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ABSTRACT: Branched polymers can be represented as tree
graphs. A one-to-one correspondence exists between a tree
graph comprised of N labeled vertices and a sequence of N − 2
integers, known as the Prüfer sequence. Permutations of this
sequence yield sequences corresponding to tree graphs with
the same vertex-degree distribution but (generally) different
branching patterns. Repeatedly shuffling the Prüfer sequence
we have generated large ensembles of random tree graphs, all
with the same degree distributions. We also present and apply
an efficient algorithm to determine graph distances directly
from their Prüfer sequences. From the (Prüfer sequence
derived) graph distances, 3D size metrics, e.g., the polymer’s
radius of gyration, Rg, and average end-to-end distance, were then calculated using several different theoretical approaches.
Applying our method to ideal randomly branched polymers of different vertex-degree distributions, all their 3D size measures are
found to obey the usual N1/4 scaling law. Among the branched polymers analyzed are RNA molecules comprised of equal
proportions of the fourrandomly distributednucleotides. Prior to Prüfer shuffling, the vertices of their representative tree
graphs, these “random-sequence” RNAs exhibit an Rg ∼ N1/3 scaling.

1. INTRODUCTION

Branched polymers are commonly used in chemical industry
and are of widespread use in everyday life.1 There are also
various kinds of natural branched biopolymers, such as
glycogen, starch, and other polysaccharides.2 The configura-
tional statistics of branched polymers has been the theme of
many physical theories, focusing generally on the scaling
relationship Rg ∼ Nν between the radius of gyration of the
polymer, Rg, and the number of its constituent monomers, N.
For ideal randomly branched polymers, that is, ignoring
excluded volume interactions, several different elegant ap-
proaches3−6 revealed that in three dimensions (3D) ν = 1/4, as
compared to the less compact ideal linear polymers, for which
ν = 1/2. When excluded volume interactions are taken into
account, allowing only self-avoiding chain conformations, both
linear and branched polymers swell, resulting in ν = 3/5 for
linear polymers5−8 and ν = 0.45 ± 0.06 for the randomly
branched polymers.9

Single-stranded (ss) RNA molecules fold into branched
polymer structures composed of rigid double stranded duplexes
of several base-pairs (bps) connected by flexible single-stranded
(ss) loops of nucleotides (nts). For the rather hypothetical but
theoretically interesting case of “random-sequence RNAs”
which are assumed to be comprised of randomly distributed
and equal proportions of the four nts, the duplexes consist of
about 5 bps and the loops contain about 10 nts, on average.10,11

Interestingly, many viral RNAs share similar duplex and loop
sizes, yet their branching pattern is qualitatively different.12−15

The branching pattern of loops and duplexes defines the
secondary structure of the ssRNA molecule. The three-
dimensional (3D) size of ssRNAs, especially large ones, is
conveniently estimated by first mapping their branched
secondary structure to tree graphs,13−16 with the flexible
loops regarded as graph vertices and the rigid duplexes as edges
(bonds) connecting neighboring vertices. Assuming ideal
polymer behavior, the 3D size of the molecule is then obtained
by taking the square root of the average contour length
between pairs of tree graph ends (corresponding to hairpin
pairs in RNA secondary structures). A similar approach yields
the Rg ∼ N1/4 behavior of ideal randomly branched polymers.6

Applying the tree graph representation to analyze the
secondary and tertiary structures of ssRNA molecules, it was
shown that long RNAs comprised of random nucleotide
sequences exhibit an Rg ∼ N1/3 scaling,12−15 indicating
intermediate compactness between the 3D size of ideal linear
polymers and randomly branched polymers. It was also found
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that viral RNAs (of icosahedral viruses) are consistently more
compact than nonviral (e.g., yeast) and random RNAs.12,13

This conclusion has very recently been confirmed by fluo-
rescence correlation spectroscopy measurements of RNA
hydrodynamic radii.17 Further, an interesting recent theo-
retical analysis reveals that the compactness of the viral RNA
sequences is highly specific; it is lost upon synonymous
mutations, namely, mutations that preserve the protein coding
sequence but are not found in the virus.18,19

Every tree graph comprised of N labeled vertices can be
uniquely represented by an ordered sequence of N − 2
numbers, known as the Prüfer sequence.20,21 Conversely, given
the Prüfer sequence (P-sequence in short), we can uniquely
construct the tree graph from which it was derived. Any
permutation of the N − 2 elements of the P-sequence produces
another sequence and thus (generally) a topologically different
tree graph, yet its vertex-degree distribution (or, in short,
degree distribution) is identical to that of the original tree
graph. The degree distribution is specified by the numbers,
nd (∑d nd = N), of vertices of degree d in the graph, i.e., vertices
bonded to d neighboring vertices. Equivalently, following
normalization, the degree distribution is given by the fractions
{pd = nd/N} of vertices of degree d comprising the tree graph.
Combined with Monte Carlo sampling, we have recently used
the invariance of {nd} with respect to P-sequence shuffling, in
order to compare the Rgs of compact and extended tree graphs
with identical degree distributions.15

In this paper, we employ Prüfer-sequence permutations
Prüfer-shuffling in shortas a means to describe and analyze
the configurational statistics of ideal randomly branched
polymers. We shall show that starting from an arbitrarily
branched polymer (e.g., a Cayely tree or a tree representing
the secondary structure of RNA) repeated shuffles of its
P-sequence provide an efficient way to generate large ensembles
of randomly branched polymers. More significantly, we shall
show that their structural metrics, such as vertex-to-vertex
distances, and thus the scaling behavior of 3D-size measures
such as Rg can be directly and efficiently derived from their
P-sequences.
In the next section (section 2), we introduce our nomen-

clature for the various types of vertices appearing in our tree
graph analyses, briefly outline the definition and derivation of
the Prüfer sequence, and describe the shuffling procedure.
Then, in section 3, we describe our algorithm for recovering
the tree graph from its P-sequence. The derivation of the
P-sequence of a given tree graph as well as its recovery from its
sequence are both well-known. Here, however, for the sake of
eventually deriving size metrics, we employ a specific, simpler,
procedure for labeling the tree graph vertices, enabling a
simpler (as far as we know new, albeit specific for our
purposes) algorithm for recovering the tree graph from its
P-sequence. Then, in section 4, we describe our algorithm for
deriving secondary structure metrics, e.g., the graph diameter,
directly from the P-sequence. In section 5, we outline the
methods (some well-known and some less known) that we use
for deriving 3D properties from the (1D) graph metrics.
Numerical results comparing our approach to derive graph
metrics directly from the P-sequence with other methods are
given in section 6. Concluding remarks are outlined in section 7.

2. PRÜFER SHUFFLING OF TREE GRAPHS
The Prüfer sequence corresponding to a particular, arbitrarily
labeled, tree graph is straightforward to construct, as illustrated

in Figure 1. The sequence is formed by successive steps; each
one involves the removal of the outermost vertexhereafter
the leaflabeled by the smallest number. The vertex to which
the plucked leaf was connectedhenceforth, the stumpis
then added as the next element of the P-sequence. This
procedure continues until only two (necessarily bonded)
vertices are left. One of these vertices is possibly a leaf in the
original tree. The other one is necessarily the last element of
the P-sequence; it is obviously a skeletal vertex (i.e., a d ≥ 2
vertex) of the original tree. None of the N − 2 elements of the
P-sequence represents a leaf, because all leaves (except possibly
one which may be a member of the last pair) were deleted in
the process of constructing the P-sequence.
While leaves do not appear in the P-sequence, the sequence

includes all the skeletal vertices, each of which appearing there
d − 1 times, because it takes the removal of d − 1 vertices
before turning a vertex of degree d into a leaf. Thus, since there
are N − 2 elements in the P-sequence, we have

∑ − = −
≥

n d N( 1) 2
d

d
2 (1)

consistent with the Euler’s “sum rule” of tree graphs

∑ = −
≥

n d N2 2
d

d
1 (2)

The proof of the last equality is simple: The N vertices of a tree
graph are connected by a total of N − 1 edges. A vertex of
degree d is connected to d edges, each of which is shared by
another vertex. The total number of edges is thus ∑d ndd/2
which, in turn, is equal to N − 1, leading directly to eq 2. We
also note that the number of leaves (i.e., d = 1 vertices) is n1 =
(2N − 2) − ∑d≥2 ndd. Two limiting cases of interest are the
linear and (the maximally branched) star-like graphs,
representing the spatially maximally extended and most com-
pact structures, respectively. In both cases, there are only two
kinds of vertices. In the linear tree graph, n1 = 2 and n2 = N − 2,
whereas, for the star-like graph, n1 = N − 1 and nN−1 = 1.
Any permutation of the N − 2 elements of the Prüfer

sequence of a particular labeled tree graph yields a sequence
describing another labeled tree graph, with identical degree

Figure 1. From tree graph to Prüfer sequence. The sequence is
generated by successively removing the peripheral vertex (“leaf”)
bearing the smallest label (circled in red), and adding the number of
the vertex to which it was connected as the next element in the
P-sequence. Leaves of the original tree are colored green.
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distribution, {nd}. The branching pattern of the new tree is
generally different from that of the original one, as illustrated
in Figure 2. Notice that the leaves are not involved in any

permutation, because they do not appear in the P-sequence.
Repeated random shuffles generate an ensemble of sequences
corresponding to an ensemble of tree graphs, which obey the
configurational statistics of ideal randomly branched polymers,
all with the same distribution of vertex-degrees.

3. RECOVERING THE TREE GRAPH FROM ITS PRÜFER
SEQUENCE

There are several known ways to recover a tree graph from its
Prüfer sequence.20 Below we outline our own version for
achieving this goal. One variant of our approach, which greatly
facilitates the generation of tree graph ensembles and calcu-
lating graph metrics, is to assign leaves the largest numbers of
vertex labels. That is, in a tree of N vertices containing L leaves,
the leaves are labeled N − L + 1, ..., N (as in Figures 1 and 2).
Other than that, the labeling of the L leaves, as well as of the
N − L skeletal vertices, is arbitrary. Assigning the highest
numerals to the leaves has no effect on the statistics of the tree
graph ensembles, because only skeletal vertices are involved in
the Prüfer shuffling procedure. One necessary consequence of
this assignment convention is that the leaf bearing the highest
numeral is never removed, and thus must be a member of the
pair of vertices left unplucked upon completing the P-sequence.
The other one is necessarily a skeletal vertex.
Our procedure for recovering a tree graph from its P-sequence

involves successive inverse movesfrom the last element to
the first element of the sequence. We shall conveniently refer to
the inverse (right-to-left) Prüfer sequence as the P′-sequence.
The simplest way to describe this algorithm is by way of
example. In Figure 3, we describe, step by step, the recovery of
the 12-vertex tree graph shown in Figure 1 from its 10-element
P-sequence. Labeling the growing tree from i to xi, we proceed
as follows.

(i) The first element in the P′-sequence in Figure 3 is vertex
#6 (V6 in short). This is the last skeletal vertex exposed
by removing an adjacent vertex, and is one of the last two
vertices left upon the completion of the steps leading
to the P-sequence corresponding to the tree graph of
Figure 1 ({3,5,1,1,2,5,4,4,4,6}). By our convention of
assigning the L largest numbers to the leaves of the
original tree, the other member of this last pair is the leaf
labeled by the largest number, i.e., V12. Our “seed” of the
growing treetree graph i in Figure 3thus consists of

the leaf V12 (colored green) and the skeletal (stump)
vertex V6 (colored gray). In parallel, we boldface V6 in
the P′-sequence, marking its addition as the first element
of the P′-sequence. We highlight V6 by a red ring,
indicating that it is now reactive, since it requires at least
one more edge to be saturated.

(ii) In position 2 of the P′-sequence, we find V4, indicating
that its removal led to exposing V6. Thus, in the growing
tree graph, we now connect V4 to V6 and highlight it red
as the next reactive vertex. In parallel, we boldface V4 in
the P′-sequence.

(iii) Next, in position 3, we find V4 again. This means that
V4 in position 2 necessarily arrived there following
the removal of a leaf, which must be the leaf with the
highest index available, namely, V11. This also means
that V4 is a stump. We boldface it in the sequence and
move to position 4.

(iv) In position 4, we find V4 again, implying that V4 in
position 3 is the result of plucking yet another leaf, i.e.,
V10. Thus, V4 is a 2-fold stump. We boldface the third
V4 as well.

(v) In position 5 of the P′-sequence stands V5, implying that
its removal is responsible for the appearance of V4 in
position 4. We thus add V5 to the tree graph, connecting
it to V4, highlighting it by a red ring as the next reactive
vertex. In the P′-sequence, we boldface V5, and procced
to the next element in the sequence.

(vi) In position 6, we find V2, concluding that its removal
leads to V5 in position 5. Connecting V5 to V2 in the
graph, boldfacing the latter in the sequence and
highlighting it in the graph, we move to position 7,
finding there V1.

(vii) In the graph, we now connect V1 to V2 and assign V1
the reactive red ring label. Boldfacing V1 in position 7 of
the P′-sequence, we move to the next element.

(viii) In position 8, we find V1 again. As argued earlier with
respect to V4, this means the V1 in position 7 appeared
there by plucking a leaf, namely, V9. We note that V1 is a
stump. In position 8 of the P′-sequence, we boldface V1.

Figure 2. Prüfer shuffle: Permutation of the P-sequence generates a
sequence describing a tree graph with the same vertex-degree distribution.
The shuffle corresponds to a swap of two branches of the tree graph. Figure 3. From Prüfer sequence to tree graph. Leaves of the original

tree are colored green, and skeletal vertices are in gray. The red ring
highlights the reactive vertices of the growing tree. Whenever a skeletal
vertex is added to the tree, its label is boldfaced in the sequence. See
the text for the detailed description.
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(ix) The next element of the sequence in position 9 is V5.
Since V5 is already included in the growing tree, the
presence of V1 in position 8 cannot be due to the
deletion of V5. V1 in position 8 is thus due to leaf
deletion, i.e., V8, and V1 is thus a 2-fold stump.
Importantly, the recurring appearance of vertex V5
indicates the emergence of a new branch emanating from
V5. The presence of V3 in position 10 indicates that
this branch begins with the stem connecting V5 and V3.
We boldface V5 in position 9, and move to the next stage.

(x) In the last element of the P′-sequence stands V3, whose
removal led to V5 in position 9. In the tree graph,
we connect V3 to V5, and boldface it in the sequence.
Being the last element in the P′-sequence (first in the
P-sequence), V3 is a stump. It was exposed by the deletion
of a leafthe last leaf yet unassigned, namely, V7. We add
it to the tree graph, thus completing its recovery from the
P-sequence.

4. FROM P-SEQUENCE TO GRAPH METRICS
In this section we show how to derive tree graph metrics from
P-sequences, e.g., the leaf-to-leaf distance (LLD)expressing
the contour distance (i.e., number of edges) between a pair of
leaves, or the graph diameter (GD)representing the maximal
leaf-to-leaf distance. On the basis of these “secondary structure”
properties, one can derive average 3D properties such as the
radius of gyration of a branched polymer, or its average LLD, as
discussed in more detail in the next section. The common
numerical route to derive properties of large ensembles of
tertiary structures involves computer simulations. In this section,
we show that an alternative, in some ways more efficient, route
to achieve this goal is by deriving secondary structure properties
directly from P-sequence ensembles. Below, using again the tree
graph of Figure 3 as an example, we show how LLDs can be
derived from its P-sequence: {3,5,1,1,2,5,4,4,4,6}.
The number of leaf-to-leaf paths in a tree graph containing

L leaves is k = L(L − 1)/2. The contour distance between any
pair of leaves is LLD = SSD + 2, with SSD denoting the
distance (number of edges) between their respective stumps.
(Note that this relation is also valid in the cases of two leaves
emanating from the same stump, in which case, by definition,
SSD = 0, and hence LLD = 2.) For the tree graph in Figure 1,
L = 6 and the number of leaf-to-leaf paths is thus k = 15, several
of which are shown in Figure 4. In the previous section,

analyzing the P′-sequence of this tree graph, we found that its
six leaves are connected to four stumps: V6, V3, and the two
2-fold stumps V4 and V1. Boldfacing the stumps’ six positions
in the Prüfer sequence, {3,5,1,1,2,5,4,4,4,6}, we now proceed to
unfold the 15 leaf-to-leaf paths embodied in this sequence.
To identify the leaf-to-leaf paths, we refer again to the

P′-sequence. For convenience, we start with paths originating

from the rightmost stump, and then progress leftward from one
stump to the next.

(i) Paths originating from V6:
(a) As already known from the analysis in the previous

section, the stump V6 is connected to V4, which is
also a stump, actually a 2-fold stump. Thus, two
leaf-to-leaf paths symbolized as (6 → 4) × 2 lead
from V6 to V4. Their length is LLD = 3.

(b) V4 is further connected to V5, which is then
connected to V2 which is finally connected to the
2-fold stump V1. We thus identify two paths of
length LLD = 6, namely, (6→ 4→ 5→ 2→ 1) × 2
(Figure 4A).

(c) Further down the P′-sequence, we note that (in
addition to its bonds with V4 and V2) V5 is also
connected to the V3 stump, implying another path
originating in V6, namely, (6 → 4 → 5 → 3)
whose length is LLD = 5 (Figure 4B).

(ii) Paths originating from V4:
(a) The (4th degree) V4 is a 2-fold stump, implying

one short (LLD = 2) path between its two
daughter leaves. This path will be symbolized as
(4⇄).

(b) The 2-fold stump V4 is also connected to V5 and
then to V3, implying two paths (4 → 5 → 3) × 2
of length LLD = 4.

(c) The P′-sequence also reveals four “degenerate”
paths connecting the two 2-fold stumps V4 and
V1, namely, (4→ 5→ 2→ 1) × 2 × 2 with length
LLD = 5 (Figure 4C).

(iii) Paths originating from V1:
(a) As a 2-fold stump, V1 involves a short (LLD = 2)

path (1⇄) × 1.
(b) Somewhat harder to identify, because they involve

backward moves along the P′-sequence, are the
two LLD = 5 paths (1 → 2 → 5 → 3) × 3.

The total number of leaf-to-leaf paths corresponding to the
tree graph considered here is, indeed, k = 15. We also find that
its average leaf-to-leaf distance is =LLD 4.33 and its graph
diameter is GD = 6. In section 5, we employ the analysis
described here to calculate the ensemble averages ⟨ ⟩LLD and
⟨GD⟩, and discuss their dependence on polymer size, N.

5. FROM GRAPH METRICS TO 3D SIZE

The mean square radius of gyration, Rg
2 , representing the

average of Rg
2 over all possible conformations of an ideal

polymer, whether branched or linear, can be calculated using
Kramers theorem5

∑= −
=

R
b
N

N k N N k( )[ ( )]
k

N

g
2

2

2
1

1 1
(3)

where N is the number of monomers comprising the polymer
and b is the monomer−monomer bond length. The summation
extends over all possible divisions (“bond breaking”) of the
polymer into two parts, containing N1(k) and N − N1(k)
monomers, respectively. Hereafter, for notational brevity,

we shall replace Rg
2 by Rg. For the special simple case of

an ideal linear polymer, eq 3 yields the well-known relationship
Rg ∼ N1/2, identical to the power law dependence of the average

Figure 4. Examples of leaf-to-leaf paths (colored red). Leaves are
colored green, and stumps are colored yellow. See text for details.
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end-to-end distance R̅; ̅ =R R6 g for a freely jointed linear
chain.5 For ideal randomly branched polymers, eq 3 yields the
familiar theoretical scaling law, Rg ∼ N1/4. The average end-to-
end distance of an ideal randomly branched polymer is equiva-
lent to our average leaf-to-leaf distance, ≡ ⟨ ⟩R LLDLL and
should thus also scale as6 N1/4. This behavior will be confirmed
in the next section, using our Prüfer algorithm. A related quan-

tity showing the same power law behavior is ≡ ⟨ ⟩R GDGD ,
the square root of the graph diameter.
Before proceeding to the numerical results, we mention that

the metrics ⟨ ⟩LLD and ⟨GD⟩ are analogous to two measures
that have formerly been used to characterize the sizes of ssRNA
molecules. As noted in section 1, RNA secondary structures can
be mapped onto tree graphs with the vertices representing the
flexible single stranded loops of nucleotides and edges
representing base pair duplexes. Hairpins along with the
external loop are the leaves of the corresponding tree graph.
One metric, called “the maximum ladder distance” (MLD),
specifying the maximal distance between hairpin loops,12,22 is
proportional to the corresponding RNA graph diameter, GD.
Another metric, “the average ladder distance” (ALD),12 i.e., the
average contour distance between loops, is proportional to our
leaf-to-leaf distance, LLD. Interestingly, for random RNA
sequences, it was found12−14 that the ensemble averages of the
maximal and average ladder distances, ⟨ ⟩MLD and ⟨ ⟩LLD , scale
as N2/3. In other words, they appear to be less compact than
ideal randomly branched polymers with the same distribution
of vertex degrees. On the other hand, as noted in section 1, viral
RNAs (of icosahedral viruses) are consistently more compact
than random sequence RNAs of the same nucleotide com-
position.12−14,18,19

6. RESULTS
Using our Prüfer-sequence algorithm for calculating vertex-to-
vertex distances, and the theoretical tools described in the
previous section, we have numerically calculated several 3D size
measures of ideal randomly branched polymers (IRBP), and
compared them to results obtained by more familiar ap-
proaches. Numerical results corresponding to two families of
IRBPs with different degree distributions, {pd = nd/N}, are shown
in Figure 5. Two additional IRBP families revealing the same
qualitative behavior are discussed in the Supporting Information.

The results in Figure 5 are ensemble averages of size mea-
sures for IRBPs comprised of up to N = 120,000 vertices.
For every value of N, we have analyzed 100 tree graphs.

Figure 5A shows the results obtained for branched polymers
containing (on average) equal proportions of 2-fold (d = 2) and
3-fold (d = 3) vertices, i.e., p2:p3 = 1:1. The fraction of leaves in
this tree graph family, p1, follows from the normalization
condition ∑d≥1 pd = 1 and eq 2, which for large N lead to
p1 = p2 = p3 = 1/3.
Figure 5B describes the results for random “RNA-like”

polymers. The vertex-degree distribution corresponding to this
family of IRBPs derives from earlier calculations of RNA
secondary structure. Specifically, Boltzmann weighted ensem-
bles of 200 secondary structures corresponding to 200 different
randomly generated 7000-nt-long random sequence RNAs with
uniform nt composition (i.e., a total of 4 × 104 conformations)
were generated using the RNAsubopt program from the Vienna
package.23 Analyzing their branching pattern, it was found that
fifth or higher order vertices (i.e., nt-loops) are extremely
rare.14 Lumping their fraction into p4, the degree distribution
corresponding to this family (in the limit of large N) is given
by p1 = 26/126, p2 = 75/126, p3 = 24/126, p4 = 1/126. This
distribution is not very different from that of viral RNAs, yet the
viral-like tree graphs are more compact than those correspond-
ing to the random RNAs.12,13,15

The two IRBP families discussed in the Supporting Information
are the following: (i) Cayley trees of 3-fold vertices, i.e., trees
consisting of vertices of degree 3 or 1 (i.e., leaves), with p1 =
p3 = 1/2. (ii) Similar to the IRBPs in Figure 5A but with a larger
fraction of the 2-fold vertices: p1 = 1/6, p2 = 2/3, p3 = 1/6.
The data points of the 3D size metrics shown in Figure 5

represent the statistical averages corresponding to 100
randomly generated tree graphs for each value of N. Their
meaning and calculation procedures are as follows:

• RGD: As defined in section 5, ≡ ⟨ ⟩R GDGD is the
ensemble average of the square root of the graph
diameter. In this calculation, starting with an arbitrary
tree graph with the given {pd}, ensembles of IRBP tree
graph were generated using Prüfer shuffle, and their GD
determined by a Mathematica24 built-in function Graph-
Diameter. This function utilizes well-known algo-
rithms25−27 to compute graph distances from the
adjacency matrix28 of the tree graph (see below).

• Rg(Prüfer): This metric is the ensemble averaged radius
of gyration, calculated using Kramers formula, eq 3. Here
too, IRBP tree graphs were generated using Prüfer
shuffling, but vertex-to-vertex distances were calculated
using a custom program utilizing the adjacency matrix.

• Rg(Seq. Alg.): These calculations of Rg are based on an
efficient methodknown as the sequential algorithm
for the generation of random trees with a given degree
distribution29 (see the Supporting Information for more
details). Once generated, their Rg’s were evaluated on the
basis of Kramers theorem using our custom program
mentioned above.

• RLL: ≡ ⟨ ⟩R LLDLL , where ⟨ ⟩LLD is the ensemble
average of LLD, the mean leaf-to-leaf distance. In
calculating RLL, we have used Prüfer shuffing to generate
RBP ensembles, and LLDs were evaluated following
the analysis of the P′-sequences described in section 3.
One simplification employed in this calculation is that in
evaluating LLD for a given tree graph we have not
included all leaf-to-leaf paths but rather only those
originating from the first (rightmost) element of the
P′-sequence (like those shown in Figure 4A). In other

Figure 5. 3D size measures of randomly branched tree graphs as a
function of the (fourth root of the) number of vertices N. Parts A and
B correspond to different vertex-degree distributions, as indicated in
the respective figures. The computation algorithms leading to the five
data sets are detailed in the text.
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words, we have sampled only a fraction of all the leaf-to-
leaf paths. Note, however, that in the ensemble of
randomly generated tree graphs the identity of the vertex
appearing in position 1 of the P′-sequence is also
arbitrary, implying that the RLL’s shown in Figure 5 are
faithful statistical averages of LLDs. The simplification
just mentioned facilitates the calculation, as explained in
more detail in the Supporting Information.

• RM1L: Similar to RGD, this quantity measures the
ensemble average of the maximal 3D end-to-end distance
of a branched polymer. We calculated it subject to the
same computational simplification employed in our
calculation of RLL. Explicitly, from the paths used to
calculate RLL, we picked the longest leaf-to-leaf path
(originating from the P′-sequence’s first element), ob-
taining the M1LD (see, e.g., Figure 4A). Using ⟨M1LD⟩
to denote the ensemble average of M1LD, we then
define = ⟨ ⟩R M1LDM1L . Clearly, M1LD ≤ GD, and
hence RM1L ≤ RGD, as is apparent from Figure 5. In the
Supporting Information, we show that the ⟨GD⟩ can be
approximated by the average M1LD corresponding to
the top decile of M1LD.

All five measures of the 3D size of the IRBPs in Figure 5
show the expected scaling relation R ∼ N1/4. The computa-
tional procedures yielding the first three measuresRGD,
Rg(Prüfer), and Rg(Seq. Alg.)utilize the adjacency matrix
(AM) to represent the branching pattern of the tree graph. For
a tree with N vertices, the AM is a sparse N × N matrix whose
ijth element is 1 if a bond connects vertices i and j and 0
otherwise.28 In terms of CPU time, these calculations are
considerably faster than our calculations of RLL and RM1L based
on the determination of LLDs from the P′-sequence; see the
Supporting Information for details. Nonetheless, the AM based
calculations require the computer to allocate ∼N2 bytes of
random access memory (RAM) to handle a tree of N vertices.
On the other hand, extracting graph distances from a Prüfer
sequence of N elements requires the allocation of only
∼N bytes. Thus, while Mathematica’s GraphDiameter function
and the sequential algorithms methods are faster than our
custom Prüfer algorithms, the latter is far more efficient for
large values of N. Indeed, as reflected by the range of N values
in Figure 5, when the trees became large (N > 20,000 vertices),
the AM based calculations (i.e., RGD and Rg) required more
memory than was available in our system (see the Supporting
Information) and the calculations were forced to terminate,
obviating the utility of the GraphDiameter or the sequential
algorithm. In contrast, our programs were able to comfortably
calculate the LLD and ML1LD well beyond this limit.

7. CONCLUDING REMARKS

The results presented in the previous section show that our
Prüfer-based algorithm is slower yet memory-wise more
efficient than the other algorithms we have used for calculating
branched polymer sizes. It is not unlikely that professional
programming could possibly upgrade our “homemade” method
to make it both faster and even more memory efficient.
Nevertheless, presenting yet another algorithm for calculating
the size of randomly branched polymers was not the primary
goal in this work. We regard the Prüfer shuffle procedure as an
elegant way to compare different types of branched polymeric
structures, primarily RNA. The present paper represents a step
forward toward our more challenging goal of understanding the

branching patterns of random and nonrandom RNA sequences,
which are qualitatively different from those of ideal random
branched polymers.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpcb.6b02258.

3D size calculations for two additional families of
branched polymers: (i) Cayley trees of 3-fold vertices,
i.e., trees consisting of vertices of degree 3 or 1 (i.e.,
leaves), with p1 = p3 = 1/2; (ii) trees with degree
distribution p1 = 1/6, p2 = 2/3, p3 = 1/6. We also show
there how the average GD can be estimated from the
average of the top decile of ML1LDs. The details of our
system, computational time, and memory usage are also
given. Finally, we explain how to sample leaf-to-leaf
distances directly from the Prüfer sequence, and present
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