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ABSTRACT: To optimize bindingand packagingby their
capsid proteins (CP), single-stranded (ss) RNA viral genomes
often have local secondary/tertiary structures with high CP
affinity, with these “packaging signals” serving as heteroge-
neous nucleation sites for the formation of capsids. Under
typical in vitro self-assembly conditions, however, and in
particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific
because the CP concentration exceeds the largest dissociation constant for CP−RNA binding. Consequently, the RNA is
saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids. But, before
capsids are formed, the binding of protein remains reversible and introduction of another RNA specieswith a different length
and/or sequenceis found experimentally to result in significant redistribution of protein. Here we argue that, for a given RNA
mass, the sequence with the highest affinity for protein is the one with the most compact secondary structure arising from self-
complementarity; similarly, a long RNA steals protein from an equal mass of shorter ones. In both cases, it is the lateral
attractions between bound proteins that determines the relative CP affinities of the RNA templates, even though the individual
binding sites are identical. We demonstrate this with Monte Carlo simulations, generalizing the Rosenbluth method for excluded-
volume polymers to include branching of the polymers and their reversible binding by protein.

1. INTRODUCTION

One of the remarkable characteristics of single-stranded (ss)
RNA viruses is that many of them can self-assemble in vitro
from purified RNA and capsid protein components. This was
first demonstrated in 1955 by Fraenkel-Conrat and Williams,1

who reported the reconstitution of infectious tobacco mosaic
virus (TMV) particleseach consisting of a single 6400-
nucleotide (nt)-long ssRNA genome protected by a hollow
cylinder made up of 2130 copies of its 159-residue coat protein.
Concerted studies over the following decades established that
the nucleation of the cylindrical capsid is initiated by selective
binding of coat proteins to a specific stem-loop in the
secondary structure of the viral RNA. Insertion of this
nucleotide sequence into an arbitrary RNA molecule results
in its efficient encapsidation by TMV coat protein into
monodisperse rods whose length is determined by the length
of the RNA.
In 1967, a second example of in vitro virus self-assembly

from purified components was provided by Bancroft and
Hiebert,2 who showed that a spherical viruscowpea chlorotic
mottle virus (CCMV)could be reconstituted in this way.
Subsequent work by Bancroft and co-workers3 established that
the CCMV coat protein (CP) was similarly capable of
packaging heterologous ssRNA from other viruses and nonviral
ssRNA, as well as flexible anionic synthetic polymers, into

capsids identical in size to the wildtype virus, i.e., 28 nm-
diameter shells consisting of 180 copies of the CP. Work by
Zlotnick et al.4 has explored substoichiometric CP−RNA
intermediates and their role in determining nucleation
pathways for formation of complete capsids. More recently,
we have shown how the strong preference of CCMV CP for 28
nm-diameter shells leads to the formation of multiplets when
CP is added to ssRNA of increasing length: for RNA twice as
long as the ≈3000nt-long CCMV RNA, pairs (doublets) of
capsids are involved in the packaging of RNA, while for RNAs
three and four times longer triplets and quadruplets are
formed.5

Further, it has been demonstrated for CCMV5−7 that the
strength of the lateral interactions between CP responsible for
capsid formation from RNA-bound CP can be controlled by
solution pH. Specifically, the strength of CP−CP attraction can
increase upon lowering the pH. While RNA binding sites are
completely saturated8 upon mixing RNA and CP at neutral pH
and low ionic strength, lowering the pH to 6 or lower is
necessary to form 180-CP capsids that are capable of protecting
the RNA against nucleases. Indeed, at low pH and high ionic
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strength, capsids form in the absence of RNA. In addition, these
studies have shown that the binding of CP to RNA is reversible
at neutral pH, but not at the lower pH where effective CP−
RNA binding affinities are strongly enhanced by lateral
interactions between bound CP. This effect is seen most
dramatically in experiments in which two different RNA
molecules are made to compete against one another for an
amount of CP insufficient for packaging both.6

More explicitly, when an RNA of arbitrary sequence and
length (e.g., 3000nt) is incubated at neutral pH with just
enough CCMV CP to completely saturate it, all of the CP is
found to be bound to the RNA. (Note that, because of the 10
cationic residues per N-terminus, saturation of the RNA implies
one CP per 10nt of RNA, corresponding to a CP:RNA mass
ratio of 6:1.) Lowering the pH to a value below 6 then results in
complete packaging of the RNA into RNase-resistant capsids.
Similarly, if a shorter RNA (say, 1000nt) is subjected to the
same protocol, it too will bind all the CP at neutral pH and be
completely packaged upon lowering of the pH. If, on the other
hand, equal masses of the two RNA molecules are incubated
together with CP at a CP:total RNA mass ratio of 3, so that
there is insufficient CP to package all of the RNA in the
mixture, all of the protein will be bound at neutral pH by the
longer RNA (and none by the shorter) and only the longer will
be packaged into protective capsids upon pH lowering.6 Still
more dramatically, if the shorter RNA is incubated alone with
the CP at neutral pH and CP:RNA = 6, followed by addition of
and incubation with an equal mass of the longer RNA, pH
lowering leads to the longer RNA being exclusively packaged
and the short RNA “stripped” of its protein, despite the longer
RNA having been added later to the solution: see Figure 1.
Alternatively, if the longer molecule is incubated first with CP it
retains all of the protein after addition of the shorter RNA, and
is the only molecule packaged upon pH lowering. From these
facts it is clear that the order of incubation at neutral pH, where
the CP binding is reversible, is not important.
In this paper, we argue that competition among different

RNA molecules for viral capsid protein is determined by the
differing extents to which bound proteins are able to interact
laterally with one another. In particular, for molecules of the
same length (hence, with the same number of nucleotides, and
CP binding sites), we show that the best competitor is the RNA
that is made most compact by its sequence-dependent
secondary structure. For molecules of different length but
comparable degrees of effective branching due to secondary
structure formation, the longer one wins because it allows
protein to “condense”satisfy its attractive lateral interac-
tionswith a smaller “surface-to-volume” ratio. These
phenomena are examples of “specificity” (i.e., the preference

of CP for one RNA over another) and are offered as
complements to the competitive CP binding effects provided
by local “packaging signals”.9−11 By using a common CP affinity
(energy lowering) for all the RNA binding sites in all of the
molecules (linear, branched, compact, and extended) in our
model, we are able to isolate and highlight the effects due to
lateral interactions of the bound proteins.

2. THEORY

A simple way to “level the playing field” for competition
between two or more molecules for the binding of protein is to
have equal masses of each competitor, so that they present
equal numbers of binding sites, and a limited amount of
protein. As already mentioned in the Introduction, the viral
CP−RNA binding experiments that motivate our work typically
involve two RNA molecules of identical length (i.e., the same
number, N, of nt) but different sequences and hence different
secondary structures. Alternatively, they may involve RNAs of
length N competing with twice as many RNAs of length N/2.
The coarse-grained properties of the ensemble of secondary
structures with which we will be concerned are the overall size
(radius of gyration) and the nature of the branching that result
from these structures, in particular the distribution of the orders
and the positions of the branch points. The “branch points”
of third- and fourth-order, for exampleare associated with
single-stranded loops from which three or four duplexes
emanate. The ssRNA molecules in these experiments are long
(viral length)comprised of a few thousand nt, and are
capable of binding hundreds of capsid proteins. Thus,
fluctuations in the distribution of CP between the competing
species are quite small, and the experiments can therefore be
modeled by focusing on just one pair of different RNAs
competing for a given total amount of CP.

2.1. Model. To simulate the competition for binding of CP
between long vs short RNAs, or branched vs linear RNAs, or
compact vs extended branched RNA molecules, we use the
simplest model that captures the essential qualitative aspects of
this phenomenon. A basic premise of the model is that CP
binding does not affect the secondary structure of the RNA
molecule. On the other hand, attractions between proteins
bound to nearest-neighbor sites will be a dominant factor in
determining the tertiary structure of the RNA, i.e., its
configuration in 3D space. As in several previous studies12−15

the secondary structures of the ssRNA molecules will be
mapped onto their tree graph representations, whereby base-
pair (bp) duplexes are treated as rigid edges (all of the same
length) and the single-stranded loops (the tree vertices)
connecting them are regarded as flexible joints. The basic unit
in the branched polymer is a duplex-stem (edge) and its

Figure 1. Schematic illustration of competition between short and long RNAs for binding of capsid protein. From left to right: Short RNAs are
initially saturated with capsid proteins, but upon the addition of long RNAs all the proteins migrate to the longer RNAs.
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attendant ss-loop (vertex). For computational reasons the
largest tree graphs considered in this work comprise 50 stem-
loop pairs, corresponding to RNA chains of about 1000 nt in
which about 60% of the nt are typically paired in duplexes
whose average length is about 5bp.
When we compete one RNA molecule against another of a

different length we attribute to them the same branchedness,
i.e., the same relative numbers of 1-fold vertices (hairpin-loops),
of 2-fold vertices (connecting only two duplexes), and of third-
and higher- order branch points. In this way we can focus on
the effect of different numbers of binding sites on the ability of
a molecule to compete for capsid proteins. In the same vein,
when we compete equal-length RNA molecules, we either
attribute different distributions of vertex orders to them (e.g., as
in the case of a branched vs linear RNA) or we keep the vertex-
order distributions the same but scramble the vertices so that
the molecules are more extended or more compact.
Finally, the tertiary structures of the tree graphs will be

represented by embedding them with different configurations
on a two-dimensional (2D) square lattice. While motivated by
computational simplicity, this limitation to 2D structures is not
unreasonable considering that the RNA backbone of viral
capsids serves as the template for the nucleation of a 2D (albeit
curved) protein shell protecting the genomic material. The use
of a square lattice, where the maximal vertex order is 4, is not a
severe restriction, in view of the fact that fifth- or higher-order
vertices in RNA secondary structures are very rare.16,17

Accordingly, in translating the original RNA sequences to
tree graphs we have counted all the loops of order five or larger
as fourth-order vertices. We note that 4 is also the number of
contacts per dimer in the 180-CP capsids of CCMV.
In aqueous solution, over a broad range of pH and ionic

strength conditions (including physiological), the CP of CCMV
exist as dimers, serving as the fundamental assembly units of the
viral protein shell.18 Each of the CP-dimer building blocks is
attracted nonspecifically to the negatively charged RNA
genome through the two cationic N-terminal arms of its
constituent monomers, totaling 20 positive charges. This
number, 20, is also the average number of nt negative charges
per stem-loop pair because, on average, the RNA duplexes
consist of 5bp and ss-loops typically contain 10nt.15

Furthermore, the physical size (“footprint”) of a stem-loop
pair is also comparable to that of a CP-dimer. Thus, at full
coverage (“saturation”) the number of CP dimers bound to an
RNA molecule equals its number of stem-loop pairs: each
vertex-edge pair in our tree-graph lattice model is a potential
site for the reversible binding of one CP dimer (hereafter
simply CP), as illustrated in Figure 2.
Our model assumes attractive CP−CP interactions between

CP pairs occupying nearest-neighbor (NN) sites, whether
bonded by a stem (see, e.g., vertices 1 and 2 in Figure 2b) or
not (e.g., vertices 1 and 4). On energetic grounds these
attractive interactions obviously favor compact conformations
of the CP-dressed branched polymer, which on the other hand
are generally disfavored entropically. In our Monte Carlo (MC)
simulations of the CP-dressed polymers, we allow for
conformational changes of the branched polymer, as well as
for rearrangements of the reversibly bound CP on the branched
tree backbone, enabling the structure to reach thermodynamic
equilibrium. Only self-avoiding polymer conformations are
allowed, thus respecting excluded-volume interaction.
Note that, as discussed above, we explicitly allow for changes

in the tertiary structure of the tree-graph representations of the

RNA, due to lateral interactions between the particles bound to
them. But the topologyconnectivityof the tree graph does
not change, even as it is configured differently on the lattice in
which it is embedded (see Figure 2). Recalling how the tree-
graph connectivity is determined directly from the naked RNA
secondary structure, we are effectively neglecting changes in
secondary structure due to interaction of the RNA with its
capsid protein. A recent study of satellite tobacco mosaic
virus,19 for example, suggests significant differences between the
secondary structure of its naked RNA and that of the genome
in its mature nucleocapsid. In the present work, on the other
hand, where we treat the initial binding of capsid protein by
RNAinstead of the formation of a complete viral
nucleocapsidwe proceed with the simplifying assumption
that the dominant effect of capsid protein is to impose tertiary
organization on the RNA secondary structure.
Our statistical thermodynamic simulations of CP−RNA

binding patterns and competition experiments include the
following cases:

(1) One long RNA molecule, represented by a 50-vertex tree
graph, competing for 50 CP units against 2 shorter, 25-
vertex, molecules. The long and the short tree graphs
associated with these molecules each have the same
vertex order distribution, corresponding (as explained
below in section 2.2) to that of random RNA sequences
with uniform nt composition (i.e., equal numbers of A,
U, G, and C).

(2) Two 50-vertex molecules sharing 50 CP and
separatelytwo 25-vertex molecules sharing 25 CP.
Here the idea is to investigate the possibility of unequal
binding of CP by identical branched polymers. For these
studies we use again the branching pattern associated
with random sequences and uniform nt composition.

(3) A compact 50-vertex polymer competing with an
extended 50-vertex polymer for 50 CP. The vertex-
order distributions of the compact and extended trees are
identical, but their radii of gyration are markedly
different. The procedure for generating these compact
and extended trees, involving the repositioning of branch
points within a tree graph, is outlined in section 2.2.

Figure 2. (a) Tree graph corresponding to the secondary structure of a
small RNA molecule, with edges and vertices representing base-pair
(bp) duplex stems and single-stranded (ss) loops, respectively. (b)
Tertiary configuration of this tree graph, now with bound CP (red
circles), on a 2D square lattice. The specified (x,y) coordinates define a
particular tertiary configuration. With ε (<0), the attraction energy
between nearest-neighbor CP pairs, the energy of this particular
configuration is 4ε.
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(4) The same compact, 50-vertex, branched polymer as in
point 3, competing for 50 CP against a 50-vertex linear
polymer.

2.2. Generating Conformations of CP-Dressed Tree
Graphs. We have used two complementary procedures to
simulate the competition experiments, hereafter referred to as
thermodynamic and kinetic simulations, respectively. In both
approaches, in analogy to a previous extension20,21 of the
Rosenbluth Monte Carlo (RMC) algorithm,22,23 we first
generate representative ensembles of low f ree energy conf ig-
urations of the relevant CP-dressed polymer − e.g., 1000
conformations of the 50-vertex tree, dressed with M CP. For
each of these ensembles (i.e., for each value of M between 0
and 50) we calculate properties of the dressed polymer, such as
its radius of gyration, as well as its partition function and thus
any desired thermodynamic function. In the thermodynamic
simulations, we use these partition functions to evaluate the
probability of any division of the M = M1 + M2 proteins
between the competing polymers (e.g., the linear vs branched
polymers), thus obtaining the equilibrium distribution of bound
proteins and the winner of the competition, if any. The kinetic
simulations employ a variant of the Metropolis algorithm23,24

whereby CP are exchanged between the competing polymers,
allowing for concomitant changes in the spatial conformations
of both polymers. The configurations of the competing
polymers are sampled from the ensembles of configurations
generated by our RMC procedure. To satisfy the principle of
detailed balance the exchange probabilities in these simulations
are weighted according to the joint partition functions of the
competing structures before and after the exchange, rather than
simply their Boltzmann weights. Below we outline our RMC
procedure for generating CP-dressed polymers. Their use in the
thermodynamic and kinetic approaches is described in sections
2.3 and 2.4, respectively.
Our goal is to generate an ensemble of conformations of a

polymer with an arbitrary branching pattern comprised of L
vertices with M CP bound to its backbone, with f = M/L
denoting the overall fraction of occupied vertices. Using the
branched polymer in Figure 2 as an illustrative example, we first
randomly choose one of its vertices (no matter of what order),
e.g., vertex 1, place it at site x,y = 0,0 of the 2D square lattice,
and with probability f1 = f = M/L populate this site with one
CP. Next, in order to begin generating (“growing”) an L-
vertex/M-protein chain conformation, we randomly pick one of
its bonded vertices, which in this example must be vertex 2, and
note that there are now 8 possible states for it, corresponding
to placing this vertex in any of the 4 vacant neighboring sites, in
each case with or without a bound CP. The choice illustrated in
Figure 2, where vertex 2 is at x,y = 0,1 with a bound CP, is
sampled with probability αf 2/w2 where f 2 = (M − 1)/(L − 1),
and α = exp(− ε/kT) with T the temperature and k
Boltzmann’s constant. The sum w2 = 4f 2α + 4(1 − f 2) is
conveniently referred to as the local partition function of vertex
2. We similarly proceed to the 3-fold coordinated vertex 3,
which is further connected to two additional bonds leading to
vertices 4 and 5. Again we randomly connect one of those to
the partially formed tree; note, however, that if vertex 4 is
chosen first then both vertices 3 and 4 are still not “saturated”
and the next vertex (vertex 5, 6, or 7) may be connected to
either of them; the choice is arbitrary. This procedure continues
until all bonds are satisfied.

In more general terms, after placing i − 1 vertices of an
arbitrary tree graph in positions r1,r2,...,ri−1 there is always at
least one unsaturated vertex (and when i − 1 = L − 1 there is
only one such vertex). We add the next vertex by randomly
choosing one of the unsaturated vertices, e.g., vertex k, whose
lattice position is rk, and randomly pick one of its four
neighboring sites rk ± ex or rk ± ey, e.g., rk + ex (ex is a unit
vector along the x axis, etc.). Let pi(rk + u) denote the joint
probability of placing vertex i at rk + u (where u = ± ex, ± ey)
and finding it occupied by a CP, and let qi(rk + u) denote the
joint probability of choosing the same site but leaving it empty.
These probabilities are given by

θ α
+ =

+ +

p
f

w
r u

r u
( )

( )
i k

k i
n

i

r u( )k

(1)

and

θ
+ =

+ −
q

f

w
r u

r u
( )

( )(1 )
i k

k i

i (2)

Here f i = (M − Mi−1)/(L − i + 1) with Mi−1 denoting the
number of CP already bound to the partially generated tree of i
− 1 vertices and θ(rk + u) = 1 or 0 depending on whether site
rk + u is available for accommodating vertex i or is already taken
by a previous vertex, respectively. Finally, n(rk + u) denotes the
number of CP occupying nearest neighbor sites around rk + u,
the prospective site of vertex i. If the chosen site is already
occupied we keep searching for a vacant one; once found we set
ri = rk + u and continue to place vertex i + 1. The local partition
function associated with vertex i is

∑ θ α= + + −+w f fr u( )[ (1 )]i k i
n

i
u

r u( )k

(3)

ensuring the normalization ∑u[pi(rk + u) + qi(rk + u)] = 1.
Continuing to vertices i + 1, ..., L, we end up generating a

CP-dressed tree graph configuration ψ specified by the spatial
coordinates of the L vertices, r1, ..., rL, and their respective CP
occupancies. The total CP−CP interaction energy in this
conformation is E(ψ) = n(ψ)ε, where n(ψ) = (1/2)∑inψ

(i)(ri) is
the total number of NN CP pairs. We disregard here the
binding energy of the CP to the polymer backbone because in
our simulation of the competition experiments the number of
bound CP is fixed−only their distribution over the competing
polymers is changing.
The overall (often-called) Rosenbluth probability of

generating an arbitrary conformation is

ψ
α η

ψ ψ
=

∏
= ! − !

!

ψ ψ
=

−
P

W
M L M

L W
( )

( )
( ) e

( )R

n
i
L

i
E kT( )

1
( )/

(4)

with ηi = f i or 1 − f i denoting the probabilities of finding vertex
i populated by a CP or remaining vacant, respectively. The
product of these functions does not depend on the order of
binding the CP toM of the L vertices, and its numerical value is
the inverse of the number of such sequences, i.e., M!(L − M)!/
L!. Note, however, that this (inverse) binomial factor does not
imply that the M CP are randomly distributed over the L
vertices; their distribution is dictated by eqs 1 and 2. The
denominator in eq 4, W(ψ), is the generalized Rosenbluth
factor, defined by22,23
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∏ψ ψ=
=

W w( ) ( )
i

L

i
1 (5)

with wi given by eq 3
Repeated applications of the procedure above yields the

ensemble of conformations of the CP-dressed polymer, {ψ},
which we use to calculate the averages, ⟨χ⟩, of relevant
properties of interest, such as the radius of gyration, Rg, or the
CP−CP interaction energy, E. Note, however, that the
conformations are sampled according to their RMC proba-
bilities in eq 4, rather than in proportion to their Boltzmann
weights in the canonical ensemble exp[−E(ψ)/kT] = [L!/M!(L
− M)!]W(ψ)PR(ψ). The proper thermodynamic average of a
property χ is thus given by

χ
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[ ( )/ ]

( )

( )

(6)

where the sums in the first and second quotients run over all
conformations of the polymer considered, whereas those in the
third quotientas emphasized by the superscript (R) run
only over the subensemble of conformations sampled by the
RMC algorithm.
Finally, we note that the denominators in the last equation

are proportional to the partition function of the system, which
in the RMC ensemble of conformations is given by

∑

∑ ψ

= = !
! − !ψ

ψ

ψ

−Q L M T
L

M L M

W L M T

( , , ) e
( )

( ; , , )

E kT

R

[ ( )/ ]

( )

(7)

The numerical value of Q is proportional to the number of
configurations sampled. However, this number is irrelevant to
our simulations of the competition experiments (i.e., it cancels
out) because we are only interested in ratios of partition
functions corresponding to polymers with the same L and M.
As an illustrative special case of eq 7 we note that for the

simple case of a linear tree, with no excluded volume between
its segments, and in the total absence of CP−CP interaction
i.e., ε = 0 and hence wi = 4, see eq 3we find Q = [L!/M!(L −
M)!] × 4L. In this simple case, the (logarithms of the) first and
second factors of Q account, respectively, for the translational
(“mixing”) entropy of the CP on the tree backbone and the
conformational entropy of the linear polymer. In the cases of
interest in this work these two contributions are nonseparable
and rather strongly coupled to each other, as we shall see in
section 3.
2.3. Thermodynamic Simulations. Consider a system of

two polymers P1 and P2 of equal length, L, competing for the
binding of M capsid proteins, (M < L). At equilibrium, the
probability of finding M1 proteins on P1 and M2 = M − M1 on
P2 is

=
−

P M M
Q M Q M M

Q M
( ; )

( ) ( )

( )tot
1

1 1 2 1

(8)

with Qtot(M) = ∑M1=0
M Q1(M1)Q2(M − M1) denoting the total

partition function of the system in equilibrium. The Helmholtz
free energy of the system is thus Aeq(M.L) = −kT lnQtot(M, L)
≈ − kTln[Q1(M1*)Q2(M − M1*)], where the second near-
equality is based on the maximum term approximation, with
M1*, M2* = M − M1* denoting the most probable distribution,
namely, the maximal P(M1;M), reflecting the most probable
division of the CP among the two proteins. For very large
values of M, the most probable populations, M1* and M2*, are
practically identical to the average equilibrium values ⟨M1⟩ =
M1

eq = ∑M1=0
M M1P(M1;M) and ⟨M2⟩ = M2

eq = ∑M1=0
M (M − M1)

P(M1; M), respectively. For the finite, yet large, values of M in
our simulations this is a very good approximation.
We start the competition experiments with an arbitrary initial

state where the M proteins are divided between the two
speciesM1

i on P1 and M2
i = M − M1

i on P2and then let the
system relax to the equilibrium value M1*, M2*. In our
thermodynamic simulations we first generate RMC ensembles
of (generally about 1000) polymer−CP conformations, for all L
≥ M1 ≥ 0 and L ≥ M2 ≥ 0. Using eq 7, we calculate the
partition functions Q1(M1)and Q2(M2), and hence the free
energy difference between any two states, i and f, corresponding
to different divisions of the M proteins between P1 and P2:

Δ = − = −A A A kT
P M M
P M M

ln
( ; )
( ; )f i

f

i
1

1 (9)

In particular, the free energy change from an arbitrary initial
state to the equilibrium one is

Δ = − = ≈ −
*

A A A kT P M M kT
P M M
P M M

ln ( ; ) ln
( ; )
( ; )eq i

i
i1

1

1
(10)

Using eq 7, we also calculate the average energies of the two
competing species, ⟨E1(M1)⟩, ⟨E2(M2)⟩ and hence

Δ = ⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩ + ⟨ ⟩E E M E M E M E M[ ( ) ( ) ] [ ( ) ( ) ]f f i i
1 1 2 2 1 1 2 2

(11)

ΔS can now be derived from TΔS = ΔE − ΔA. Finally, as a
measure of the compactness of any tree of interest, naked or
CP−dressed, we calculate its average radius of gyration using eq
6 with χ(ψ) = Rg(ψ) and

∑ψ ψ ψ= −R L r r( ) (1/2 ) [ ( ) ( )]g
i j

i j
2

,

2

(12)

with ri(ψ) denoting the position of vertex i in configuration ψ.
The same simulation procedure can be applied to model the

exchange of CP between polymers of different length. In our
numerical calculations we have only considered the case where
a polymer of length L competes for M CP (0 ≤ M ≤ L) with
two polymers of length L/2, again generating large ensembles
of CP-dressed configurations of both species. Using M1 to
denote the number of proteins on the large polymer, and M2
and M3 on the two short polymers, the generalization of eq 8 to
this particular case is

=
∑ − −=

−

P M M
Q M Q M Q M M M

Q M
( ; )

( ) ( ) ( )

( )
M
M M

tot
1

1 1 0 2 2 3 1 22

1

(13)
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with Qtot(M) the normalizing factor. All relevant thermody-
namic and structural properties can be derived in analogy to the
previous case.
2.4. Kinetic Simulations. In this mode of simulation we

again begin with an arbitrary initial state with M1 CP bound to
P1 and M2 to P2, both of length L, but now let the system reach
equilibrium through CP exchange between the two polymers,
coupled to simultaneous conformational changes of the
polymers. This procedure resembles the familiar MC
simulations involving particle (i.e., CP) exchange except that
move probabilities from one state to another are not governed
by their relative Boltzmann weights according to the Metropolis
criterion. Instead, detailed balance is ensured and equilibrium is
reached through attempted moves of CP from one polymer to
another, with both the initial and final configurations randomly
chosen from the ensembles that we have already generated
using the Rosenbluth MC algorithm described in section 2.2.
Explicitly, each step begins with a random choice of one of the
M CP particles, trying to move it from one tree to the other. If
this particle happens to be on P1, we randomly select one
conformation from the previously generated ensemble of
conformations of P1 with M1-bound CP, and one conformation
of P2 with M2-bound CP, and attempt a move ending up with
another (randomly sampled) conformation of P1 from the
ensemble of conformations of P1 with M1 − 1 CP and a
(randomly sampled) conformation of P2 from its ensemble of
conformations with M2 + 1 CP. Recalling that CP−polymer
configurations in the RMC ensembles were not randomly
sampled, but rather according to their partition functions, the
move is accepted or rejected according to a Metropolis
criterion using the partition functions rather than the
Boltzmann weight of the configurations involved. In other
words, since the probability of any state of the two-polymer
system with a given distribution of the CP among them is given
by eq 8, the forward and backward rates of transferring one CP
from P1 to P2 are related by the modified detailed balance ratio

⃗ → −
⃖ − →

=
− − +

−
k M M

k M M

Q M Q M M
Q M Q M M

( 1)

( 1 )

( 1) ( 1)

( ) ( )
1 1

1 1

1 1 2 1

1 1 2 1

(14)

A trial move for transferring a particle from P1 to P2 in our
kinetic simulations is thus accepted with probability

→ −

=
− − +

−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

M M

Q M Q M M
Q M Q M M

acc( 1)

min 1,
( 1) ( 1)

( ) ( )

1 1

1 1 2 1

1 1 2 1 (15)

3. RESULTS
To explain the viral assembly competition experiments, the first
set of results presented in this section is aimed at understanding
why long RNAs steal capsid proteins from shorter RNAs. To
this end, in section 3.1, we consider the competition between a
50-vertex tree and two 25-vertex trees. In section 3.2, this
computer experiment is contrasted with one where two
identical branched RNAs compete with each other. In section
3.3, we consider the competition between two trees with the
same vertex-order distributions but with markedly different
radii of gyration, i.e., one is significantly more compact than the
other. In section 3.4, to further accentuate the role of
branchedness in the competition experiments, we treat the
competition between a branched tree and a linear tree of the
same length. Finally, in section 3.5, a few comments will be
made regarding the kinetics of CP redistribution.
Unless specifically stated otherwise, in all simulations we

have a CP−CP interaction energy of ε = −3kT, consistent with
estimates of the attractive energy between CCMV dimers.25

For all the competition experiments analyzed below we have
carried out both thermodynamic simulations, as well as
kineticparticle-exchangesimulations. The kinetic simula-
tions were sampled every 1000 MC particle exchange steps and
generally involved at least 600 000 steps in total, well beyond
the time scale needed for the system to reach equilibrium.
Temporal evolution profiles of CP populations will thus be
shown for shorter time scales. The thermodynamic simulations

Figure 3. Snapshots from simulation of an experiment where initially all CP are bound to two small trees. Once equilibrium is reached nearly all CP
are bound to the large tree.
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are more time-consuming, and are based on ensembles of
∼1000 RMC configurations for each of the tree graphs involved
in the competition simulations. From the thermodynamic
simulations we present the probability distributions of CP
among the competing trees, all showing excellent agreement
with the kinetic population profiles. Detailed thermodynamic
analyses of energies, free energies and entropies of the
competing trees are included in the Supporting Information.
3.1. A Long Tree vs Two Short Trees. In this simulation

an L = 50 tree (see center of Figure 3) competes for 50 CP
with two half-size L = 25 trees (depicted on the left and right).
The large and small trees are randomly branched polymers,
both derived using the same vertex order distribution, as
previously determined from analyses of many secondary
structures of long random RNA sequences.17 A pictorial
summary of this simulation is presented in Figure 3, showing
snapshots from the initial state of the system, where all CP are
bound to the two small trees while the large tree is devoid of
CP; and the final state where nearly all CP are on P1 while the
two P2 trees are essentially stripped of all their CP. More
precisely, as shown in Table 1 and illustrated in Figure 3, when
equilibrium is reached nearly all CP, M1 = ⟨M1⟩ ± δM1 = 48 ±
2 out of 50, end up on the large tree. The temporal changes in
the distribution of the CP between the long and short trees is
shown in Figure 4, revealing the rapid establishment of the
equilibrium distribution and the range of fluctuations around
the average CP populations.

The insert in Figure 4, plotting P(M1;M) (see eq 13 with M
= 50), shows the distribution of the number of particles (M1)
bound on the large tree, after the competition between the one
50-vertex and two 25-vertex trees has reached equilibrium.
Note that virtually all of the 50 particles are bound to the large
tree, even though they all started on the two small trees. This

effect is also seen, although somewhat less strongly, when the
lateral interaction energy between bound particles is weaker
than the (−3kT) value used. More explicitly, values of this
energy have been estimated26 for CCMV CP at each of three
pHs (4.75, 5.0, and 5.25), and a linear extrapolation of them to
neutral pH gives a value of −1.67kT. Using this for ε in our
simulations, we find a P(M1;M) distribution that is qualitatively
the same as that shown in the Figure 4 insert for ε = −3kT
see Figure S8 in Supporting Information, i.e., the long molecule
takes significantly more than its share of the binding particles.
We have used the larger value of ε to emphasize more clearly
the effect of polymer length on the competition for binding
particles. Similarly, we use this value for reporting below the
results of competitions between compact and extended
branched trees, and between compact/branched and linear
trees, where (see Figures S9 and S10) the smaller value of ε
again gives qualitatively the same results for the P(M1;M)
particle distributions, i.e., the compact/branched tree binds
significantly more than its share of the particles.
The “asymmetry” of the sharing of particles by large and

small trees, presenting equal numbers of equal-affinity binding
sites, also depends on the ratio of the total number of particles
to the total number of binding sites, i.e., on the overall
“coverage”. For example, the simulations described above (and
presented throughout the rest of this work for competition
between different kinds of trees) refer to experiments for which
the number of capsid proteins is sufficient to saturate each one
or the other of two competitor RNA species, thus
corresponding to an overall coverage of 1/2. Accordingly, the
P(M1;M) distribution in the inset of Figure 4 shows the results
for the number of particles on the 50-vertex tree when a total of
50 particles is available to the large and small trees. This is the
coverage that gives maximum asymmetry of particle sharing:
clearly, as the coverage approaches 0 or 1 the asymmetry
disappears. But at intermediate values of 1/4 and 3/4, for
example, the asymmetry is still quite strong, as shown in Figure
S11, where their P(M1;M) distributions are compared with that
for 1/2. Zandi and van der Schoot

27 have emphasized the role of
CP:RNA stoichiometry in a related but different context−
namely, the crossover from smaller to larger capsid size as the
overall CP:RNA molar ratio increases (see their Figure 3). In
their situation it is the preferred capsid curvature (size) that
determines the scenarios for stoichiometry dependence,
whereas in our case it is the length and branching of the
RNA template.
Much as in an Ostwald ripening process, the primary driving

force for the transition of nearly all CP from the two small
polymers to a single large polymer is the energetic preference of
forming one large nearly compact 2D island of CP particles
rather than two smaller ones. Indeed, as reported in Table 1 for
this particular competition “experiment”, the “stealing” of
proteins by the large polymer is driven predominantly by

Table 1. Structure, Energetics, and CP Populations in Competition Experimentsa

competition P1 vs P2 initial → equilibrium CP on P1 and P2 ΔA/kT ΔE/kT ΔS/k initial → equilibrium Rg P1 And P2

50 vs 2 × 25 0 and 2 × 25 → 48 and 1 × 1 (50) −29 −27 2 5.0 and 2.1 → 3.3 and 3.0
compact vs extended 0 and 50 → 49 and 1 (50) −11 2 13 3.2 and 3.2 → 3.0 and 5.2
compact vs linear 0 and 50 → 48 and 2 (50) −6 11 17 3.2 and 3.0 → 3.0 and 6.2

aP1 and P2 denote the trees competing for CP. The second column reports the number of CP on the competing trees in the initial (M1
i , M2

i , in the
first row) and the final equilibrium states (M1

eq = ⟨M1⟩, M2
eq = ⟨M2⟩, in the second row). Indicated in parentheses are the most probable CP

populations on P1 at equilibrium, M1* (50 in all cases). The third through fifth columns report the changes in free energy, energy, and entropy
between the initial and the final equilibrium states. The sixth column tabulates the radius of gyration for each polymer initially and at equilibrium.

Figure 4. Temporal evolution of the CP populations on the large
(black trace) and the two small (red and brown) trees, as obtained by
the kinetic (particle exchange) simulations. The CP populations were
sampled every 1000 steps. The inset shows the probability distribution
of CP on the large tree, as derived from the thermodynamic
simulations.
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energy, with only minor entropy changes. More explicitly, while
the relatively high-energy perimeters of both the large and small
CP islands are quite ramified, the overall “coastline” of the
single large patch is smaller than the combined coastlines of the
two smaller CP islands on the small trees. There is, however,
one important difference between the present case and familiar
ripening processes, such as the coagulation of liquid droplets in
3D28 or of adsorbate islands on 2D surfaces.29 Namely, the
preferred aggregation of the CP on the larger tree is coupled to
a simultaneous change in structure of the embedding substrates,
i.e., their host RNA molecules.
In Table 1 we also note a small entropic contribution to the

process illustrated in Figure 3. One (minor) contribution to
this entropy change is the balance of the conformational
entropy loss experienced by the large tree upon its collapse
following CP binding, and the concomitant entropy gain by the
two small trees. (Note that conformational entropy changes can
be significant when polymers of very different branching
patterns compete with each other, as will shall see in Secs. 3.3
and 3.4.) Another small entropic contribution is due to the
translational (“mixing”) entropy of the CP remaining on the
small trees and of the vacancies in the large tree.
The establishment of binding equilibria is the result of

multiple CP binding-unbinding processes. We note also that
the migration of the CP from the two small trees to the large
one is reminiscent of a 2D condensation transition. Indeed,
were the CP adsorbed on an infinite 2D square lattice, the
lateral attraction between neighbors, ε = −3kT, would be
strong enough to drive a first-order 2D condensation transition,
leading to the coexistence of a dense and a dilute gas phase of
CP. In our case the condensed phase resides on the large tree
where the CP can form a large island with minimal edge energy,
with the few CP on the small trees constituting the dilute
phase. We should nevertheless remember that unlike a simple
2D lattice, the branched polymers serving as the substrates of
the two phases are finite, highly ramified, and conformationally
flexible objects.
3.2. Two Identical Trees. We have also studied the sharing

of CP between a pair of identical small trees and between a pair
of identical large trees. To this end we have carried out
competition simulations involving two 25-vertex trees sharing
25 CP, andseparatelytwo 50-vertex trees sharing 50 CP. In
the latter case, the analogy to a 2D condensation transition is
even more compelling than in the previous simulations. The
two 50-vertex tree system undergoes rapid phase separation
with the majority of CP residing on one tree, enjoying low
energy, while the remaining CP form an entropy-rich dilute gas
phase on the other tree. As shown in Figure 5, starting with half
of the CP population in each of the two 50-vertex trees,
symmetry breaking soon takes place with most CP (about 90%)
settling on one tree, coexisting with a dilute CP population on
the other tree. Although the 50-vertex tree is of finite size and
(even in its most compact form) does not provide a perfect
square lattice, the CP−CP interaction energy of ε = −3kT
which is substantially stronger than the critical interaction
energy for the condensation transition of a 2D lattice gas on a
square lattice (ε = −1.76kT)is strong enough to drive the
phase separation of the bound CP, despite the imperfect lattice
provided by the underlying tree. We also note that once
symmetry is broken, it stays that way on the time scale of our
simulations.
The competition between the two shorter, 25-vertex, trees

reveals a qualitatively different behavior. Here the imperfection

of the underlying lattices spanned by these short trees, and
hence the smaller (average) number of nearest neighbor CP−
CP contacts, does not suffice to induce a kinetically stable
phase separation. What we see instead is a frequent swinging of
the majority of CP between the two trees, with roughly 70% of
the CP on one tree and the rest on the other. This behavior is
clearly consistent with the rapid migration of CP from the two
short trees to the long one in the competition between the 50-
vertex tree and the two 25-vertex trees, and will be tested
experimentally. The equilibrium distributions for the competi-
tion experiments involving two identical trees, as well as
simulation snapshots of initial and final CP and tree
conformations are shown in the Supporting Information.

3.3. Compact Tree vs Extended Tree. In this section we
consider the competition for CP between two branched
polymers having the same number of vertices and the same
distribution of vertex orders, yet markedly different radii of
gyration. Qualitatively, as can be seen in Figure 6, the branch
points of the extended polymer reside near its ends, whereas in
the compact polymer they are located centrally. More
specifically, as in the previous subsections, the vertex-order
distributions of both the extended and the compact trees
considered are those of tree graphs corresponding to random
RNA sequences. However, the compact and extended trees are
those with smallest and largest possible Rg, respectively, among
the trees with this vertex order distribution. To derive their
structure we have first numerically labeled all vertices of an
arbitrarily chosen 50-vertex tree having the given vertex-order
distribution, and have assigned to it its unique Prüfer
sequence.30 A key property of Prüfer sequences and their
one-to-one unique mappings onto branched tree graphs is that
any permutation (“Prüfer shuffling”) of the sequencewhile
generating a new tree graph topologyleaves the vertex-order

Figure 5. Time dependence of the CP population exchange between
two identical trees. Again, populations were sampled every 1000 steps.
Top: Starting with the equal sharing of 50 CP among two 50-vertex
trees, phase separation occurs rapidly, with the majority of CP
condensing on one tree coexisting with a dilute CP population on the
other. Bottom: Phase separation also takes place in the two 25-vertex-
tree system, but owing to the small system size the CP-population
swings often between the two trees.
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distribution invariant. Accordingly, we have repeatedly shuffled
the starting sequence and for each outcome regenerated the
corresponding tree graph and calculated its Rg using eqs 6 and
12. The compact and extended trees used in our simulation
represent the trees with smallest and largest radius of gyration
obtained in this way.
As indicated in Table 1, the transfer of CP from the extended

to the compact tree is driven by the conformational entropy
gain of the extended tree, as could be expected in view of its
similarity to a linear polymer. From Figure 7 we note a short-

lived metastable state (in the time range of ∼10 000−30 000
MCS) on the way to a stable equilibrium (at ∼35 000 MCS)
where nearly all CP remain bound to the compact tree, except
for small occasional f luctuations.
3.4. Branched Tree vs Linear Tree. In this section we

simulate the competition for CP between a linear polymer and
a branched polymer of the same length. The main purpose of
these simulations is to accentuate the thermodynamic

consequences of RNA branchedness with regard to protein
binding. The linear polymer may be regarded as representing a
nonfolding RNA, e.g., poly-U, for which no secondary structure
arises. The branched tree used in the present simulations is
identical to the compact tree of the previous section.
The simulations mimic an experiment where L-length

branched polymers are added to a solution containing an
equal mass of linear polymers that are already saturated with
strongly bound CP; no free CP are present in solution.
Snapshots from the initial and final states of this simulation,
illustrating the outcome of the competition between the two
50-vertex polymers, are shown in Figure 8. The −3kT lateral

attractions among the bound CP are strong enough to prompt
perfect compaction of the linear polymer in the initial state.
However, once the branched polymer is added, the linear
polymer gives up essentially all of its CP, despite the energy
penalty associated with this move due to the ramified edges of
the collapsed branched polymer in comparison to those of the
linear polymer. The compensation of this unfavorable energetic
contribution is the substantial gain in conformational entropy
of the linear polymer, as noted in Table 1. Stated differently, the
loss of conformational entropy of the branched polymer upon
collapsing to its most compact form is smaller than the
corresponding entropy gain by the linear polymer upon giving
up its bound proteins.
The time evolution of the CP populations on the linear vs

branched trees is shown in Figure 9, revealing that except for
occasional sizable fluctuations, once equilibrium is reached
nearly all CP are bound to the branched tree (see inset).

3.5. Kinetics of Protein Exchange between Polymers.
There are two possible routes in aqueous solution for CP
transfer from one RNA molecule to another. The first is
through evaporation−condensation events, whereby CPs
desorb from one RNA, diffuse in solution, and eventually

Figure 6. Snapshots from the initial and final equilibrium states
obtained in the simulation of the competition between the compact
(left) and extended (right) trees. Practically all the CP population is
eventually found on the collapsed compact tree.

Figure 7. Temporal evolution of the CP sharing between the compact
(black trace) and the extended (red) tree. The inset shows the
probability distribution of CP on the compact tree, as derived from the
thermodynamic simulations.

Figure 8. Snapshots from the initial and final equilibrium states
obtained in the simulation of the competition between the branched
(left) and linear (right) trees. Practically all the CP population is
eventually found on the collapsed compact tree. The linear tree enjoys
a substantial gain of conformational entropy, overcoming the
unfavorable loss of CP−CP energy upon the migration of CP to the
branched tree.
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adsorb on another. The second route for CP exchange involves
the formation of transient collision complexes through binary
encounters of CP-dressed RNA molecules, enabling CP
hopping from a binding site on one RNA to a neighboring
binding site on another. As in many surface diffusion and
chemical reaction events, the unbinding and binding processes
take place concertedly, resulting in lower activation energies
than those implied by complete unbinding. Recent exper-
imental results31 suggest that CP exchange through RNA
encounters is indeed the more likely mechanism, yet the
evaporation−condensation mechanism cannot be ruled out.
Notwithstanding this uncertainty, it is very reasonable to
assume that the same mechanism is responsible for CP
exchange in all the competition experiments modeled in our
work. Thus, while we cannot relate the MC step times to real-
time events, our kinetic simulations nevertheless shed light on
the relative time scales of the various processes involved.
Starting with the competition between the initially naked 50-

vertex tree and the two CP-saturated 25-vertex trees, for
example, we see from Figure 4 that equilibration is achieved in
fewer than 10 000 MC exchange steps. Turning to Figure 5 we
are not surprised to observe that the equilibration time for CP
sharing among the two 50-vertex trees is significantly slower
than that between the two 25-vertex trees. As noted in section
3.2, the stability difference between the small and large trees is
even more clearly exhibited by the rapid swinging of the CP
population between the two small trees, as compared to the
barely fluctuating populations following the symmetry breaking
in the competition between the two large trees.
The time to equilibrium in the competition between the

compact and extended trees, ∼ 35 000 MC steps (Figure 7), is
longer than the time (∼10 000 steps) to equilibrium between
two identical branched trees (Figure 5). The origin of this
difference is 2-fold. First, the competition between the two
identical 50-vertex trees starts with half of the population on
each of the two trees whereas in the compact vs extended tree
competition all CP are initially adsorbed on the extended
(eventually the “loser”) tree. Second, when fully saturated with
CP, the extended tree collapses to a more compact, and hence
more stable, globule than the 50-vertex tree of sections 3.1 and
3.2. The compactness and stability of the initial structure is
even more pronounced in the competition between the linear
and branched trees, resulting in an even longer time to
equilibrium, ≈50 000 MC steps, cf. Figure 9.

4. DISCUSSION
In this work, we have developed a Monte Carlo simulation
approach for treating the effects of lateral interactions between
proteins on their binding to branched polymers. This problem
is motivated by the biologically relevant example of the binding
of viral capsid protein to single-stranded RNA molecules, e.g.,
viral RNA genomes, which behave as effectively branched
polymers because of their large extent of secondary structure
formation. We have focused here on the competition for
binding protein by two or more polymers in order to explain
the protein exchange equilibria observed in recent in vitro
studies of competition between different RNA molecules to be
packaged by capsid protein. Our model and simulations are
motivated by the disordered complexes of capsid protein bound
to RNA in the first, reversible, step of a two-step self-assembly
of virus-like particles from RNA and CCMV CP. In particular,
in this neutral-pH step the CP−CP interactions are weak
enough so that the complexes of bound protein are largely
disordered, including only partial portions of spherical
nucleocapsid (see, for example, Figure 3b of Garmann et al.’s
work7). But the underlying physical situation is more general,
because it provides basic insights into the ways in which lateral
interactions between binding proteins determine the compac-
tion of their polymer substrate.
To perform the simulations reported here we have

generalized the Rosenbluth Monte Carlo method of “growing”
excluded-volume polymers to include arbitrary branching of the
polymer (i.e., arbitrary distributions of vertex orders) as well as
reversibly bound proteins that attract each other at short
distance and that thereby−through conformational changes of
the polymer−are effective at gathering in distant binding sites
of the substrate. To elucidate the associated changes in energy
(of the protein−protein interactions) and entropy (of the
bound proteins and of the polymer conformations), we have
treated protein exchange between polymers in the cases of:

(i) equal masses of long and short polymers with the same
branching patterns (vertex-order distributions);

(ii) equal masses of equal-length and identical-vertex-order-
distribution polymers having very different radii of
gyration (because of the different placements of their
branch points); and

(iii) equal masses of linear and branched polymers.

In all cases we have suppressed the contribution of
“packaging signals” by insisting explicitly that all of the
polymers involved are composed of identical binding sites,
i.e., proteins bind to them with the same adsorption energy
(affinity). As such, our work is complementary to recent
theoretical studies in which specific distributions of high-affinity
binding sites are shown to facilitate capsid nucleation. In this
latter approach,10,11 polymers with neighboring high-affinity
sites−in conjunction with a progressively increasing concen-
tration of binding particles−are shown to be preferentially
encapsidated over ones without uniform distributions of
binding energies. This role of binding heterogeneity has also
been elucidated by molecular dynamics simulations;32 again the
starting point is an explicit assignment of very different protein
affinities to the different sites of the polymer.
In our work, on the other hand, all sites are associated with

the same protein binding energy. Nevertheless, a distribution of
ef fective binding energies arises from the different possibilities
for the bound proteins to interact laterally with nearest-
neighbor bound proteins−not only ones that are neighbors on

Figure 9. Temporal evolution of the CP populations on the branched
(black trace) and the linear (red) trees, as obtained by the kinetic
(particle exchange) simulations. The inset shows the probability
distribution of CP on the compact tree, as derived from the
thermodynamic simulations.
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the polymer backbone but, more importantly, also ones that
occupy distant sites on the polymer. Figure 10, for example,

shows typical configurations of bound particles on an
equilibrated 50-vertex branched polymer at half coverage. In
the equilibrium ensemble for this coverage every site has a
nonzero probability of being occupied. By calculating the
average number of occupied nearest-neighbors of each site we
can determine the effective energy of each site. Stronger
attractive energy results in CP aggregation mediating
compaction of the tree they are bound to. Note in particular
the localized aggregation of red and yellow particles even in the
case of much weaker attractive energy, as in Figure 10, left. In
general, it will depend on the nature of the branching pattern of
the polymer substrate, e.g., on the vertex-order distribution and
the placement of the third and higher-order branch points, and
on the strength of CP−CP attraction.
Further work, both experimental and theoretical, will be

important for clarifying the relative roles and importance of
“packaging signals” and of protein interactions in determining
the selective packaging of viral RNA genomes by their capsid
protein. In the former case, local secondary/tertiary structure of
the RNA enhances its affinity for protein, whereas in the latter
case it is the extent and nature of branching of the larger-scale
secondary/tertiary structure that determines the effective
binding energies of proteins. These large-scale structures are
also important in determining RNA propertiesother than
binding of proteinrelevant to its packaging in viral capsids
and virus-like particles. In particular, simulation33 and theory34

studies have shown how polymer branching enhances pack-
agabilityconfinement in small volumesby reducing the
conformational entropy loss and enhancing the interaction of
polymer with the capsid interior.
Note that any branched structure, such as the trees

representing RNAs, can be made more compact or extended
by moving its high-fold junctions closer or father away from its
center. For example, Tomato bushy stunt virus (TBSV)35 and
satellite tobacco mosaic virus (STMV)36−38 were found by
SHAPE (selective 2′-hydroxyl acylation analyzed by primer
extension) studies to have compact and extended secondary
structures, respectively, for precisely this reason. More

explicitly, SHAPE analyses showed that TBSV has high-fold
junctions concentrated near the center of its secondary
structure, while STMV has high-fold junctions near its ends.
The work by Wu et al.35 suggests further that the branchedness
of the secondary structure correlates with the long-range
intragenomic base-pairing interactions that are known to be
important in ensuring many genome functions.
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