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1. INTRODUCTION

As a result of partial complementarity (base pairing) between
the nucleotides (nt) constituting single-stranded (ss) RNAs, these
molecules develop secondary structures composed of double-
stranded (ds) “duplexes” of contiguous base pairs (bp) con-
nected by ss loops of unpaired nt. These components in turn
determine the tertiary structure of RNA molecules and thereby
their biological function. Accordingly, a great deal of theoretical
and experimental work has been devoted to predicting and mea-
suring the secondary structures of RNAs (see, e.g., refs 1-12).

In particular, several dynamical programming algorithms have
been developed and used widely to predict the secondary struc-
tures and associated free energies of ssRNA.9,10While sometimes
at variance with respect to their prediction of detailed structural
or energetic properties, such as the exact configuration of the
minimum free energy (MFE) state of a given sequence of nt, the
predictions of coarse-grained properties obtained using the dif-
ferent folding algorithms are generally in good agreement with
each other. Among these properties are the fraction of bases in
pairs, f, the average loop size, Ælæ, and the average length of base-
pair duplexes, Ækæ, in the MFE structure or the Boltzmann-
weighted ensemble of secondary structures. Moreover, upon
further averaging over large sets of random sequences, many
features arise that are even less sensitive to the folding algorithm
or energy model used. Notably, upon increasing the length of the
RNA chain (keeping the base composition constant), it is found
that f , Ælæ, and Ækæ approach constant values. (The angled brackets

are used, here and throughout the paper, to indicate within-
structure averages. When overbars are used, they indicate further
averaging over sets of sequences of the same length and base
composition.) Further, these and several other generic attributes
of the secondary structure have been treated previously, both
theoretically and computationally, for several simple models of
self-complementary chains.11-18

In the present work, we show that similar conclusions regard-
ing coarse-grained properties of ssRNA can be derived from a
particularly simple model of RNA folding, in which a single
secondary structure is derived by means of a sequence of suc-
cessive folding stages. This sequential folding model (SFM)
explains, both qualitatively and quantitatively, why and how f ,
Ælæ, and Ækæ, and related secondary structure attributes (of random
sequences of a given base composition), approach constant
values with increasing number of nt, N. On the basis of several
approximations, we show that the model can be solved analyti-
cally to obtain simple closed-form expressions for these quan-
tities. Numerical realizations of the SFM are presented, con-
firming the asymptoticN-independence of f , Ælæ, and Ækæ; further,
their values show reasonable agreement with those derived from
the more accurate, and far more detailed, folding algorithms that
explicitly introduce energies and entropies of duplex and loop
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ABSTRACT: We introduce a simple model for folding ran-
dom-sequence RNA molecules, arguing that it provides a direct
route to predicting and rationalizing several average properties
of RNA secondary structures. The first folding step involves
identifying the longest possible duplex, thereby dividing the
molecule into a pair of daughter loops. Successive steps involve
identifying similarly the longest duplex in each new pair of
daughter loops, with this process proceeding sequentially until
the loops are too small for a viable duplex to form. Approximate
analytical solutions are found for the average fraction of paired
bases, the average duplex length, and the average loop size, all of
which are shown to be independent of sequence length for long
enough molecules. Numerical solutions to the model provide estimates for these average secondary structure properties that agree
well with those obtained from more sophisticated folding algorithms. We also use the model to derive the asymptotic power law for
the dependence of the maximum ladder distance on chain length.
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formation.9,10 Other predictions of the model, such as the scaling
with N of the maximum ladder distance (MLD),5,17 show similarly
good agreement, suggesting the reasonableness of the approx-
imations on which the SFM is based. We emphasize, however,
that the model is not proposed as an alternative to any of the
(theoretically and numerically) more rigorous algorithms de-
signed for RNA secondary structure prediction. Rather, its
purpose is to provide, through a simple analysis of the folding
of random sequences, insights into how generic asymptotic
properties of secondary structure arise.

We open the discussion with a general description of the SFM,
in section 2. In section 3 we present a highly simplified, closed-
form, analytical solution of the SFM for long ssRNAs with
random sequences. In section 4 we elaborate on the numerical
solution of the SFM and compare its predictions to those derived
using the Vienna RNA folding package.10

2. SEQUENTIAL FOLDING MODEL (SFM)

The basic premise of our SFM is that the secondary structure
of an RNA molecule can be regarded as the final state in a
sequence of folding events consisting of the successive division of
ss loops by their longest possible duplexes. The procedure is
schematically illustrated in Figure 1. The first folding stage
involves the formation of two smaller daughter loops. In the
case of a linear ssRNA, one of the daughter loops is open—
containing the 50 and 30 ends—while the other is closed. Both
daughter loops are closed if the chain is circular. In the second
folding stage, both daughter loops are divided by their respective
longest duplexes, each yielding a pair of still smaller loops, and so
on. Clearly, successive folding generations yield successively
smaller loops and concomitantly smaller maximal duplexes.
The folding process ends when none of the loops is large enough
to enable its further division by a viable duplex, typically assumed
to consist of two bp. If the RNA chain is circular, all loops are
closed; if it is linear, one of the loops in the final structure is open
—this is the “exterior loop”, which contains the 50 and 30 ends of
the molecule.

In the course of this virtual folding process, certain loops may
give rise to two (and very rarely three) duplexes of the same

maximal length. When this happens in our numerical realization
of the model (see section 3), the first of the maximal duplexes
found is chosen. Note that, once a duplex is formed, it survives
throughout the entire folding process; i.e., the model does not
allow the structure to anneal. Moreover, every folding sequence
yields a single final secondary structure. Alternative (“degenerate”)
final structures corresponding to a given nt sequence will
generally arise upon repeating the folding process, because, as
noted above, certain loopsmay yieldmore thanonemaximal duplex,
which upon random sampling will generally lead to different final
structures. These degeneracies are (indirectly) accounted for by
sampling many (typically 100) random ssRNA sequences for any
given molecular length and base composition of interest.

On the basis of detailed numerical calculations, we found that
elaborations of the model—involving, say, the assignment of
duplex energies—produce results that differ little from those
derived using the simple version of the SFM outlined above.
Explicit inclusion of loop entropies appears similarly unwar-
ranted. In neglecting both loop entropies and duplex-specific
energies, the SFM resembles the Nussinov-Jacobson model,
where the MFE structure is the one of maximal base pairing.12

However, whereas the Nussinov-Jacobson model identifies the
secondary structure of global maximum pairing, the SFM follows
one particular folding path whose every step is prescribed by the
formation of the longest possible duplex remaining in each of the
unfolded loops. In a comprehensive theoretical paper, David
et al.18 have recently described a hierarchical folding model for
random N-base RNA sequences, in which the (1/2)N(N - 1)
potential base pairs are ordered according to the magnitudes of
their binding affinities. The energetically most favorable base pair
is formed first, the second base pair is chosen to be the strongest
among the remaining allowed pairs (i.e., those that are either
independent of, or nested within, the first base pair), and the
process is repeated until all possible base pairs have been formed.
The SFM resembles this approach, but the hierarchy of structures
generated involves the successive formation of duplexes rather
than individual base pairs.

Although the SFMdoes not explicitly account for loop entropies,
the formation of the longest duplex corresponding to a given
loop provides the most efficient energetic means for overcoming

Figure 1. Schematic illustration of the sequential folding model. First, the longest duplex is formed (labeled “1”), resulting in the formation of two
smaller daughter loops. These are then divided by their respective longest duplexes (each labeled “2”), and so on. Only four “generations” are depicted
here. The process ends when none of the loops can be divided by a viable duplex. As bases may be apportioned unevenly between daughter loops, some
loops may reach the end of the process in fewer generations than others. The analytical solution described in section 2 incorporates the simplifying
assumption that all divisions are equal (hence all loops undergo the same number of divisions).
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the entropy loss associated with the division of this loop into two
smaller daughter loops. Hence, physically, the SFM may be
regarded asmimicking the gradual cooling of a structureless high-
temperature ssRNA chain. Indeed, in such a process, the longest
duplex of the entire sequence will be likely to appear first, yielding
two smaller loops that are then divided by their own longest
duplexes, and so on, until the loops become too small to enable
the formation of even the minimal stable duplex. Clearly, however,
this simple and appealing “kinetic” scheme is necessarily approx-
imate because it does not allow the evolving secondary structure to
anneal and relax toward its optimal (MFE) configuration.

3. APPROXIMATEANALYTICAL SOLUTIONTOTHE SFM

Let i = 1, ... , N denote the chain of N nt constituting a linear
ssRNA molecule, numbered from the 50 end to the 30 end. The
same notation applies to a circular chain, but with i = 1 and N
denoting an arbitrary pair of covalently bound nt. We shall use p
(0 < p < 1) to denote the average base-pairing probability
between any two nt along the chain. For example, p = 1/4 =
0.25 if the ssRNA chain is comprised of equal proportions (25%)
of the four bases G, C, A, and U, randomly distributed along the
chain, with only equal-energy Watson-Crick (WC) pairs al-
lowed, i.e., G with C and A with U. Similarly, p = 3/8 = 0.375 if
G-U pairs are included with equal probability. We have
performed detailed numerical calculations for both cases, obtain-
ing similar qualitative conclusions regarding theN-independence
of f , Ælæ, and Ækæ. In the numerical calculations described in
section 4, we shall therefore present the results only for p = 3/8.

Consider two arbitrary subsequences of the entire chain, i , iþ
1, iþ 2, ... , iþ k- 1 and j, jþ 1, jþ 2, ... , jþ k- 1 (with jg iþ k
þ m), each containing k bases. Suppose that these are aligned
against each other, with i facing jþ k- 1, iþ 1 facing jþ k- 2,
etc.; m is some small number, corresponding to the minimal
number of nt in a hairpin loop, often set to m = 3. The overall
number, A(k;N), of possible alignments of subsequences of
length k is, to a very good approximation, given by A(k;N) =
(1/2)(N - 2k - m)2. A fraction of these alignments involves a
succession of perfectly matched bases, enabling the formation of
a duplex comprising k bp. For random sequences, if k is con-
siderably smaller than N (and more generally, if the two sub-
sequences are short compared to the entire sequence), the pairing
probabilities of adjacent nt pairs are uncorrelated. Hence, the
probability that two subsequences, each comprising k nt, will
perfectly match, giving rise to a duplex of length k (or a part of a
longer duplex), is given by pk. Using D(k;N) to denote the
number of matching alignments of length k, it follows that—on
average—for random sequences D(k;N) = A(k;N)pk, which is a
rapidly decreasing function of k.

Let k1, generally not an integer, denote the solution of the
equation D(k1;N) = A(k1;N)p

k1 = 1. In the ensemble of random
sequences of length N, there is—on average—less than one
potential duplex of length k > k1 and more than one potential
duplex of length k < k1. Accordingly, we shall identify k1 = k1(N)
as the “most probable maximal duplex” in the ensemble. For
sufficiently long sequences, i.e., ones for whichN. k,m, we have
A(k;N) = (1/2)(N- 2k-m)2≈ (1/2)N2 so that (1/2)N2pk1 =
1, indicating that k1 increases logarithmically with sequence
length. More explicitly,

k1 ¼ a ln N - b ¼ 1st maximal duplex ð1Þ
For p = 3/8, we have a = 2/ln(1/p)≈ 2.04 and b = ln(2)/ln(1/p)

≈ 0.71. A plot of k1 vs N calculated using this relationship is
shown in Figure 2, revealing excellent agreement with the results
obtained by the numerical simulations detailed in the next
section, especially for large values of N.

In order to derive a closed-form expression for Ækæ, we now
introduce two rather drastic approximations. First, we assume
that in each stage (“generation”), s, of the folding process all
loops are divided into two daughter loops of equal length. In
general, as evidenced by our numerical solution of the SFM in
section 4, and illustrated schematically in Figure 1, each loop
divides according to the sequence-dependent placement of its
maximal duplex, which can occur in most positions. The sym-
metric division invoked here, however, enables a simple deriva-
tion of approximate, closed-form, results. It may be noted, as is
also apparent from Figure 1, that eventually, as the loops get
progressively smaller, the duplexes (which also become shorter)
involve nt which are not far from each other along the chain. It
follows that bases tend to pair with close-by bases because, as
shown below, most base pairs are present in short duplexes which
are, in turn, present in small loops. The probability of two bases
being paired is thus an asymptotically decreasing function of the
contour distance between them (whether loop divisions in the
SFM are symmetric or not). Quantitative mathematical analysis
of the scaling behavior of this pairing function, for an alternate
folding model, has been presented by David et al.18

Because we are treating random sequences, loops containing the
same number of nt possess, on average, equally long maximal
duplexes. Thus the first loop, whose length isN� N0 nt, is divided
by its longest duplex (of k1 bp) into two loops, each containingN1 =
(N0 - 2k1)/2 ≈ N0/2 unpaired bases. Each of the two daughter
loops is then divided by its own maximal duplex (of length k2) into
“granddaughter loops” of sizeN2 = [(N0- 2k1)/2- 2k2]/2≈N0/
22, and so on, until the loops become too small to enable the
formation of a stable duplex and the folding sequence ends.We shall
use ŝ to denote the last stage of loop division, so that k̂s is the shortest
duplex in the structure and Nŝ is the size of the last and hence
smallest loops formed in the process.

Our second approximation will be to extend the long-chain
approximationsN1≈N0/2,N2≈N1/2≈N0/2

2, ... to all folding

Figure 2. The longest duplex length as a function of sequence length.
Triangles and error bars correspond to the numerical calculations
discussed in section 4. The solid line is a plot of the theoretical
expression k1 = a ln N - b, with a = 2.04, b = 0.71, as presented above
in the text (see eq 1). All calculations are performed for p = 3/8.
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stages, so that the loops in the sth generation of the folding
sequence contain Ns = N0/2

s = N/2s nt. In the same approxima-
tion, the length, ks, of the maximal duplex in the sth generation is
determined by (1/2)(Ns-1)

2pks = 1, yielding ks = a ln Ns-1 - b,
with a and b as given above. Note that the long-chain approx-
imation Ns = Ns-1/2 becomes poorer toward the end of the
folding process, especially in the last stage when 2k̂s is not much
smaller than its “mother loop” of size Nŝ-1 (see additional
remarks below).

From the approximate scheme outlined above, it follows that
the maximal duplex length in the sth folding generation

ks ¼ a ln Ns-1 - b ¼ k1 - ða ln 2Þðs- 1Þ ð2Þ
decreases linearly with s. From eqs 1 and 2, we also conclude that
the total number of loop division generations, ŝ, is a logarith-
mically increasing function ofN. Setting s = ŝ in eq 2, we find that
ŝ = ln N/ln 2 þ 1 þ (k̂s - b)/(a ln 2), and since k̂s is a constant
dictated by the particular energymodel used, it follows that ŝ∼ ln
N. In the standard folding algorithms (such as mfold9,19 or
RNAfold10), a stable duplex typically consists of at least 2 bp.
According to eq 2, if for instance p = 3/8, then a duplex of length
k = 2, say, can in principle be formed from a loop containing only
exp[(2þ 0.71)/2.04]≈ 4 nt. Note, however, that eq 2 is a poor
approximation for small loops, such as those encountered in the
final stages of our folding scheme. This is because Ns-1, which
appears in this equation, does not account for the (minimally 4)
nt contained in the duplex that defines the splitting of a mother
loop, nor for the additional nt (at least two but typically more)
appearing in the two smaller daughter loops. Finally, it also
ignores the severe constraints on base pairing imposed by the
“interference” of previous-generation duplexes (two on average)
emanating from the loop. Among the consequences of this
interference is that not all loops formed in a given generation
undergo the same number of successive divisions, and not all
loops in the ultimate structure are of the same size. Removing the
simplifying assumption that loops are always divided equally
would further add to differences in the final loop sizes and the
number of divisions those loops underwent. All of these factors
are taken into account in our numerical calculations in the next
section, where indeed we find that the loops of the penultimate
generation (which are not all of the same size) typically contain
∼20 nt. The average duplex size in the last loop division is found
to be nearly 3 bp (just bigger than the minimal allowed duplex
length of 2 bp). Accordingly, the average number of unpaired
bases in the loops of the final structure is, roughly, (20- 2� 3)/
2 = 7. In principle, we could improve the applicability of eq 2 to
even the smallest loop sizes by a perturbative treatment that takes
into account all the factors mentioned above. This would
improve the numerical results predicted by the analytical ap-
proach but would not affect our qualitative conclusions, in
particular the asymptotic (N-independent) behavior of Ækæ, Ælæ,
and f, as clearly revealed by numerical solution of the SFM.

On the basis of the assumption that the number of duplexes is
doubled upon any successive generation of loop division, an
approximate expression for the average duplex length in the
secondary structure resulting from the SFM can be derived as
follows:

Ækæ ¼ ∑
ŝ

s¼ 1
2s-1ks=∑

ŝ

s¼ 1
2s-1 � k1 - ða ln 2Þð̂s- 2Þ

¼ k̂s þ a ln 2 ¼ a ln Nŝ þ ð2a ln 2- bÞ ð3Þ

From this equation, it follows that Ækæ ≈ k̂s þ a ln 2, so that the
average duplex length is not much larger than the smallest duplex
length, e.g., Ækæ≈ k̂s þ 1.41 for p = 3/8. The N-independence of
Ækæ now follows from the fact that theminimal duplex length, k̂s, is
a local property dictated by the composition and pairing energies
of the polynucleotide chain and is therefore independent of N.
The exponential generational increase of bases in loops explains
the small difference between Ækæ and k̂s. In addition, from the
relationship k̂s = a ln Nŝþ (a ln 2- b) in eq 3, we conclude that
the smallest loop size, Nŝ, is independent of N and thus, like k̂s,
also a local property.

Let S denote the total number of duplexes in the final
secondary structure and L the corresponding number of loops.
For circular RNA, L = S þ 1, which also holds for linear RNA if
we add the exterior loop to the loop count (otherwise L = S). For
the long molecules of interest here (i.e., forN. 1), we can safely
put L = S, which holds for all secondary structures, not only the
ultimate one. In terms of the pairing fraction, f, and the average
duplex length, Ækæ, we can express S in the form S = Nf/2Ækæ.
Analogously, the total number of loops can be expressed as the
ratio, L =N(1- f)/Ælssæ, between the total number of unpaired nt
in the molecule,N(1- f), and the average number of unpaired nt
per loop in the final structure, Ælssæ. In the approximate closed-
form solution to the SFM presented above, all loops in the final
structure comprise the same number of unpaired nt, correspond-
ing to the approximation Ælssæ ≈ Nŝ. Equating L and S, we find
f/(1 - f) = 2Ækæ/Ælssæ ≈ 2Ækæ/Nŝ, or

f ¼ 2Ækæ
Ælssæþ 2Ækæ

� 2Ækæ
Nŝ þ 2Ækæ

ð4Þ

where it should be noted that the equality in eq 4 is always true,
whereas the near-equality corresponds to the approximate closed-
form solution to the SFM. Similarly general is the expression Ælæ= Ælssæ
þ 2Ædæ≈ Ælssæþ 4, where Ælæ is the average number of nt (paired or
unpaired) per loop in any arbitrary secondary structure and Ædæ is the
average number of duplexes connected to one loop. The above near-
equality arises from the fact that, in every secondary structure, Ædæ = 2
- 2/L, implying Ædæ≈ 2 for large L (see, e.g., ref 20). In agreement
with eq 4, our numerical solutions of the SFM (for long sequences of
uniform base composition) yield Ækæ ≈ 5, Ælssæ≈ 6.5, and f ≈ 0.6.

Figure 3. Sequence alignments used to identify the longest duplex.
Shown here are two (of the 40 possible) alignments of a 40 nt chain
containing equal numbers of randomly distributed G, C, A, and U,
allowing G-C, A-U, and G-U pairing with equal probability. Two
viable duplexes (of 2 and 5 bp) are found in the upper alignment. In the
lower alignment, the longest duplex associated with this sequence
(comprising 6 bp) is shown surrounded by a square box. The resulting
daughter loops are encircled by dotted lines.
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From eqs 3 and 4 it follows that if, as argued above, k̂s
(equivalently Nŝ) is independent of N, then, for asymptotically
long sequences, Ækæ, f, and Ælæ are also independent ofN. In other
words, these properties may be interpreted as “intensive” proper-
ties of random RNA molecules in the long-chain (or thermo-
dynamic) limit. The conclusion that f is an intensive property also
follows directly from the ansatz that, in this limit, the free energy
of folding of a long RNA molecule is an extensive property.21

Equation 4 implies that from this ansatz Ækæ and, equiva-
lently, Ælæ are intensive properties as well. The derivation of these
qualitative conclusions has been the main goal of the approx-
imate analytical solution presented here for the SFM. However,
given the many simplifications made along the way, we do not
expect the relations given by eqs 3 and 4 to be numerically
accurate. Accordingly, in the next section, we present a numerical
solution to the SFM for several secondary structure properties of
random sequences of varying length, and compare them to MFE
structures predicted by RNAfold, a program in the Vienna RNA
Package, version 1.83.10 We show there that the asymptotic
independence of Ækæ, f, and Ælæ from N, predicted above, is clearly
exhibited by our numerical solutions of the SFM. Finally, we use
these numerical solutions to derive the large-N scaling behavior
of the maximum ladder distance,5,17 obtaining good agreement
with results from the RNAfold calculations.

4. NUMERICAL RESULTS AND DISCUSSION

Computations were performed based on the scheme outlined
in Figure 1. Namely, the entire chain is first split by its longest
possible duplex into two daughter loops (generally of different
lengths); these are then further divided by their own longest
duplexes into still smaller loops, etc. The process ends when
none of the loops sustains a viable duplex, which in all calcula-
tions was assumed to consist of at least two contiguous base pairs.
The longest duplex of any given loop is found by scanning all
possible intrachain alignments, as illustrated in Figure 3. This
duplex is chosen to split the given loop. If two or more duplexes
are found to have the same maximal length, we pick the first one
found; for sufficiently large sets of random sequences, this is
equivalent to a random selection. Calculations were performed for

randomly permuted sequences of varying lengths (N = 100-
20 000) of uniform composition (i.e., containing equal propor-
tions [25%] of the four bases). We have analyzed sequences
allowing G-C, A-U, and G-U bp, all with equal weight
(corresponding to p = 3/8).

In Figure 4, we show theMFE structure predicted by RNAfold
(see A), and the structure predicted by the SFM (see B), for an
arbitrary 200 nt RNA sequence of uniform composition. The two
structures appear qualitatively similar in terms of their distribu-
tions of duplexes and loops of varying size and complexity. For
instance, oneMLD (see definition below) is 39 (A) and the other
41 (B); the central loop of each is composed of approximately the
same nucleotides (involving nt numbers around 25, 95, and 185);
and the external loop in each is separated from this central loop
by a single bubble. The average duplex length (Ækæ) is 4.1 in A and
4.7 in B, and the pairing fractions (f) are 0.53 and 0.61, respectively.
More comprehensive, statistically significant, comparisons between
the two numerical procedures are reported in Figures 5-7.

Figures 5 and 6 show, respectively, the set-average pairing
fraction and the set-average duplex length as a function of seq-
uence length. With the SFM we analyzed sets of 100 randomly
permuted sequences, of uniform composition, of each of the
following lengths: N = 100, 250, 500, 1000, 2500, 5000, 10 000,
and 20 000. The same sequence lengths were analyzed with
RNAfold, except the set sizes were reduced to 20, and the longest
chain length (N = 20 000) was omitted, because of RNAfold’s
increased computation time; these sequences constituted a
subset of those analyzed by the SFM. The values of f predicted
by the SFM and by RNAfold reveal surprisingly, possibly
fortuitously, good agreement. The SFM predictions of the
average duplex length, Ækæ, are higher, though not by much, than
those predicted by RNAfold. This difference is not surprising
since the SFM is biased toward long duplexes, whereas many
other factors, such as loop entropy, are incorporated into
RNAfold. The most significant result conveyed by the SFM
calculations in Figures 5 and 6 is a qualitative one: the conver-
gence of Ækæ and f to their respective constant values forN. 1, as
predicted by the simple analytical scheme outlined in the
previous section, and in agreement with results derived using
RNAfold.

Figure 4. Secondary structures predicted for an arbitrary 200 nt RNA sequence of uniform composition. (A) TheMFE structure predicted by RNAfold.
(B) The SFM structure. Both structures were drawn using the mfold graphing utilities.9
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Originally introduced by Bundschuh and Hwa,5 the ladder
distance (LD) between two arbitrary bases i and j in a given
secondary structure, ζij, is defined as the number of duplex rungs
that are crossed by the (unique and shortest) path connecting
these pairs of bases. The maximum ladder distance (MLD), ζ =
Max{ζij}, is the longest ladder distance within the structure.

17 It
provides a convenient measure for the size of the secondary
structure. In analogy to Ækæ, f , etc., we denote by ζh the average
MLD corresponding to a given set of nt sequences, all of the same
base composition and chain length. In Figure 7, we show ζh as a
function of N for the same sets of structures used to derive the
results shown in Figures 5 and 6.

The results in Figure 7 reveal a nearly linear dependence of ln ζh
on lnN, indicating the power law behavior ζh∼NR, withR≈ 0.67
for the SFM and R ≈ 0.7 for RNAfold. These exponents are in
similarly good agreement with those from previous, more
extensive, MLD calculations. Specifically, in a recent study,20

several thousand randomly permuted sequences were sampled
and analyzed using RNAsubopt (a program in the Vienna RNA
folding package22), yielding the 2-fold average ζhth. Here, the “th”

(for “thermal”) subscript denotes the average over the ensemble
of Boltzmann-weighted secondary structures associated with
each sequence, and the overbar denotes the further averaging
over many randomly permuted sequences of the same length and
base composition. The scaling behavior was approximately the
same as that seen above: ζhth∼ NR with R = 0.69( 0.01. Similar
calculations have previously17 been performed for randomly per-
muted sequences with a slightly nonuniform composition (24%
G, 22% C, 26% A, and 28% U), in which case it was found that R
= 0.67 ( 0.01.

5. CONCLUDING REMARKS

The sequential folding model (SFM), presented here for
randomly permuted RNA sequences, provides a simple basis
for understanding several generic features of the average proper-
ties of their secondary structures. In particular, we are able to
obtain closed-form analytical solutions for these properties by
introducing two approximations: (1) in each successive folding
step, the identification of a maximal duplex leads to daughter
loops of equal size; (2) the number of duplexes generated by the
sth step is equal to 2s-1, for all steps in the folding scheme. The
length-independence of the average duplex size (Ækæ), loop size
(Ælæ), and fraction of bases paired (f) follows straightforwardly
from these analytical solutions. Furthermore, numerical solu-
tions to the SFM, for these average properties, give reasonably
good agreement with those obtained from RNAfold, which is a
significantly more sophisticated folding algorithm. The numer-
ical SFM prediction for the large-N scaling behavior of the
maximum ladder distance also agrees with that obtained from
RNAfold.
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Figure 5. The average fraction of nucleotides in base pairs, f , as a
function of sequence length, N, for randomly permuted ssRNAs of
uniform composition, calculated using RNAfold (circles) and the SFM
(triangles).

Figure 6. The average duplex lengths, Ækæ, as a function of sequence
length, N, for randomly permuted ssRNAs of uniform composition,
calculated using RNAfold (circles) and the SFM (triangles).

Figure 7. The average maximum ladder distance, ζh, as a function of
sequence length, N, for randomly permuted ssRNAs of uniform
composition, calculated using RNAfold10 (circles) and the SFM
(triangles). The vertical bars indicate the range of ζh values correspond-
ing to the 100 sequences analyzed with the SFM and the 20 sequences
analyzed using RNAfold. Both models exhibit a linear dependence of ln
ζh on ln N, with slopes of R ≈ 0.67 for the SFM and R ≈ 0.70 for
RNAfold.
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