Modeling of cationic lipid-DNA complexes
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Abstract

Cationic lipid-DNA complexes, often referred to as lipoplexes, are formed spontaneously in
aqueous solutions upon mixing DNA and liposomes composed of cationic and nonionic lipids.
Understanding the mechanisms underlying lipoplex formation, structure and phase behavior is
crucial for their further development and design as non-viral transfection vectors in gene ther-
apy. From a physical point of view, lipoplexes are ordered, self-assembled, composite aggre-
gates. Their preferred spatial geometry and phase behavior are governed by a delicate coupling
between the electrostatic interactions which drive lipoplex formation and the elastic properties
of the constituent lipid layers, both depending on the molecular nature and composition of the
lipid mixture. In this review we outline some recent efforts to model the microscopic structure,
energetics and phase behavior of cationic lipid-DNA mixtures, focusing on the two principal
aggregation geometries: the lamellar (LS), or “sandwich” complexes, and the hexagonal (H|C| :
or “honeycomb” complexes. We relate the structural and thermodynamic properties of these
two “canonical” lipoplex morphologies to their appearance in phase diagrams of DNA-lipid
mixtures, emphasizing the crucial role fulfilled by the molecular packing characteristics of the
cationic and neutral lipids, as reflected in the curvature elastic properties of the mixed lipid
layer.
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1 Introduction

Adding DNA to an aqueous solution containing liposomes composed of cationic and electrically neutral
(“helper” or “co-") lipids, results in the disruption of part or all of the liposomes and the spontaneous
appearance of composite cationic lipid-DNA (CL-DNA) structures, or lipoplexes. The formation of CL-
DNA complexes is driven by The formation of CL-DNA complexes is driven by the strong electrostatic
attraction between the cationic lipid headgroups and the negatively charged phosphate groups on the DNA
backbone. This attraction, as will be further discussed in later sections, is mediated by the release of
the small mobile (counter”) ions into solution upon DNA-lipid complexation, and the concomitant gain in
their translational entropy. This gain is maximal at the "isoelectric point” when the total lipid charge exactly
balances the total DNA charge. This notion, and the strong electrostatic driving force for complex formation
imply that either all the cationic lipids, or all the DNA, or both are complexed. That is, when a small amount
of lipids is mixed with excess DNA, all lipids become involved in complex formation whereas part of the
DNA remains “naked” in solution. In the opposite limit, corresponding to excess lipid in solution, only a
fraction of the liposomes is involved in complexation of all the DNA. Though not carrying electric charges,
because of their ability to tune both the surface charge density and the curvature elastic properties of the
mixed lipid layers, the helper lipids play a crucial role in determining the optimal aggregation geometry of
CL-DNA complexes.

Our primary goal in this review is to highlight the principles governing the interplay between elec-
trostatic lipid-DNA interactions and lipid elasticity, the dependence of this coupling on the nature and
composition of the lipid layers and lipid-DNA ratio, and the reflection of these factors in the morpholog-
ical, energetic and thermodynamic characteristics of lipoplex phase behavior. Most of the concepts to be
discussed are of direct relevance to a variety of other membrane-macromolecule interactions, e.g., protein
adsorption onto biomembranes. The following sections of this review will focus on the theoretical-physical
concepts underlying lipoplex structure and phase behavior. It is therefore appropriate to begin the discus-
sion with a brief survey of the experimental background and biomedical relevance of these systems. Further
details can be found in other chapters of this volume.

Lipoplexes are currently the most promising non-viral gene delivery vehicles into mammalian cells.
Among the advantages of these transfection vectors, as compared to their viral counterparts, are their negli-
gible immunogenicity response, and the ease of their large scale production [1, 2]. In fact, as already noted
above, formation of lipoplexes requires barely more than mixing DNA with liposomes, in strong contrast to
the elaborate gene splicing protocols in viral gene therapy. On the other hand, controlling the size and shape
of the complexes is rather intricate and requires detailed understanding of the kinetic and thermodynamic
mechanisms underlying complex formation. Furthermore, the transfection efficiency of lipoplexes is gener-
ally much lower than that of viral vectors. The design of improved transfection vectors has thus become the
major challenge in non-viral gene delivery, initiating the synthesis of numerous different cationic lipids and
their subsequent testing in lipoplex formulations and transfection experiments. In parallel, much effort has
been devoted to investigating the relation between lipoplex structure and transfection efficiency [3, 4, 5].
Thus far, many details of lipoplex-induced transfection remain unresolved. This concerns all steps from
lipoplex assembly, targeting, internalization into the cell, disassembly and the ultimate translocation into
the cell nucleus [6, 7].

The necessary steps for successful delivery of nucleic acids require a number of different, sometimes
conflicting, properties of the lipoplexes. For example, larger amounts of cationic lipids facilitate binding to
the cell surface but also increase cytotoxicity [8]. Moreover, the lipoplexes must be stable enough to survive
the journey towards and across the plasma membrane into the cell interior. Yet, once inside the cell, these
complexes should be “fragile” enough in order to decompose and release their DNA content into the cyto-
plasm [9]. Clearly then, understanding the factors governing the energetic, structural, and thermodynamic



characteristics of CL-DNA complexes is essential for optimizing their transfection efficiency [10].

Most phospholipids in agueous solution self-assemble into planar bilayers, often closing upon them-
selves to form vesicles. Other phospholipids, such as dioleoylphosphatidylethanolamine (DOPE), because
of their relatively small headgroup, prefer the packing geometry of the inverse-hexagonal (H,,) phase [11].
The lipid layers composing these structures are “soft”, self-assembled, aggregates. On the other hand, dou-
ble stranded (ds) DNA, which serves as the genetic material in most lipoplexes, is a rigid rod-like molecule
showing negligible structural flexibility. The structure of the CL-DNA complexes emerging in solution is
thus dictated by the molecular packing propensities of their constituent lipids, which can rearrange their
packing geometry upon complexation with DNA. The resulting lipoplex geometry reflects the balance be-
tween the packing propensities of the lipid molecules and electrostatic interactions with the DNA rods.

In some of the earliest studies of lipid-DNA complexation it was assumed that the liposomes remained
intact (or perhaps reorganized into lipid micelles), with the DNA binding to their surface [12, 13]. Some-
what later, electron microscopy studies clearly indicated drastic reorganization of the liposomes and com-
plete encapsulation of the DNA by the lipids [14, 15]. These experiments revealed a rich polymorphism
of CL-DNA aggregates, and provided approximate information about their size and shape. Based on their
visual appearance some of the observed structures were given rather pictorial names such as ”beads on a
string” [13], “spaghetties” or "meatballs” [16, 17], inspiring the use of terms like “honeycomb” and “sand-
wich” complexes for other structures in subsequent studies.

It did not take long before molecular-level structural information had been reported based on X-ray
studies, indicating that lipoplexes are periodic structure of both the (rod-like) double stranded DNA (ds-
DNA) rods and the lipid layers constituting the composite complexes [18, 19, 20, 21, 22, 23]. In particular,
the X-ray measurements revealed the existence of two “canonical” packing orders: lamellar and hexago-
nal [18, 19], identical to the symmetries of the lamellar (L) and hexagonal (H,,) liquid crystalline phases
of pure lipid assemblies. The observed ordered CL-DNA complexes have thus been termed ”LS” and
Hﬁ phases. It is now known that lipoplex structure and stability depend on many factors, including the
molecular characteristics of the cationic and helper co-lipids [24, 25], the chemical composition of the lipid
mixture, the length and type of the DNA (e.g., circular versus linear), and the ambient conditions such as
pH, salt concentration and temperature [19, 26, 27].

Fig. (1) shows three basic geometries of CL-DNA complexes. The LS, or "sandwich” complex (A) is
a lamellar stack of cationic-nonionic lipid bilayers, intercalating monolayers of parallel dsDNA rods. (The
term “rod” is fully justified here in view of the fact that the persistence length of dSDNA, & ~ 500 A, ismuch
larger than its 20 A diameter. It is also much larger than the thickness of the lipid bilayers or the intervening
water gaps, both on the order of 30 A.) The DNA rods within a given gallery are equally spaced, with
a uni-dimensional (1D) correlation length extending over about ten DNA molecules, as evidenced from
the line shape analysis of x-ray scattering data [28, 29]. The distance, d, between adjacent dsDNA’s in a
given gallery depends on the composition of the lipid layers, typically in the range 25 A < d < 70A, with
d decreasing as the mole fraction of the cationic lipid increases [18]. Noting that the radius of dsDNA is
Rp ~ 10 A, it follows that the minimal spacing between adjacent rods, d ~ 25 A, corresponds to nearly
close DNA-DNA contact, with only a thin hydration shell separating between adjacent DNA strands. The
thickness of the water gap between adjacent lipid bilayers is similar, w & 26 A, corresponding again to near
contact between the DNA rods and the lipid layers, with thin water shells between their surfaces. However,
unlike d which varies with the lipid composition, w is nearly constant in all lamellar complexes. The
freedom to adjust the DNA-to-DNA spacing is a unique property of the LS complex. It adds to the ability of
these complexes to optimize their lipid composition in the presence of excess lipid in solution. The origin
of these phenomena will be discussed in the following sections.

In the Hﬁ, or “honeycomb” [30], complex shown in Fig. (1B) dsDNA rods are intercalated within the
aqueous tubes of an hexagonal lipid matrix. The symmetry of this structure is identical to that of the



inverse-hexagonal, H,,, phase of (DNA free) lipids [11]. Owing to the stringent constraints on the lipid
chain packing in the H, phase, the diameter of the water tubes in this array, for most lipids of biological
interest, are typically just a few A’s larger than the diameter of dsDNA. In other words, the DNA rods
can comfortably be accommodated within the hollow water tubes of the hexagonal lipid array. Strong
electrostatic attractions between the phosphate charges on the DNA surface and the surrounding cationic
headgroups tend to minimize the distance between the lipid and DNA surfaces, setting it to one or two
water molecule diameters. The spacing of the hexagonal DNA array is thus fixed, corresponding to roughly
twice the thickness of the (mixed) lipid monolayer. This, in turn, implies a specific given number of lipid
molecules per unit length of DNA in the Hﬁ complex. Thus, the only degree of freedom left for the Hl‘f
complex is the lipid composition. We shall see below how the different degrees of freedom of the LS and
H,CI complexes are manifested in the phase diagrams of CL-DNA mixtures.

Another complexation geometry, which unlike the lamellar and hexagonal structures, does not exhibit
long range order, is the ”spaghetti”-like complex illustrated in Fig. (1C) [31]. This structure, which has been
suggested based on electron microscopy studies, consists of (supercoiled) DNA surrounded by a cationic
lipid bilayer. As these structures often appear to emerge from more compact aggregates or are connected to
semi-fused liposomes, one may speculate that the ”spaghetti” complexes are transient structures, possibly
serving as precursors to the H [ phase. This notion is supported by theoretical calculations revealing that the
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Figure 1: lllustration of three principal lipoplex geometries: The lamellar (LS) or “sandwich”
structure (A), the hexagonal (H,CI) or “honeycomb” complex (B), and the bilayer-coated, or
“spaghetti”, complex (C). The light-shaded areas represent the hydrophobic cores composed of
lipid hydrocarbon chains, a few of which are schematically drawn. The solid circles indicate
DNA cross-sections. In (A), w is the thickness of the water gap between adjacent lipid bilayers,
and d is the DNA-DNA distance.

spaghetti complex is a metastable structure, of higher free energy than that of the corresponding H ; complex
[30]. The H { phase, as seen in Fig. (1B), can be viewed as an hexagonal array of dsSDNA'’s, wrapped around
by lipid monolayers Similarly, the spaghetti complex consists of the same central structural element, i.e., a
monolayer-coated DNA, which instead of being associated with identical elements (as in HG complexes) is
wrapped around by another (oppositely bent) lipid monolayer.

Biomedical studies suggest that the transfection efficiency of lipoplexes is correlated (though in a non-
trivial way) with the propensity of their constituent lipids to assemble into curved, non-bilayer, structures
[32]. To a large extent, the optimal curvature of the lipid mixture is dictated by the type and concentration
of nonionic co-lipids in the complexes, which, in turn (and, again, in a nontrivial way) depends on the initial
composition of the liposomal lipid reservoir. Another important role of the neutral lipids is in tuning the
cationic charge density on the lipidic surface. The simultaneous tuning of both the charge density and the
curvature of the lipid layers plays a principal role in determining the preferred geometry, the stability and



the lipid composition of the lipoplex.

The repeat distance of base pairs along the axis of dsSDNA is 3.4 A, implying (on average) a 1D density
of one phosphate charge per | = 1.7 A along the DNA axis. Assuming that the phosphate charges are
uniformly spread over the surface of a cylinder of radius R = 10A corresponding to the (hard core) radius

of dsDNA, we find that the charge density on the DNA surface is o, = —e/2mRy = —e/110 A®. The
charge density of the cationic lipid layer, og = e@/a,,, depends on the mole fraction of the cationic lipid,
@, and the cross-sectional area per lipid, as measured at the headgroup surface where the cationic charge
resides. Earlier in this section it was noted that maximal complex stability is achieved at the isoelectric
point where the magnitudes of the total DNA and lipid charges are equal. For planar membranes, such as
those in the lamellar lipoplex, charge matching is obtained when oy + o5 = 0. The cross-sectional area

per lipid headgroup is typically a, ~ 70,&2 leading to charge matching for ¢ = 0.65. The optimal lipid
composition corresponding to the hexagonal complex is quite different, and depends on the radlus R, of the
cylindrical envelope containing the cationic headgroups. For close contact, at R, =Ry + 3A the matching
composition is ¢ = 0.35 [33].

Recent modeling [34, 35] and experimental studies [36] suggest that isoelectricity alone may not suffice
to explain all the structural characteristics of lipoplexes. These studies indicate a direct involvement of
the neutral, zwitterionic, phosphatidylcholine (PC) lipids in the electrostatic interaction with the DNA:
The P~ —NT dipole of PC headgroups is well known to be almost parallel to the bilayer plane [37]. Yet,
in mixtures with cationic lipids the anionic phosphate of PC interacts preferentially with the charge of
the co-lipid, resulting in reorientation of the P~—N dipole towards the aqueous environment [38] and a
corresponding decrease in the cross-sectional area of PC [39]. It is thus the N end of the P~—N™ dipole of
the PC co-lipid that interacts most favorably with the complexed DNA. Whether similar mechanisms apply
in systems involving other co-lipids remains to be established.

The equilibrium geometry of a self-assembled aggregate composed of two or more lipid species reflects
the packing characteristics of the individual lipid components. Thus a large fraction of “curvature loving”
lipids in the mixture will generally result in the formation of curved aggregates. Note that the preferred (or
“spontaneous”) curvature of the lipids may either be *positive’, as in micellar aggregates, or "negative’, as in
the H,, phase. Generally, we refer to positive (negative) curvature of a lipid layer for bending towards (away
from) the hydrocarbon core, as is schematically illustrated in Fig. 2. Cone-shaped phospholipids, such as the
single-chain lysolipids are characterized by a relatively large headgroup area, a,,, and small cross-sectional
tail area, and thus self-assemble into spherical or cylindrical micelles. Yet, a,, is not necessarily determined
by the steric size of a headgroup; it is also affected, often dominated, by the strength of inter headgroup
interactions, primarily electrostatic and hydration forces. Indeed, the double-tailed multi-cationic lipid 2,3-
dioleyloxy-N- [2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA)
shows a pronounced tendency to form micellar aggregates [40]. On the other hand, double chain lipids with
small headgroups tend to form inverted micellar structures, in which the lipids adopt (on average) the shape
of an ”inverted cone”. This is typically the case for lipids with a phosphatidylethanolamine headgroup
(PE’s). The relatively small cross-sectional area a,, results from a strong intermolecular hydrogen bond
network that prevents the formation of a large hydration shell. Notably, dioleoylphosphatidylethanolamine
(DOPE), which is an often used co-lipid, shows a pronounced tendency to form the inverse-hexagonal
(H,,) phase. Most double-chained lipids are characterized by comparable cross-sectional areas of the head-
group and tail regions, and their molecular shape is roughly that of a “cylinder”, intermediate between
a ”cone” and ”inverted cone”. These lipids, including PC and various charged lipids, self-assemble into
planar bilayers. Similarly, most (monovalently charged) cationic lipids, like the often used 1,2-dioleoyl-
3-(trimethyammonium) propane (DOTAP), tend to assemble into planar bilayers. When a cationic lipid
species is mixed with DOPE (or a similar H,, phase-forming lipid) the mixed system undergoes a structural
transition from the H,, to the L, phase as the mole fraction ¢ of the cationic lipid increases.
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Figure 2: Schematic illustration of lipid layers with positive (¢ > 0), vanishing (c = 0), and
negative (c > 0) curvature. Cone-shaped lipids such as the single-chain lysolipids tend to self
assemble into positively curved lipid layers. Inverted cone-shaped lipids such as DOPE prefer
negative curvature. Most double-chained and monovalently charged (including cationic) lipids
tend to adopt planar membranes where ¢ = 0.

In addition to their potential use in non-viral gene therapy, lipoplexes are composite “super-structured”
assemblies with remarkable thermodynamic properties that pose a number of theoretical challenges. Com-
bined with the growing need to correlate lipoplex structure and transfection efficiency, they have inspired
quite a few theoretical studies, particularly (though not exclusively [30]) following the structural determi-
nation of the lamellar complex [18]. Modeling studies have addressed both microscopic and macroscopic
length scales; with methods ranging from atomic-level computer simulations [34] to liquid crystal elasticity
theory [41]. Most theoretical treatments employ mean field approaches and focus on the crucial role of
electrostatic interactions between DNA and cationic membranes; see e.g., [30, 42, 43, 44, 45, 46, 47, 48]
and the review in [49].

The focus of our theoretical discussion below is on the interplay between elastic and electrostatic inter-
actions governing lipoplex formation, and their role in determining the thermodynamic phase behavior of
lipid-DNA mixtures. Rather than starting from the microscopic-structural level and then gradually evolving
through mesoscopic-structural issues towards the thermodynamic phase behavior, we have chosen to follow
the opposite direction. That is, examining one “generic” phase diagram of a lipid-DNA solution, we shall
first qualitatively analyze its gross features and the gradually unfold its microscopic origin. We open the
discussion, in Sec. 2, with the presentation and preliminary analysis of a rather complicated, yet not atyp-
ically complicated, phase diagram, calculated for a lipid mixture involving a curvature-loving helper lipid.
In Sec. 3 we introduce the free energy contributions to lipoplex formation, emphasizing the electrostatic,
elastic and lipid mixing terms, and analyze their coupled role in two important phase transitions that appear
as special cases in the calculated phase diagram: The L,-H,, transition in pure lipid assemblies (Sec. 3),
and the LS-H,CI transition describing the morphological transformation between lamellar and hexagonal CL-



DNA complexes (Sec. 4). Equipped with the necessary theoretical tools, we separately analyze in Sec. 5
the structure and energetics of the LS and Hﬁ complexes. Sec. 6 is devoted to one particular aspect of the
LS phase, namely, bilayer curvature modulations and their role in correlating between DNA monolayers
in different galleries. Finally, Sec. 7 returns to the calculated phase diagram and discusses the role of the
co-lipid. We finish with a short summary of our major conclusions in Sec. 8.

2 Phase behavior

Fig. (3) displays a calculated, generic, phase diagram of system containing dsDNA and curvature-loving
lipid mixture. More specifically, the two-component lipid mixture consists of a cationic lipid (DOTAP, for
example) preferring the packing environment of a planar bilayer, and a curvature-loving helper lipid (e.g.,
DOPE) which, alone in solution, self-assembles into H,, aggregates. Qualitatively, this rather formidable
theoretical phase diagram [33] accounts faithfully for the rich and complex phase behaviors exhibited by
similar lipid-DNA mixtures. It is consistent with experimental studies pertaining to specific regions in the
diagram [19, 40], as outlined below.

Two levels of theoretical modeling are necessary in order to derive (and analyze) such phase diagrams.
First we need the formation free energies of the different possible phases, as a function of their composi-
tional and structural degrees of freedom. Five phases are relevant here: the naked dsDNA (D in the phase
diagram); two (DNA free) binary lipid phases, namely, the planar bilayer, L, phase (B, for “bilayer” in
the diagram), and the inverse-hexagonal H,, phase (I =*inverse”); and, of course, the two lipoplex phases,
i.e., the lamellar-sandwich LS (S="sandwich” in the diagram) complex, and the hexagonal-honeycomb Hﬁ
lipoplex (H="honeycomb”). Evaluating the formation free energies of these phases requires molecular level
modeling of the electrostatic, elastic and compositional degrees of freedom, as detailed in the following sec-
tions.

The second stage in deriving the phase diagram involves the solution of the thermodynamic equations
governing the multitude of possible phase equilibria in the system. These are the conditions for the equality
of the chemical potential of each species (cationic lipid, co-lipid and DNA) in all coexisting phases. Ther-
modynamically, these conditions express the requirement for minimal free energy of the entire DNA-lipid
mixture with respect to all relevant degrees of freedom, i.e., the relative proportions of the different possible
phases, their lipid composition and their internal structure (e.g., d in the case of the sandwich complexes).
Actually, the phase diagram in Fig. (3) was calculated by direct numerical minimization of the total free en-
ergy [33]. The five possible structures were treated as macroscopic phases, thereby ignoring all the surface
(finite-size) effects, which can be important (yet highly specific and generally unpredictable) in the case the
lipoplexes are small.

The phase diagram in Fig. (3) is presented in terms of the two most significant, experimentally con-
trollable, composition variables. One of these is the overall lipid composition of the system, ¢, measuring
the mole fraction of CL in the lipid mixture. The other is the ratio, p, between the total numbers of posi-
tive (cationic) and negative (DNA) charges in solution. Equivalently, p is the ratio between the number of
(monovalent) cationic lipids and DNA phosphate groups. When p = 1 the system is isoelectric.

For given temperature, salt content and pH, the two intensive variables p and ¢ provide a full thermo-
dynamic description of the system phase behavior. It should be noted that the aqueous solution embedding
the five (condensed) phases in Fig. (3) does not play a direct role in affecting the phase behavior of the
system (except for serving as a heat and mobile ion reservoir). In other words, there are only three relevant
chemical components in the system: DNA and the two lipid species. At a given temperature and pressure
the system may be mono-, bi- or even tri-phasic. The plethora of coexistence regimes in Fig. (3), including
several three phase equilibria, indicates that for certain ¢, p combinations only small free energy differences
distinguish between several possible phases.
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Figure 3: Generic phase diagram of a lipid-DNA mixture containing a “curvature-loving” co-
lipid and bilayer-loving cationic lipid, calculated as a function of the mole fraction of the
cationic lipid, ¢, and the lipid-to-DNA charge ratio p. The symbols S, H, B, | and D de-
note, respectively, the LS, Hﬁ, La, H,;, and uncomplexed (naked) DNA phases. The diagram
involves one phase regions, e.g., in the region labeled S all DNA and lipids are associated to
form sandwich-like (L) lipoplexes. Similarly, SD, for instance, is a biphasic coexistence region
of sandwich lipoplexes and naked DNA, and HSI is a region of three phase equilibrium involv-
ing honeycomb and sandwich complexes as well as a binary inverse-hexagonal lipid phase. The
short dashed line marks the single Hﬁ phase (from Ref. [33], with permission).

Using a lipid mixture composed of a curvature-loving co-lipid (e.g., DOPE) and a bilayer forming
cationic lipid (e.g., DOTAP), one expects the appearance in solution of either lamellar (LS or S), or hexag-
onal (H,CI or H) lipoplexes, or both, depending of course on p and ¢. Indeed, the phase diagram in Fig. (3)
exhibits both the Hﬁ and LS structures, appearing either as single phases, or in various two- and three-phase
coexistence regions.

Despite its complicated appearance the principal qualitative predictions of the phase diagram in Fig. (3)
are not too difficult to understand. Let us briefly summarize the major conclusions. The inverse-hexagonal
lipid packing — appearing in both the H,, and H structures — dominates in the regions of small ¢, where the
lipid mixture involves a large fraction of the curvature-loving helper lipid. Similarly, the phases involving
planar lipid bilayers — the L, and LS structures — dominate the high ¢, CL rich, regions. Most regions in
the phase diagram involve uncomplexed phases: naked DNA (D) for small p, where the amount of lipid in
solution does not suffice to complex all the DNA, and pure lipid phases (B and/or H) at high lipid contents.

Complete association of the lipid and DNA molecules is limited to a rather narrow portion of the phase
diagram, centered around the isoelectric line p = 1. We note a monophasic region of (nearly isoelectric)
lamellar lipoplexes (S), when the lipid mixture is rich in the bilayer-forming cationic lipid component. Both
types of lipoplexes coexist within the narrow region (HS) of the phase diagram. A single phase of hexagonal
complexes is possible only within a minute regime of the phase diagram, corresponding to the short dashed
line in Fig. (3).

Varying the lipid composition along a path from ¢ = 1 to ¢ = 0 at constant p, amounts to diluting the
cationic charge in the lipid layers by a gradual increase of the helper lipid mole fraction. Ultimately, this
process must lead to the appearance of an excess lipid phase, even for p = 1. However, the existence of
a finite (albeit narrow) monophasic regime where p # 1 indicates that the ability of a lipoplex to deviate



from isoelectricity and tolerate a certain excess of either positive or negative charge. This, “overcharging”
capability, is a general property of interacting macroions in aqueous solution [49]. When used for transfec-
tion, lipoplexes are commonly prepared to be positively overcharged in order to facilitate their interaction
with the negatively charged plasma membrane; subsequent internalization of the lipoplexes is believed to
proceed via endocytosis [50].

Experimental observations are consistent with the phase diagram in Fig. (3). For example, the LS-
Hﬁ transition was originally observed by Koltover et al [19] upon dilution with curvature-loving co-lipids
at the isoelectric point (o = 1). In another experimental study, Simberg et al [40] have analyzed the phase
behavior of a DOTAP/DNA mixture for different values of p and found good agreement with the predictions
of Fig. (3). Note also that the ability of a CL-DNA mixture to adopt the Hﬁ complex structure appears often
correlated with transfection efficiency [51], and is possibly caused by the destabilization of (endosomal)
bilayers upon contact with non-lamellar phase-preferring co-lipids [52].

Simpler phase behavior is expected, for instance, when both lipid species show strong preference for the
planar bilayer geometry, in which case the lipoplexes are likely to be lamellar in most, possibly all, regions
of the phase diagram. While reasonable, this qualitative argument is not invariably valid, because strong
electrostatic forces may compete, possibly suppress, the elastic propensities, resulting for instance in the
formation of hexagonal complexes even when both lipids prefer the planar bilayer geometry. In the next
section we consider this balance of forces in more detail, focusing on the morphological phase transition
between the lamellar and inverse-hexagonal phases in (DNA-free) lipid mixtures, thus preparing the ground
for the analogous, yet more intricate transition between lamellar and hexagonal lipid-DNA lipoplexes, to be
discussed in Sec. 4.

3 Thel,-H,, transition of cationic lipid mixtures

Upon incorporating curvature loving helper lipids such as DOPE into a lipid bilayer, a morphological trans-
formation from the planar to the inverse-hexagonal symmetry (L, — H,,) sets in at a certain, sharply de-
fined, bilayer composition. The lipid composition of the inverse-hexagonal phase is generally different from
that of the bilayer, naturally richer in the curvature-loving lipid. The separation of the lipid mixture into
two coexisting phases of different compositions resembles similar phase equilibria in mixed systems, e.g.,
binary liquid solutions, yet an important difference must be noted: while phase separation in liquid or solid
solutions are generally driven by the nonideal mixing of the two components, the lamellar-to-hexagonal
transition takes place even if, within each phase, the two components are ideally mixed. The transition is
driven, of course, by the different packing propensities of the two components: one tending to organize into
planar bilayers while the other into inversely curved layers; as illustrated in Fig. (4). The transition sets
in when the “frustration” energy involved in packing the two lipid components in one, uniformly mixed,
phase becomes intolerable, resulting in a first order morphological-compositional phase separation. In this
section we discuss the free energy contributions responsible for this transition, setting the background for
the analogous, but more complex, LS <+ H, transition in lipoplex solutions.

The Ly and H,, phases are condensed lipid mixtures, embedded in an aqueous solution. The solution’s
characteristics such as temperature and mobile ion concentrations enter the thermodynamic analysis only
indirectly, through their influence on electrostatic and other inter-lipid interactions. What we need then for
modeling the L, <+ H,, transition is the free energy of the lipid mixture, possibly partitioned into these two
phases, as a function of its lipid composition ¢. More explicitly, treating the mixed lipid layers as incom-
pressible phases, let Ry = F(N, @) = Ngfg(@) + N, f, (@) denote the Helmholtz free energy of a mixture
containing N = N¢+N" molecules, of which N® = @N are cationic and N" = (1 — @)N are electrically neu-
tral helper co-lipids. Taking into account that when the transition takes place both phases coexist in solution



Figure 4: Schematic illustration of the planar bilayer (L) and inverse-hexagonal (H,,) phases.
The shaded areas are the hydrophobic cores of the two phases, where individual lipid molecules
adopt different packing geometries: cylindrical on average in the bilayer, and conical (widening
from head to tail) in the inverse-hexagonal phase.

we use Ng and N, (N = Ng +N;) to denote the number of lipids in the bilayer and inverse-hexagonal phases,
respectively; ¢ and ¢ are the compositions of the two phases and fg = F3/Ng and f, = F, /N, denote the
free energy per molecule in the two aggregation geometries; (Ng@ + N, @ = N¢). Minimizing R with
respect to NS = Nz and N = Ng(1— ¢&), thus equating the chemical potentials of the cationic and helper
lipids in both phases, we derive the phase coexistence equations, whose graphical solution corresponds to
the “common tangent” construction, as illustrated somewhat later, in Fig. (6). First, however, let us consider
in more detail the energetic and entropic contributions to, F (either Fg or F,), the free energy of a mixed,
partially charged, lipid aggregate of a given geometry.

Because of the very complex nature of inter-lipid interactions, the use of approximations in modeling F
is inevitable. In many respects, averaging over some of the small scale (e.g., lipid headgroup fluctuations
across the hydrocarbon-water interface) or large scale (e.g., long wavelength membrane undulations) is
not only necessary, but actually desirable; their role in a mesoscopic phase transition such as the one of
interest here is negligible. Such simplifications and approximations are legitimate not only in the selection
of the relevant degrees of freedom but also in the level of the theoretical-computational treatment. Thus,
for instance, atomic level computer simulations of the lamellar-hexagonal transition seem rather hopeless
at present. On the other hand, while approximate, the mean field theoretical model outlined below captures
all the essential physics of the problem. Furthermore, its extension to the more complex lipoplex problem
is straightforward. Within this conception we express F as a sum of four principal contributions

F=FR+R+F+F (1)

The first term, F, is the curvature strain which accounts for deviations of the global packing symmetry of
the lipid molecules from their optimal, “spontaneous”, molecular packing geometry. The optimal packing
geometry rarely coincides with the global aggregation symmetry. For instance, planar bilayers are often
composed of lipids with slightly disparate headgroup and chain areas. Such lipids prefer the geometry of
a weakly bent monolayer and their packing into a bilayer is thus a compromise involving a nonzero elastic
strain energy.
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A simple yet general and powerful formalism for treating curvature elastic deformations of lipid layers
is due to Helfrich [53]. Using ¢, and c, to denote the two principal local curvatures at a given point of a
lipid layer, (R, = 1/c;;i = 1,2 are the local radii of curvatures) the bending energy, Fc, of a lipid layer of
total area A is expressed as,

k —
FC:/da {E(cl—i-cz—co)z-i—kclc2 2
A

with the integration extending over the entire membrane area A. The intrinsic elastic properties of the lipid
molecules are embodied in the three material constants k, k and c,. These are, the splay or bending modulus
k and the saddle-splay or Gaussian modulus k, which measure the rigidity of the lipid layer with respect
to bending deformations, i.e., to deviations in membrane curvature away from the spontaneous curvature,
Co- Note that for both the L, and H,, phases at least one main curvature vanishes so that the value of k is
irrelevant here.

The crucial difference between the packing characteristics of the cationic lipid and the curvature loving
co-lipid considered in the previous section is associated with their very different spontaneous curvatures.
Whereas c,(@ = 1) = ¢ = 0 for the pure cationic layer, c,(¢ = 0) = CB is highly negative for the co-lipid
(CB = —1/25,& in the phase diagram of Fig. (3). For mixed layers, it is reasonable to assume that the sponta-
neous curvature varies linearly with composition, c,(¢) = @cg+ (1 — (p)cg [54, 55], and a constant bending
rigidity k(@) = k = 10kgT, the latter being a typical choice for lipid monolayers [56]; kg is Boltzmann’s
constant and T the absolute temperature. With these considerations we have specified the composition de-
pendence of F:(¢). To apply Eg. 2, the curvatures of the respective lipid layer need to be measured at the
so-called neutral surface [57]. (Measured with respect to this surface, bending and stretching deformations
are decoupled.) The neutral surface is generally located close to the interfacial region, being planar for the
L, phase and of approximatively circular cross-section for the H,, structure.

The Helfrich free energy, Eq. 2, is in fact a series expansion of the curvature deformation energy in
terms of the two principal curvatures, truncated beyond the quadratic terms. Thus, in principle, Eqg. 2 is
strictly applicable only for small curvature deformations. Yet, comparison with experiment supports its
validity even for rather drastic bending deformations of lipid bilayers, such as those involved in the L4-H,,,
[58]. We also note that there is a recent alternative approach to account for the curvature strain of the H,
phase on the basis of a tilt deformation of the lipid layer [59, 60].

The second contribution, F, is only relevant for the H,, phase, representing the excess free energy of
those lipid chains extending towards the interstitial sites of the hexagonal lattice [58, 61]. It augments the
free energy per molecule in the H,, phase by about 0.35kgT .

The third contribution to F is the mixing free energy, Fn, of the lipid mixture which may be ideal or
non-ideal, depending on the strength and nature of inter-lipid interactions.

The last contribution, Fe, is the electrostatic free energy. Both the L, and H,, phases contain cationic
lipids, whose electrostatic (“charging”) free energies, f& = F8/Ng and fl = F! /N, per molecule, depend on
their interfacial curvatures and lipid compositions. One of the most common and useful, albeit approximate,
approaches for calculating the electrostatic free energy of charged lipid layers (or, more generally, any
macroion in electrolyte solution) is provided by Poisson-Boltzmann (PB) theory. This mean-field theory
accounts for the balance between the two basic, but opposing, tendencies of the the mobile counterions in
solution: (i) to closely associate with the surface charge (lipid charges in the present case) so as to minimize
the Coulomb interaction energy, and, (ii) to disseminate into the aqueous solution thereby increasing their
translational entropy.

This interplay between entropy and energy of the mobile counterions is simply reflected in the math-
ematical formulation of PB theory. That is, the free energy Fe is the (temperature weighted) sum of the
electrostatic field energy, Ue, and the mixing entropy contribution, S. For a symmetric monovalent (1:1)
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electrolyte solution it is given by

n n
Fe=Ue+TS= %/dv(DCD)Z—i-kBT/dv [n+lnn—++n_ln—_—(n++n_—2no) (3)
0
v v

No

where n, and n_ are the local number densities of positively and negatively charged ions, respectively;
Ny is the corresponding ionic density in the bulk and ¢ is the dielectric constant of water. It is common
to re-express the salt concentration, ny, = 1/(8m3lg), in terms of the Debye length, I, and the Bjerrum
length, 15 = e2/(4n£kBT) where e denotes the elementary charge. In Eq. 3, O® is the gradient of the elec-
trostatic potential, ®. Upon minimizing Eq. 3 with respect to the ionic densities one obtains the Boltzmann
distributions n. = nyexp(FW), expressed in terms of the reduced (dimensionless) electrostatic potential
W =ed/kgT. In combination with Poisson’s equation, O® = —ge(n_ —n_), this gives rise to the familiar
PB equation

130%Y = sinh (4)

which is a second-order non-linear differential equation for the reduced potential W.

Unfortunately, analytical solutions of the PB equation and the corresponding free energy, Fe, are avail-
able only for a few elementary cases [62]. For most systems the PB equation must be solved numerically,
unless additional approximations are invoked. An important special case for which an analytical solution
is available is that of a planar, uniformly charged, surface. The corresponding expression for the molec-
ular free energy density is well known, and can serve as a model for a mixed planar layer composed of
cationic and nonionic lipids. Assuming that both lipid species have the same cross-sectional area a,, per
lipid headgroup, the electrostatic free energy, fe = ue — T Se, per molecule in a mixed layer containing a
molar fraction, ¢, of charged lipid is, [63]

fe

kB—T:er [1%+ln<p+q)] ()

where p = po@, Py = 27glp/ay, and g = p?+ 1. For physiological salt solutions (where I ~ 10 A) one
finds p, ~ 7, the corresponding value for | = 50A is P~ 35.

For a weakly charged surface (p < 1) Eq. 5 reduces to the Debye-Huckel limit fo/kgT = pO(pZ. Here, the
contributions from the electrostatic field energy and from the mixing entropy of the mobile ions are equally
large; ue/kgT = —s/kg = po(p2/2. More relevant for charged lipid membranes is the high charge limit (p >
1) where fe/kgT = 2¢[In(2p) — 1]. Here the counterions are more closely associated with the macroion
charges than is predicted in the Debye-Hickel regime. The electrostatic field energy is thus smaller and the
entropic contribution larger than in the Debye-Hiickel limit. Specifically, —Ts/ue = 2In(2p) — 3 becomes
large for large p. It follows that in the high charge regime the formation of a diffuse double layer induces
mainly an immobilization of counterions, implying a severe entropy loss associated with the confinement
to a narrow interfacial region of these, otherwise freely diffusing, ions.

Upon association of two oppositely charged macroions, electrical neutralization can be achieved through
(partial, sometimes complete) compensation of their surface charges, enabling the liberation of the mobile
ions back into the bulk solution thereby regaining their lost translational entropy. This counterion release
process, pictorially illustrated in Fig. (5), is often the major driving force for the electrostatic association of
oppositely charged macroions in solution. CL-DNA complex formation is one of the most striking examples
of this phenomenon.

Though serving as the method of choice in most electrostatic problems involving macroions, like DNA,
charged proteins and ionic lipid layers, it is important to remember the limits of validity of PB theory. Being
a mean-field approach, PB theory neglects ion-ion correlations which seriously impairs its applicability to
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Figure 5: The release of counterions upon macroion association.

electrolyte solutions of higher valency than 1. Furthermore, PB theory treats all mobile ions as point
charges, thus sometimes predicting unreasonably high local ion concentrations. Still, the theory captures
correctly electrostatic energies for monovalent salt and not too highly charged macroions. Consequently,
within PB theory the focus must be on 1:1 electrolytes and monovalently charged cationic lipids. The
systems of interest in this review generally conform to these conditions.

Given the free energies of the two relevant phases, Fg(Ng, ®) = Ngfg(¢) and F, (N,,9) = N, f, (@), the
phase boundaries of the L,-H,, transition can be determined using the common tangent construction, as
illustrated in Fig. (6). This is a first order phase transition, implying a range of compositions, ¢ < ¢ <
@, Where the Ly and H,, structures coexist with fixed compositions ¢ and ¢, respectively; @ = N¢/N
denoting the overall mole fraction of cationic lipid in the system. For any given ¢ within the coexistence
region, the relative proportions of molecules in the two phases, Ng/N, are given, as usual, by the lever rule,
N, (¢— @) = Ng(@5 — @). For ¢ < @, the system is monophasic with all lipids organized into the lower
free energy H,, phase. Similarly, for ¢ > @5 the planar bilayer prevails.

Fig. (6) shows fz(¢) and f,(¢) for a lipid mixture composed of cationic lipids whose spontaneous
curvature is ¢, = 0, and helper lipid for which ¢, = —1/25A. The concentration of 1:1 electrolyte in
solution is low, corresponding to a Debye-length of I, = 50 A. For this system one finds ¢ = 0.02 and
@; = 0.08. Fig. (6) displays a second set of calculated free energies, fg(@) and f,(¢), corresponding to
a similar lipid mixture but with the electrostatic interactions switched-off. This system is brought here to
demonstrate the influence of electrostatic interactions on the lamellar-hexagonal transition, but may also
be regarded as the high-salt limit of electrolyte solutions, where I, — 0 and all electrostatic interactions
are fully screened. We note that in the electrically neutral system the coexistence region is shifted to
significantly higher compositions ¢ and ¢@5. For example, switching off electrostatic interactions at ¢ =
0.04 would transform all lipids that reside in the L, sub-phase back to a single H,, phase. In other words,
the electrostatic interactions provide extra stabilization energy to the L, over the H,, phase; consistent with
the qualitative notion that the spatial confinement of the counterion cloud is more severe in the narrow
circular tubes of the H,, phase as compared to the planar bilayer. This observation is confirmed by a recent
experimental study of Lewis and McElhaney [64] who found that increasing the surface charge of mixed
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Figure 6: The free energies per lipid molecule, fg and f,, in the lamellar (L,) and inverse-
hexagonal (H,,) phases, respectively, as a function of the mole fraction of the cationic lipid,
¢@. The upper set of curves includes all free energy contributions; see Eg. 1. In the lower
set the electrostatic contributions to fg and f; are omitted (that is, only the elastic, interstitial,
and mixing contributions are included). The common tangent construction and the coexisting
compositions, ¢ and ¢, are marked by dashed lines for each set of curves. (adapted from
Ref. [33], with permission).

cationic lipid layers indeed inhibits the formation of inverted non-lamellar phases.

4 TheLS$-HS transition of CL-DNA complexes

Having discussed the thermodynamics of the L,-H,, transition, we now turn to consider the outcomes of
adding dsDNA into an aqueous solution containing, as in the previous section, a mixture of cationic and
curvature-loving helper lipid, at given composition ¢. The phase behavior of this three component mixture
is obviously richer and more challenging than that of the DNA-free system, as noted already in Sec. 2

Consider first a system containing just a small amount of added DNA, corresponding to the excess lipid
regime, p > 1 in Fig. (3). The first question we would like to resolve pertains to the lipoplex structures
appearing in the solution at any given ¢. Because of the large excess of lipid molecules in solution the DNA
can complex only a small fraction of these molecules. The composition of the remaining, uncomplexed,
lipid mixture is practically unchanged, and should thus display the phase evolution expected for a DNA-free
system. In particular, the phase boundaries, ¢ and ¢, separating the monophasic H;, and L, regions from
the biphasic coexistence region, should coincide with those of the binary lipid mixture.

The formation free energies of the LS and HG complexes can be calculated using a (rather non-trivial)
extension of the theoretical model outlined in the previous section. Postponing the discussion of these free
energy calculations to the next section, we first show in Fig. (7) a schematic illustration of the phase evolu-
tion of a CL-DNA mixture as a function of ¢, keeping p large and constant. The two shaded bars descibe
the parallel evolution of lipoplex structures (top), and the excess (DNA-free) lipid structures (bottom), as ¢
increases at constant p. The calculated phase boundaries shown in the lower bar, ¢ = 0.02 and @5 = 0.08,
are indeed consistent with those obtained using the common tangent construction for the analogous, L 4-H;,
transition, in the DNA-free system, as was shown in Fig. (6).

More interesting are the CL-DNA complexes. From the calculated results presented in the upper bar of

14



p
_ coexistence
no complexation o

lipoplex structures/ LS 5%
Il V =~
N =

01 02 03 04 @
excess lipids
Ly

A

| oo

coexistence 5H°

o

Figure 7: Structural evolution of lipid-DNA complexes and DNA-free lipid phases in a system
containing a small amount of DNA and a large excess of the lipid mixture, shown as a function
of the overall lipid composition ¢. The lipid mixture involves bilayer-forming cationic lipids
and curvature-loving helper lipids. The upper bar depicts the lipoplex H,CI-LS transition in the
presence of excess lipid (large p regime in Fig. (3)), and the lower bar displays the correspond-
ing transition, H,; — L4, in the lipid reservoir.

Fig. (7) we learn that no CL-DNA complex formation takes place in the narrow range of very small ¢ (in
our specific example @ < 0.005). This practically negligible composition regime is nevertheless interesting
because it reflects the interplay between several competing free energy contributions which are relevant
for all compositions. Explicitly, the lack of complex formation in the low ¢ limit can be explained as
follows. Stable lipoplexes, either hexagonal or lamellar, show high stability around the isoelectric point
but become rapidly unstable as their CL content deviates from this condition. Owing to the high charge
density of dsDNA, isoelectricity requires sizable CL contents, e.g., ¢ =~ 0.35 in the honeycomb structure.
Thus, complex formation necessitates the transfer of CL molecules from their highly diluted lipid mixture
to the concentrated enviroment of the complex. This disproportionation process involves a mixing free
energy loss which at extremely low values of @ may inhibit the formation of complexes. However, as soon
as @ begins increasing the electrostatic, complex formation, free energy becomes the dominant factor and
lipoplexes appear in solution. It should be stressed that the lipid composition of the complexes, though not
always isoelectric, is generally quite different from that of the original lipid mixture. Note also that ¢ in
Fig. (7) refers to the overall mole fraction in solution, not in the lipoplex.

If @ remains sufficiently small (in our example ¢ < 0.3) the stable lipoplex is the Hﬁ structure. It
involves double stranded DNA’s intercalated within the aqueous tubes of an H, phase. Most notably, the
packing of the lipids is very similar in both the H,CI and H,, phases. A cationic lipid mixture that alone has a
strong preference for the inverted hexagonal, H,,, phase is consequently expected to form the Hﬁ structure
when exposed to DNA. However, from Fig. (7) we see that when ¢ reaches the H,, — L, coexistence region,
indicating identical stability of the two mixed lipid phases, the hexagonal complex still dominates. In fact,
the hexagonal complex continues to prevail over the lamellar one even when the lipid reservoir becomes
lamellar rather than inverse-hexagonal, at ¢z = 0.08. (Lamellar lipoplexes appear and dominate once @
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exceeds 0.35.) The origin of this extended stability of the hexagonal complex is due to the essentially perfect
electrostatic matching conditions provided by the concentric symmetry of the DNA and lipid surfaces.

Alternatively phrased, adding DNA to a mixed planar bilayer results in its DNA-induced structural
transition into an inverse-hexagonal packing. In this connection it may be added that DNA is not the only
macromolecule that is able to transform lipid phases. Some peptides like the cation-selective channel grami-
cidin A and other synthetic a-helical transmembrane peptides [65, 66, 67] reveal similar abilities. However,
whereas hydrophobic interactions drive the L,-H,, transition for the gramicidin A channel (which in fact
is uncharged) DNA drives the structural transformation through its strong electrostatic interaction with the
cationic lipids. The situation is at the first glance puzzling: DNA strongly interacts with cationic lipids
that on their own have no tendency to form inverse-hexagonal structures. Adding DNA to a planar bilayer
may induce the formation of the H phase even though additional cationic lipids enter the lipoplex (and
thus would render the pure H,, phase even less stable). This points at the important role of the electro-
static interactions between DNA and cationic lipids that substantiall modify the lipid’s preferred packing
behavior.

5 ModelingtheL$ and Hf structures

We are now ready to apply the theoretical tools discussed in Sec. 3 to model the LS and H|CI structures.
Basically, the physical principles and modeling methods are the same, except for the fact that the number
of degrees of freedom, both compositional and structural is larger, and the thermodynamic analysis is far
more intricate.

The free energy of a solution containing DNA and a mixture of cationic and nonionic lipids can be
expressed as a sum of the free energies corresponding to all structures that these components can form. A
phase diagram such as the one shown in Fig. (3) is then derived by minimizing this free energy with respect
to the exchange of molecules between phases, which is equivalent to equating the chemical potential of each
of the three species in all coexisting phases. The input necessary for this calculation are the free energies of
the five relevant phases, namely, the naked DNA whose free energy is simply proportional to its length, the
bilayer and inverse-hexagonal phases of the binary lipid mixture which were treated in some detail in the
previous section, and, of course, the sandwich and honeycomb complexes, to be discussed next.

We shall use fg= fg(¢,d) to denote the average free energy per lipid in a sandwich complex of com-
position @ and DNA-DNA spacing d. Changes in other structural variables of the complex, such as the
thickness of the water gap, w, or of the lipid bilayer involve very high free energy costs, allowing to treat
these variables as constants. Similarly, as discussed in Sec. 1, the thickness of the water gap in the honey-
comb complex is practically constant, so that the average free energy per lipid in a honeycomb complex,
fy = fy (@), is only a function of its lipid composition. Given fg(d, @) and f, (¢) and the free energies of
the other three structures, the number and nature of the phases corresponding to a specific point, p, @, in the
phase diagram is derived by minimizing the overall free energy subject to the constraints of fixed ¢ and p
and overall amount of material [33].

The LS complex: The lamellar structure involves only flat lipid layers, (the influence of curvature modu-
lations will be discussed in Sec. 6). Hence, only two contributions to F are relevant: the electrostatic free
energy, Fe(d, @), and the in-plane demixing free energy of the lipids, Fm(d, @). (The interstitial energy is
only relevant for the H,,-like lipid packing, and the elastic free energy can be set to zero which then serves
as the reference state for bending deformations.)

Taking into account the periodicity and symmetry of the LS structure, the electrostatic free energy
of the complex can be evaluated by solving the PB equation, Eq. 4, within a quarter of a unit cell, as
shown in Fig. (8). Furthermore, since the structure is translationally invariant along the DNA direction (z),
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the electrostatic potential W(x,y) depends only on the x and y coordinates, and the PB equation is two-
rather than three-dimensional. Three of the five boundary conditions for the PB equation, namely those
corresponding to the virtual (water) surfaces in Fig. (8), follow from the symmetry of the LS phase; e.g., the
vanishing of dW/dx at x = d/2. Another boundary condition accounts for the charges on the DNA which
is simply modeled as a uniformly charged cylinder.

The last boundary condition, concerning the cationic lipid surface, is the most complex and interesting
one. Being a 2D fluid mixture, the lipid bilayer allows for lateral diffusion of the lipid molecules. In an
isolated, mixed layer, the spatial distribution of the two lipid species will be, on average, uniform. On the
other hand, the close proximity of oppositely (and highly) charged DNA rods can induce substantial spatial
modulation (charge “polarization”) of the cationic lipid distribution along the x-axis. The modulation of
lipid charges is, of course, favored on electrostatic grounds, but involves a significant entropic penalty
associated with the in-plane demixing of the lipid mixture. Denoting the local lipid composition along the
x-axis by n(x) = n, the demixing free energy (conveniently measured per unit cell) is given by

Fm(d, @) =kgT (nInn+(1-n)In(L—n)+A(@—n)) (6)

with the angular brackets denoting averaging over the unit cell, and (n) = ¢. The last term in Eq. 6 accounts
for the conservation of the number of cationic lipids in the unit cell; A is the corresponding Lagrange
multiplier.

The next step is to express the free energy of the unit cell as a sum, F = Fe + Fy,, of its electrostatic
(Eq. 3) and lipid mixing (Eg. 6) contributions. Functional minimization of the total free energy with respect
to the lipid composition profile n = n(x) then yields a relation between n and the electrostatic potential,
Y, namely

n=1/1+e**(1-9)/9 (7)
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This equilibrium profile enters the boundary condition, (d¥/dy) = 2np,/Ip, at the cationic lipid layer,
which must be solved simultaneously and self-consistently with the PB equation. The PB equation satis-
fying these conditions and conserving the overall charge per unit cell can be solved numerically using a
standard Newton-Raphson iteration scheme [42]. The result is the potential ¥(x,y) at any point within the
aqueous part of the unit cell and the Lagrangian multiplier A (see Eq. 6) which enables us to calculate from
Eq. 7 the optimal compositional profile, n(x).

In Fig. (9) we show the modulated composition profile for three different values of the average lipid
composition ¢. In all three cases the DNA-DNA spacing, d* =d = a,,¢/I, corresponding to the "isoelectric”
state, which is also the state of minimal free energy of the complex, (see below). The extent of lipid
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Figure 9: Spatial modulations of the cationic lipid charge within a unit cell of the LS com-
plex. The local mole fraction of cationic lipids, n(x) (between two neighboring DNA strands),
is shown (solid lines) for complexes of three lipid compositions: ¢ = 0.23, 0.50, and 0.78.
All complexes are at their isoelectric value of d. The horizontal (dashed) lines correspond to
uniform charge densities. The dash-dotted line, corresponding to ¢ = 0.5, shows the charge
density profile in a (hypothetical) complex in which charge modulation (lipid demixing) does
not involve any entropy penalty. Note that in all but the highest ¢ case, the cationic lipid tends
to concentrate near the DNA rods, thus depleted from the center of the unit cell, (from Ref. [42],
with permission).

”polarization” is very pronounced for small ¢ (and correspondingly large d*) where most cationic lipids
accumulate near the DNA rods. The energetically optimal composition near the DNArod, n = a, /2nRpl =
0.65, would lead to local charge matching between the DNA and the cationic layer. Despite the opposing
effect of the lipid’s demixing entropy, Fig. (9) clearly shows that for all three values of ¢, the lipid layers
attempt, quite successfully in fact, to adopt the ”charge matching” composition n = 0.65 at x = 0 and
x = d*. This also explains the behavior for large ¢, where cationic lipids are actually depleted from the
region close to the DNA.

After solving the PB equation we can return to F (d, @) = Fe+ Fy and calculate the formation free energy
of the complex. Fig. (10) shows F(d, ¢) as a function of ¢ for several values of the inter-axial spacing d.
All free energy curves exhibit a minimum at, or very near, the isoelectric point where the sum of all lipid
charges equals the number of DNA charges, implying ¢ = dl/a,. This result could in fact be anticipated,
because perfect matching between the charges of two oppositely charged macroions allows the release of
(previously confined) counterions into the aqueous solution. The corresponding gain in translational entropy
of the mobile ions, which provides the ultimate driving force for the association of oppositely charged
macroions, is then maximal. This general notion is certainly applicable in the case of the L complex. In
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fact, a calculation of the enthalpic and entropic contributions to the free energy of LS complex formation
shows that the entropic contribution strongly dominates, being maximal (nearly 100 %) at the isoelectric
point [68]. The entropic contribution can be translated into the number of counterions that are released into
solution. This number has also been determined experimentally by conductivity measurements of CL-DNA
solutions. Both theory and experiment show large — at the isoelectric point essentially complete — release
of counterions [68, 40].

Comparison of the HS complex with the LS structure: In Sec. 3 we have analyzed the morphological
transition from a planar bilayer (L) to the inverse-hexagonal (H,,) phase of a binary lipid mixture, finding
that the relative stability of these phases is dominated by the different curvature strains (Fc) experienced
by their constituent lipids. We also found that in cationic-nonionic mixtures the electrostatic interactions
disfavor lipid packing in the H,, as compared to the L, phases, thus shifting the coexistence region towards
smaller values of ¢; see Fig. (6). Yet, the driving force of the H,, — L, transition in charged lipid layers is
still the curvature strain, rather than electrostatic interactions.

The situation is markedly different for the Hﬁ — L transition, where electrostatics is at least as important
as the curvature elastic energy. As noted already in Fig. (7), the stability of the H|CI complex, as compared to
that of the H,, phase, is dramatically enhanced by the presence of the negatively charged DNA rods, residing
in the water tubes of the inverse-hexagonal lipid array. In fact we have seen that for a wide range of overall
lipid compositions, e.g., ¢ < 0.35 for p > 1, as in Fig. (7), the honeycomb complex is more favorable than
the planar sandwich complex, even when the raw lipid source is a planar bilayer. This special stability of
the honeycomb complex reflects its highly favorable geometry, whereby the negatively charged DNA rod is
tightly and symmetrically enveloped by the positively charged lipid interface. More precisely, this structure
is particularly stable at the isoelectric point. The lipid composition ensuring isoelectricity depends on the
thickness, &, of the aqueous layer separating the DNA and lipid surfaces. For 3 = 3 A, one finds ¢ ~ 0.35,
[30]; larger & further decrease this value (¢ ~ 0.3 for 6 = 6,&). Any deviation from isoelectricity involves a
steep increase of the electrostatic free energy of the complex, Fe, as shown by the dashed curve in Fig. (10).
In other words, whenever stable honeycomb complexes appear in solution, their lipid composition is nearly
or exactly isoelectrical.

Like the honeycomb complexes, the sandwich complexes also tend to be isoelectric. Since the total
cationic charge per unit cell of the lamellar complex is proportional to d¢, the lipid composition ensuring
isoelectricity is inversely proportional to the DNA-DNA spacing d. In addition to the electrostatic energy
of the honeycomb complex, Fig. (10) shows also the electrostatic free energy of the lamellar complex,
as obtained by numerical solution of PB equation, for several values of d. The minima of F¢ are indeed
located at (or very near) the isoelectric point, i.e., at ¢ (0 1/d. Note, however, that these minima are higher
and shallower than the minimum in the electrostatic free energy of the honeycomb complex. This relative
“softness” of the lamellar complex is a direct consequence of its lower symmetry and less “compact” DNA-
lipid contact in comparison to the honeycomb complex. Also, the less stringent packing restrictions imposed
on this structure allow variations in d (even at constant ¢, implying deviations from isoelectricity) at a rather
small free energy cost. This additional degrees of freedom of the lamellar structure explains its abundance
in various regions of lipoplex phase diagrams, even in systems with high content of curvature-loving lipids;
see Fig. (3).

6 Curvature modulationswithin the LS complex

Treating the lipid layers in the LS complex as perfectly planar is rigorously appropriate only in the limit
of very stiff membranes with a correspondingly high bending constant, k (see Eq. 2). In this limit, the
energetic penalty associated with any elastic membrane deformation would be prohibitively high. Typically,
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Figure 10: The electrostatic free energy per unit cell of the LS complex (per 1A length of DNA),
as a function of the CL mole fraction, @. The solid curves correspond to five representative
values of DNA-DNA spacing: d = 35.0A (a), d =51.8A (b), d =59.7A (c), d = 77.0A (d),
and d = 97.4A (e). We also show (dashed line) the electrostatic energy of the Hﬁ complex.
Note that d determines the number of lipid molecules in the LS complex. The solid curve (c)
and the dashed line correspond to the same number of molecules (per unit DNA length) in the
lamellar and hexagonal complexes, respectively, (from Ref. [33], with permission).

however, the bending rigidities of lipid membranes are k ~ 10kgT, implying that curvature fluctuations
within the lamellar comlex cannot be ruled out. The DNA lattice may actually enhance the appearance
of periodic membrane undulations, as illustrated in Fig. (11). When coupled to correlated modulations in
lipid composition these curvature modulations may well represent the equilibrium structure of the complex.
As the amplitude of these modulations increases, 3D order may set in the lipid-DNA array, whereby DNA
monolayers in adjacent galleries become spatially correlated with each other.

The spatial “locking” of neighboring DNA galleries can affect the membrane-to-membrane repeat dis-
tance, h. Thus, for example, in the multilamellar 3D array depicted in Fig. (11) the repeat distance, h < h*,
is smaller then the corresponding value, h*, for the perfectly planar lamellar complex. The curvature mod-
ulations have thus lead to a compression of the lamellar complex. In principle, the opposite behavior,
describing swelling of the LS complex (h > h*) is also possible. Indeed, swelling has been observed for
a lamellar (LS -like) phase made of cationic lipids, neutral co-lipids, and the anionic polypeptide poly-L-
glutamic acid [69].

Unequivocal evidence for spatial correlations between adjacent DNA galleries has been reported in
a recent X-ray study [70]. It should be noted, however, that the lipid layers in this study were in the
crystalline (“gel”) phase (Lg) rather than in the fluid (“liquid-crystalline”, LS) state. Strong indications for
inter-gallery locking in lipoplexes involving fluid lipid membranes, has recently been presented based on
cryo-TEM measurements [71].

At least three different theoretical approaches have been proposed for modeling curvature modulations
in the LS complex. In one model the bending modulations of the lipid layers are not merely supplementary
to the dominating electrostatic interactions but play a crucial role in determining the DNA-DNA distance,
d, within each gallery. This model, suggested by Dan [72, 73], postulates a competition between elastic
attraction and electrostatic repulsion between neighboring DNA strands. The membrane-mediated DNA-
DNA attraction is explained using membrane elasticity theory, as originally proposed for modeling the
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Figure 11: Schematic illustration of curvature modulations within the sandwich-like (LS) complex.
The lamellar repeat distance is denoted by h. The weakly shaded areas represent hydrocarbon chain
regions of the involved lipid layers. The solid circles indicate DNA cross-sections. Some lipids are
shown schematically.

#

interaction between hydrophobic inclusions, like integral proteins or peptides [74]. Within this model each
DNA strand induces a localized elastic bending deformation, and interference of the bending deformations
of neighboring DNA strands gives rise to attractive interactions between adjacent DNA’s. These indirect,
membrane-mediated interactions compete with the direct electrostatic DNA-DNA repulsion which then
leads to an equilibrium distance between neighboring DNA strands. The model of Dan predicts a finite
equilibrium distance not only for the DNA rods in the LS phase but also for dsDNA adsorbed onto an
isolated lipid bilayer. An AFM study of DNA adsorption onto a supported cationic lipid membrane suggests
the possible existence of attractive forces between neighboring DNA molecules [75]. Elastic, membrane-
mediated, interactions could also contribute to the condensation of DNA adsorbed on cationic membranes
in the presence of divalent electrolyte counterions [76].

At this point it should be noted that elastic membrane deformation are not the only mechanism of
lipid-mediated attraction between adsorbed macromolecules. Attraction between adsorbed macroions (like
DNA or proteins) can also take place in elastically unperturbed membranes, provided the lipid mixture
constituting the membrane is non-ideal. That is, if attractive interactions between lipids of the same species
are stronger than those between different species there will be an effective attraction between membrane-
adsorbed macroions which may be strong enough to induce lateral phase separation of a macroion-decorated
mixed lipid membrane [77]. The origin of this attraction is the gradient in lipid composition around the
macroion’s adsorption zone and, consequently, the unfavorable lipid-lipid interaction (”line””) energy across
the boundary of this zone [78].

Another theoretical analysis of inter-membrane correlations in the LS structure was presented by Schies-
sel and Aranda-Espinoza [79]. Based on linearized PB theory the authors have analyzed how the electro-
static interaction between DNA rods and (initially planar) cationic membranes affects the equilibrium value
of the interlayer distance h in the LS structure. Treating the LS complex as electrostaticially transparent, the
full electrostatic coupling of the membrane stack and the intercalated DNA galleries had to be considered,
including all membrane-membrane, membrane-rod, and rod-rod interactions. It was found that the electro-
static interactions generally favor compression of the lamellar complex (h — h* < 0); yet, the magnitude of
the compression is estimated to be quite small, on the order of h — h* =~ —1A.

A detailed theoretical analysis of curvature modulations in the LS phase was also provided by Harries
et al [80]. The approach is based on the solution of the non-linear PB equation within the unit cell of the
LS structure. The unit cell is analogous to the one shown in Fig. (8), but allows for a sinusoidal curvature
modulation of the lipid interface. The wavelength of the modulation is set equal to 2d and its amplitude is
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derived by minimizing the free energy of the complex. All other relevant features, like the low dielectric
constants inside the DNA rod and the membrane, the adjustability of the DNA-DNA distance d, and the
mobility of the membrane lipids (and hence a modulation of ¢), are self-consistently incorporated into
the model. The results show strong correlations between curvature and composition modulations, and a
tendency of the cationic membranes to partially wrap around the DNA rods, corresponding to a compression
of the complex (h —h* < 0). The degree of compression (or, equivalently, the amplitude of the sinusoidal
deformation) depends on the composition-dependent material properties of the cationic lipid membrane. For
typical bendlng rigidities of the lipid layer, say k ~ 10kgT, the curvature modulations are quite small, |h —
h*| ~1.. .2 A. However, for softer lipid Iayers (k ~ 1kBT) and large DNA-DNA spacing d, the amplitude
of curvature modulation can be as high as 10 A. Under these conditions the curvature moduluation-induced
energy gain per persistence length of DNA is much larger than kgT, and 3D ordering of the lipid-DNA
array (i.e., monolayer locking) is the equilibrium configuration.

Correlations between the DNA galleries within the LS structure are also of fundamental physical inter-
est. Within each gallery, the array of aligned DNA molecules constitutes a two-dimensional smectic [28].
Without coupling between the DNA galleries, thermal fluctuations would destroy any true long-range or-
der within these two-dimensional smectics. On the other hand, for sufficiently strong coupling a columnar
lattice would appear which re-establishes long-range order [70]. Most interestingly, in between—for weak
coupling—a new “sliding” columnar phase with orientational long-range order but short-range positional
order has been postulated [81, 82, 83, 41]. Whether the LS structure can be viewed as an experimental
realization of the sliding columnar phase is still an unsettled question.

7 CL-DNA phasediagrams:. role of the co-lipid

In Sec. 2 we have discussed a generic CL-DNA phase diagram for a curvature-loving co-lipid, like the
commonly used lipid DOPE. Other types of lipid mixture have also been tested and used; e.g., a lipid
mixture in which the planar bilayer is the spontaneous aggregation geometry of both the cationic and helper
lipid [18]; i.e., ¢y~ O for both lipid components. In this section we shall first discuss in some detail
the (relatively simple) phase behavior of such a mixture, and conclude with a brief analysis of the phase
behavior corresponding to “very soft” lipid mixtures, (i.e., of low bending rigidity k). Both types of systems
have been studied experimentally, see e.g., [18, 19].

Bilayer-forming co-lipid: The use of a bilayer-loving co-lipid (such as PC’s) typically prevents the for-
mation of any non-bilayer lipid structures. That is, both the inverse-hexagonal, H,,, phase and the corre-
sponding H { lipoplex are no longer possible. Instead, all lipid layers remain in their planar configuration,
mdependent of their composition ¢. It should be noted, however, that Hﬁ complex formation is neverthe-
less possible, provided k is very small (k ~ 1kgT), as discussed later in this section. For typical bending
rigidities (k ~ 10kgT ), nonlamellar structures can be ruled out, and only LS lipoplexes are relevant.

The structural characteristics of the LS complex have been carefully studled and systematically analysed
as a function of lipid composition, salt content and additional parameters, using X-ray and other techniques
[18, 20, 84, 85]. Perhaps the most remarkable finding of this structure is the adjustability of the DNA-DNA
distance d, which is intimately related to the overall phase behavior and can be rationalized [42, 86] within
the theoretical framework discussed in Sec. 5.

In Fig. (12) we show a theoretical phase diagram, calculated for a lipid mixture with zero spontaneous
curvature of both lipids, c§ = cg = 0, implying ¢, (@) = cg+ go(cg —cg) = 0 for the lipid mixture regardless
of @. Provided the lipid mixture is not too soft, (our calculations predict k > 4kgT) this phase diagram is
independent of the bending rigidity k.

The gross features of the phase evolution as a function of the lipid-to-DNA charge ratio, p, at a given
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Figure 12: Generic phase diagram of a lipid-DNA mixture involving lipids which self-assemble
into rigid planar membranes, calculated as a function of the mole fraction of the cationic lipid,
@, and the lipid-to-DNA charge ratio p.. The symbols S, B, and D denote, respectively, the LS,
Ly and uncomplexed (naked) DNA phases. (from Ref. [33], with permission).

overall lipid composition ¢ (0.2 < ¢ < 0.8) are easily understood. These features are pictorially illustrated
in Fig. (13), which also shows how d varies with p. As expected, CL-DNA complexes begin appearing in
solution as soon as liposomes are added to the system.

Figure 13: Schematic illustration of the phase behavior in a solution containing lamellar CL-
DNA complexes. The DNA-DNA distance, d, is schematically shown as a function of the
lipid-to-DNA charge ratio, p.

For small lipid-to-DNA ratios, p < p,, only part of the DNA can be complexed, so that naked DNA
coexists with LS lipoplexes, in which the dsDNA rods within a lipid gallery are densely packed. The small
d values in this regime reflect the tendency of the highly charged DNA rods to insert into the lipid array and
thus reduce the electrostatic free energy of the system. This tendency is strong enough to induce “negative
overcharging” of the complex; i.e., d is smaller than its value at the isoelectric point (d = d* = a, ¢/l). This
overcharging process must involve the immobilization of a corresponding number of previously mobile

23



cations from the aqueous solution, in order to preserve the overall electroneutrality of the complex. The
LS complex tolerates this entropically less favorable state in compensation for the additional amount of
complexed DNA, and the corresponding gain of electrostaic free energy.

As p continues to increase the point, p = p, is reached where all DNA becomes complexed, and
newly added lipids are all incorporated into the sandwich complex. The system thus proceeds through a
single phase region where d(p) increases linearily with p. The single phase region, p; < p < p,, includes
the isoelectric point p = 1. Upon crossing this point the LS structure changes from negative to positive
overcharging. Again, positively overcharged LS complexes need to immobilize anions from the salt solution
and are thus not in their optimal energetic state. Yet, this is still more favorable than expelling all excess
lipids and forming an extra cationic bilayer that itself would have to immobilize salt ions. As p approaches
p, newly added lipids still enter the sandwich but tend to evade into the membrane regions between the
DNA strands. There, they are increasingly less effective in interacting with the DNA strands. Instead,
they increase inter-bilayer repulsion by interacting among each other. Consequently, at some specific,
sufficiently large, p = p, the system phase separates again, and a planar excess bilayer is formed. Note that
this excess bilayer need not have the same composition as the LS complex. In fact, due to compositional
adjustability of the LS and L, phases, the theoretical treatment predicts a slight decrease in d with p for

p > P, [42].

Soft membranes: We have seen how manipulation of the preferred packing geometry of the lipid layer af-
fects lipoplex structure. Experimental evidence shows yet another way: membrane softening (i.e., lowering
k) by addition of an appropriate cosurfactant like a short chain alcohol [19]. The addition of cosurfactnat
may have little effect on the preferred packing geometry (i.e., spontaneous curvature) of the lipid mixture,
but it costs now much less energy to shift the actual packing geometry away from the preferred one. The
elastic free energy in Eq. 2 underlines the physical origin of this mechanism: membrane softening corre-
sponds to a decrease in the bending constant k. The spontaneous curvature c is then less important for the
actual phase behavior of the CL-DNA mixture. Instead, electrostatic interactions become the dominating
contribution to the free energy. Recall from our discussion of Fig. (10) the subtle interplay between the two
lipoplex geometries: The energetically optimal but compositionally constrained H structure, versus the
energetically less favorable yet adjustable LS complex. This suggests the appearance of both the LS and
Hﬁ structures (separately and in coexistence) in various regions of the phase diagram, as corroborated by
the theoretical results shown in Fig. (14).

Similarly to Fig. (3) we note the appearance of the Lg-HI‘,: transition. As expected the transition can be
induced by adding the membrane softening ”co-lipid” (which need not be a lipid) to the CL-DNA mixture
at the isoelectric point, p = 1. (The corresponding path in the phase diagram for this “dilution” experi-
ment starts at ¢ &~ 1 and proceeds towards smaller ¢ at p = 1.) Indeed, this is what has beed observed
experimentally by adding a short chain amphiphile to the lipid mixture [19].

8 Concludingremarks

Our concrete goal in this review has been to highlight the physical mechanisms underlying the formation
of lipid-DNA complexes in aqueous electrolyte solution, to analyze their structure as a function of lipid
composition and DNA-to-lipid ratio, and to feature the very rich phase behavior of these practically and
theoretically important systems. Starting with a rather complex phase diagaram, we have gradually un-
folded the relevant thermodynamic and structural degrees of freedom governing the phase behavior of the
multicomponent system. Particular emphasis has been given to the complementary, sometimes competing,
roles of lipid chain packing on the one hand, and electrostatic DNA-lipid interactions on the other hand. We
have also discussed, albeit briefly, the power and limitations of the theoretical tools used in our analysis.
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Figure 14: Phase diagram of a lipid-DNA mixture, for lipids which self-assemble into very soft
planar membranes, calculated as a function of the mole fraction of the cationic lipid, ¢, and the
lipid-to-DNA charge ratio p. The symbols S, H, B, | and D denote, respectively, the LS, Hﬁ,
Lq, Hﬁ, and uncomplexed (naked) DNA phases. The straight dashed line marks the single Hﬁ
phase region (from Ref. [33], with permission).

Related to the last point above, we had another, more general, objective in this review: to convince
the reader that theoretical modeling of a seemingly very complex thermodynamic-biophysical system is
not necessarily hopeless. In fact, by a judicious choice of the theoretical tools, and proper identification
of the most relevant (often the experimentally controllable) degrees of freedom, the theoretical modeling
can provide not only post factum interpretations of experimental observations, but also nontrivial a-priori
useful predictions.
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