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The loss of conformational freedom experienced by lipid chains in the vicinity of one, or two, impenetrable
walls, representing the surfaces of hydrophobic transmembrane proteins, is calculated using a mean-Ðeld
molecular-level chain packing theory. The hydrophobic thickness of the protein is set equal to that of the
unperturbed lipid membrane (i.e., no ““hydrophobic mismatchÏÏ). The probability distributions of chain
conformations, at all distances from the walls, are calculated by generating all conformations according to the
rotational-isomeric-state model, and subjecting the system free energy to the requirement that the hydrophobic
core of the membrane is liquid-like, and hence uniformly packed by chain segments. As long as the two protein
surfaces are far apart, their interaction zones do not overlap, each extending over several molecular diameters.
When the interaction zones begin to overlap, inter-protein repulsion sets in. At some intermediate distance the
interaction turns strongly attractive, resulting from the depletion of (highly constrained) lipid tails from the
volume separating the two surfaces. The chains conÐned between the hydrophobic surfaces are tilted away
from the walls. Their tilt angle decreases monotonically with the distance from the walls, and with the distance
between the walls. A nonmonotonic variation of the lipid-mediated interaction free energy between
hydrophobic surfaces in membranes is also obtained using a simple, analytical, model in which chain
conformations are grouped according to their director (end-to-end vector) orientations.

I. Introduction

The incorporation of an intrinsic protein into a lipid mem-
brane is driven by the hydrophobic e†ect, namely, by the
lower free energy of the system when the protein is sur-
rounded by the hydrocarbon tails of the lipids rather than by
water molecules. Nevertheless, the presence of the protein in
the membrane generally involves a (tolerable but) signiÐcant
perturbation in lipid chain organization, as compared to the
protein-free membrane. Apart from speciÐc lipidÈprotein
interactions that depend on the chemical characteristics of the
lipids and the proteins, several nonspeciÐc mechanisms come
into play when a ““hydrophobic inclusionÏÏ, such as an integral
protein or peptide, is inserted into a lipid membrane. One
important factor underlying these interactions is the fact that
the lipid tails constituting the lipid membrane are Ñexible,
possessing many possible chain conformations, whereas the
intrinsic proteins are relatively sti†, exposing rigid impenetra-
ble walls to the surrounding lipids. Consequently, those lipids
in the immediate vicinity of the walls must adapt their confor-
mational statistics to the presence of the incorporated inclu-
sions, thereby experiencing elastic distortions which,
sometimes, can induce long-range membrane deformations.

One of the most familiar characteristics of lipidÈprotein
interaction, prevailing when a transmembrane protein of
hydrophobic thickness is inserted into a membrane of equi-hPlibrium thickness is the ““hydrophobic mismatchÏÏ betweenh0 ,
the inclusion and the membrane, Attempting to*h \ hP [ h0 .
bridge the hydrophobic mismatch, and thus avoid exposure of
hydrophobic moieties to water, the Ñexible lipid tails will

stretch (when *h [ 0) or compress (when *h \ 0), paying the
necessary price of elastic deformation energy. The possible
outcomes of the hydrophobic mismatch have been intensively
studied both experimentally1,2 and theoretically,3h8 and
include modiÐcations in protein conformation,9 lipid sorting
in mixed membranes,10 microdomain formation,11 modula-
tions in the lipid phase behavior12 and peptide-mediated lipid
phase transitions.2,8

Regardless of whether the hydrophobic mismatch is large,
small or even identically zero, there is another source of con-
formational free energy loss which the lipids bordering a rigid
protein surface must pay. This, much less studied, nevertheless
ever-present and important, e†ect is associated with the
obvious fact that once a lipid molecule is near an impenetra-
ble wall it can no longer explore all the chain conformations
available to it far away from the wall. The number of lipids
experiencing this perturbation is proportional to the contact
area between the protein surface and the lipid chains. Since
the lipidÈprotein contact area diminishes as two (or more)
proteins come into contact, this lipid-mediated interaction
mechanism is naturally attractive, and thus at high concentra-
tions of proteins in membranes may favor their aggregation
into dense domains.

The lipid-mediated attraction between proteins was Ðrst
pointed out and studied by using his mean-ÐeldMarc— elja,
theory of chain orientational order in lipid membranes.13 It
should be emphasized that theory was explicitlyMarc— eljaÏs
formulated for the case of zero hydrophobic mismatch. Sub-
sequent, mean-Ðeld, treatments of lipid-mediated proteinÈ
protein interactions have also predicted purely attractive
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interaction potentials.14,15 Note, however, that the thermody-
namic order parameter in these theories is the hydrophobic
mismatch, implying that the interaction potential is identically
zero when the hydrophobic mismatch vanishes.

Recent Monte-Carlo studies16,17 on a coarse-grained,
membrane-like model system suggest a more complicated
interaction potential between rigid membrane inclusions.
These simulations reveal the existence of a short-ranged
depletion-induced attraction, a Ñuctuation-mediated attrac-
tion at large distances between the inclusions and a repulsive
barrier at intermediate separations. The long-range attraction
found in these calculations is attributed to the overlap
between the gradients of density and orientational Ñuctuations
of the lipids around each protein.16 A similar explanation for
the attraction between membrane inclusions, reÑecting the
suppression of order parameter Ñuctuations in the protein
vicinity, was earlier proposed by using a mean-Schro� der18
Ðeld theory of nematic liquid crystals. A nonmonotonic inter-
action potential between rigid membrane inclusions was also
predicted by et al.,19 based on the hypernetted chainLagu� e
integral equation formalism for liquids. Here, the lateral
densityÈdensity response function of the hydrocarbon core
was extracted from a molecular dynamics simulation of a pure
lipid bilayer and used as an input for the statistical thermody-
namic theory. The interaction between two identical cylin-
drical inclusions of radius 5 was found attractive forA�
separations smaller than 15 and repulsive for larger dis-A� ,
tances. In both calculations, by et al.19 and Sintes andLagu� e

the lipid-mediated interaction betweenBaumga� rtner,16,17
inclusions was found to be nonmonotonic, exhibiting a repul-
sive barrier at some intermediate separation. This may be con-
trasted with the earlier, mean-Ðeld, treatments which predict a
monotonically attractive interaction. In this paper we shall
show that a nonmonotonic behavior of the lipid-mediated
interaction energy between inclusions is also predicted by a
mean-Ðeld, molecular-level, theory of chain packing in mem-
branes. A highly simpliÐed closed-form ““director model ÏÏ,
which will be presented in Section 4 of this paper, reproduces
the same qualitative behavior.

The molecular-level chain packing theory alluded to above
has previously been used to calculate the lipid perturbation
free energy caused by the presence of a single transmembrane
protein, as a function of the hydrophobic mismatch between
the membrane and the inclusion.7 It was found that the elastic
perturbation free energy is nonzero even if *h 4 0.
(Depending on whether the lipid spontaneous curvature is
positive or negative, the minimum in the perturbation free
energy occurs at negative and positive values of *h, respec-
tively, and increases approximately quadratically around the
minimum.)

Our main goal in the present work is to formulate a slightly
di†erent version of the molecular chain packing theory, and
apply it to calculate the lipid-mediated interaction free energy
between two hydrophobic inclusions, as a function of the dis-
tance between them. Our basic free energy expression contains
explicitly only those free energy terms associated with the lipid
tails. The interaction between the lipid headgroups (which are
not involved in the elastic deformations associated with
hydrophobic inclusions) are treated in the two limits of
““ strongÏÏ and ““weakÏÏ correlations between headgroup posi-
tions. In the former case, the headgroups are uniformly dis-
tributed (equivalently, equidistant) on the hydrocarbonÈwater
interface. In the opposite limit, they are allowed to relax, so as
to minimize the packing free energy of the lipid tails. As we
shall see, the interaction free energy is essentially the same in
both limits. Focusing on the e†ects of conformational entropy
loss inÑicted by the presence of the impenetrable inclusion
walls, we shall only consider the case *h \ 0. We will show
that the lipid-mediated interaction potential is, indeed, non-
monotonic and derive numerical estimates for its strength.

Later on in the paper we shall show that a qualitatively
similar behavior is predicted by the simpler, physically more
intuitive, director model.

II. Chain packing theory

Our model is described in Fig. 1. Two Ñat and parallel hydro-
phobic walls, representing the surfaces of the proteins, are per-
pendicularly embedded in a symmetric lipid bilayer ; their
height matches exactly the hydrophobic thickness of the
unperturbed bilayer, The distance between the walls, mea-h0 .
sured along the x-axis of a Cartesian coordinate system, is d.
The origin of the coordinate system is located in the middle of
the left wall, with the z-axis oriented normal to the membrane
midplane, which coincides with the xy-plane. We assume that
the length of the walls along the y-axis, L , is much larger than
the linear dimension of (the cross-section of ) a lipid chain,
implying that end e†ects are negligible and the system can be
treated as translationally invariant along the y-axis. (Thus, our
lipid perturbation energies are simply proportional to L .
Nevertheless, for dimensional consistency we Ðnd it helpful to
keep using this length in our formulation of the problem.)
Note that this does not imply that chain conformations are
restricted to the xz-plane but, rather, that there are no addi-
tional constraints on chain conformations in the y-direction
except those imposed by the presence of other lipid chains.
Strictly speaking, by treating the protein walls as planar (and
hence ignoring curvature e†ects), our model applies for the
interaction between two large proteins at relatively short
separations, e.g., two cylindrical proteins of large cross-section
at distances smaller than their diameters. Yet, it should be
noted that, as long as the radius of curvature of the inclusion
is larger than the linear dimension of a lipid chain, the results
derived from the model presented below can also be used to
calculate interaction free energies between curved inclusions.

Even in cases where the membrane thickness in thehP\ h0vicinity of a hydrophobic inclusion, h(x), is not necessarily
constant. However, these thickness variations are small and
we shall therefore assume denoting theh(x) \ h0\ 2l6 ; l6
average end-to-end length of an (unperturbed) lipid tail, being
equal to the thickness of each monolayer. Thus, the hydro-
phobic volume available to the lipid chains between the two
walls is with denoting the volumeVbl\ L dh0\ 2V V \ L dl6
per monolayer. The hydrocarbonÈwater surface area of the
membrane section considered is A denotingAbl\ 2L d \ 2A,
the surface area per monolayer. As usual, we treat the hydro-
phobic core of the membrane as a homogeneous incompress-
ible liquid of lipid chains, each of volume v. Thus, the number
of lipid chains, per monolayer, is and theNbl/2 \ N \V /v,

Fig. 1 Schematic illustration of a symmetric lipid bilayer bounded
by two identical rigid protein walls at distance d. The hydrophobic
thickness of the bilayer and the protein walls is The area densityh0 .
of headgroups on the hydrocarbonÈwater interface is p(x). Note that
at any given point within the hydrophobic interior the averagexü , zü
chain segment density is uniform.
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average two-dimensional (2D) density of chain origins at the
hydrocarbonÈwater interface is denot-p6 \ N/A\ 1/a6 \ l6/v ; a6
ing the average cross-sectional area per chain, at the
hydrocarbonÈwater interface. Note that for double-tail lipids
the average area per lipid headgroup is In our chain2a6 .
packing theory outlined below, all the hydrocarbon chains
constituting the hydrophobic core of the membrane are
treated as identical. Furthermore, because their density is
uniform, no distinction is made between neighboring chains
originating from one or two adjacent headgroups. Thus, here-
after, we shall refer to equivalently as the area per head-a6
group and area per chain.

In the formulation of the chain packing theory presented
below, and the numerical results reported in the next section,
we treat the headgroup position at the hydrocarbonÈwater
interface as a continuous variable, with its x-coordinate, mea-
suring the distance from the protein walls, varying between 0
and d. Note, however, that because of the nonzero (hard core)
diameter, of the hydrocarbon tail, the minimal distancedmin ,
of a chain origin from the surface of a hard wall is dmin/2.
Similarly, as long as there are lipid chains between the two
walls, the minimal distance between their surfaces is (Yet,dmin .
the number of ““ trappedÏÏ chains at this separation is negligi-
bly small.) We shall keep using 0O x O d for the range of
headgroup positions, but it should be understood that the
impenetrable hydrophobic surfaces are actually positioned at

and For brevity, we shall keepx \[dmin/2 x \ d ] dmin/2.
referring to d (rather than as the distance betweend ] dmin)the walls.

In many of their possible conformations, lipid chains origin-
ating in one of the two monolayers can reach (interdigitate)
beyond the bilayer midplane. This fact is taken into account
in our chain packing model (see below). Yet, because the lipid
bilayer is symmetric with respect to its midplane, it is conve-
nient to focus on one of its two constituent monolayers, say
the ““upper ÏÏ one in Fig. 1. In the presence of the perturbing
hydrophobic walls the headgroup density at the xy-plane (at

is no longer necessarily uniform. Because the systemz\ h0/2)
is translationally invariant along y, the headgroup density is
now a function of x, p \ p(x)\ 1/a(x), with a(x) denoting the
locally varying area per headgroup. Because the membrane is
incompressible,

p6 \
1

d
P
0

d
dx p(x)\

N
L d

\
h0
2v

(1)

A lipid chain originating at point x, y of the interface
can be found, with a certain (yet undetermined) probability
P(a o x,y)\ P(a o x), in any one of a multitude of conformations
MaN, with a speciÐed by the positions of all the atoms consti-
tuting the chain. [Our scheme for generating chain conforma-
tions is based on the rotational-isomeric-state (RIS) model,20
see the next section.] This conditional probability satisÐes, for
all x, the normalization

;
a

P(a o x)\ 1 (2)

The number of chains originating between x and x ] dx (with
y anywhere between 0 and L ) is

dN(x)\ L p(x) dx \ (N/p6 d)p(x) dx

Hence, on average, the number of chains in conformation a
originating between x and x ] dx is

dN(x, a)\ dN(x)P(a o x)

\ (N/p6 d)p(x)P(a o x) dx 4 NP(x, a) dx

The function P(x, a) dx \ dN(x, a)/N, denoting the fraction of
chains in conformation a originating between x and x ] dx, is

normalized according to

P
0

d
dx ;

a
P(x, a) \ 1 (3)

and can be interpreted as the joint probability of Ðnding an
““a-chain ÏÏ between x and x ] dx. The quantity

P(x) \ P(x, a)/P(a o x) \ [dN(x)/dx]/N

i.e.,

P(x) \
1

d
p(x)

p6
(4)

is the probability density of Ðnding a chain (in any
conformation) originating at x. It satisÐes the normalization
condition

P
0

d
dx P(x) \ 1

As is well known, the entropy associated with a discrete
probability distribution, over a set of states MiN, is given byP

i
,

S \ [ kB ;
i

P
i
ln P

i

with denoting BoltzmannÏs constant.21 For a continuouskBprobability density, P(x) [P(x) dx denoting the probability of
Ðnding the system between x and x ] dx], the entropy can
only be deÐned with respect to some reference system charac-
terized by the distribution namely,22P0(x),

S \ [ kB
P

dx P(x) ln[P(x)/P0(x)]

In our problem, where P(x, a) involves both continuous (x)
and discrete (a) variables, the entropy of the system is given by

S \ [NkB
P
0

d
dx ;

a
P(x, a)ln

AP(x, a)

P0(x)

B
(5)

measuring the joint (conformational and positional) entropy
of one monolayer, relative to a monolayer with positional
headgroup distribution The factor N appears on theP0(x).
right-hand side of eqn. (5) because P(x, a) is a singlet distribu-
tion, i.e., S/N \ SsT is the average entropy per chain in the
monolayer. In this connection it should be noted that because
P(x, a) is a singlet distribution (rather than the many-chain
distribution), S/N is a mean-Ðeld approximation to the mono-
layer entropy. [It should also be noted that, in fact, a given
chain conformation, a, is deÐned by both discrete and contin-
uous variables. However, we need not introduce an additional
reference probability distribution as we shall only beP0(a o x),
interested in entropy di†erences that do not involve this dis-
tribution.]

Our reference state for the probability distribution of head-
group positions is the uniform distribution corre-P0(x) \ 1/d,
sponding to To calculate the free energy of thep(x) \p6 .
monolayer, F\ E[ T S, T denoting the absolute tem-
perature, we calculate the energetic contribution using

E/N \ SeT \
P
0

d
dx ;

a
P(x, a)e(a)

\
P
0

d
dx P(x) ;

a
P(a o x)e(a)

\
P
0

d
dx P(x)SeT

x

with e(a) denoting the internal (trans/gauche) energy of a chain
in conformation a, and is the average internal energy ofSeT

xchains originating at x. [The internal energy per chain
depends only on a ; depends on x through P(a o x).]SeT

x
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With P(x, a)\ P(x)P(a o x)\ [p(x)/p6 d]P(a o x), P0(x) \ 1/d,
and the expressions above for the monolayer energy and
entropy, the free energy per monolayer with two embedded
inclusions at distance d from each other is given by

F\ NS f T

\ N
P
0

d
dx ;

a
P(x, a)

C
e(a)] kBT ln

AP(x, a)

P0(x)

BD

\ L
CP

0

d
dx p(x) ;

a
P(a o x)[e(a)] kBT ln P(a o x)]

] kBT
P
0

d
dx p(x)ln

Ap(x)

p6
BD

(6)

The sum

f (x)\ ;
a

P(a o x)[e(a)] kBT ln P(a o x)] (7)

appearing on the right-hand side of eqn. (6) is the conforma-
tional free energy per chain, for those chains whose head-
groups are anchored at x. The second term in eqn. (6)
represents the excess entropy of the headgroup distribution,
relative to the uniform distribution [where In thep(x)\p6 ].
protein-free membrane P(a o x)\ P(a) is independent of x, and
hence is, simply, the conformational free energy perf (x)\ f0chain in the membrane. Note also that in this limit p(x) \ p6 ,
and eqn. (6) yields i.e.,F\ f0 p6 L d \Nf0 , S f T \ f0 .

The actual probability distribution of the membraneÈ
protein system P(x, a) [and hence p(x) and P(a o x)] is the dis-
tribution function which minimizes F, subject to all the
relevant constraints on the system. Apart from the trivial nor-
malization condition, eqn. (3), we impose only one physicalÈ
packingÈconstraint on P(x, a). Namely, we require that the
density of lipid chain segments in the hydrophobic core of the
membrane is uniform (i.e., the core is an incompressible,
liquid-like, medium), as attested by numerous experiments.
Note that this assumption is equally valid for protein-free and
protein-containing membranes. Di†erences between the prob-
ability distributions corresponding to these systems appear
because the lipid chains [and hence their P(x, a)] must satisfy
di†erent boundary conditions, yet their packing constraints
are identical. The boundary conditions, namely, the presence
of two hydrophobic walls at distance d apart, will also dictate
the dependence of F on d.

For the mathematical formulation of the uniform packing
constraint, let denote a small volume elementdrü \ dxü dyü dzü
around an arbitrary point within the hydrophobic core.rü
Also, let denote the average density of chain segmentsSr(rü )T
at i.e., is the average number of chain segments inrü ; Sr(rü )T drü

Our assumption that the hydrophobic core is uniformlydrü .
packed by chain segments implies Sr(rü )T \r6 \ constant ; r6
denoting the uniform segment density in the hydrophobic
core.

Several chains, originating at di†erent points of the
hydrocarbonÈwater interface, can contribute to the average
chain segment density at The contribution of each of theserü .
chains to is an average over its many conformationalSr(rü )T
states, a. Recalling that P(x, a) dx is the fraction of chains in
conformation a, anchored to the interface (anywhere along
0 O y O L and) between x and x ] dx, and using x, a) tor(rü ;
denote their contribution to the segment density at we haverü ,

Sr(rü )T \
P
0

d
dx ;

a
P(x, a)r(rü ; x, a)

Since our system is translationally invariant along y, it follows
that x, x, a) is independent of Thusr(rü ; a)\ r(xü , zü ; yü .

Sr(xü , zü )T \
P
0

d
dx ;

a
P(x, a)r(xü , zü ; x, a)\ r6 (8)

with the constant denoting the segment density in ther6
liquid-like hydrophobic core.

The second equality in eqn. (8) is the mathematical expres-
sion of the (uniform density) packing constraint that P(x, a)
must fulÐll. It should be noted that this packing constraint
applies to all points andxü , zü (0 O xü O d [h0/2 O zü O h0/2)
within the hydrophobic core, and thus represents a
(continuous) set of constraints on P(x, a). Note also that,
because of chain interdigitation across the bilayer midplane,
contributions to the segment density around the midplane
arise from chains belonging to both monolayers. Thus, the
integration over x in eqn. (8) should be regarded as extending
over both interfaces of the bilayer. In our numerical calcu-
lations we account for this fact by treating x, a) as ther(xü , zü ;
sum of the contributions corresponding to the conformation a
originating at the upper interface and its mirror image at the
lower interface.

In the present work, the lipid tails are modeled as fully satu-
rated hydrocarbon chains, of the form TheÈ(CH2)n~1ÈCH3 .
volume occupied by such a C-n chain corresponds to about
v\ (n ] 1)l where lB 27 is the speciÐc volume perA� 3 CH2segment in bulk liquid alkane phase.23 (The speciÐc volume of
the terminal, segment is approximately twice as large.)CH3 ,
From this we obtain the average chain segment density in the
bilayer r6 \ (n] 1)/l.

Minimizing the free energy functional, eqn. (6), with respect
to P(x, a) \ P(x)P(a o x) [recall subject to theP(x) \ p(x)/p6 d],
normalization condition, eqn. (3), and the packing constraint,
eqn. (8), we Ðnally obtain

P(x, a) \
1

d
s(x, a)

q
(9)

with

s(x, a) \ exp
C
[

e(a)

kBT
[
P
0

d
dxü
P
0

h0@2
dzü j(xü , zü )r(xü , zü ; x, a)

D
(10)

denoting a generalized Boltzmann factor which includes two
terms in its exponent. The Ðrst term is the energetic contribu-
tion [e(a)], which favors chain conformations of low internal
energy (low gauche content). More important is the second
(pressure ] volume) term, which represents the e†ects of chain
packing constraints on the statistical weights of the various
conformations. The are the Lagrange multipliers conju-j(xü , zü )
gate to the packing constraints, eqn. (8). Note that each point
within the hydrophobic core is associated with an indepen-
dent Lagrange multiplier. Of course, for the numerical evalu-
ation of j, the hydrophobic core is discretized into small cells
(*x*z, of size smaller than one chain segment) with a corre-
sponding number of Lagrange multipliers j.

The normalization factor q in eqn. (9) is the (positionally
averaged) conformational partition function,

q \
1

d
P
0

d
dx q(x), q(x) \;

a
s(x, a) (11)

ensuring that P(a, x) fulÐlls the normalization condition, eqn.
(3). For P(x) and P(a o x) we have

P(x) \
1

d
p(x)

p6
\

1

d
q(x)

q
, P(a o x) \

s(x, a)

q(x)
(12)

The set of Lagrange multipliers, i.e., the function j(xü zü ,)
appearing in eqn. (10), can be determined (numerically) by
substituting P(x, a), as given by eqn. (9), into the packing con-
straints given in eqn. (8). This results in the self-consistency
equations

P
0

d
dx ;

a
s(x, a)[r(xü , zü ; x, a) [ r6 ]\ 0 (13)

which must be solved, simultaneously, at all positions xü , zü .
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Once the function is known, one can calculate allj(xü , zü )
local properties (e.g., chain conformational characteristics) of
the lipid bilayer. For instance, the headgroup density proÐle is
given by

p(x)\ P(x)p6 d \ p6 q(x)/q

Local conformational chain properties are determined by
the conditional probability

P(a o x)\ P(x, a)/P(x)\ s(x, a)/q(x)

giving the probability of a chain anchored at point x of the
interface to be found in conformation a. For instance, the
average end-to-end vector, of chains originating at x, isre(x),
given by

re(x)\ ;
a

P(a o x)[rt(x, a)[ rh(x)] (14)

with denoting the exact position of the headgroup at therh(x)
interface [actually, the x and z coordinates of arerh(x) xh\ x
and a) denotes the coordinates of the ter-zh\ ^h0/2] ; rt(x,
minal chain segment (CH3).Of particular interest in this work is the variation of the
membrane free energy

F(d)\ NS f (d)T \ Fbl(d)/2

with the separation between the two hydrophobic protein
walls, d. To this end, we obtain S f T by substituting P(x, a) as
given by eqn. (9), together with eqn. (10), into eqn. (6), and
obtain

S f T
kBT

\ [ ln q [ r6
P
0

d
dxü
P
0

h0@2
dzü j(xü , zü ) (15)

In deriving eqn. (9) for P(x, a) we have minimized our free
energy functional, eqn. (6), with respect to both P(a o x) and
p(x)P P(x). Note, however, that F involves only the free
energy of the chains constituting the hydrophobic core and
does not account for direct interactions between the lipid
headgroups. In other words, if the headgroup distribution p(x)
deviates from the uniform distribution this deviation is duep6 ,
entirely to the preferred packing of the tails. This is the
expected behavior when inter-chain (packing) repulsion is
stronger than headgroup interaction. In the opposite limit, of
strong headgroup interactions, we expect In the nextp(x)Bp6 .
section we shall see that the membrane free energy is nearly
the same, regardless of whether p(x) is allowed to optimize F
or is constrained to be Ðxed, namely, Yet, the localp(x)\p6 .
headgroup density in the vicinity of the protein walls can be
quite di†erent. In order to compare the two limiting cases (of
““weakÏÏ vs. ““ strongÏÏ correlations between headgroup
positions), let us brieÑy outline the derivation of

P(a o x)\ P(x, a)/P(x)\ dP(x, a)

for the case of a uniform distribution of headgroup positions.
In the limit implying the lastp(x)\p6 , P(x)\P0(x)\ 1/d,

term in eqn. (6) vanishes and F becomes a functional of the
conditional probabilities P(a o x). The P(a o x) values corre-
sponding to di†erent headgroup positions, x, are coupled
through the packing constraints, eqn. (8). The minimization of
F now yields

P(a o x)\
s(x, a)

q(x)
(16)

with q(x) and s(x, a) as given in eqn. (11) and (10), respectively.
For the Lagrange multipliers appearing in the expres-j(xü , zü )
sion for s(x, a), we Ðnd the self-consistency equations

P
0

d
dx

1

q(x)
;
a

s(x, a)[r(xü , zü ; x, a)[ r6 ]\ 0 (17)

as obtained by substituting P(x, a) \ P(a o x)/d from eqn. (16)
into the packing constraint, eqn. (8). Again, once we know j(xü ,

the free energy per molecule can be calculated, resulting inzü ),

S f T
kBT

\ [
1

d
P
0

d
dx ln q(x) [ r6

P
0

d
dxü
P
0

h0@2
dzü j(xü , zü ) (18)

III. Results and discussion
In this section we present numerical results for the lipid-
mediated interaction free energy between two hydrophobic
protein surfaces, as well as several lipid chain properties,
based on the chain packing theory described in the previous
section. In these calculations the lipid tails constituting the
bilayer hydrophobic core are modeled as È(CH2)11ÈCH3chains. The volume of each such chain is v\ 13 ] 27 A� 3 \
351 For the hydrophobic thickness of the lipid bilayer andA� 3.
the protein walls we have used implyinghP \ h0 \ 22.0 A� ,

for the average cross-sectionala0\ 2v/h0\ 1/p6 \ 31.9 A� 2
area per chain. For double-tail lipids this corresponds to an
area per headgroup of 2a0\ 63.8 A� 2.

For any given value of d we have solved a discretized
version of the self-consistency equation [either eqn. (13) or
eqn. (17) depending on whether the lipid headgroups are
allowed to relax freely or not]. All possible chain conforma-
tions were generated based on the rotational-isomeric-state
(RIS) model,20 and used to calculate the chain segment den-
sities x, a). The RIS model is also used to calculate ther(xü , zü ;
internal chain energies, namely, where n(a) is thee(a) \ n(a)e

g
;

number of gauche bonds along a chain in conformation a, and
is the gauche bond energy. Further numericale

g
\ 1.175kBTdetails of the discretization and the calculation of P(x, a) are

outlined in the Appendix.
The quantity of greatest interest in our calculations is F(d),

the lipid-mediated interaction free energy between two protein
surfaces at distance d from each other. When d ] O the mem-
brane contains two isolated, noninteracting, surfaces, i.e.,
F(d ] O) becomes twice the protein-induced lipid pertur-
bation free energy. As a reference system for calculating the
protein-induced lipid perturbation, and the lipid mediated
inter-protein interaction, we use the protein-free lipid bilayer,
where all chains share exactly the same conformational
properties. Using to denote the free energy per lipid chain inf0the unperturbed membrane, the proteinÈlipidÈprotein inter-
action free energy is given by

*F(d) \ F(d) [ Nf0 (19)

which, at d ] O, reduces to twice the perturbation energy
associated with a single wall, per monolayer. [Equivalently,
*F(d ] O) is the perturbation free energy of a bilayer by an
isolated inclusion.] This quantity has previously been calcu-
lated as a function of the hydrophobic mismatch *h \ hP [ h0(for a membrane composed of C-14 chains) in the limit of
strong headgroup interactions.7 In the present work we use a
similar approach to calculate the lipid-mediated inter-surface
interaction potential, *F(d), for both ““ frozenÏÏ and[p(x) \ p6 )
annealed lipid headgroup distributions.

In Fig. 2 we show *F(d) for the two limiting cases of weak
and strong headgroup interactions, as calculated based on the
chain packing theory described in the previous section. Also
shown is the prediction of the simple director model discussed
in Section 4.

All three curves in Fig. 2 exhibit the same qualitative, non-
monotonic, behavior of the lipid-mediated interaction poten-
tial. Namely, steep depletion attraction at very short
separation, preceded by a repulsive barrier at intermediate
separations between the protein surfaces. This behavior can be
explained as follows. At large separations each surface per-
turbs the lipid chains in its vicinity, resulting in a constant
asymptotic value of *F(d ] O). As the two surfaces approach
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Fig. 2 The interaction free energy, *F/L , between two parallel
protein walls as a function of their separation d (per monolayer and
per unit length of the wall). Two of the three curves shown were calcu-
lated using the detailed molecular chain packing theory, and represent
the interaction potentials corresponding to the limits of weak and(L)
strong headgroup interactions ; i.e., annealed headgroup density())
p(x) vs. uniform (““ frozenÏÏ) lateral density respectively. Thep(x)\ p6 ,
dashed curve is the prediction of the simple director model presented
in Section 4.

each other the chains in the intervening region begin inter-
acting with both surfaces, thus experiencing a larger conforma-
tional entropy loss. This is the origin of the repulsive barrier
which becomes noticeable at separations d (on the order of 10

for C-12 chains) that slightly exceed the lateral dimension ofA�
the chains in the lipid core, i.e., somewhat above d D Ja
where a is the cross-sectional area per chain. As d decreases
further, the interaction volume decreases and hence also N,
the number of chains experiencing the conÐning walls. Even-
tually all chains are depleted from the interaction zone and
*F(d ] 0)] 0. A similar behavior was found in the Monte-
Carlo calculations by Sintes and TheseBaumga� rtner.16,17
simulations also reveal an additional long-ranged, Ñuctuation-
mediated, attraction between the rigid proteins. Due to its
mean-Ðeld nature our approach cannot account for this long-
range e†ect.

Another conclusion from Fig. 2 is that *F(d) is rather inde-
pendent of the constraints on the headgroup distribution p(x),
as reÑected by the fact that the curves corresponding to the
frozen and the annealed distributions are essentially superim-
posed on each other. Actually, this result is not too surprising
in view of the fact that the conformational packing statistics of
the lipid tails is mainly dictated by the volumes available to
the chains within the hydrophobic core, rather than by the
exact position of the headgroup (i.e., the chain origin) at the
hydrocarbonÈwater interface. Consequently, whether addi-
tionally constrained or not, the local variations in headgroup
densities cannot be too large. Moreover, owing to their con-
formational Ñexibility, once the chains enter the hydrophobic
interior of the membrane (i.e., one or two segments away from
the headgroups) they can optimize their packing density even
in cases where p(x) is not the headgroup density that the
chains prefer most. In other words, the headgroup and chain
free energies are nearly independent of each other. Recall,
however, that our F(d) accounts only for the chain contribu-
tion to the membrane free energy. The direct interaction
between headgroups (which we have treated here as a con-
stant contribution depending only on depends of course onp6 )
p(x), preferring generally p(x)\p6 .

The extent by which p(x) deviates from its uniform average
in the limit of no headgroup interactions is shown in Fig.(p6 )

3. The calculated results reveal an increase in the density of
headgroups in the immediate vicinity of the protein surface.
This may appear surprising, considering that the loss of chain
conformational freedom is expected to increase as the distance
between the chain and the wall decreases. This apparent con-
tradiction can only be resolved if those chains originating very
near the wall begin diverging away from it once they enter the

Fig. 3 Density proÐles of headgroup positions at the hydrocarbonÈ
water interface, p(x), in the limit of weak headgroup interactions. Pro-
Ðles are shown for d \ 3 (a), d \ 5 (b), d \ 8 (c), d \ 16 (d),A� A� A� A�
and d \ 28 (e). In the limit of strong headgroup interactions theA�
density is constant, (broken line).p \ p6 \ 1/a0\ 0.0313 A� ~2

hydrophobic core, thereby reducing the number of forbidden
(““wall crossing ÏÏ) conformations. In fact, because of their
nonzero volume and because they must conform to the
requirement of uniform chain segment density within the
hydrophobic core, the tails are forced to divert from the wall,
somewhere along the chain. Since the length of a fully
stretched chain, exceeds the average thickness of onels ,monolayer the average end-to-end length of a chain(h0/2 \ l6,
in the unperturbed membrane), a chain originating near the
wall must, on average, tilt away from it.

In Fig. 4 we show how the end-to-end vector, variesre(x),
along the normal direction to the impenetrable walls. We note
that, near the wall, the endgroup of the tail is repelled from
the wall, relative to the position of the headgroup. (Inter-head-
group repulsion pushes the ““Ðrst shell ÏÏ headgroups towards
the wall.) In addition to that, the chains are more stretched
compared to those further away from the wall. The apparent
tilting of the end-to-end vector is a direct consequence of the
tail Ñexibility (i.e., chain conformational freedom). Namely, the
presence of the impenetrable wall excludes all chain conforma-
tions whose contour line crosses the wall. (Of course, these
conformations are allowed in the protein-free membrane. A
simple model featuring these e†ects is described in the next
section.) The Ðrst few chain segments emanating from the
headgroup are oriented approximately parallel to the wall, but
the segments further down the chain are progressively pushed
away from the wall. Pictorially, and very crudely, the average
contour line of those chains originating near the (left) wall is
““L-shapedÏÏ. The extent of this chain tilting e†ect relaxes with
the distance from the wall, as illustrated in Fig. 4. It should be
emphasized that if the hydrophobic tails were regarded as

Fig. 4 Lipid chain tilting proÐles induced by the impenetrable
hydrophobic surfaces. The Ðgure shows the variations in the average
end-to-end vector, as a function of the chain position, x, betweenre(x),
the two protein walls ; for d \ 16 (left) and d \ 5 (right). Solid andA� A�
dotted director lines correspond to the limits of weak and strong
headgroup interactions, respectively. (The spacing between the lines is
arbitrary and does not correspond to the average separation between
neighboring chains.) The horizontal dashed line marks the bilayer
midplane.
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rigid rods (rather than Ñexible chains) no tail tilting could take
place, because this would imply the existence of a void within
the hydrophobic core, which we assume to be uniformly
packed with chain segments.5

Returning to Fig. 4 we note that the average tilt angles are
larger in the case of weak headgroup repulsion, consistent
with the fact that in this limit the headgroups are more
densely crowded near the hydrophobic walls. As anticipated,
the extent of chain tilting decreases as the distance between
the two surfaces decreases, owing to the opposing ““ repulsionÏÏ
from the two apposed surfaces. To summarize these Ðndings
qualitatively : the larger the distance of a given chain segment
along the chain from the headgroup, the larger is its maximal
lateral span. Chain tilting provides a compromise way of
minimizing the loss of this span by the walls.

Our Ðnal remark in this section concerns the numerical
value of *F(d ] O). In a previous study7 the perturbation free
energy of a membrane composed of C-14 chains by a single
hydrophobic wall was found to be *F(d ] O)\ 0.37kBT A� ~1.
This Ðgure was obtained for zero hydrophobic mismatch and
an average cross-sectional area per chain of a0 \ 32 A� 2.
Under similar conditions, but for C-12 chains, we found here

(see Fig. 2). Judging by these two*F(d ] O)\ 0.32kBT A� ~1
numbers, the perturbation free energy (for the same scalesa0)nearly linearly with the chain length n.

IV. A simple director model
In this section we present a very simple, approximate, physical
model, capable of explaining the qualitative behavior of *F(d),
which in the previous section was derived based on the
detailed molecular theory of Section 2. This model does not
involve an explicit enumeration of all chain conformations,
nor does it take into account the requirement of uniform
chain packing within the hydrocarbon core. Yet, it yields a
simple closed-form expression for *F(d), capturing the essen-
tial physical mechanism underlying the perturbation in lipid
order by integral hydrophobic inclusions and the lipid-
mediated interaction between such inclusions.

Let hereafter referred to as the ““director ÏÏ,n \ re/o re o,
denote the unit vector along the end-to-end chain vector.
Many chain conformations (as speciÐed by the trans/gauche
sequence along the chain and the length of the chain areo re o)
associated with any given orientation of n. For chains in an
isotropic liquid, the number of conformations corresponding
to a given director is, by symmetry, independent of its orienta-
tion. The Ðrst assumption in our simpliÐed model is that this
is also true for the lipid chains constituting the hydrophobic
core of a membrane. Clearly, in a (protein-free) lipid bilayer
the chain director is restricted to one (the hydrophobic) side of
the hydrocarbonÈwater interface ; i.e., the tip of n can only be
found on one half of the surface of the unit sphere prescribed
by the director. Furthermore, within the bilayer, the probabil-
ities of Ðnding n along di†erent directions can be markedly
di†erent. (By symmetry, the membrane normal is the preferred
direction.) In principle, this fact can be taken into account in
our model by assigning di†erent probabilities P(n) to di†erent
chain orientations. Yet, to keep the model as simple as pos-
sible, we shall assume that, in the protein-free bilayer, all
director orientations within the hydrophobic hemisphere are
equally probable. We shall also assume that o re o\ l6 \ h0/2 \

the average chain length in the unperturbed membrane.v/a0 ,
Based on this simple picture, the loss of chain conformational
freedom inÑicted by one or two impenetrable surfaces is deter-
mined by the fraction of forbidden director orientations, i.e.,
those which intersect these surfaces, as illustrated by the
shaded area in Fig. 5.

Consider Ðrst the lipid perturbation associated with a single
wall. Using q \ q(1)\ 2p (the area of a unit hemisphere) to
denote the conÐgurational space of the chain director in the

Fig. 5 Schematic illustration of a lipid chain and a single wall at
distance The lipid chain is characterized by a director n, attached atx6 .
position x \ y \ 0 at the interfacial plane, z4 0. The angle between
the z-axis and the director is h. The wall is impenetrable for the direc-
tor (relevant for the shaded region for which the distance to the direc-
tor origin is less than o n o\ 1).

protein-free membrane, and the conÐgurational space of aq(x6 )
chain (director) originating at distance from the wall, thex6
(purely entropic) conformational free energy penalty experi-
enced by this chain is Clearly,*f (x6 ) \ [kBT ln[q(x6 )/q]. *f (x6 )
decreases with from 2 at to 0 for allx6 : *f (x6 )/kBT \ ln x6 \ 0,

see Fig. 5. The total perturbation energy associatedx6 P 1 ;
with a single wall is obtained by adding the contributions

from all chain directors in the range . . . , 1. Note*f (x6 ) x6 \ 0,
that, for a wall of length L (along the y-axis), the number of
chains originating in the interval x, x ] dx of the
hydrocarbonÈwater interface is L dx/a0 \ L l6 dx6 /a0 .

The director partition integral, i.e., the surface area ofq(x6 ),
the truncated unit hemisphere, is easily calculated using x,
y \ r(x)sin /, z\ r(x)cos /, with to param-r(x) \J1 [ x2,
eterize the points Mx, y, zN on the surface of the unit sphere ;
r(x) denoting the distance of a surface point from the x-axis,
and / its azimuthal angle (with respect to z) in the yz-plane.
For a director originating at distance from the wall, thex6
available conÐgurational space (sphere surface) involves all
points in the range . . . , 1 and /\ [p/2, . . . , p/2. Thex \ [x6 ,
limits on / ensure zP 0. The conÐgurational partition func-
tion for a chain anchored at is thusx6

q(x6 ) \
P
~Í

1
dx
P
~p@2

p@2
d/ r(x)J1 ] r@(x)2\ p(1 ] x6 ) (20)

with r@(x) \ dr/dx. [Note that r(x)J1] r@(x)2 \ 1.]
The excess free energy per chain at relative to the unper-x6 ,

turbed membrane, is

*f (x6 ) \ [kBT ln[q(x6 )/q(1)]\ [kBT ln[(1] x6 )/2]

For the total lipid perturbation energy of a bilayer in contact
with a single wall of length L we get

a0*F
2l6L

\
P
0

1
dx6 *f (x6 ) \ kBT (1 [ ln 2) (21)

For C-12 chains packed with we Ðnd thata0 \ 32 A� 2 l6 B 11
is on the order of the hydrophobic monolayer thickness.A�

This leads to which may be compared*F/L B 0.21kBT A� ~1,
to the value that we have calcu-*F(d ] O)/L B 0.3kBT A� ~1
lated based on the detailed chain packing theory ; see Fig. 2.
Considering its extreme simplicity, the prediction of the simple
director model is quite satisfactory. The fact that the simple
model yields a smaller value for the perturbation free energy
can be attributed to the fact that the director is treated as a
line, rather than, say, a cylindrical (or, more realistically, a
““ turnip-like ÏÏ) object of nonzero thickness. The number of
conformations discarded by the presence of an impenetrable
wall will be larger in the latter case.

The director model can also be used to derive the inter-
action free energy between two walls in the membrane, *F(d).
As long as the distance between the walls, d, is larger than 2l6,
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the perturbation regions of the two walls do not interfere and
At smaller distances a certain fraction of the*F(d)\ *F= .

lipid chains will interact with both surfaces. As we found using
the detailed chain packing theory, the fraction of perturbed
directors as well as the extent of the perturbation increases as
d decreases, implying an increase in *F(d). Concomitantly, the
volume between the walls and hence the number of chains
experiencing the perturbation diminishes with d. Thus we
expect the appearance of a repulsive barrier at intermediate
separations followed by a depletion attraction at very small
separations, as explained in more detail below. This qualit-
ative behavior is indeed corroborated by the director model,
as shown in Fig. 6.

The curve describing *F(d) in Fig. 6 represents the results
obtained by extending our simple director model to a mem-
brane containing two parallel apposed planar walls. Explicitly,
deÐning we Ðnd that, ford8 \ d/l6 1 O d8 O 2,

a0 *F
l6L kBT

\ 2
C
d8 [

A
1 ]

d8
2

B
ln
Ad8
2

B
[ (1] ln 2)

D
(22)

and for the result is0 O d8 \ 1

a0 *F
l6L kBT

\ [ d8 ln
Ad8
2

B
(23)

Recall that *F(d8 P 2)4 0.
The behavior of the interaction potential between the two

walls is in qualitative agreement with the chain packing
theory. In addition, the director model provides a simple
interpretation for the nonmonotonic dependence of *F(d) on
the distance between the two surfaces. The average conforma-
tional free energy loss, per director, resulting from the conÐne-
ment by the two walls increases logarithmically with d,
namely, On the other hand, for the*F(d)/N(d)D ln(d8/2).
number of chains conÐned between the two walls we have
N(d)D d, and hence explaining the appear-*F(d)D d8 ln(d8/2),
ance of a barrier at some intermediate d and the vanishing of
*F(d) at d ] 0. From eqn. (22) and (23) we Ðnd that the repul-
sive barrier peaks at at which point manyd8 \ 2/eB 0.74,
chains strongly interact with both surfaces.

To compare the director model prediction for *F(d) with
the results obtained from the chain packing theory, we again
choose and The result is shown by thea0\ 32 A� 2 l6 \ 11 A� .
dashed line in Fig. 2. The nonmonotonic behavior of *F(d) is
similarly reproduced by both models. We have already com-
mented on the di†erent asymptotic values obtained for the
interaction free energy in the limit of isolated inclusions
(d ] O). The appearance of the repulsive barrier at a larger
value of d predicted by the director model as compared to the
chain packing theory can be explained as follows. The require-
ment of uniform chain segment density imposed in the chain
packing theory strongly prefers those conformations whose
average orientation does not deviate considerably from the
membrane normal ; i.e., those conformations characterized by
a small tilt angle. In contrast, equal probabilities have been

Fig. 6 The lipid-mediated interaction free energy, *F(d), per mono-
layer between two apposed planar surfaces at distance d, according to
the simple director model, as given by eqn. (22) and (23).

assumed for all tilt angles in the director model. The average
lateral extensions of these chains are therefore relatively large.
Hence, they begin interacting with both walls at larger inter-
wall separations, thereby shifting the repulsive barrier to a
higher value of d.

V. Concluding remarks
Using a molecular-level theory for the lipid chain packing in a
bilayer membrane, appropriately extended to account for the
e†ects of impenetrable protein walls on chain conformational
statistics, we have calculated the lipid-mediated interaction
potential between the walls. Focusing on the case of zero
hydrophobic mismatch, we found that the interaction between
the surfaces becomes repulsive as the inclusions approach
each other and their respective perturbation zones begin to
overlap, peaking at distances corresponding to just one or two
molecular diameters. The same qualitative behavior is predict-
ed by the simple, analytical, director model. Our results are in
qualitative agreement with the more detailed simulation
studies of Sintes and Our mean-Ðeld theoryBaumga� rtner.16
cannot account for the long-ranged, Ñuctuation-mediated,
attraction found in these simulations.

In addition to interaction free energies our model yields rel-
evant information on the conformational properties of the
lipid chains between the hydrophobic walls. In particular, we
found that to satisfy better the requirement of uniform
segment density within the hydrophobic core, the chain direc-
tors are tilted away from the walls.

Our results apply to all integral membrane proteins that
have a sufficiently large diameter of their hydrophobic core.
Yet, they are also expected to hold, at least qualitatively, for
single membrane-spanning helices. Taking into account the
Ðnite radius of the helix would be a straightforward extension
of the present calculations. Another, perhaps more interesting,
application of the present formalism would be the investiga-
tion of inclusion shapes that di†er from simple membrane-
spanning cylinders. Of particular interest would be the
calculation of the interaction potential between amphipathic
a-helical peptides that only partially penetrate the hydropho-
bic membrane interior.
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Appendix

Numerical details

To calculate P(x, a) we have used a discretized version of eqn.
(13) [and analogously for eqn. (17)]. To this end, the region
deÐned by 0 O x O d and of the xz-plane was0 O zO h0divided into small elements of area *x*z, withn

x
n
z*x \ *z\ 1 The distance d between the walls was chosenA� .

such that All possible chain conformations (trans/d \ n
x
*x.

gauche bond sequences) were generated according to the
rotational-isomeric-state model.20 For each bond sequence
the segment positions were calculated for uniformly distrib-n

xuted headgroup positions in the region 0 O x O d and 120 dif-
ferent (uniformly distributed) chain orientations. All those
chain conformations that penetrate into either the aqueous
phase or the interior of the walls were assigned zero probabil-
ity. The symmetry of the bilayer was taken into account by
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““mirror imagingÏÏ of all chain segments that cross the bilayer
midplane, i.e., those located in the range z\ 0.
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