
∆F̃ increases withB. We shall return to this point after adding
the chain contribution to∆F. (Note that forB ) 300 kBT Å2

we find Fec = 22 kBT, implying ∆F̃ < 0; see Figure 8).
Now we add the chain contribution to the packing energy in

the junction, again optimizing∆F with respect tor and then
with respect toR. The results obtained for the variation of∆F
and∆F̃ with R (after minimization with respect tor ) are shown
in Figure 9, for several values ofB. Again we see that∆F
decreases withB, but ∆F̃ shows the opposite behavior. The
optimal junction sizes are now somewhat larger than those
obtained in the OFM approximation:r = 27, 26, and 23 Å for
B/kBT Å2 ) 270, 330, and 450, respectively.
The calculations show that the head group and chain

contributions to the junction energy are comparable. For
instance; forB ) 270 kBT Å2 we find ∆F ) 38 kBT with 22
and 16kBT coming, respectively, from the head group and chain
contributions to the free energy. The most significant result of
our calculations is that, for the lowest (and most relevant) value
of B for which cylinders are still more stable than bilayers,
(namely, 270kBTÅ2 in our model), the free energy in the fusion
reaction, though low,∼10 kBT, is positive. Thus, our calcula-
tions predict that in aqueous solutions of single surfactant
component, which self-assembles into wormlike micelles,
intermicellar junctions are energetically unfavorable but may
appear as metastable structures.

5. Concluding Remarks

The calculations presented in this paper present the first
attempt to estimate, on the basis of a molecular-level theory,
the bending rigidity (hence the persistence length) of wormlike
cylindrical micelles, as well as their propensity to form

Figure 7. Top view on the bilayer part of a junction (drawn in solid
lines), showing the toroidal (t) edges of the junction and the slanted
(s) and flat (b) bilayer regions in its middle part.

Figure 8. Optimal dimensionless energy∆F/(γb2) of a junction as a
function of the relaxation parameter, forb ) 16 Å (γb2 ) 23.5kBT).

Figure 9. Junction energy∆F (a, top) and fusion energy∆F̃ (b,
bottom) (both minimized with respect tor) as a function of the
relaxation parameterR, for different values of the head group interaction
parameter:B ) 270 kBT Å2 (solid line),B ) 330 kBT Å2 (dashed-
dotted line), andB ) 450 kBT Å2 (dashed line).
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intermicellar junctions. The calculations were limited to single-
component surfactant solutions. The theory employed is
approximate, as both the head group and the hydrocarbon chain
contributions to the packing free energies were treated in a mean
field level. Furthermore, our choice of molecular interaction
parameters, though guided by experimental facts, is necessarily
approximate. Nevertheless it should be remembered that
approximate theoretical models of the kind used in the previous
sections have been widely and successfully applied to calculate
both single chain (conformational) and thermodynamic proper-
ties of self-assembled amphiphilic aggregates (for example,
orientational bond order parameters of lipid chains in membranes
and curvature elasticity moduli of monolayers and bilayers27).
For the persistence length of flexible, wormlike micelles we

obtained values of just a few nanometers, in qualitative
agreement with several experimental systems.1 More precisely
such low persistence lengths were observed in high-salt solutions
of ionic surfactants where the electrostatic repulsion between
the charged head groups is effectively screened. Qualitatively,
in our model, this condition was mimicked by the small value
of the parameterlh. For stronger electrostatic repulsions a more
detailed interaction model is called for.
The calculations pertaining to the formation of intermicellar

junctions indicate that these structures are energetically meta-
stable, at least when the optimal surface/volume ratio for
amphiphile packing is intermediate between the cylindrical
micelle and planar bilayer geometries. The existence of
intermicellar junctions has been hypothesized on the basis of
the unusual viscosity behavior observed in certain semidilute
solutions of wormlike micelles.5,6,19,20 Later on, intermicellar
junctions were directly imaged by cryoelectron microscopy
measurements,25,26 yet it is not entirely clear whether these
structures are (perhaps shear induced) metastable transients or
equilibrium entities. Molecular dynamics simulations23 of
aqueous solutions of trimeric (three-tail) surfactant reveal some
structures which appear as branched aggregates, yet the ag-
gregates are rather globular and it is not clear that similar
structures will be found in systems of truly long cylindrical
micelles. Thus, presently, there is not sufficient evidence to
either support nor refute our findings. Finally, we reiterate that
the appearance of intermicellar junctions may be favored
entropically, if not energetically. In a solution of overlapping
wormlike micelles, junction formation (or transient “cross-
linking”) may provide an efficient alternative to entanglements
and/or to high-energy end caps.21,23
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Appendix
First we give a parametric description of the semitoroidal

surface as shown in Figure 6. It can be defined by

with x, y, z being the Cartesian coordinates,π/2 < θ < 3π/2
and-π/6 < φ < π/6. According to this definition the torus

thickness varies from 2b at φ ) π/6 to 2b(1 - 2R) at φ )0. It
is furthermorer, the torus radius measured with respect to the
torus axis, and 0e R, a relaxation parameter, that give the
pinching of the torus.
Using eqs 21 and the approximate treatment of the junction

middle part as introduced in section 4, we can evaluate the
overall junction areaA and volumeV which are in first order
of R given by

with ø ) r/b.
Evaluation ofF in the semitoroidal sections of the junctions

was carried out using eq 1, which can be written as

with ñ dφ dθ being the number of molecules in the angular
element dφ dθ. It is in first order ofR

In order to determine the head group contribution toF in eq
22, we need to know the area per molecule in the semitorus
region,a) ã/ñ. Here,ã dφ dθ is the area of the angular element
dφ dθ. In first order ofR one obtains

Finally, we note that the average bilayer thickness in the s
region is given by
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