
DOI 10.1140/epje/i2004-10019-y

Eur. Phys. J. E 14, 299–308 (2004) THE EUROPEAN
PHYSICAL JOURNAL E

Tilt modulus of a lipid monolayer

S. May1,a, Y. Kozlovsky2, A. Ben-Shaul3, and M.M. Kozlov2

1 Junior Research Group “Lipid Membranes”, Friedrich-Schiller-Universität Jena, Neugasse. 25, Jena 07743, Germany
2 Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
3 Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel

Received 13 January 2004 and Received in final form 12 May 2004 /
Published online: 3 August 2004 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2004

Abstract. In addition to the familiar bending and stretching deformations, lipid monolayers and bilayers
in their disordered state are often subjected to tilt deformations, occurring for instance in structural rear-
rangements accompanying membrane fusion, or upon insertion of “oblique” hydrophobic proteins into lipid
bilayers. We study the elastic response of a flat lipid monolayer to a tilt deformation, using the spatial and
conformational average of the chain end-to-end vector from the membrane normal to define a macroscopic
membrane tilt. The physical origin and magnitude of the corresponding tilt modulus κt is analyzed using
two complementary theoretical approaches. The first is a phenomenological model showing that the tilt
and bending deformations are decoupled and the effects of inter-chain correlations on the tilt modulus is
small. The second is based on a molecular-level mean-field theory of chain packing, enabling numerical
evaluation of the tilt modulus for realistic, multi-conformation, chain models. Both approaches reveal that
the tilt modulus involves two major contributions. The first is elastic in origin, arising from the stretching
of the hydrocarbon chains upon a tilt deformation and reflecting the loss of chain conformational freedom
associated with chain stretching. The second, purely entropic, contribution results from the constraints
imposed by a tilt deformation on the fluctuations of chain director orientations. Using the chain-packing
theory we compute the two contributions numerically as a function of the cross-sectional area per chain.
The elastic and entropic terms are shown to dominate the value of κt for small and large areas per chain,
respectively. For typical cross-sectional areas of lipid chains in biological membranes they are of comparable

magnitude, yielding κt ≈ 0.2kBT/Å
2

.

PACS. 87.16.-b Subcellular structure and processes – 61.20.Gy Theory and models of liquid structure –
61.30.St Lyotropic phases

1 Introduction

A phospholipid molecule consists of a hydrophilic polar
head group and a hydrophobic tail, the latter comprising
usually two hydrocarbon chains. Phospholipids, or sim-
ply lipids, differ in the chemical composition of their po-
lar head and/or the length and degree of saturation of
their hydrocarbon tails. In aqueous solution, lipids self-
organize into supra-molecular assemblies of different pos-
sible geometries, depending on the constituent molecules
and the ambient conditions. A common feature of all the
self-assembled aggregates is that their hydrocarbon tails
organize to form compact hydrophobic cores, which are
effectively shielded from contact with water by the man-
tle of polar heads. Another structural characteristic of
the aggregates, whether lipid bilayers, hexagonal phases,
cylindrical aggregates as well as spherical micelles, is that
they all consist of lipid monolayers, differently curved, de-
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pending on the spontaneous curvature of the constituent
molecules [1,2]. Lipid bilayers are composed of two ap-
posed monolayers and are of particular importance be-
cause they constitute the principal structural element (the
matrix) of biological membranes.

Lipid layers under external stresses undergo elastic de-
formations whose magnitudes reflect the material proper-
ties of the lipid molecules. The elastic properties of lipid
membranes (and other lipid phases) play important roles
in ubiquitous biological and biotechnological processes [3],
e.g., maintenance and transformations of cell shapes [4],
membrane fusion [5], membrane-mediated inter-protein
interactions [6–13], and liposome formation [14].

Lipid membranes are commonly described as mathe-
matical surfaces, analogous to Gibbs interfaces [15], char-
acterized by elastic properties. The most familiar and ex-
tensively studied elastic modes of membranes are bending
(i.e., curvature) [16] and stretching (area) [17] deforma-
tions. At the same time, it has been recently realized that
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director field

Fig. 1. Two examples of deformed lipid monolayers involv-
ing a nonzero chain tilt. Top: an hourglass-like hydrophobic
inclusion such as a trans-membrane protein induces a grad-
ually decaying tilt of its neighboring lipid chains. Bottom: a
cross-section of a unit cell of the inverse-hexagonal lipid phase.
Along each facet the lipid chains are concertedly tilted.

in many cases the lipid monolayers undergo another type
of deformation, consisting in tilting of the hydrocarbon
chains of lipid molecules with respect to the monolayer
plane. This deformation, referred below to as the tilt defor-
mation, has been shown to be generated in ubiquitous sit-
uations where the initial monolayer structure is perturbed
by structural defects or membrane insertions. Among the
most prominent examples of membrane configurations
that require tilt deformations are (see Fig. 1) the inverted
hexagonal phase [18], where chain tilt is generated by
the molecular packing within the hydrophobic interstices
of neighboring lipid cylinders [19], and the neighborhood
of protein molecules, inserted into the lipid matrix [20,
21]. Other examples include the intermediate structure of
membrane fusion and fission called membrane stalk [22–
24], aqueous pores in lipid bilayers [25], ripple-like instabil-
ities of fluid membranes [26], and the immediate lipid sur-
rounding of oblique hydrophobic peptides [27,28]. Analy-
sis of these structures requires accounting for the tilt elas-
ticity of lipid monolayers.

The tilt deformation has already been considered in
Helfrich’s pioneering work on membrane elasticity [16],
and then pursued in a series of studies devoted to the
elastic properties of membranes in the crystalline (low
temperature) state [29–31]. Here, the hydrocarbon chains
are in a fully stretched (“all-trans”) conformation, behav-
ing as rigid rodlike particles in a smectic liquid-crystalline
phase [32]. On the other hand, under physiological
conditions all biologically relevant processes involve lipid
membranes in their liquid-like state. In this state the
lipid molecules are mobile within the membrane plane
and the interfacial area per lipid chain is significantly
larger than in the crystalline phase. Consequently, the
hydrocarbon lipid tails are flexible and disordered,
exploring a multitude of possible chain conformations. In
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Fig. 2. Top: an unperturbed planar monolayer. The average
cross-sectional area per lipid is a, and its hydrophobic thickness
is l. Middle: a homogeneous deformation that involves both tilt
(of tilt angle θ) and a lateral extension of the monolayer, char-
acterized by an increase of the cross-sectional area per lipid,
a′ = a/ cos θ. Due to the monolayer incompressibility, the hy-
drophobic monolayer thickness, l′ = l cos θ decreases. Bottom:
a pure-tilt deformation (of tilt angle θ) that leaves a and l
unaffected.

the liquid state, the overall chain orientation, as measured
for instance by the angle between its end-to-end vector
(the “director”) and the membrane normal, undergoes
thermal fluctuations around its average direction. In a
planar or uniformly bent (but otherwise unperturbed)
liquid monolayer, the average director coincides with the
membrane normal. However, in nonuniformly perturbed
monolayers (like those shown in Fig. 1) the director needs
not —or even cannot— point in normal direction. For
example, an hourglass-like rigid membrane inclusion (see
Fig. 1, top) can only be accommodated in a strictly
planar bilayer if a tilt deformation takes place. Evidently,
a tilt contribution must be part of an elastic description
for such a case. Indeed, theoretical considerations suggest
quite generally that for locally perturbed monolayers the
tilt deformation may account for a significant portion
of the elastic energy corresponding to various locally
nonbilayer lipid structures [18,21,26,33]. This realization
has inspired the formulation of some preliminary models
of tilt elasticity [18,21].

Tilt deformation is deviation of the chain director from
the membrane normal; see Figure 2. Generally, an elastic
deformation of a monolayer may be composed of different
deformation modes, such as changes in lateral membrane
area, curvature, and tilt. To characterize the tilt contri-
bution it is useful to consider a monolayer that is subject
to a homogeneous tilt deformation where —on average—
all chain directors deviate equally (at least locally) from
the monolayer normal direction. There are two possible
ways to produce such deformation, as illustrated in Fig-
ure 2. The first is to simply rotate each lipid molecule
by the tilt angle, θ (Fig. 2, middle). In this case, the
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deformation is accompanied by an increase of the molecu-
lar cross-sectional area, a′ = a/ cos θ, measured within the
membrane plane. Due to the volume incompressibility of
the lipid hydrocarbon moiety, this deformation is accom-
panied by a decrease of the monolayer thickness, l, to the
value l′ = l cos θ. Hence, such deformation involves mem-
brane lateral extension (or transverse compression). The
second way is to skew each lipid molecule (Fig. 2, bottom)
keeping the molecular volume constant. It can be easily
seen, that tilting by molecular skewing changes neither the
molecular area in the membrane plane nor the monolayer
thickness. Hence, it is independent from any other kind of
membrane deformation and we define it as the pure tilt.
Being an independent deformation, the pure-tilt deforma-
tion is described by a new material constant, κt, the tilt
modulus. No direct experimental measurements of κt are
available so far, yet its magnitude was estimated based on
experimental data pertaining to the temperature-induced
lamellar to inverse-hexagonal phase transition in lipid sys-
tems [18]. Previous phenomenological models for the mi-
croscopic origin of the tilt modulus suggested that the
only contribution to κt is the stretching energy of the hy-
drocarbon chains upon the tilt deformation, as illustrated
in Figure 2. While having the chain stretching in com-
mon with a lateral monolayer extension, the tilt defor-
mation does not affect the region of the polar lipid head
groups [18]. Therefore, the estimated values of κt were
considerably smaller than those of the lateral stretching
modulus of a monolayer. At the same time these models
did not account for another important contribution to the
tilt modulus, which has entropic origin and results from
the loss of orientational freedom of the chain director.

In this work we theoretically calculate the tilt mod-
ulus, avoiding the approximations above, and providing
a molecular-level interpretation of the mechanisms dom-
inating κt. We begin by defining a macroscopic average
membrane tilt, allowing the local tilt to undergo ther-
mal fluctuations. Using a phenomenological elastic free
energy we then show that the tilt modulus involves an
elastic chain stretching contribution and a purely entropic
contribution reflecting the loss of chain orientational free-
dom. Then, based on a molecular-level mean-field theory
of chain packing in lipid layers we calculate the tilt modu-
lus for lipid monolayers of different thicknesses, composed
of chains of varying length. These calculations support the
qualitative predictions of the phenomenological model, es-
pecially the existence of two contributions to κt, and pro-
vide numerical estimates of this elastic modulus.

2 Tilt free energy and elastic modulus

2.1 Chain tilt

We consider a lipid monolayer which is part of a flat lipid
bilayer of hydrophobic thickness 2l and overall area A.
The hydrophobic part of the monolayer consists of M in-
compressible hydrocarbon chains, each of volume v = al,
where a = A/M is the average cross-sectional area per

chain in the monolayer plane. Because of its fluid-like na-
ture, the monolayer is isotropic in the lateral directions.
We define a Cartesian coordinate system such that the
(x, y)-plane coincides with the hydrocarbon-water inter-
face, thus separating the lipid head groups of the mono-
layer from the hydrocarbon tails. The z-axis points along
the monolayer normal, towards the hydrophobic core, with
N denoting the unit normal vector.

The hydrocarbon chains comprising a lipid monolayer
in its 2D fluid state possess a multitude of different pos-
sible conformations, α. In principle, any chain conforma-
tion is fully specified by the positions of all its constituent
atoms. A slightly less detailed, yet similarly satisfactory
characterization is provided by the positions, ri, of all
chain segments; e.g., for a simple N -segment long alkyl
chain (with typically N = 12–18 for double-chained phos-
pholipids), –(CH2)N−1–CH3 (in short C-N chain), these
are the N − 1 position vectors of the methylene groups,
and the position rt of the terminal methyl group. The con-
figurational state of a monolayer composed of M chains
is thus specified by the set of all αi with i = 1, . . . ,M .
Alternatively, the state of the monolayer may be specified
by the 2D distribution of chain conformations across the
(x, y)-plane {α(x)}, with α(x) denoting the conformation
of a lipid chain originating at point x of the monolayer-
water interface.

A tilt deformation changes the probability distribu-
tion of chain conformations in the membrane, whose major
manifestation is a deviation of the average chain orienta-
tion from the monolayer normal. A convenient quantita-
tive measure of the orientation of a chain in conformation
α = α(x) is provided by its end-to-end vector

n(α) = {nx(α), ny(α), nz(α)} =
rt(α)− x

|rt(α)− x|
(1)

henceforth also referred to as the chain director. The tilt
t = t(α) of a chain with respect to the membrane normal
N will be defined as [30,34]

t =
n

n ·N
−N. (2)

According to this definition, the tilt field t = t(x) lies in
the monolayer plane, with the absolute value of each tilt
vector being equal to the tangent of the angle θ between
n and N; |t| = tan θ. Figure 3 illustrates schematically a
lipid chain in conformation α with corresponding director
n, tilt t, and tilt angle θ.

2.2 The tilt modulus

We define the macroscopic tilt, 〈t〉, of a deformed mono-
layer as the average of the chain tilt, t = t(x) , over the
monolayer area A and over all possible conformations α
of the individual chains, i.e.,

〈t〉 =
1

A

∫

Dα(x)

∫

A

dx P [α(x)] t[α(x)], (3)
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Fig. 3. A conformation α of a lipid chain and the correspond-
ing chain director n, defined in equation (1). Also indicated are
the tilt t (see Eq. (2)) and the monolayer normal N (pointing
along the z-axis). The thickness of the hydrophobic region of
the monolayer is l. Note that tilt implies, on average, stretching
of the chain to comply with the uniform packing properties of
the monolayer. That is, for tilt angle θ the average end-to-end
distance is l/ cos θ.

where the integration
∫

A
dx extends over the monolayer

surface, and
∫

Dα(x) represents summation over all pos-
sible distributions {α(x)} of chain conformations within
the monolayer. P [α(x)] is the probability to find the par-
ticular chain conformational distribution α(x) within the
monolayer.

An undeformed planar lipid monolayer in the fluid
state is isotropic in the (x, y)-plane and hence character-
ized by zero average tilt, 〈t〉0 = 0. We denote the free
energy of this monolayer by F0. Consider now a deformed
monolayer with a nonzero average tilt 〈t〉. This monolayer
is no longer isotropic because 〈t〉 points towards a specific
direction within the (x, y)-plane. The corresponding free
energy, F , up to quadratic order in the tilt can be ex-
pressed in the form

F = F0 +
A

2
κt 〈t〉

2 , (4)

where κt is the tilt modulus, reflecting the resistance of
the monolayer to the tilt deformation. More generally, the
tilt modulus is a two-dimensional tensor of second order.
However, because the relaxed fluid monolayer is laterally
isotropic this tensor is diagonal, with κxxt = κyyt = κt.

2.3 Calculating the tilt modulus

The present section provides a short derivation of the ba-
sic relationships needed for calculation of the effective tilt
modulus accounting for the director fluctuations in the
state of thermal equilibrium. In principle, the free energies
of the deformed and relaxed monolayers, and hence its tilt
modulus κt, can be derived by calculating the correspond-
ing partition function Z; F = −kBT lnZ, (kB is Boltz-
mann’s constant and T the absolute temperature). Using

a continuum notation, where h(α) = h[α(x)] denotes the
local free-energy density corresponding to a given confor-
mation, α = α(x), of the hydrocarbon chain originating
at x, the partition function for the deformed monolayer is

Z =

∫

〈t〉

Dα(x) · exp







−
1

kBT

∫

A

dx · h(α)







, (5)

where the subscript 〈t〉 indicates that the sum,
∫

〈t〉
Dα(x),

over the various possible conformations should only in-
clude those many-chain configurations satisfying the con-
straint of a fixed average tilt 〈t〉. This approach to cal-
culating Z presents substantial mathematical difficulties,
rendering the evaluation of κt impractical, even numeri-
cally.

A familiar statistical mechanical alternative which cir-
cumvents this difficulty involves the introduction of a
weak, hypothetical, external field,H, which interacts with
the tilt vector, t, to produce the required small deforma-
tion 〈t〉, see e.g., [35]. The interaction energy −H · t is
added to the free energy h(α) of the monolayer, resulting
in the partition function

Z̃ =

∫

Dα(x) · exp







−
1

kBT

∫

A

dx · [h(α)−H · t(α)]







.

(6)
In contrast to (5), the integration in (6) is not constrained,
and extends over all possible conformations. The field,
H, must ensure that the average chain tilt should satisfy
equation (3). Then

〈t〉 =
kBT

A

∂ ln Z̃

∂H
= −

∂F̃/A

∂H
, (7)

where

F̃ = −kBT ln Z̃ = F −AH · 〈t〉 = F +H ·
∂F̃

∂H
(8)

is obtained from F by a Legendre transformation. (Note

that (7) and (8) are vectorial equalities, 〈tx〉 ∼ −∂F̃/∂Hx

etc.) The relationship between F and F̃ also implies

1

A

∂F

∂〈t〉
= H = κt〈t〉 , (9)

where the last equality is valid in the limit of vanishing
tilt (equivalently, vanishing field). Also the fluctuation in
tilt

〈t2〉 − 〈t〉2 =

(

kBT

A

)2
∂2 ln Z̃

∂H2
= −

kBT

A2

∂2F̃

∂H2
(10)

can be calculated from equation (6) where, again, the no-

tation is such that 〈txty〉 − 〈tx〉〈ty〉 ∼ −∂2F̃ /∂Hx∂Hy

etc. Using the last equation a simple familiar relation-
ship (see e.g., [36]) is obtained between the susceptibility,
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χ = ∂〈t〉/∂H, and the elastic tilt modulus:

χ =

(

∂〈t〉

∂H

)

H=0

= −

(

∂2F̃ /A

∂H2

)

H=0

=
kBT

A

(

∂2 ln Z̃

∂H2

)

H=0

=
A

kBT
〈t2〉 =

1

κt
, (11)

where in the penultimate equality we have used equa-
tion (10), setting 〈t〉 = 0 for H = 0. The last equal-
ity, which provides the simple relationship χ = 1/κt =
A〈t2〉/kBT between the susceptibility χ, the tilt modulus
κt, and the tilt fluctuations of the unperturbed (H = 0)
monolayer follows using equation (8).

3 Phenomenological model for the effective

tilt modulus

We first compute κt on the basis of a phenomenological
approach as suggested in [18,34]. Within this model, the
energy of the monolayer state is represented by an effec-
tive elastic Hamiltonian that describes the hydrocarbon
chains by the available orientations of the chain director
n. Note that this approach neglects the degeneracy related
to the fact that several different chain conformations α
may contribute to the state characterized by n. Instead,
the free-energy contributions of the various chain confor-
mations α available at a given n are merged into an elastic
Hamiltonian

h(n) =
κ

2
(divt)2 +

κ0
t

2
t
2, (12)

where the tilt t is related to the director n by equation (2).
The first contribution to (12) is the energy of splay of
the hydrocarbon chains [18,34]; κ denotes the monolayer
bending modulus. It can also be regarded as the energy
of elastic interactions between adjacent chains resulting
from differences in their orientations. The second contri-
bution to (12) results from the tilt-induced stretching of
the lipid chains that ensures uniform packing of the chain
segments within the hydrocarbon core. This elastic energy
of stretching gives rise to the local tilt modulus κ0

t .
The partition function (6) corresponding to the elastic

free energy (12) is

Z̃=

∫

Dn(x)·exp

{

−
1

kBT

∫

A

dx·

[

κ

2
(divt)2+

κ0
t

2
t
2−H·t

]}

,

(13)
where

∫

Dn(x) represents summation over all possible dis-
tributions of chain directors within the monolayer. Com-
putation of (13) for small values of tilt (see appendix)
results in

Z̃ = exp

[

A

2kBT
·

H2

(κ0
t + 3kBT/a)

]

·

∫

Dt̃(x) exp

{

−
1

kBT

·

∫

A

dx ·

[

κ

2
(divt̃)2 +

1

2
(κ0

t + 3kBT/a) t̃
2

]

}

, (14)

where the integration is performed over all possible real-
izations of the effective tilt t̃(x) = t(x)−H/(κ0

t+3kBT/a).
An important feature of (14) is that the external field

H is decoupled from t̃, so that the susceptibility χ is easily
calculated using equations (14, 8) and (11), yielding

χ =
1

κ0
t + 3kBT/a

. (15)

Using equations (11) and (15) the tilt modulus is thus
given by

κt = κ0
t + 3kBT/a (16)

and consists of two contributions. The first, κ0
t , in ac-

cordance with the second term in (12), arises from the
fact that tilted chains are, on average, further stretched
out as compared to chains in an undeformed mono-
layer. Lipid chains, just like polymer chains, experience
a loss of conformational entropy upon increasing their
end-to-end distance. (Note, for example, that only one
—the “all-trans”— bond sequence is available to a maxi-
mally extended polymethylene chain.) Thus, tilted chains
have higher elastic free energy as compared to relaxed
chains. The major contribution to this excess free energy
arises from the loss of conformational entropy. It may be
added that hydrocarbon chain stretching involves an en-
ergetic contribution as well, arising from the number of
trans/gauche bonds along the chain. This contribution,
however, is generally favorable since chain stretching re-
sults in less (higher energy) gauche conformers. We shall
later refer to κ0

t as the elastic contribution to κt, being
aware of the fact that it is predominantly entropic.

The second contribution to the tilt modulus, κet =
3kBT/a, is purely entropic, consistent with its proportion-
ality to T . In the appendix we show that the transforma-
tion (valid for small tilt values) from n to t integration (see
Eqs. (13) and (14)) results in the appearance of a “degen-
eracy” (rotational density of states) factor, ω(t) = 1/(1 +
t2)3/2 ≈ exp(−3t2/2) = exp[−(a/2kBT )κ

e
t t

2] per chain, in

the partition function Z̃. For a given magnitude of t we can
write −(1/2)κet t

2 = (kBT/a) lnω(t) = T∆S(t)/a, where
∆S may be interpreted as the loss of orientational entropy
experienced by a chain of tilt magnitude t. In other words,
κet accounts for the constraints imposed by the tilt defor-
mation on orientational fluctuations of the hydrocarbon
chains. For 〈t〉 = 0 the directors n exhibit maximal orien-
tational fluctuations, getting smaller for nonzero average
tilt, 〈t〉 6= 0.

Previous phenomenological models of the tilt modulus
did not account for the entropic contribution, κet , to the
tilt modulus [34,37]. On the other hand, a recently sug-
gested simple model of a fluctuating director yielded only
the second contribution, 3kBT/a [38], see also Section 4
below.

The entropic part of κt, corresponding to a typi-
cal cross-sectional area per chain in the liquid mem-

brane state, a ≈ 0.30 nm2, is 3kBT/a ≈ 0.1kBT/Å
2
≈

35mJ/m2. According to a previous estimate [34], the elas-
tic part, κ0

t , is smaller than 50mJ/m
2 but of the same or-

der of magnitude. Hence, the “elastic” and “entropic” ef-
fects should contribute similarly to the tilt modulus. Our
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results from a molecular-level chain-packing calculation
presented below support this notion. A notable result of
equation (16) is that the effective tilt modulus does not
depend on the bending (splay) modulus, which accounts
for splay deformations generated by tilt fluctuations. This
means that in our approximation of small tilt, the splay
deformation affects higher than quadratic order energy
terms, and, hence, the related contributions can be ne-
glected. Therefore, in order to determine the tilt modulus
of an extended monolayer subject to a homogeneous av-
erage tilt, it is sufficient to neglect correlations between
different lipid chains and, hence, to focus on the tilt mod-
ulus for a single chain derived in mean-field approxima-
tion. Based on a molecular chain model we shall present
such a calculation in the following section.

4 Molecular-level chain-packing theory

In this section we calculate numerically the tilt modulus of
the monolayer on the basis of a molecular-level mean-field
theory for the conformational chain-packing statistics in
amphiphilic aggregates. This theory has previously been
applied to calculate conformational and thermodynamic
properties of lipid assemblies of various geometries (for a
review see [39]). Following a brief outline of the approach,
we shall describe its application to calculate κt.

4.1 Free energy and conformational statistics

The principal goal of the mean-field theory used here is
to derive an explicit expression for the singlet probability
distribution function (pdf) of chain conformations in the
monolayer. This pdf should take into account the bound-
ary conditions associated with the particular packing ge-
ometry of the lipid molecules (e.g., those of a planar or
curved bilayer), and the constraints imposed on the con-
formational statistics of a given chain by its neighbors.
Mathematically, this goal is achieved by minimizing the
free energy per chain, f = F/M , subject to the relevant
packing constraints.

Note that the probability distribution P [α(x)] factor-

izes on the mean-field level; P [α(x)] =
∏M

i=1
P (αi;xi),

where P (αi;xi) is the (local, conditional) probability to
find chain i, anchored at position xi, in conformation αi.
Note the normalization

∑

α P (α;x) = 1 at any given x

(in the continuum limit we may omit the index i). Since
the unperturbed monolayer is isotropic in the membrane
plane P (α;x) = P (α) is independent of x. P (α;x) is in-
dependent of x also for a homogeneously deformed, trans-
lationally invariant monolayer such as that in Figure 2, on
which we focus here.

In terms of P (α) the (Helmholtz) free energy per chain
is given by

F

M
=
∑

α

P (α)[ε(α) + kBT lnP (α)], (17)

where ε(α) is the internal energy of the lipid chain in con-
formation α, e.g., for simple polymethylene chains this
is the sum of (trans/gauche) bond rotation energies. The
first term is thus the average chain energy, 〈ε〉. The second
sum in (17) is −TS/M where S/M is the conformational
entropy per chain in the monolayer. Note that there is no
α-dependent term in (17) to account for the interaction
energy of the chain with its neighbors. This is because nu-
merous experiments, as well as theory and computer simu-
lations, indicate unequivocally that the hydrocarbon cores
of lipid bilayers, monolayers, and other amphiphilic aggre-
gates are uniformly packed with the lipid chain segments,
typically with a density resembling the density of the cor-
responding liquid hydrocarbons [40,39]. Consequently, the
cohesive energy of the hydrocarbon core is a constant, in-
dependent of the many-chain configuration, and thus can-
not affect P (α). On the other hand, similar to isotropic
liquids, short-range repulsive (excluded-volume) interac-
tions between the chains play a crucial role in determin-
ing their packing characteristics. In our approach these in-
teractions are reflected as packing constraints which P (α)
must satisfy. The condition of uniform chain segment den-
sity within the hydrophobic core enables a simple mathe-
matical expression of these constraints, as outlined below.

Let φ(α, z)dz denote the number of chain segments
residing between z and z + dz when the chain is in con-
formation α. The condition of uniform segment density
within the hydrophobic core thus implies that the average
chain segment density at z,

〈φ(z)〉 =
∑

α

P (α)φ(α, z) = φ̄ (18)

is a constant independent of z, whose value equals the
average density in the core φ̄ = a/ν, with ν denoting the
volume per segment in the (liquid-like) core and a the
cross sectional area per chain at the hydrocarbon-water

interface. For simple alkyl chains, ν = 27 Å
3
is the volume

of a CH2 group. Since the volume of the terminal CH3

group is (to a good approximation) twice as large as that
of a CH2 segment (νCH3

≈ 2ν), the total volume of a
saturated C-N chain is v = ν(N + 1) = al and thus φ̄ =
(N + 1)/l.

For the unperturbed monolayer (18) is the only rele-
vant set of constraints on P (α), (apart from the trivial
normalization condition). For a monolayer experiencing a
uniform nonzero tilt deformation 〈t〉, the conformational
pdf should also satisfy

∑

α

P (α)t(α) = 〈t〉 . (19)

Note that the averaging in (19) is the single-chain, mean-
field level expression of (3).

Minimization of the free-energy functional (17) with
respect to {P (α)} subject to the constraints of uniform
segment density (18), and nonzero tilt (19), yields the con-
formational pdf

P (α) =
1

z̃
exp

{

−
a

kBT
[h(α)−H · t(α)]

}

(20)
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with

ah(α) = ε(α) + ν

l
∫

0

dz π(z) [φ(α, z)− φ̄] (21)

and

z̃ =
∑

α

exp

{

−
a

kBT
[h(α)−H · t(α)]

}

. (22)

The factor a in equations (20–22) was introduced to ensure
that aH · t has the units of energy, as in Section 2.

The function π(z) appearing in h(α) and hence in the
exponent of P (α) constitutes a continuous set of Lagrange
multipliers, conjugate to the z-dependent constraint in
(18). Its physical interpretation is that of a lateral pressure
profile. Similarly, the field H in (20) is the Lagrange mul-
tiplier conjugate to the constraint of nonzero tilt, equa-
tion (19).

The evaluation of π(z) and H requires the simultane-
ous solution of the self-consistency equations obtained by
substituting (20) back into the constraints (18) and (19),
i.e.,

0 =
∑

α

[

φ(α, z)− φ̄
]

exp

{

−
a

kBT
[h(α)−H · t(α)]

}

(23)
for all z, and

0 =
∑

α

[t(α)− 〈t〉] exp

{

−
a

kBT
[h(α)−H · t(α)]

}

.

(24)
Because of the multitude of possible chain conformations
α for any realistic model of the lipid chain, the evalua-
tion of the lateral pressure profile, π(z), and the auxiliary
field, H, must be carried out numerically. Some details
pertaining to the numerical solution of the self-consistency
equations (23, 24) are given in the next section.

Substituting P (α) from (20) into (17), we find

F̃ = F −AH · 〈t〉 = −MkBT ln z̃. (25)

Thus, one possibility to evaluate the tilt modulus is to
calculate F̃ for a series of H values and then determine
κt by numerical differentiation according to (11). How-
ever, in Section 2 we have noted that a simpler and more
elegant method to determine κt is based on computing
the mean-square tilt fluctuations in the undeformed mono-
layer, where 〈t〉 = 0 and hence also H = 0, i.e.,

1

κt
= χ =

a

kBT

∑

α

P (α) t(α)2 . (26)

This method, which we employ in the present work, re-
quires the evaluation of π(z) only for the undeformed
(H = 0) monolayer. In parallel with the numerical so-
lution of the self-consistency equations (23) (with H = 0)
one can perform the averaging in (26). Note that equation
(26) can be derived by performing the second derivative of

Z̃ = z̃M with respect to the field H (see Eq. (11)), noting
that

∑

α P (α)t(α) = 0 because of the lateral isotropy of
the monolayer in the absence of H.
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Fig. 4. The tilt modulus, κt, of a planar bilayer of hydrophobic
half thickness, l, composed of C-12, C-14, and C-16 chains, as
derived by the chain-packing theory.

4.2 Results

In our numerical calculations we use a molecular-level rep-
resentation of a lipid chain according to the rotational iso-
meric state scheme [41]. Using this scheme, all conforma-
tions of a saturated C-N chain, consisting of N C-atoms
with N = 12, 14, 16 were generated numerically, with each
conformation α characterized by its trans/gauche (t, g+,
or g−) bond sequence and its overall orientation with re-
spect to the membrane normal. Bond sequences are enu-
merated using a bond length of 1.53 Å and the segment

volumes ν(CH2) = 27 Å
3
and νCH3

= 2ν. For each bond
sequence, 120 uniformly distributed overall chain orienta-
tions are randomly sampled, discarding all those in which
one or more segments protrude into the aqueous side of
the hydrocarbon-water interface.

Based on the molecular chain model we determine
—for any given given cross-sectional area a per chain—
the numbers of chain segments, φ(α, z), that enter into
the calculation of the lateral pressure. The lateral pres-
sure is calculated according to (23) with H = 0; as in
previous work [42] we use an appropriately discretized
version of (23) in which the monolayer is divided into
several thin sublayers along the z-axis, each of thick-
ness ≈ 1 Å. Note also that we ensure modeling of a
flat and symmetric bilayer by using the mirror imaging,
ri(x, y, z) → ri(x, y, 2l − z) for segments that penetrate
into the apposed monolayer (z > l).

Figure 4 shows the tilt modulus κt as a function of the
monolayer thickness l (left panel), and the cross-sectional
area a per chain (right panel). Note that these are two
alternative representations of the same set of data since
a = v/l = (N + 1)ν/l. The results show that, for a given
area per chain a, the tilt modulus κt is essentially indepen-
dent of chain length (N). However, κt depends strongly on
a, especially when the chains are strongly stretched (small
a). More extended chains (smaller a) exhibit a larger tilt
rigidity. For large a we find that κt tends to become inde-

pendent of a; κt ≈ 0.07kBT/Å
2
for a ≈ 50 Å

2
. This lim-

iting behavior is a consequence of the fact that for large
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Fig. 5. The mean-field chain-packing free energy per chain,
F/M , for a planar bilayer of hydrophobic half thickness, l,
composed of C-12, C-14, and C-16 chains.

a the chains are no longer stretched and the major con-
tribution to κt arises from the orientational entropy term,
κet ≈ 3kBT/a, which is independent of N and in the large-
a region varies slowly with a.

4.3 Two contributions to the tilt modulus

The numerical results obtained from the chain-packing
theory support the notion that the tilt modulus can be
separated into two contributions, as suggested by (16).
The following discussion elaborates on the molecular ori-
gin of these contributions and interpret them in terms of
the chain-packing theory.

Recall that the first term in (16), κ0
t (implicit accord-

ing to the phenomenological model), results from the tilt-
induced stretching of the hydrocarbon chains which, in
turn, is a consequence of the requirement for uniform seg-
ment density in the hydrophobic core. Upon a tilt de-
formation the effective end-to-end distance of the chains
increases from l for vanishing tilt angle to l/ cos θ for a
nonzero tilt angle θ, as follows from Figure 3. For small
tilt angles we thus find the relative chain extension

4l =
θ2

2
l. (27)

In the tilt-deformed bilayer these (on average) elongated
l+4l chains are packed next to each other. Ignoring mo-
mentarily the fact that the chain directors are not oriented
along the membrane normal, the excess stretching free en-
ergy of the tilted monolayer may be estimated from the
difference 4F = F (l +4l) − F (l). This free-energy dif-
ference, per chain, 4F/M , can be calculated based on
our mean-field chain-packing theory. Thus, in Figure 5 we
show F (l)/M as a function of the monolayer thickness,
l, for C-12, C-14, and C-16 chains. For small changes in
thickness 4l we can expand

F (l +4l) = F (l) + F ′(l)4l, (28)
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Fig. 6. The two contributions to the tilt modulus, κ0

t and
κe

t , according to (29) and (30), respectively. The derivative
F ′(l)/M in (29) is obtained from Figure 5 for C-14 chains. We
also redisplay from Figure 4 the tilt modulus, κt, of a C-14
monolayer (¦).

where F ′(l) denotes the first derivative of F (l). Identifying
F (l+4l) and F (l) in (28) with F and F0 in (4), we obtain
the stretching-induced contribution to the tilt modulus

κ0
t =

l F ′(l)/M

a
. (29)

Apparently, κ0
t would vanish for F

′(l)/M = 0. Indeed,
the curves in Figure 5 exhibit a shallow minimum which
can be explained as follows: for large l the uniform pack-
ing constraint within the lipid bilayer implies stretching of
the lipid chains (and a corresponding free-energy penalty).
On the other hand, for very small l the chains become
squeezed between the two (impenetrable) monolayer in-
terfaces of the bilayer, again raising the free energy. We
note however that the minimum of F (l)/M appears for
very small l (or, equivalently, large a) which is untypical
for the packing of common lipid bilayers. For the physi-
ologically relevant range of l, we find F ′(l)/M (and thus
κ0
t ) to be positive.
The second contribution to the tilt modulus, 3kBT/a,

can most easily be calculated on the basis of a
simple director model [38]. Here, the director n =
{cosφ sin θ, sinφ sin θ, cos θ} is allowed to change its orien-
tations within 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π/2. The director
is thus confined to the “hydrophobic” region, z > 0, of
the monolayer. Treating all allowed director orientations
as energetically equivalent, we arrive at

κet =
kBT

a

∫

dn
∫

dn t2
=
3kBT

a
, (30)

where
∫

dn =
∫ 2π

0
dφ
∫ π/2

0
dθ sin θ.

In Figure 6 we show κ0
t and κet as calculated using

equations (29) and (30), respectively, and redisplay the
result for κt from the chain-packing calculations for C-14
chains. We see that the relation κt = κ0

t + κet is valid to
a very good approximation, for the entire range of (bio-
logically relevant) values of a. (Note, the minimal value
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of a, corresponding to an all-trans chain, pointing along
the membrane normal, is a ≈ 22 Å; typical values of a in
lipid bilayers are around 30–35 Å.) We also find that κ0

t

dominates in the small-a region, whereas κet is more im-
portant for large a. This behavior is due to the fact that

for very small a (roughly a . 25 Å
2
) the chains are highly

stretched, and any further stretching is energetically very
expensive. Then κ0

t dominates over κ
e
t . On the other hand,

for very large a (40 Å
2

. a) the membrane is thin, and
the chains are relaxed and can easily be stretched, as evi-
denced by Figure 5. Thus, for large a, κ0

t is negligible and
κet determines the tilt elasticity. For biological membranes,

where typically 30 . a/Å
2

. 35 [43], the two terms κ0
t and

κet provide comparable contributions to κt.

5 Summary and conclusions

Our goal in this work has been to study, qualitatively and
quantitatively, the elastic response of a lipid monolayer
to tilt deformations. To model experimental conditions,
we have characterized the monolayer state by the macro-
scopic tilt, 〈t〉, corresponding to the conformational and
spatial average of the chain tilt vector t in the membrane.
A tilt modulus, κt, has been defined as the coefficient de-
scribing the (quadratic) dependence of the monolayer free
energy on 〈t〉. We have calculated κt using two theoret-
ical approaches: the first is a phenomenological local de-
scription of the tilt elasticity [18,34], and the second is a
molecular-level mean-field theory of chain packing in lipid
assemblies [39]. The major results of our analysis are:

– The tilt modulus κt does not depend on the elastic
interaction between adjacent chains resulting from a
difference in their orientation. This means that, in the
approximation we consider, the lipid chains fluctuate
nearly independently around the average 〈t〉.

– The tilt modulus κt consists of two contributions: an
elastic one, κ0

t , resulting from the tilt-induced stretch-
ing of the hydrocarbon chains, and an entropic contri-
bution, κet , describing constraints imposed by tilt on
fluctuations of the chain orientations.

– For large cross-sectional area per lipid chain tilt-
induced chain stretching is negligible and thus κt ≈ κet .
On the other hand, for small cross-sectional chain areas
the tilt-induced chain stretching dominates and thus
κt ≈ κ0

t .
– For typical cross-sectional areas per chain (30 .

a/Å
2

. 35) we find κ0
t ≈ 0.1kBT/Å

2
and κet ≈

0.1kBT/Å
2
to contribute similarly to κt.

Hence, the present mean-field approach suggests a value

of κt ≈ 0.2kBT/Å
2
for the tilt modulus of a typical lipid

monolayer.
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Appendix A. Computation of the partition

function in the phenomenological model

The major technical difficulty in computing the partition
function (13) arises from the fact that the Hamiltonian is
a functional of the tilt field t(x), whereas the states are
represented by distribution of the directors n(x) of the
hydrocarbon chains. Therefore, we have to transform (13)
so that the path integration is over the tilt field t(x). This
transformation involves several steps:

– We replace the continuous field of the directors, n(x),
by a discrete one consisting of directors of individual
chains, ni, the area per chain in the monolayer surface
being equal a and the total number of the directors
being equal N .

– The path integration is then replaced by a product of
ordinary integrals

∫

Dn(x)⇒

N
∏

i=1

∫

dni, (A.1)

where, using the polar angles θi and φi to charac-
terize the chain orientation, the director of a chain
is determined as ni = (sin θi cosφi, sin θi sinφi, cos θi)
and integration over its orientations is

∫

dni =
∫ 2π

0
dφi

∫ π/2

0
dθi sin θi.

– We change the variable of integration from ni to ti.
Accounting for the definition (2), the tilt of a hydrocar-
bon chain is presented by ti = tan θi · (cosφi, sinφi, 0).
Using this presentation, we obtain

2π
∫

0

dφi

π/2
∫

0

dθi sin θi =

2π
∫

0

dφi

∞
∫

0

tidti
1

(1 + t2i )
3/2

=

∫

dti
1

(1 + t2i )
3/2

, (A.2)

where ti = |ti| = tan θi. As a result, we obtain

N
∏

i=1

∫

dni =

N
∏

i=1

∫

dti
1

(1 + t2i )
3/2

=

(

N
∏

i=1

∫

dti

)

·

(

N
∏

i=1

1

(1+t2i )
3/2

)

. (A.3)

– Within the approximation up to the second order in
small tilt ti, we replace 1/(1 + t2i )

3/2 by exp(−3t2i /2),
insert the latter into (A.3) and using the relationship

N
∏

i=1

exp

(

−
3

2
t2i

)

⇒ exp



−
1

a

∫

A

dx
3

2
t(x)2



 (A.4)
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return to the path integral over the tilt field t(x),

∫

Dn(x) =

∫

Dt(x) · exp



−
1

a

∫

A

dx
3

2
t(x)2



 .

(A.5)
The partition function (13) is now expressed in the
form

Z̃ =

∫

Dt(x) · exp

{

−
1

kBT

∫

A

dx

[

1

2
· κ · (divt)2

+
1

2
·

(

κ0
t +

3kBT

a

)

· t2 −H · t

]}

. (A.6)

Changing the variable of integration from the tilt t(x)
to the effective tilt t̃ = t−H/(κ0

t+3kBT/a), we obtain
from (A.4) the equation (14) of the main part.
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