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Abstract

The adsorption of charge rigid macromolecules, such as proteins from solution, on mixed (charged and neutral)
lipid membranes is affected by several important factors. First, the mobile lipids in the membrane may rearrange, and
demix locally to match the charge density of the apposed macromolecule, thus lowering the adsorption free energy.
On the other hand, the (electrostatic) interaction between adsorbed macromolecules tends to lower the saturation
coverage of the membrane. Additional factors, such as non-ideal lipid demixing or an elastic membrane response,
enhanced by the presence of the charged macromolecules, may be at the base of the experimentally observed
formation of high density protein domains and lateral macro-phase separation in lipid membranes. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Charge is carried by many biological molecules
such as proteins, polynucleotides (e.g. DNA) and
lipid membranes. The electrostatic interaction be-
tween these macromolecules is at the base of
many biological processes, such as protein–DNA
binding, the adsorption of peripheral proteins
onto cell membranes and the condensation of
DNA in cell nuclei or viral capsids. Particular
experimental and theoretical effort has been in-

vested in the study of the adsorption of proteins
onto charged lipid membranes since many biolog-
ical processes, e.g. membrane activated enzymatic
and signal transduction activity, occur at the
membrane surface. This adsorption is also a pri-
mary step in other processes such as the forma-
tion of ion channels in cell membranes by
self-assembled amphipathic peptides.

A large number of experimental studies based
mainly on fluorescence labeling and NMR tech-
niques reveal that the adsorption process may
occur in several stages [1–14]. At first, the basic
proteins bind to the mixed, acidic and neutral
lipid membrane. The fluid nature of the lipid
bilayer allows the lipid constituent which interact

* Corresponding author. Tel.: +972-2-6585271; fax: +972-
2-6513742

E-mail address: abs@fh.huji.ac.il (A. Ben-Shaul).

0927-7757/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0927 -7757 (02 )00100 -0

mailto:abs@fh.huji.ac.il


D. Harries et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 208 (2002) 41–5042

more favorably with the adsorbing protein (i.e.
the acidic component) to migrate laterally to-
wards the protein’s vicinity, thus modulating lo-
cally the lipid composition. Conversely, the less
favorably interacting (neutral) lipids, migrate
away from this area. As will be shown, the (often
substantial) gain in free energy associated with the
charge rearrangement process is opposed by the
inevitable penalty of demixing entropy. The bal-
ance between these two forces determines the final
local lipid composition. This effect can be ex-
pected to be most pronounced at small equi-
librium protein–membrane distances. The
adsorption isotherms, and membrane coverage at
equilibrium is also expected to be strongly depen-
dent on the interaction between proteins: in gen-
eral, repulsive interactions will tend to lower the
coverage of bilayers by proteins.

Experiments also show that in some cases, ad-
sorbed proteins and the underlying anionic lipids
may further colocalize into domains. It was fur-
ther shown that the radius of curvature of these
domains was higher than that of the surrounding
lipid. These domains were observed to bud and
pinch off in the form of vesicles [13]. This process
of domain-formation pertains to the second mech-
anism by which a lipid bilayer can lower the
interaction free energy. Since the membrane can
deform by stretching and bending, it may lower
the interaction free energy with an adsorbing
molecule through such an elastic response.

The perturbation to the underlying lipid bilayer
and lipid migration may be enhanced by non-ideal
lipid demixing which may subsequently lead to a
‘line-tension’ in the lipid bilayer. More explicitly,
the non-ideal contribution to the membrane free
energy may favor the segregation of adsorbed
proteins, in order to satisfy the natural tendency
of the two underlying lipid species to demix.
Thus, the membrane can lower the free energy
associated with ‘rims’ of the lipid domains, mini-
mizing them by coalescing smaller domains into
larger ones, hence forming macroscopic lateral
domains. A wide variety of models have been
suggested to account for some or all of these
effects.

We concentrate on one particular model which
we have recently presented [15] for studying the

interaction between rigid macromolecules and
mixed (charged/uncharged) membranes, and then
discuss some emerging results. We then briefly
comment on other possible models that have been
proposed. Models of the adsorption of other,
more flexible macromolecules, such as polyelec-
trolytes have been presented elsewhere (see e.g.
[16–19] and references therein).

2. Model

2.1. Cell free energy

Consider a globular, positively charged, protein
adsorbing to a negatively charged membrane,
both immersed in a 1:1 salt solution. Within Pois-
son–Boltzmann theory we treat the system of
electrolyte with concentration n0, corresponding
to the Debye length lD= (8�n0lB)−1/2 where lB=
7.14 A� is the Bjerrum length in water.

The effective interactions between adsorbed
proteins will be treated using a ‘cell-model’ [15],
whereby every adsorbed protein defines a cylindri-
cal (Wigner–Seitz) cell of radius R as depicted in
Fig. 1. The membrane is modeled as a flat, low
dielectric, surface with local surface charge den-
sity �(r)= −e�(r)/a, where a is the area per
(both types of) lipid molecule, � is the (local)
mole fraction of charged lipids in the membrane,
and e the elementary charge, (Fig. 2). The average
charge density of the lipid membrane is �̄= −
�� e/a where �� is the (overall) mole fraction of
charged lipids in the membrane. The protein is
modeled as a rigid sphere of low dielectric con-

Fig. 1. Schematic view of the Wigner–Seitz cell.
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Fig. 2. Schematic illustration of a spherical protein adsorbed
on a mixed planar lipid membrane. The protein radius is RP

and its (uniform) surface charge density is �P. The minimal
distance between the protein and membrane surfaces is h. A
circular membrane region of radius R (and corresponding area
A=�R2) defines the basis of the cylindrical ‘cell’ correspond-
ing to one adsorbed protein. �=�(r) is the locally varying
mole fraction of charged lipid in the interaction zone.

The first term in Eq. (1) represents the electro-
static energy of the system, with the integration
extending over the entire aqueous volume. The
second integral accounts for the translational (‘mix-
ing’) entropy of the mobile ions (of local concentra-
tions n+ and n−), relative to their entropy in the
bulk solution, and away from any macromolecules,
where n+ =n− =n0. The third and fourth inte-
grals, represent the 2D (non-ideal) demixing en-
tropy of the lipid distribution; the integration
extending over the membrane surface from r=0 to
r=R (ds=2�rdr). The (phenomenological, mean-
field) interaction parameter � accounts for the
non-ideal mixing contribution to the free energy of
the lipid molecules. Non-ideal lipid mixing is com-
monplace in biological membranes [20–22], result-
ing, for instance, from the different molecular
structure of the lipid tails. The last term in F has
been added to the thermodynamic potential to
account for the lipid charge conservation, namely,
for the condition �A�ds=�� A. The Lagrange
parameter, �, expressing the chemical potential of
the charged lipid is determined (following mini-
mization of the system free energy) by the charge
conservation condition. The adsorption free en-
ergy, �F=F(h=heq,R)−F(h=�,R=�), and
the local lipid composition �(r) are determined by
the minimization of the functional F with respect
to both the spatial distribution of the mobile
counterions and the 2D distribution of the lipids in
the membrane plane. The minimization results in
the familiar non-linear PB equation for the electro-
static potential in the system, supplemented by a
special boundary condition on the electrostatic
potential at the membrane surface [23,15]. This
boundary condition may be interpreted as the
requirement for a ‘constant electro-chemical’ po-
tential reflecting the balance between the chemical
and electrostatic potentials of the mobile lipids. The
set of differential equations is then solved numeri-
cally.

2.2. E�aluating adsorption isotherms

Once derived, �F may be further used to deter-
mine adsorption isotherms, which clearly reflect the
effects of lipid mobility and protein lateral interac-
tions on the adsorption free energy.

stant with a uniform (positive) surface charge
density �P=e�P/a. The distance between the
protein and the membrane will be denoted by h.

Within our model we allow for the possibility of
spatial local inhomogeneities in the membrane
surface charge density, in response to interactions
with the cationic protein. A (possibly non-ideal)
mixing free energy contribution must be added to
the membrane free energy. Lipid demixing turns
out to be significant in many relevant cases, and
reflects the compositional degree of freedom asso-
ciated with mobile lipids in mixed fluid bilayers. We
include this effect in a self-consistent manner, by
first writing the free energy functional of a unit cell

F
kBT

=
1
2

�
�kBT

e2

��
V

(��)2d�

+
�

V

�
n+ln

n+

n0

+n−ln
n−

n0

− (n+ +n− −2n0)
n

d�

+
1
a
�

A

�
� ln

�

�� + (1−�)ln
1−�

1−��
n

ds

+
1
a
�

A

� [�(1−�)−�� (1−�� )]ds

+�
1
a
�

A

(�−�� )ds (1)



D. Harries et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 208 (2002) 41–5044

We apply a Langmuir-like approach to the
adsorption of charged proteins from a solution
of a certain protein concentration c. The
(Helmholtz) free energy of a layer of NP ad-
sorbed proteins is F=E−TS where the en-
ergetic contribution is E=Np�F with NP

denoting the number of adsorbed proteins. Us-
ing a two dimensional lattice gas model for eval-
uating the configurational entropy of the
adsorbed protein layer, the entropic contribution
to F is S= −Np[� ln�+ (�−�)ln(�−�)],
with N denoting the number of adsorption sites,
and �=NP/N. In the following we choose to
define the coverage as �= (RP/R)2, where RP is
the radius of the protein and R is the radius of
the unit cell. The chemical potential of the ad-
sorbed proteins, �l, can now be determined:

�l=
��F

�NP

�
=�F+�

���F
��

�
+kBT ln

� �

1−�

�
(2)

The chemical potential of proteins in solution
may be evaluated in a similar fashion. Assuming
dilute solution behavior, we set the electrostatic
energy of the free proteins in solution (measured
with respect to the isolated protein) as Es=0.
To determine the configurational entropy of
proteins we employ a three dimensional lattice
model, resulting in �s=kBT ln[c/(1−c)] for the
chemical potential of the proteins in the bulk
solution.

Equating the chemical potential of the ad-
sorbed protein layer with that of the proteins in
the bulk solution we obtain the adsorption equa-
tions of the form:

�=
�(�)c

1+�(�)c
(3)

In contrast to the Langmuir adsorption
isotherms, here the binding constant, � is depen-
dent on surface coverage through �F :

�=exp
�

−
��F+�(��F/��)

kBT
n�

(4)

It should be mentioned that coverage depen-
dent adsorption constants have previously been
presented to describe the effect of lateral interac-
tion between adsorbates. Such are the Davies

[24] and Frumkin [25] isotherms, which are suit-
able for systems where adsorbates interact
weakly. Here, however, the adsorbed proteins in-
teract weakly at distances larger than � lD, but
interact strongly when R−RP� lD. We therefore
use the complete form of �F(�) in our equa-
tions. We note, that Heimburg et al. [26] have
also considered coverage dependent adsorption
constants. Their expression for �(�) takes into
account excluded volume and other, non-electro-
static, interactions between adsorbed proteins,
but not the direct electrostatic interactions.

In the following we will demonstrate the im-
portance of the different degrees of freedom, as
they apply to one specific example. More explic-
itly, we shall examine the case in which a protein
with �P=0.7 is adsorbed on a membrane with
�� =0.2. Unless otherwise stated, all results per-
tain to ideally mixed membranes, i.e. �=0, cor-
responding to the more simple ‘ideal mixing’
case. In this type of system (where a highly
charged protein interacts with a weakly charged
membrane) effects of lipid charge modulation,
and subsequent contribution to �F are found to
be most pronounced. The case of highly charged
basic proteins interacting with weakly charged
acidic membranes is also the one of greatest bio-
logical relevance.

The case of protein adsorption on non-ideally
mixed (��0) membranes will be briefly dis-
cussed in Section 3.4.

3. Results and discussion

3.1. Single protein adsorption

To demonstrate the role of lipid demixing in
protein adsorption we consider three types of
adsorbing surfaces. In one case the surface
charge density is uniform and constant through-
out the membrane, i.e. �(r)=�� =const. This
corresponds, for example, to a lipid membrane
in the ‘gel’ state, where the lipids are ‘frozen’.
The other limiting case, corresponding to ‘con-
stant electrical potential’ resembles the adsorp-
tion on metal surfaces where charges move
freely. We model this limit by ‘turning off’ all
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lipid mixing terms in Eq. (1). The third and most
relevant case, corresponding to a mixed fluid
membrane, is that of constant electro-
chemical potential, as discussed in the previous
section. The adsorption free energies for these
three different boundary conditions, for a system
characterized by �� =0.2 and �P=0.7, are pre-
sented in Fig. 3. The inset shows the lipid compo-
sition profiles corresponding to the three types of
adsorbing membranes for h/lD=0.3.

The magnitude of the binding free energy on a
membrane of uniform, frozen, lipid composition
(���� ) is considerably smaller than that on a
fluid membrane. The free energy gain increases
when lipid mobility is permitted to take place, as
charged lipids move towards the interaction zone
so as to achieve charge matching, concomitantly
releasing the confined counterions into the bulk
solution [27,28]. The tendency for charge match-
ing is clearly seen in the inset of Fig. 3. The
demixing entropy penalty associated with this
process is reflected in the difference (of order 1
kBT) between �F for fixed electrical potential as
opposed to fixed ‘electro-chemical’ potential.

Fig. 4. The local membrane composition, �(r), for �P=0.7,
�=0.2 and �=0, for the cases where R=60 A� (dot-dashed
line) R=31 A� (dashed line), and R=13 A� (solid line).

3.2. Effect of cell size on charge density

Fig. 4 shows the effect of adsorbate coverage
and lateral protein–protein interaction, reflected
in the cell size R (hence �), on the modulation of
membrane charge density �(r). When the charged
proteins begin to crowd on the surface of a rela-
tively weakly charged mixed membrane, they at-
tempt to attract charged lipids to their proximity
to achieve optimal charge matching. However,
this becomes more difficult once the cell size, and
therefore number of charged lipids, available to
each protein becomes small. It is then that a
smaller charge density modulation is observed.

3.3. Adsorption isotherms

In Fig. 5 we demonstrate the effects of lipid
mobility and protein–protein interactions on the
adsorption free energy, and the way they are
reflected in the adsorption isotherms, as calcu-
lated using Eqs. (3) and (4).

The inset shows the binding free energy as a
function of the distance between adsorbed
proteins, 2R, for highly charged proteins, �P=
0.7, on mixed membranes with a rather low
charge density, �� =0.2. Four curves are shown in
the inset. One corresponds to the case where the
lipids are allowed to demix for an ‘ideal’ demixing
penalty and the adsorbed proteins interact electro-
statically with each other. The other three curves

Fig. 3. Adsorption free energies, as a function of the protein–
membrane distance, h, for lD=10 A� , RP= lD, a=65 A� 2,
�=0.2, �P=0.7, and �=0. The three curves correspond to
the cases of constant membrane density boundary condition
(dot-dashed line), constant potential density (dashed line), and
constant ‘electro-chemical’ potential (solid line). The inset
shows �(r), the local composition profile, at h/lD=0.3 for
membranes with constant surface potential (dashed), a mixed
fluid membrane (solid), and for an arrested lipid distribution
(lower, dot-dashed, curve).
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were calculated with either one, or both, of these
effects specifically turned off. The adsorption
isotherms corresponding to the various cases are
also shown.

In general, whether lipid demixing is allowed or
arrested, we find that the magnitude of the ad-
sorption free energy is strongly increasing once
the separation between adjacent protein surfaces,
2(R−RP), falls below �2lD; that is when the
counterion clouds surrounding the proteins begin
to interact. For our choice of lD this happens at
R�20 A� . At larger distances inter-protein inter-
actions are negligible. This conclusion is in line
with the calculation of Murray et al. [29] for
pentalysine adsorption on mixed (frozen)
membranes.

As expected, when lateral interactions between
adsorbates are taken into account, the adsorption
isotherms reach saturation at much smaller
protein concentration in the bulk solution, c. The
surface saturation coverages are also much
smaller. We therefore suggest that the simple
Langmuir adsorption scheme may provide a rea-

Fig. 6. The local membrane composition, �(r), for �P=0.7,
�� =0.2 for �=0 (dashed) and �=1 kBT (solid), for the cases
where (a) R=60 A� , (b) R=31 A� , and (c) R=13 A� .

sonable approximate description of the adsorp-
tion equilibrium, provided the linear dimension of
an adsorption site is taken to be �RP+ lD.

While the effects of inter-protein interactions
become increasingly pronounced at shorter aver-
age protein–protein distances, the role of lipid
mobility is mainly apparent when these are large.
As shown in (the inset of) Fig. 5, local demixing
of the lipids in the vicinity of the adsorbed
proteins can result in significant enhancement of
the adsorption free energy. The difference in free
energy can be a substantial fraction of the total
free energy. The adsorption isotherms corre-
sponding to mobile vs. frozen lipid distributions
show even greater differences because their depen-
dence on �F is exponential.

3.4. Non-ideal mixing

Let us now examine the effect of a non-ideal
contribution to the free energy (i.e. a non-zero �

value) on the migration of lipids in the vicinity of
the charged protein. Fig. 6 shows the charge
density modulation for �=0 and �=1, for a
protein of �P=0.7 and membrane with �� =0.2,
for several cell sizes, R. The effect of the non-ideal
mixing is apparent: the higher the value of �, the
stronger the compositional modulations of the
lipids. In fact, such a non-ideal mixing term may
result in charge density modulations yet stronger
than in the case of a similar surface without a

Fig. 5. Adsorption isotherms �(c) and adsorption free energies
�F(R) (inset) corresponding to the adsorption of highly
charged proteins (�P=0.7) on membranes with a smaller
charge density, �� =0.2. In addition to the solid curves, which
represent the results obtained from the full calculation, includ-
ing the effects of lipid mobility (mixing) and protein–protein
interactions, we also show, for comparison, three other curves.
These correspond to free energies and adsorption isotherms
calculated for: immobile lipids but with inter-protein electro-
static interactions (dashed curves); mobile lipids but without
protein–protein interactions (dash-dotted curves); immobile
lipids and no protein–protein interactions (dotted curves). All
calculations are for heq=3 A� and �=0.
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non-ideal mixing contribution but with constant
potential boundary condition.

It is well known [30] that a sufficiently large
non-ideal mixing parameter will eventually render
any system unstable with respect to macroscopic
phase separation. The smallest value of � at which
this occurs is called the critical point �c. Similarly
for a membrane with adsorbed proteins on it, we
expect the formation of lateral domains within the
membrane for ���c. That is, instead of varying
the composition only locally, the lipids may rear-
range macroscopically to take advantage of the
favorable non-ideal mixing contribution. This re-
sults in macroscopic membrane domains that do
not only differ in their lipid composition but also
in the density of adsorbed proteins.

An interesting question is whether a protein-
free membrane can be stable while the same mem-
brane with adsorbed proteins on it would phase
separate. In other words, can the adsorption of
proteins onto membranes induce phase
separation?

A simple qualitative illustration of this idea can
be provided by the following model. Start with an
uncharged, two-component, protein-free lipid bi-
layer. Within a ‘Bragg–Williams’, mean-field ap-
proximation the free energy per lipid molecule in
the membrane is f= fnm with

fnm=kBT [� ln�+ (1−�)ln(1−�)]+��(1−�),
(5)

where the first two terms correspond to the ideal
‘mixing’ of the lipids within the membrane, and
the last term represents the non-ideal mixing con-
tribution. As is well known, Eq. (5) gives rise to a
critical point �c=2 at �=�c=0.5.

Consider now a two-component, protein-free
lipid bilayer that has one of its components carry-
ing an electrical charge. We account for the corre-
sponding electrostatic free energy by adding to the
molecular free energy f= fnm+ fel the term [31]

fel=2kBT�
�(1−q)

p
+ ln(p+q)

n
(6)

where p=p0�, with p0=2�lBlD/a and q=
�p2+1. Eq. (6) is the charging free energy of a
homogeneously charged membrane of composi-
tion � within Poisson–Boltzmann theory. Again,

above a certain value ���c there appears an
instability in the membrane with respect to demix-
ing. The value of the critical point depends on p0

For p0�1 it is �c=2+p0, increasing to�c=2+
�3 for p0	1. In Fig. 7 (curve a), the behavior of
�c is plotted as a function of p0. The new critical
value, �c, is always higher than that for an un-
charged membrane. The reason for this is the
additional repulsion between the head group
charges, which renders the mixing process more
favorable.

The presence of adsorbed proteins can regain
the instability. By neutralizing some (or most) of
the lipids in the membrane the additional electro-
static free energy contribution is diminished. The
combined protein–membrane system is then ex-
pected to display a lower critical demixing
parameter �c, intermediate between that of a neu-
tral and protein-free, charged membrane. Turning
to our illustrative model we adsorb onto the
charged membrane proteins of charge zP and
cross-sectional area aP with coverage �. This will
modify the molecular free energy per lipid f=
fnm+ fel+ fim. First, the charging energy fel will be
lowered due to the neutralizing effect of the ad-
sorbed proteins. Second, f contains the additional
contribution fim=kBT(a/aP)[� ln�+ (1−�)ln(1−
�)], accounting for the mixing entropy of the
protein layer. While in Fig. 6 fel was calculated
based on a microscopic model, it is sufficient for

Fig. 7. The critical point �c of a mixed membrane with an
adsorbed protein layer as a function of p0=2�lBlD/a for no
adsorbed proteins (a), aP=a and zP=1 (b), aP=2a and
zP=2 (c), and aP=5a and zP=5 (d).
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our present purpose to consider a highly sim-
plified description of fel. To this end, we shall
assume that each adsorbed protein lowers the
charge on the membrane by an amount of zP,
without inducing charge density modulations
within the membrane. That is, the membrane is
treated to remain homogeneously charged, but
with an effective composition � eff=�−zP�a/aP.
Consequently, the charging energy per lipid is
now given by Eq. (6) where � is replaced by � eff.
Clearly then, for aP�=azP� all charged lipids
would be neutralized by corresponding protein
charges, rendering the membrane uncharged (im-
plying fel=0 and thus �c=2). This however is not
what the model predicts. Rather, the demixing
contribution of the adsorbed protein layer ( fim)
provides an additional contribution that opposes
macroscopic phase separation which gives rise to
an increase of the critical point with respect to
that of a neutral membrane. In fact, the critical
point for a membrane with an adsorbed protein
layer is given by the minimum of the expression

�c=
1

2�� (1−�� )
+

p0

q+2p0�� (1−�� )zP
2a/aP

(7)

with respect to �� and �� where q is given by the
expression

q=�1+p0
2(�� −zP�� a/aP)2 (8)

In the derivation of Eq. (7) all relevant degrees
of freedom must be included. That is, the mem-
brane is able to adjust not only its composition
but also the amount of adsorbed proteins in each
of its sub-phases. The only two conserved quanti-
ties are the average composition, �� , of the mem-
brane and the bulk concentration of the proteins
in solution which determines the average cover-
age, �� , of the protein layer. Fig. 7 displays �c

according to Eq. (7) as a function of p0=2�lBlD/a
for several choices of zP, aP, and a.

We see that, indeed, �c is intermediate between
that of a protein-free and fully neutralized mem-
brane. Fig. 7 also suggests that large and highly
charged proteins are more efficient in reducing the
critical point. At this point we emphasize again
the approximative nature of the model. It neither
takes into account any structural details of the
adsorbed proteins nor does it allow for modula-

tions of the membrane compositions within each
phase. Moreover, it neglects the electrostatic re-
pulsion between adsorbed proteins. Thus, it can-
not replace detailed numerical calculations.
However, it points at a mechanism by which lipid
membranes may mediate the accumulation of
proteins into domains.

3.5. Other theoretical models

Several other, previous, theoretical studies have
been proposed to model the interaction of
charged proteins with mixed membranes. Models
in which the lipid composition is assumed to be
uniform were proposed by Ben-Tal et al.
[32,33,29], based on solutions of the non-linear PB
equation. These authors calculated peptide bind-
ing constants as a function of salt concentration,
finding good agreement with experiment.

Employing linear PB theory, Roth et al. [34]
demonstrated the importance of the entropy of
released mobile counterions upon adsorption, as
the underlying force for electrostatic attraction
between the proteins and membranes.

The important role of lipid mobility was
demonstrated in the works of Denisov at al. [14]
and Heimburg et al. [26,35]. Both models consider
macroscopic, non-local demixing of lipids in the
vicinity of adsorbed domains. The work of
Denisov et al. also demonstrates that this compo-
sitional degree of freedom may induce a lateral
phase separation in the lipid membrane. However,
if lipid demixing can take place locally, i.e., in the
vicinity of singly adsorbed peptides there is no
electrostatically based advantage for adsorbate
aggregation. Rather, adsorbed proteins could gain
a further translational-entropy contribution from
spreading uniformly on the membrane surface.
This conclusion is consistent with the general
result that, at least within (mean-field) PB theory,
the interaction between like-charged colloidal par-
ticles is always repulsive, whether in the bulk or in
the vicinity of a confining wall [36–38]. This, in
turn, suggests that protein domain formation is
most likely driven by a non-electrostatic mecha-
nism, e.g. non-ideal mixing of lipid tails or a
lipid-mediated protein attraction resulting from
elastic membrane deformations (and hence line
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tension) around the protein–membrane interac-
tion zone [39,40].

The importance of the direct interaction be-
tween peptides has been studied by Murray et al.
[29], by calculating the adsorption energy of a
peptide onto a vacant membrane adsorption ‘cav-
ity’, surrounded by pre-adsorbed peptides. These
authors find that the adsorption energy indeed
decreases, though not to the extent predicted by
models assuming uniformly smeared (lipid and
protein) surface charges. Here, no local demixing
is accounted for within the model.

4. Conclusions

We have demonstrated the important role of
lipid mobility and lateral adsorbate interactions,
on the adsorption free energy of globular charged
proteins onto mixed lipid membranes. We found
that the binding energy is significantly enhanced
by the ability of the charged lipids to adjust their
local concentration in the vicinity of the adsorbed
protein. The effects of this, lipid-mobility, degree
of freedom are particularly pronounced when the
protein is highly charged and the membrane is
weakly charged. In this case, the extent of local
membrane charge modulation is substantial, espe-
cially at low protein densities. Inter-protein repul-
sions within the adsorbed layer become
important, as expected, when the counterion at-
mospheres of neighboring proteins begin to over-
lap. Both the lipid demixing degree of freedom
and the lateral interactions between the proteins
are reflected in the calculated adsorption
isotherms. Assuming that the lipid charge in the
vicinity of the adsorbed protein matches the ap-
posed protein charge, and that the minimal dis-
tance between protein is governed by their
counterion screening clouds provides an approxi-
mate scheme for calculating (Langmuir-like) ad-
sorption isotherms. The addition of a non-ideal
lipid mixing contribution to the free energy leads
to a stronger membrane charge density modula-
tion. This may be at the base of the experimen-
tally observed formation of high density protein
domains in lipid membranes.
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[8] M. Rytömaa, K.J. Kinnunen, Biochemistry 35 (1996)

4529–4539.
[9] M.A. Carbone, P.M. Macdonald, Biochemistry 35 (1996)

3368–3378.
[10] A.K. Hinderliter, P.F.F. Almeida, R.L. Biltonen, C.E.

Creutz, Biochem. Biophys. Acta 1448 (1998) 227–235.
[11] E.M. Goldberg, D.B. Borchardt, R. Zidovetzki, Eur. J.

Biochem. 258 (1998) 722–728.
[12] A.V. Krylov, E.A. Kotova, A.A. Yaroslavov, Y.N. An-

tonenko, Biochem. Biophys. Acta 1509 (2000) 373–384.
[13] A.J. Bradley, E. Maurer-Spurej, D.E. Brooks, D.V. De-

vine, Biochemistry 38 (1999) 8112–8123.
[14] G. Denisov, S. Wanaski, P. Luan, M. Glaser, S.

McLaughlin, Biophys. J. 74 (1998) 731–744.
[15] S. May, D. Harries, A. Ben-Shaul, Biophys. J. 79 (2000)

1747–1760.
[16] I. Borukhov, D. Andelman, H. Orland, Macromolecules

31 (1998) 1665–1671.
[17] A.V. Dobrynin, A. Deshkovski, M. Rubinstein, Macro-

molecules 34 (2001) 342I–3436.
[18] M.R. Bohmer, O.A. Evers, J.M.H.M. Scheutjens, Macro-

molecules 23 (1990) 2288–2301.



D. Harries et al. / Colloids and Surfaces A: Physicochem. Eng. Aspects 208 (2002) 41–5050

[19] S.Y. Park, C.J. Barrett, M.F. Rubner, A.M. Mayes,
Macromolecules 34 (2001) 3384–3388.

[20] P. Garidel, C. Johann, A. Blume, Biophys. J. 72 (1997)
2196–2210.

[21] P. Garidel, A. Blume, Langmuir 16 (2000) 1662–1667.
[22] P. Garidel, A. Blume, Biochim. Biophys. Acta 1372

(1998) 83–95.
[23] D. Harries, S. May, W.M. Gelbart, A. Ben-Shaul, Bio-

phys. J. 75 (1998) 159–173.
[24] J.T. Davies, Proc. Roy. Soc. A245 (1958) 417–433.
[25] A.W. Adamson, Physical Chemistry of Surfaces, fifth ed.,

Wiley, New York, 1990 Chapters XI, XVI.
[26] T. Heimburg, B. Angerstein, D. Marsh, Biophys. J. 76

(1999) 2575–2586.
[27] J.M.T. Record, C.F. Anderson, T.M.Q. Lehman, Rev.

Biophys. 11 (1978) 103–178.
[28] K. Wagner, D. Harries, S. May, V. Kahl, J.O. Rädler, A.
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