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Entropy, Energy, and Bending of DNA in Viral Capsids
Avinoam Ben-Shaul*
Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
ABSTRACT Inspired by novel single-molecule and bulk solution measurements, the physics underlying the forces and pres-
sures involved in DNA packaging into bacteriophage capsids became the focus of numerous recent theoretical models. These
fall into two general categories: Continuum-elastic theories (CT), and simulation studies—mostly of the molecular dynamics
(MD) genre. Both types of models account for the dependence of the force, and hence the packaging free energy (DF), on
the loaded DNA length, but differ markedly in interpreting their origin. While DNA confinement entropy is a dominant contribution
to DF in the MD simulations, in the CT theories this role is fulfilled by interstrand repulsion, and there is no explicit entropy term.
The goal of this letter is to resolve this apparent contradiction, elucidate the origin of the entropic term in the MD simulations, and
point out its tacit presence in the CT treatments.
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The genomic double-stranded (ds) DNA inside bacterio-
phage heads is highly stressed, leading to internal pressures
of up to ~50 atmospheres, reflecting the tight packing and
extreme bending of this highly charged and rigid molecule
(1). The interaxial distance (d) between neighboring
(nonbonded) dsDNA segments in the fully packaged virus
is typicallyz2.5 nm (2,3), just slightly larger than the hard-
core diameter of dsDNA (b ¼ 2.0 nm) and well into the
repulsive regime (d % 2.8 nm) of DNA-DNA interaction
in ionic solutions (4–6). Moreover, free dsDNA in (physio-
logical) solution is a fluctuating, semiflexible, wormlike
chain (WLC), with persistence length x z 50 nm, larger
than the radius of most viral capsids. Thus, on a molecular
scale, packaging the long (e.g., the 330-x long l-phage
genome) viral DNA into its tiny capsid requires enormous
mechanical work.

The force needed to package the DNA is provided by an
ATP-driven motor protein situated at the capsid portal.
Recent single molecule measurements reveal that this force,
f(Lint), increases sharply with the loaded genome length,
Lint, rising to ~30–100 pN, depending on the virus in ques-
tion (7,8). These studies inspired the formulation of many
theoretical models of DNA packaging in viral capsids,
which fall roughly into two categories:
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CONTINUUM-ELASTIC THEORIES

Similar to earlier theories of the problem (9–11), these
models treat the dsDNA as a WLC whose packaging free
energy involves two major contributions: DF ¼ DFint þ
DEbend, accounting for interstrand repulsion and DNA
bending energy, respectively (12–14). Some models add
DNA twist (15), attraction to the capsid wall (16), or
surface energy terms (13). The encapsidated DNA is
assumed to reel into an hexagonally ordered bundle, whose
shape and interstrand distance, d, are determined as a func-
tion of Lin by variational minimization of the packaging free
energy DF(Lin). The bending energy, DEbend, is evaluated
as usual, by integrating the local curvature energy over the
chain contour, (see Eq. S1 in the Supporting Material).
The dependence ofDFint on d (and hence on Lin) is generally
derived from osmotic stress measurements (4,6). Consistent
with experiment, the continuum-elastic theory (CT) models
predict that fully packaged genomes wind into a coaxial
spool where d z 2.5 nm (3,17), and correctly reproduce
the measured f(Lin) profiles. Remarkably, these models
have correctly predicted (12,13) that by regulating the
external osmotic pressure, one can control the extent (Lout)
of genome ejection (18).
COMPUTER SIMULATIONS

DNA packaging into phage heads has been studied by
several groups, using various simulation methods and
WLC models (see, e.g., the literature (12,15,17,19–22)).
Like the CT models, the simulations reproduce the observed
f(Lin) behavior, and hence, following integration over Lin
one obtains the work of loading which, assumed reversible,
yields the packaging free energy DF. Harvey and coworkers
(20–22), in a comprehensive series of molecular dynamics
(MD) simulations, calculated DF or many viruses. Subtract-
ing the sum of energetic contributions, DE, they found that
the entropic contribution, �TDS ¼ DF � DE, provides a
major, often the dominant, contribution to DF; for example,
88% of DF in the case of T7 and 74% for 429 (20).

In contrast, as emphasized by Harvey and coworkers
(20–22), there is no explicit entropy contribution to DF in
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the CT models. Curiously, however, the values of DF
obtained by the MD and CT calculations are similar. The
bending energies (DEbend) are also similar, yet small,
~10% of DF (and not because of being unimportant but,
rather, because the packaging stress is tolerated better by
the softer interstrand repulsion mode, (13)). It thus follows
that the role of interstrand repulsion, DFint, in the CT
models, is replaced by the entropic term, �TDS, in the
MD simulations, with each providing the major contribution
to the respective DF.

The goal of this letter is to resolve this apparent contradic-
tion, unravel the origin (and limited physical significance)
of DS in the MD simulations, and reveal the (albeit tacit)
presence of confinement entropy in the interstrand repulsion
term (DFint) of the CT models.

The qualitative clue to this puzzle is provided in Fig. 1,
which shows two choices of ε(d)¼ DFint(d)/NL, the interac-
tion free energy per unit length of a single dsDNA rod, in a
bundle of N rods of length L, spaced by distance d from each
other. (With six neighbors on average, the pairwise inter-
strand energy per unit length is ε(d)/3.)

In most CT models, εCT(d) is derived by integrating the
osmotic pressure versus d isotherms, P(d), of hexagonal
DNA bundles in salt solution (4,6). In solutions containing
monovalent and divalent counterions DNA-DNA repulsion
is exponential, with a common decay length a z
3.3 nm�1 but different preexponents for different salt solu-
tions. (See Supporting Material for details). The red curve
in Fig. 1 A represents εCT (d) for solutions containing
FIGURE 1 (A) Interaction energy per unit length of a single DNA

rod in a bundle of parallel rods versus their average interaxial

distance: CT (red) versus MD (blue). (B) Cross sections through

the bundles.
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Mg2þ and monovalent counterions, as derived by Purohit
et al (14). using the results of Rau et al. (4).

The blue curve in Fig. 1 A, describing εMD(d), is based on
the WLC model of dsDNA by Locker et al. (20), whereby
nearly spherical monomers (each representing six basepairs)
are connected by (rather rigid) harmonic bonds of equilib-
rium length b ¼ 1.99 nm. Interbond angle potentials, that

allow only small fluctuations, Dq ¼
ffiffiffiffiffiffiffiffi
hq2i

q
z160, ensure

x ¼ 51 nm, (see Supporting Material). Intermonomer repul-
sion is modeled by a steep semiharmonic potential between
nonbonded monomers that sets in at distances smaller than
d0 ¼ 2.5 nm, the typical interstrand distance in fully pack-
aged phage heads. This WLC model represents a semiflex-
ible, slightly compressible, cylindrical molecule of diameter
d0. If packed in an hexagonal bundle with interstrand
spacing d, the energy per unit length of this molecule is
εMD(d) ¼ k(d – d0)

2 for d % d0 and 0 for d R d0. The
blue curve in Fig. 1 A represents εMD(d) for k ¼ 445
kBT/nm

3, based on the intermonomer potential of Locker
et al. (21).

Fig. 1 B depicts cross sections through bundles of DNA
rods governed by εMD(d) versus εCT(d), demonstrating their
different implications with regard to DF. The analogy to the
difference between a two-dimensional gas of hard disks
versus a two-dimensional harmonic solid is apparent.

Compressing a perfectly hexagonal bundle obeying εCT(d)
appears as a purely energetic process involving no change in
entropy. It should be noted, however, that the phenomeno-
logical (implicit solvent) interstrand potential, εCT(d), is
effectively a potential of mean force, i.e., an interaction
free energy, and thus accounts for all the relevant entropic
contributions due to hydration, electrostatic, and excluded
volume interactions (all of which affect the orientational
and translational entropy losses of the confined chain).

On the other hand, according to εMD(d), nonbonded
monomers do not repel each other unless they penetrate
the strongly repulsive (and thus unlikely) d regime (d %
2.5 nm), explaining the small interstrand repulsion energy
DEint in the MD simulations. The steep inter-monomer
repulsion allows just a tiny inter-monomer penetration
depth, Dd ¼ ~0.04 nm (see Supporting Material for detail).
Though small, this increase in the lateral range of monomer
motion—from d � d0 to d – d0 þ 2dd h Dd—becomes
significant when d / d0, thus affecting the value of the
entropy loss, DS, inflicted upon on the confined chain by
its neighbors.

Polymer confinement entropies have been studied by
various authors, (23–25). However, for the MD model of in-
terest here, a reasonable estimate can be obtained using the
simple scheme in Fig. 2. Consider for instance the T7 phage,
whose 39,937 basepairs genome was modeled as a WLC of
M¼ 6656 monomers of diameter b¼ 1.99 nm and its capsid
as a sphere of inner radius R¼ 2.67 nm (20). Assuming hex-
agonal packing of the fully packaged genome, one finds
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FIGURE 2 A section of the MD chain model confined within a

cylindrical tube of diameter d.
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d ¼ 2.64 nm implying Dd h d � d0 þ 2dd ¼ 0.22 nm.
(See Supporting Material). Suppose now that each monomer
experiences (independently) this range of motion, and
ignore local curvature effects. Then, the entropy change
upon transferring the free WLC into the roughly
cylindrical tube of diameter d prescribed by its neighbors
is TDS=M ¼ kBT lnðq�=qf Þ þ Dεw. Here, q

f and q* are the
bond rotation partition functions of the free and confined
chains respectively (see Supporting Material), and Dεw
is the (negligible) change in the average bond rotation
energy. With kw, d0, and k, as given above, this crude model
yields q* z 3.3� and hence �TDS z 11,000 kBT, com-
parable to (though not surprisingly smaller than) the
14,000 kBT obtained in the MD simulations (20). The linear
scaling with M is also consistent with the MD results
regarding DS of T7 vs. 429.

Two major conclusions emerge from the analysis above.
The first is that—through the experimentally derived inter-
strand interaction free energy—the continuum theories do
include, albeit indirectly, most of the important entropic
contributions to the DNA packaging free energy. The second
is that the value of DS obtained in the MD simulations
depends sensitively on the choice of model parameters,
primarily d0. E.g., setting d0 equal to the hardcore diameter
of dsDNA (2.0 nm) would imply a much lower entropy loss
and hence smaller DF. On the other hand, MD simulations
relying upon DNA-DNA derived from experiment (or inde-
pendent elaborate theory) can significantly substantiate their
predictions of properties that coarse-grained continuum the-
ories cannot provide, such as equilibrium bundle geometries
and structural fluctuations.
SUPPORTING MATERIAL

Mathematical relations and numerical details complementing the main

text are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(13)00430-X.
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Note added after the manuscript was published 

A short time after the BJ letter was published I received this nice letter from a 
graduate student – Justin Petucci – who repeated my calculations and found 
numerical errors there. He also had a few good questions. Following his letter I 
repeated the calculations. The revised results are fully consistent with the theory and 
the simple model I proposed still explains the origin of the entropy change reported in 
the simulations by Harvey's group. The revised numerical results of the entropy 
change are still in accord with the simulations. 

Attached below is Justin's letter and his questions, and then my revised calculation. 

 

1. Justin's letter: 

Questions on: Entropy, Energy, and Bending of DNA (Biophys. J. 104, L15-L17 
2013) article 

Justin Petucci <jpetucci1@gmail.com> 
 

4/28/14 
 
 
 

to abs 

 
 

Dr. Avinoam Ben-Shaul, 
 
            Hello, my name is Justin Petucci. I am a graduate student 
at the University of Denver (CO, USA). I recently came across your 
article entitled “Entropy, Energy, and Bending of DNA” that was 
published in the Biophysical Journal in May of last year. I think that 
this is an excellent paper that addresses and resolves the apparent 
discrepancies between the continuum-elastic and molecular-mechanics 
methods of modeling DNA packaging. I decided to select your article as 
the focus of my self-study that is a requirement for completing my 
degree. After reading through the article, supplemental material, and 
the comments by yourself and S. Harvey, I have a three questions that 
I was hoping you would take a few moments of your time to answer. My 
questions are listed in the .pdf file attached to this email. The 
reason I attached a separate file is due to the difficulty in ensuring 
that the mathematical notation will display properly across different 
email services, so I hope that is okay. 
 
Thank you very much for you time and I look forward to hearing from you. 
Justin 
 
 



Question 1

In equation (S8) of the supplemental material, the maximal range of angular fluctuations, per bond,
is given by:

∆θ = θ∗ = sin−1

(
∆d

2b

)
≈ 3.3◦ (1)

My question is, where does the 2 in the denominator come from? The triangle in Figure 2 of
the main text has a hypotenuse of b and a defined side of ∆d. From this triangle, the relation
θ∗ = sin−1

(
∆d
b

)
is obtained, without the factor of 2. Perhaps the 2 acts to average over the two

monomers per bond?

Question 2

In the paper, the contribution to the change in free energy from the entropy of confinement is given
as −T∆S ≈ 11, 000kBT . I am unable to reproduce this value using the constants and formulas
given in your paper and in the supplemental material. Can you please look over my calculation
below and point out what I am doing incorrectly?

The given values are,

M = 6656; b = 1.99 nm; ∆d = 0.22 nm; θ∗ ≈ 0.0576 rad; θ′ = π; ∆〈εθ〉 ≈ 0; kθ = 38kBT (2)

With the above values, the partition functions for the free and confined chains are,

q∗ =

∫ θ∗

0

e(−kθθ2/2kBT ) sin θ dθ =

∫ 0.0576

0

e−19θ2 sin θ dθ ≈ 0.00161 (3)

qf =

∫ θ′

0

e(−kθθ2/2kBT ) sin θ dθ =

∫ π

0

e−19θ2 sin θ dθ ≈ 0.0261 (4)

Finally we have,

−T∆S ≈ −MkBT ln(q∗/qf ) = 6656 ln

(
0.00161

0.0261

)
kBT ≈ 18, 500kBT (5)

As you can see the value I calculate is far off the value given in the text.

Question 3

The main idea of your article and your subsequent comment is that the confinement entropy is
indirectly included in the continuum based models through the repulsive interaction. This is due
to the fact that the repulsive interaction is a potential of mean force, which is derived from os-
motic pressure experiments. In the simulations by Harvey et al. that include electrostatics, the
electrostatic repulsion is also derived from experimental osmotic pressure data. Since their NVT
simulations inherently include entropy, are they essentially double counting some portion of the
entropy of confinement? Can you please offer your comments on this?
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Reply to Justin's questions   

1.  Sorry, indeed there was a typo in Fig. 2. As written in the text d  is the 

difference between the effective diameter and the hard core diameter. The corrected 

figure is attached at the end of this letter.  

2.   The answer to your second question is that, there is an error (in fact two 

errors)    in the numerical calculations reported in my letter. Nevertheless, these 

errors do not change the general message regarding the origin of the entropy in the 

work of Harvey et al, nor the order of magnitude of the entropy changes they found 

in their simulations. The first of the two errors is that my numerical value of 
*ln( / )f

Bk T q q  was wrong, while yours is right. Second, the value of the energetic 

contribution – it is not negligible. The revised calculation is summarized below. The 

predictions of my crude  wormlike chain model are now closer to those obtained in 

the simulations of Harvey's group!  

3. Not related to your questions but possibly to whoever reads this note: 

Upon adding electrostatic repulsion to the DNA-DNA interaction on top of their 

(nearly) hard core repulsion at 2.5nm (as done in later papers by Harvey et al), the 

entropy penalty of DNA packaging – not surprisingly – increases further. This is 

because the effective repulsion is now stronger, thus further restricting the freedom 

of rotational undulation of chain segments. Note, however, that the bare diameter of 

DNA is only 2.0nm. The 2.5nm value used in the simulation has probably been 

chosen because it is the minimal distance generally found in fully packed viruses. 

Yet it is possible to package longer than genomic DNAs,  resulting in inter-strand 

distance  as small as 2.3nm!. The experimentally observed 2.5nm distance thus must 

include contributions from all kinds of repulsion: hydration, electrostatic, local 

curvature fluctuations, etc. (As confirmed by Podgornik and Parsegian). The 

phenomenological repulsive potential used in our continuum theory includes 

already all these contributions, lumping together all energetic and entropic 

contributions to DNA-DNA repulsion. Thus, when Harvey et al add electrostatic 

repulsion on top of the 2.5nm hard core repulsion they "double count" the 

electrostatic repulsion, resulting larger than 2.5nm repulsive diameter, and hence 

larger entropy penalty, as indeed found in the simulations.   

 

Revised calculation 

 

Let F E T S     denote the change in the Helmholtz free energy in the 

packaging process.  We estimate the changes in the thermodynamic functions based 

on treating the WLC of the packaged DNA as a chain of independently fluctuating 

inter-bead links. The links are allowed to rotate relative to each other within the 

"effective tube" prescribed by neighboring chains as illustrated in the figure below.   
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The free chain in solution possess a higher rotational freedom as compared 

to the packaged chain. Yet, the harmonic inter-link angle potential ensures that the 

free chain in solution has the experimental persistence length of 50nm.   

 The partition functions, per link, is given by: 

                                                                  
m

2( / 2 )

0

sinBk k Tq e d


     

From the density of dsDNA in the fully packaged capsid it follows that *
m 

=0.058.  On the other hand, for the free chain in solution  m  . With / 2 19Bk k T   

one finds that the persistence length of the free chain is indeed 50nm.    

 The free energy and energy, per link is given by 
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2
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2
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with M denoting the number of beads (hence links) in the chain. Applying these 

equations to the free and packaged chains we find: 

                        *
* * 2 ln( / )

ln( / ) ln( / )
f

f f
B B B

T S F E
q q

Mk T q q E Mk T q q Mk T
T

     


    


 

My numerical calculations yield: 

/ 0.02.786 ,   / ln(0.0 0.959
1.) /

261/ 0.0016
/

1 3) 2
(

9
27

1
8

0.9
BB

BBF M
F E Mk T

E M
T

k
S M T

TT
k

k 
   

   



   

For T7 (M=6656, in Harvey's simulations) and φ29 (M=3217) we find (in kBT):  

The numbers in black are from the simulations (Locker et al, BJ 93, 2861 (2007)) 

Note that my calculation include only the rotational energy penalty. Additional 

contributions due to inter-strand repulsion are not included, (they are included in 

the results of the simulations). 

             F            E     T S   

T7 (M=6656) 18,544    18,579    6,383    4,645 12,161    13,934  

φ29(M=3217)   8,962      7,938     3,085       946  5,877       6,992  

   

 


