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1.1 Introduction

The main purpose of this chapter is to present a comprehensive, statistical-
thermodynamic framework for treating the sizes and shapes of micellar ag-
gregates in aqueous surfactant solutions. In this first seetion, after a brief
historical perspective on experimental studies and theoretical pictures of
micellar structure, surface roughness and other fluctuation effects are dis-
cussed in the context of both phenomenological and computer simulation
studies. In Sec. 1.2 we present the basic self-assembly theory for dilute sys-
tems; the aim is to proceed systematically from a formulation of overall
partition functions for the aqueous surfactant solution to a phenomeno-
logical discussion of effective chemical potentials. By deriving this latter
language, we make contact with the highly useful “law of mass action”
approach which has been pursued by most workers in their analyses of mi-
cellization and size/shape effects in dilute solution. We also feature there
the role of “dimensionality of growth”, i.e., the basic differences between the
concentration dependence of equilibrium sizes in the case of sphere (“zero-
dimensional”= 0D)-, rod (1D)-, and disk (2D)-like aggregates. Following
a brief discussion of the structures and relative stabilities of vesicles and
mixed micelles, we close Sec. 1.2 with some remarks on the much-neglected
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and highly problematic question of “rotation/translation” contributions to
micellar partition functions (and hence to the effective surfactant chemical
potentials). .

Section 1.3 treats the problem of separating the effects of amphiphilic
“heads” and “tails” in statistical thermodynamic descriptions of micellar
aggregates. The prevailing ideas concerning predictions of preferred shapes
are discussed critically. We also outline there the nature of chain packing
in micelles and the contribution of chain degrees of freedom to the free
energies of surfactant molecules in aggregates of different curvature; in
this context, a microscopic basis is provided for the bending elasticities of
amphiphilic mono- and bi-layers. In Sec. 1.4 we introduce the reader to
recently developed ideas concerning the way in which interactions between
micelles can lead first to the enhancement of size in isotropic solutions
and then to the onset of orientational and positional long-range order in
nematic, hexagonal and lamellar states of concentrated surfactant-water
systems.

The concept of a micelle as an aggregate of surfactant molecules arose
in the early part of this century when McBain [1] in 1913 first sought
to understand the anomalous concentration dependence of many physical
properties of aqueous soap solutions. In the words of Debye [2]: “Soap so-
lutions exhibit even lower osmotic activity than would be predicted if one
assumed that soap existed in solution as simple undissociated molecules.
They also conduct the electric current far better than would be expected
from the observed osmotic effects.” Figure 1.1 represents these effects and
correlates their breaks in slope with sudden rise of turbidity and with lev-
eling off in surface tension reduction, i.e., with onset of micelle formation
in bulk solution. To continue in the words of Debye, writing in 1949: “Since
1913, investigators have shown considerable interest in the determination
of the size and shape of the micelle.” As an introduction to the subject of
this chapter, in fact, it is useful to proceed further with a look at the work
of Debye.

The experiments which Debye reported in his 1949 paper [2] involved
light scattering studies of a series of n-alkyl trimethyl ammonium bro-
mides [CpHzp+1N(CH3)3 Br~]. From the plots of turbidity () vs. sur-
factant concentration (¢) it was concluded that, above a critical micelle
concentration (CMC) aggregates appear as the dominant species: “The
curves resemble typical 7 vs. ¢ plots for polymer solutions.” For these lat-
ter systems Debye had already shown that a plot of turbidity vs. con-
centration would yield the molecular weight M as its slope at the origin
(¢ — 0). Hence the “Debye equation” for molecular weights of micellar
aggregates [3]

Me—GNT % +245(c — CMC) (1.1)

T

where K is the “optical” constant {determined by the incident wavelength
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FIGURE 1.1. Effect of micellization on bulk properties of surfactant solutions.
Note, for example, that the osmotic pressure is proportional to the total concen-
tration of particles (monomers plus micelles). Above the CMC the added sur-
factants form micelles, and the increase in total particle concentration is small.
On the other hand, the turbidity is proportional to the concentration of micelles.
The CMC value and the concentration scale correspond to an aqueous solution
of SDS (sodium dodecyl sulfate) (after Refs. 3 and 33).

and indices of refraction of the solvent and solution) and A, is the second
(osmotic pressure) virial coefficient. Figure 1.2, reproduced from the origi-
nal work of Debye (2], shows the first light scattering estimates of micellar
size. “The heights of the vertical lines drawn at the critical concentration
represent the reciprocal molecular weights of the micelles” [2]. Note how
micellar size increases with carbon number.

Debye also suggested an additional technique for determining micellar
size. He observed in particular that “in the presence of relatively high
salt concentrations the micelles of the longer-chain detergents are large
enough to cause measurable disymmetry in the intensity of the scattered
light” [4]. On the basis of such measurements (on n-hexadecy! trimethyl
ammonium bromide in 0.2M KBr) it was concluded that the micelles un-
derwent a transition from spherical to rod-like aggregates upon increase
in surfactant concentration above the CMC. This idea has been refined
and pursued vigorously by many workers during the past thirty-five years.
Ikeda et al. [5], for example, have measured the angle dependence of the
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FIGURE 1.2. Reciprocal specific turbidities vs. surfactant concentration for so-
lutions of n-alkyl trimethyl/ammonium bromides in water [2].

turbidity as a function of surfactant concentration in high-salt (0.8M NaCl)
aqueous solutions of dilute sodium dodecyl sulfate (SDS). Figure 1.3 shows
some of their results for 7' = 35°C. The intercept of each curve gives the
reciprocal weight-average molecular weight (assuming 4, = 0 in (1.1)),
and the slope gives the radius of gyration. Thus, for the high concen-
tration curve, ¢ = 1.10 x 10~ 2g/cm® (2 100 CMC), one finds an aggre-
gation number of =~ 1000 molecules/micelle (about six times the size at
the CMC). The average micellar length, if the micelles are rod-like, is
found to be = 600A, as compared to their diameter which is estimated
to be &~ 40A. Better estimates of the size can be obtained by fitting the
data to (1.1) with A» calculated assuming that the micelles are rigid rods
(5]

An entirely independent technique for determining the size of micelles
involves dynamic light scattering in which the homodyne autocorrelation
function (6] of the quasielastic intensity is measured. Application of this
approach to surfactant solutions was developed primarily by Benedek and
coworkers (7] in the U.S. and by Corti and Degiorgio (8] in Italy. Approxi-
mately what one does is extract the mean translational diffusion coefficient
D from the autocorrelated intensity and then use the Stokes-Einstein rela-
tion to infer the hydrodynamic radius Ry = kT/6nnD, where k is Boltz-
mann’s constant and 7 is the solvent viscosity. (See Sec. 2.2.1 for further
discussion of this light scattering approach.) In practice the spread in mi-
cellar sizes leads to a nonexponential homodyne signal, and a cumulant
analysis is necessary to deduce the first several moments (and hence the
average, variance, skewness) of the distribution.
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FIGURE 1.3. Angle dependence of light scattering intensity from sodium dodecyl
sulfate solutions in 0.80M NaCl at 35°C [5].

Another complication arises because the measured diffusion constant
contains contributions from the interactions between micelles. More ex-
plicitly, D varies with concentration ¢ according to

D = Do(1 + kpc) (1.2)

where kp is a simple functional of the inter-aggregate potential [9]. A
similar relation holds for the “apparent” (“intrinsic”, i.e., single-micelle)
molecular-weights which contribute to the static intensity—see (11): It
follows that the increase of M and Ry with concentration need not im-
ply a growth of micelles, but rather “only” the effect of interactions. The
relative importance of the two effects depends on the composition (i.e.,
surfactant, added salt, etc.) and temperature of the solution in question.
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In the late 1970’s and early 1980’s there was considerable controversy sur-
rounding the interpretation of several quasielastic light scattering studies
of micellar size in ionic amphiphilic systems—see [5,7] and the more recent
overviews given by these same workers [10]. It is now agreed that a high
concentration of added salt is necessary to suppress (screen) the interag-
gregate (electrostatic) potential contributions to the diffusion coefficient:
only at large ionic strength can one deduce safely that the mean micellar
size is truly increasing with surfactant concentration. We note that poly-
dispersity and interaction contributions complicate similarly the inference
of micellar size from viscosity [11] and dynamic Kerr (electric field-induced
birefringence) [12] measurements.

Valuable information about the structure of micelles in dilute solution is
also provided by small-angle neutron scattering data [13]. In these experi-
ments one is probing heterogeneities on length scales d of order 10— 10004,
corresponding to scattering vectors with magnitudes ¢ = 2r /d in the range
0.006 to 0.6A-1. At this spatial resolution the different micellar regions
and the solvent can be regarded as continuous media, with the scattering
amplitude for the n* aggregate given by

Anla) = | dre'Tlpu(e) — o). (13)
Here [pn(r) — ps] o [3,.,, b:6(r — 1;) — ps] is the excess (with respect to
solvent’s) density of scattering length in the n** micelle, b; being the nuclear
scattering length for the i** nucleus in n (located at r;) [13] and V}, is the nth
aggregate’s volume. The static (“elastic”) intensity measures the thermal
average of the square of this amplitude, after it has been summed (with
appropriate phase factors) over all aggregates:

I(g) o< (A" ) (1.4)

with N
AQ) =" An(g)e*tRn (1.5)

n=1

where Ry, is the center of mass position of the n®* aggregate, and (-- -)
denotes the thermal average of - - -.

For globular micelles, weak correlations between the positions of aggre-
gates and their orientations and sizes allow the scattering cross section to
be approximated by [14]

I(@) o< [(141(@)I") +(As(@))? (S(a) ~ 1)]. (1.6)

Here, S(q) is the usual structure factor describing the interferences be-
tween the centers of mass of different micelles, i.e., the Fourier transform
of the pair correlation function. (A4,(q)), the single particle form factor,
is the Fourier transform of the average distribution p(r) — ps of excess
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scattering length within an aggregate, the brackets denoting specifically an
average over all sizes. Similarly, (|A;(g)[*) is the transform of the average
“Patterson function” [ dr[p(r) — p,][p(r + R) — p,] for an aggregate [15],
containing therefore the effects of nonspherical shape and size polydisper-
sity. Note then that, even in the absence of interparticle interferences (i.e.,
for situations where only the first term in (1.6) is important) the inter-
pretation of I(g) is problematic. Hayter [16] has shown, for example, that
for any solution of monedisperse ellipsoids there corresponds a polydisperse
sphere system which leads to the same form of {|A4,(g)|?). At higher con-
centrations, where S(q) # 1, it becomes only more difficult to infer the
micellar sizes and shapes.

Cabane et al. [17] have emphasized the importance of large ¢ measure-
ments for determining the fluctuations in micellar size and shape. They
argue in particular that for scattering data extending out only to some
maximum wavenumber ¢, details in structure corresponding to distances
smaller than /g, will not be resolved. Using “contrast variation tricks”,
however, it is possible to measure separately the average radius (R.) of
the hydrocarbon core of a micelle and that (R,) of the whole aggregate
(core plus layer). “Contrast” between density profiles is achieved via H/D
isotopic substitution which shifts the scattering lengths (b) of methylenes
from —0.083 (CHg) to +1.999 (CD;) and of methyls from —0.457 (CHa)
to +2.666 (CDj3); similarly, for HoO — D20,b = —0.168 — +1.92. It
is thus possible to “label” a surfactant molecule in many different ways
(e.g., degrees of alkyl deuteration); then, by using alternately H,O or
D,0 as a solvent, one can generate several micellar solutions and hence as
many relations between the number densities n;(r) of methyls, methylenes,
polar heads, and counterions in and around the micelle of a given pro-
posed structure. More explicitly, one models the density averaged scatter-
ing length distribution p(r) as a linear combination of nuclear scattering
lengths b; : p(r) = ny(r)by +na(r)bz +. . .. Then selective deuteration (“con-
trast”) provides the required number of linear relations for determining the
spatial distribution of the various functional groups (e.g., methyl, methy-
lene, etc.) in the aggregate. This procedure requires, of course, that such
isotopic substitutions do not disturb the micellar structure [18].

In virtually all cases, the elastic neutron scattering techniques described
above have been restricted to studies of essentially globular (i.e., approxi-
mately spherical) micelles [19]. Small ¢ data have been exploited to obtain
much information about the average structural features of these surfac-
tant solutions, such as the average aggregation number N and the average
charge Z of a micelle. In extracting such information, the structure fac-
tor, S(g) in (1.6), has been estimated from approximate analytical theories
of interferences between charged hard spheres in water [20]. Since differ-
ences between (|A41(qg)|?) and (A;(q))® are small at low g, the micellar
model is defined crudely by only two parameters, N and Z, i.e., fluctua-
tion effects involving size/shape and charge are suppressed. (Al(q))2 and
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S(g)—and hence I(g)— are calculated for each choice of average values, N
and Z, and correlated iteratively via successive comparisons between com-
puted and observed (low ¢) scattering distributions. As already stressed
above, large ¢ data are required to deduce meaningful information about
fluctuations from the average micelle. Many workers have discussed how
these latter experiments, as well as g — () “contrast variation” studies, can
provide details on the nature of size and shape distributions for globular
(“almost spherical”) aggregates and of the structures of interfacial regions
and the conformational statistics of alkyl chains in these micelles. Again,
however, scattering analyses of this kind are no longer possible in the case
of anisotropic and polydisperse (e.g., long rod-like) aggregates at higher
concentrations (see Chap. 2).

At high amphiphile concentrations the ageregates organize into position-
ally ordered phases. In this chapter we focus our interest on finite rod-like
micelles in positionally disordered solutions, but also comment briefly on
their evolution in columnar phases (see Sec. 1.4.3). To complement our
present introduction, we remark as well on the classic (i.e., essentially infi-
nite aggregate) lamellar and hexagonal phases of surfactant /water systems.
(The lamellar states are treated comprehensively in Chaps. 4, 5 and 6.)
Here, the basic structural determinations were provided more than thirty
years ago by Luzzati, Mustacchi, Husson and Skoulios [21]. They used
X-rays to measure organizational changes in solutions of fatty acids in wa-
ter as a function of temperature and concentration, the Bragg diffraction
pattern for each long-range translationally ordered phase being analyzed in
terms of its characteristic reflection indices [22]. For uniformly spaced reflec-
tions (1/d,2/d,...A~1), for example, the aggregation state corresponds to
stacked bilayers (lamellae) with spacing (one-dimensional lattice constant)
d. Knowing d and the overall volume fraction of amphiphile in water one
can deduce the lamellar thickness D. The sharp Bragg reflections typically
observed in these systems provide direct evidence for the minor role played
by fluctuations in the lamellar phase. In other words, bilayer packing of the
surfactant molecules is the overwhelmingly preferred curvature mode un-
der high concentration (and/or high salt, added alcohol) conditions. (See,
however, the discussion of fluctuation effects in Chaps. 5 and 6.) Similarly,
the interaxis spacing d’ and diameter D' corresponding to cylindrical ag-
gregates in hezagonal states can be inferred for each of these soap systems
at higher water content. A typical result is shown in Fig. 1.4. Considerable
experimental [23,24] and theoretical [25] work has been done recently to
further document and explain data of this kind. But many unanswered
questions remain concerning the nature of defects in those systems [26-28],
the mechanism of their phase transition [26,27], and the microscopic details
of the chain packing and head-group organization in them (see Sec. 1.3).

We have already noted that most experimental investigations have been
concerned with small globular micelles just above the CMC. Similarly, a
considerable theoretical effort has been devoted to describing head-group
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FIGURE 1.4. Distance between sheets (d) and cylinders (d’) and their thicknesses
(D and D') in lamellar and hexagonal phases of CHs — (C2)14CO0~ K™ (palmitic
acid salt), as a function of concentration. These data can be used to calculate
the area, a, per surfactant head-group in each of the two phases as a function of
concentration, as shown in the upper panel [21d].

organization in the interfacial region, and “tail” conformations in the
hydrophobic core, of these “minimum” (“almost spherical”) aggregates.
Gruen [29] has presented a critical synopsis of the available experimen-
tal findings. His analysis supports the “standard” picture according to
which [30-33]:
e on average, almost all of the hydrocarbon chain of each amphiphile
lies within the micellar core.

e hydrophilic species (i.e., head-groups and aqueous solution) are nearly
completely excluded form the core.

e the amphiphilic (alkyl) tails fill the core at a nearly uniform, approx-
imately liquid n-alkane, density, the semi-flexible chains showing a

high degree of conformational disorder.
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In essence, this approach asserts that a useful, first-order, picture of
micellar structure follows from a division of the amphiphilic volume into
core and interfacial regions, each described by relatively simple geometries.
On a more molecular scale, it argues that many basic features of micellar
organization (e.g., chain statistics, solubilization properties, etc.) can be
accounted for without giving up the notion of a well-defined aggregate. In
particular, as we shall see in Sec.1.3 below, the assumption of a dry, liquid-
like core with monomer (CH; segment) density PCH, ™ PCH, (liquid alkane)
can be shown to yield bond orientational order profiles and labeled seg-
ment distributions in close agreement with experiment. The probability
of a terminal segment (methyl group) sitting at the surface of a spherical
micelle, for example, is significant, even though its most probable loca-
tion is halfway to the center. Indeed, all segments have a non-negligible
probability of lying at the surface, because most of the volume of a small
globular aggregate is associated with its outer shell. It is this simple geo-
metric fact which reconciles a dry hydrophobic core with large interfacial
contact between chain segments and water: there is no need to insist on sig-
nificant penetration by water. (For alternative models of micelle structure,
see, e.g., [34,35].)

Recently, several machine simulation attempts have been made to test
the above picture of micellar structure. The earliest efforts, Monte Carlo
(MC) calculations by Pratt et al. [36], do not treat water or ionic surfac-
tants on a truly microscopic level, introducing instead a phenomenological
account of short chains on a lattice, Similarly, the molecular dynamics
(MD) calculations of Haile and O’Connell [37] do not directly test the
nature of equilibrium aggregates, because they essentially impose a given
shape by constraining the amphiphile head-groups to undergo translations
and small amplitude oscillations within a spherical shell. Aqueous solvent
does not appear explicitly in their theory. Instead, the hydrophobic effect
involving water and methylenes is incorporated by a short-ranged repul-
sive shell displaced slightly from the head-group sphere. Nevertheless, one
can obtain useful information from these sorts of simulations about the
segment density distributions and bond conformational statistics. Indeed,
by following the molecular dynamics of chains interacting in this geometry
via realistic potentials, one generates an essentially exact solution to the
problem of constrained surfactants. In this context Haile and O’Connell
present a detailed comparison between their results and those obtained in
earlier, mean-field theories which also assume a dry spherical core with
head-groups confined near the surface. Good agreement is found, for rea-
sons which we shall explain in Sec. 1.3.3, where we treat in some detail the
mean-field approach to chain statistics.

In order to address on a microscopic level the still more fundamental
questions of micellization, it is necessary to consider machine simulations
which do not impose at the outset any particular form for the equilib—"
rium aggregates. Indeed, the micelle must be observed to form sponta-
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neously from our having simply put surfactant molecules into water at
high enough concentration. First steps in this direction have been taken
by Jonsson, Edholm and Teleman [38], and by Watanabe, Ferrario and
Klein [39], who studied the formation of sodium octanoate micelles in
aqueous solution via molecular dynamics simulations. Here, the water is
described by the point-charge effective pair potential which is known to
give a good account of bulk liquid water properties. Watanabe et al. intro-
duce site-site interactions and conformational energies involving the alkyl
chains, and Lennard-Jones combining rules for all atoms and pseudo-atoms
(e.g., CHz,CHs) as well as charges on the head-group oxygens and car-
bons and, of course, on the sodium ions. Long range Coulomb interac-
tions between charges are calculated via Ewald summation. (Jonsson et
al. introduce somewhat different charges, and simply truncate the elec-
trostatic forces beyond 10A.) Periodic boundary conditions are used with
a cubic box having side length 34.2A containing 15 surfactant molecules
(“monomers”) and 1068 waters. Note that this situation necessarily im-
plies a mole fraction of over 1%, i.e., a concentration of surfactants that
is orders of magnitude larger than the CMC and that is already large
enough for ordered phases to form! An investigation of micelles in di-
lute solution would require not only many (i.e., 10? times) more water
molecules, but also that trajectories be followed for much (i.e., 10° times)
longer times in order to follow the spontaneous appearance of the aggre-
gates. Both improvements are well beyond the power of present molecular
dynamics computations. Nevertheless, it is not unlikely that these goals
will be achieved in the foreseeable future as indicated by the most recent
studies of Smit et al. [40]. These authors performed molecular dynamics
simulations using a parallel algorithm (employing 100 transputers) on a
model system of nearly 40000 particles representing surfactant, water and
oil molecules. The model particles are drastically simplified versions of the
real molecules, yet the system features many of the essential properties of
real surfactant solutions, including spontaneous micellization in the water
phase.

The simulation in [39] begins with a micelle of 15 octanoates with head-
groups constrained to the surface of a sphere whose radius is chosen to give
a core with density equal to the liquid alkane value. After the solvent is
prepared by equilibrating 1331 water molecules (corresponding to a pure
water density of 1g/cc), the micelle is introduced at the box’s center and
all overlapping waters removed. Finally, sodium counterions are substituted
for an equivalent number (15) of waters chosen randomly on a shell of ra-
dius of about 6A larger than that of the micellar core. The whole system is
then equilibrated for 50ps with constrained head-groups, after which time
these constraints are released and the full molecular dynamics simulation
is begun (7" = 300K, with a time step of 2.5 fs.). Analysis is done on 250 ps
trajectories, with most of the data obtained during the last 50 ps of cal-
culation. Because the simulation cannot be carried out for longer times,
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FIGURE 1.5. Density of carbon atoms, water molecules, surfactant head-groups,
and counterions, as a function of the distance from the center of the micelle. The
results were obtained by molecular dynamics simulations for micelles composed
of 15 sodium octanoate molecules in water [39].

it is assumed—as already alluded to above—that the prepared micelle is
stable. That is, in reality, a prepared aggregate can only lose its integrity
on much longer time scales (e.g., micro- to milli-seconds). So the molecular
dynamics computation falls short of being able to demonstrate the spon-
taneous formation and persistence of micelles with specific size and shape.
Furthermore, many of the structural results mentioned below are quite sen-
sitive to the uncertainties in molecular interaction parameters used in the
calculations.

In spite of these numerous limitations, it is of interest to consider some
of the reported MD results. In particular, the mean radius, derived from
the positions of the head-group carboxylate oxygens, is found to be some-
what (15%) larger than the fully stretched (all-trans) chain length with
a shape non-sphericity characterized by average principal inertial moment
ratios of 1.7:1.5:1. Figure 1.5 shows the total carbon atom density profile,
measured from the center of mass, as well as the density profiles for sol-
vent water, head-group carbons, and sodium counterions. Note that the
sodiums do not penetrate the core with water, but rather remain in the
outer region with the carboxylate head groups. More significantly, the sim-
ulation profiles serve to confirm the existence of a dry hydrophobic core.
(The “hole” at the micellar center is an artifact of the choice of system
(box) size which leads to a small negative pressure.) The interfacial region
in which water and alkyl segments are mixed is approximately 4A wide,
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compared to a micellar radius of roughly 12A. Furthermore, the calculated
bond conformational statistics and chain segment distributions are found to
agree closely with the mean-field theory results to be discussed in Sec 1.3.3
and with the earlier model simulations by Pratt et al. [36] and Haile and
O’Connell [37]. Recently, Karaborni and O’Connell [41a] have used molecu-
lar dynamics computations to examine the effects of alkyl chain length and
head-group characteristics on internal micellar structure and chain pack-
ing. They confirm the existence of a well-defined, dry, hydrocarbon interior
and of a significant degree of conformational disorder. Similar conclusions
were reached by Wendoloski et al. [41b]; but again, we stress that these
simulations—like those in [37-39]—begin with an already-assembled ag-
gregate and, furthermore, treat the aqueous solvent only implicitly, via a
set of effective “boundary forces.”

Our interest in the above ideas concerning micellar structure lies pri-
marily in their extension to larger aggregates having distinctly anisotropic
shapes. As a rule it is found that average aggregation numbers begin to in-
crease significantly at high enough concentrations (e.g., one to two orders
of magnitude) above the CMC. The fact that at still higher concentrations
one observes first nematic (rod- and disk-) liquid crystalline states and then
hexagonal and lamellar positionally ordered phases, suggests further that
the large aggregates in isotropic solution are themselves rod-like or disk-
like. This conclusion is also consistent with the results described above,
in our brief introduction to light scattering studies of isotropic phases, as
well as in other chapters in this volume. Indeed, the very existence of large
rod-like micelles in relatively dilute (i.e., ideal, as far as inter-aggregate
forces are concerned) solution implies a strong self-assembly preference for
cylindrical geometry. After all, if the hydrophobic effect could be satisfied
equally well by spherical, rod-like, and disk-like aggregates, then the min-
imum (i.e., globular, spherical) micelle would be favored overwhelmingly.
This is because the entropy of dispersion demands that—all other things
being equal—the surfactants should organize themselves into the largest
number of aggregates. But “all other things” are generally not equal, i.e.,
the intre-micellar (“self”) free energy is distinctly lower for one particular
geometry. Accordingly, one sees cylindrical aggregates predominating in di-
lute solutions of sodium decyl sulphate and other familiar surfactants, or
essentially planar (bilayer) vesicles appearing in the case of phospholipid
amphiphiles, and so on (see Chaps. 2 and 3). The fact that amphiphiles
self-assemble into structures characterized by well-defined geometries pro-
vides additional support for the “standard” picture of the aggregates, as
representing a well-defined hydrophobic region surrounded by a head-group
mantle. Clearly, overall shape and surface roughness fluctuations do take
place, but the basic structures are preserved.

As argued in the following sections, large aggregation numbers—
commonly observed at high concentrations of surfactant and/or salt—can
only be reconciled with ertended structures. By extended aggregates we
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FIGURE 1.6. Schematic illustration of three “basic” aggregation geometries, de-
scribing aggregates that can grow along two dimensions (the bilayer), one dimen-
sion (the cylinder) and zero dimensions (i.e., no growth possibility, as for the
spherical micelles).

mean those derived from minimum micelles via growth in one (rod) or two
(disk) dimensions: see Fig. 1.6. Unlike the case of nucleation clusters [42-45]
or microemulsion droplets (see Chaps. 7-9), the radius of a globular mi-
celle can never significantly exceed the length of a fully stretched molecule;
hence its “molecular weight” is restricted to small values. Accordingly, in
the following sections we adopt as a basic premise the fact that big ag-
gregation numbers are associated with a preference for cylindrical or bi-
layer packing of amphiphilic molecules. We explore the consequences of
this premise on the equilibrium size distribution of aggregates and its de-
pendence on concentration, and its consequences for phase transitions to
orientationally and positionally long-range ordered states. This “first or-
der” approach is all the more reasonable in light of the extreme difficulty
of carrying out more detailed calculations on systems which necessarily in-
volve so many degrees of freedom and such poorly understood interactions.
The very few attempts to predict the spontaneous aggregation structures
from basic statistical-thermodynamic principles have been necessarily lim-
ited to drastically simplified models (see, e.g., [46,47]). Thus we continue
to characterize micelles by regular geometric structures, insofar as:

e a wide range of exotic self-assembly phenomena can be systematically
explained within this description; and

e there still does not exist any compelling experimental or theoretical
evidence which demands an alternative point of view.
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1.2 Amphiphile Self-Assembly in Dilute Solutions

An equilibrium solution of amphiphiles in water corresponds (above the
CMC]) to a system of aggregates (micelles), generally of different sizes and
possibly also different shapes, coexisting with a nearly constant concentra-
tion of monomers. Unlike in ordinary solutions, the solute particles (ie.,
the micelles) in amphiphile solutions can respond to variations in ther-
modynamic parameters (such as total concentration, temperature or ionic
strength) by changing their size and shape distributions. This behavior
resembles that of a system governed by multiple chemical equilibria. The
preferred aggregation geometry (e.g., spherical micelles, cylindrical aggre-
gates or planar bilayers) and the equilibrium size distribution are deter-
mined by the molecular characteristics of the amphiphiles, as well as by
the total concentration and other thermodynamic variables. In concen-
trated solutions, the sizes and shapes of the aggregates are also influenced
by inter-aggregate forces, resulting in a rich and complex phase behav-
ior, as discussed in Sec. 1.4 and in more detail in other chapters in this
volume.

The discussion in this section is concerned with self-assembly and growth
in the dilute solution regime. In Sec. 1.2.1 we introduce the basic statis-
tical-thermodynamic concepts required to describe these phenomena, and
in Sec. 1.2.2 we derive the formal expressions for the equilibrium size distri-
bution. We then proceed to discuss the passage from monomers to aggre-
gates (Sec.1.2.3), and to analyze the factors governing micellar growth with
special emphasis on the role of the aggregate’s dimensionality (Sec. 1.2.4).
In Sec. 1.2.5 we briefly consider mixed aggregates and, finally, in Sec. 1.2.6
we comment on the contribution of external rotational and translational
degrees of freedom to the micellar chemical potential, an issue which is
totally overlooked in the phenomenological treatments of surfactant ag-
gregation, and which still awaits a satisfactory statistical-thermodynamic
resolution.

Before turning to the technical discussion, a few remarks should be
made regarding the approach adopted here and its relation to alternative
treatments. Throughout this chapter, rigorous statistical-thermodynamic
derivations and concepts are interwoven with phenomenological descrip-
tions. For instance, we employ elementary statistical thermodynamics to
express the standard chemical potentials (which determine the equilibrium
size distribution) in terms of the micellar partition functions. But then, re-
alizing how difficult it is to treat rigorously the interactions determining the
partition functions, we turn to phenomenological (‘semi-empirical’) consid-
erations which, albeit approximate, provide important qualitative insights
into the mechanisms of amphiphile association.

Many authors [48-55] have presented statistical-thermodynamic theories
of micellar solutions, involving different degrees of rigor concerning, for
example, the treatment of the solvent, the role of intra- and inter-micelle
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interactions, or the effects of translational and rotational motions. Unfor-
tunately, in many cases the ultimate results of such theories are formal
expressions, e.g., for the partition functions, which are not very useful un-
less drastic approximations are invoked to simplify them. Other authors
have formulated the micellization phenomena in terms of classical ther-
modynamics, treating micelles as small thermodynamic systems [56-59]
(‘micro-phases’) and (some) analyzing in detail their mechanical proper-
ties [60,61]. The prevailing treatments of amphiphile self-assembly and
micellar growth are those which combine basic classical thermodynam-
ics with simple phenomenological models for the various contributions to
amphiphile-amphiphile and amphiphile-water interactions [30-33,62-67].
One of our aims in the following discussion is to cast these notions into sta-
tistical thermodynamic terms, thus explicitly demonstrating the assump-
tions and approximations involved in the phenomenological approaches and
thereby assessing their validity.

1.2.1 UNDERLYING STATISTICAL THERMODYNAMICS

Consider a solution of N amphiphiles and N,, water molecules in vol-
ume V and at temperature T. At any given instant N, of the N am-
phiphiles are incorporated in n, = N,/s aggregates of size s = 1,2,.. .,
with Y N, = N. N; = n; is, of course, the number of free monomers. Be-
cause of monomer association, micellar dissociation and exchange between
aggregates, and similar dynamical processes involving groups of monomers
or even micelles, the size distribution {n,} is a dynamical quantity, under-
going statistical fluctuations. Thus, the partition function of the system is a
sum over all possible distributions of the amphiphiles: Qsot(N, Ny, V. T) =
3 ik Quot({ns}, Ny, V,T). (The subscript “tot” indicates ‘total,’ i.e., am-
phiphiles plus water.) However, the fluctuations around the average distri-
bution {7, } or, equivalently, the most probable distribution {n}}, are negli-
gible. Hence, using the usual maximum term method, we can safely replace
In Qtot (N, Ny, V, 1) by In Qioe({ns}, Ny, V, T') and express the Helmholtz
free energy of the system as

Aot = —kT'In Qtot({”:}yNWs V, T) (1-7)

The equilibrium size distribution corresponds to the set {ns} = {n} for
which In Qs ({15}, Nuw, V, T') is maximal, so that 4,,, is minimal. To derive
{n?} we need an explicit expression for Q. As a first step we separate A,
into solvent and solute contributions. Assuming that the thermodynamic
properties of the water are not affected by the presence of the micelles, one
can write Qor{{ns}, Nuw. V.T) = Q({ns}, V,T)Q and, correspondingly,
Ator = A+ A, Here, Q({ns}, V., T) is the partition function of the system
of aggregates and monomers, dispersed in the continuous background of
the solvent. The free energy of interaction between the micelles and the
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aqueous solution is included in @ in a approximate fashion, as explained in
Sec. 1.3. Q,, and A,, are the solvent contributions.

In dilute solutions, interaction effects between aggregates are negligible,
and the free energy of a polydisperse system of {n,} aggregates is given, in
analogy to ideal gas mixtures, by

A = —kTIQ({n,},V,T) = kT[] %
g .

i

kT ny(~Ing, +Inn, — 1) (1.8)

where g, is the partition function of an s-mer in solution. ¢, includes con-
tributions from the internal degrees of freedom of the aggregate, its overall
translational and rotational motions, and approximately (via a potential
of mean force) interaction effects with the solvent, as discussed in more
detail in Secs. 1.2.6 and 1.3.1. It should be noted that the decomposition
of @ and A into contributions from aggregates of different sizes does not
imply that all s-aggregates are necessarily of identical shape. The possi-
ble existence of different micellar shapes, just like the possibility of small
shape fluctuations, are included in ¢, (in analogy to the case of a molecule
fluctuating between several isomeric forms). Yet if one chooses to classify
the aggregates by both size and shape, then Eq. (1.8) still holds, with s
specifying both characteristics.

The derivation of {n}} from (1.8) is straightforward. However, we defer
the derivation to the next section, after introducing several quantities, re-
lationships and definitions which will prove useful later on. To this end we
will temporarily regard (1.8} as the free energy of an ideal mixture of a
given fired composition {n,}.

The chemical potential of species s is given by

(B o, = (550)
Oy TVin e 0o Nu dn, T.Vin, 4,

= —kTIn(g;/V)+ kT Inp, (1.9)

il

Hs

with p, = n,/V denoting the number density of s-aggregates. Combining
(1.8) and (1.9), we find

A = Zns,us-—kTZns
= C;—I'IV ) (1.10)

Here G = Y n,pu, is the Gibbs free energy of the system of aggregates,
not including the solvent’s contribution. (The total Gibbs free energy of
the solution is given by Giot = Asor + PV = Y nypts + Nypiw. P is the
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external pressure; P = —(8A4,,:/8V) with the derivative evaluated at con-
stant composition.) IT is the osmotic pressure which, in the dilute solution
limit, reduces to the ideal gas form II = KT(3" ps). It is easily verified that
Hs = (BGtot/ans)T.P.N,f#,,Nw = (BG/BHS)T,n,n,,#_-

The chemical potential is conveniently expressed as

Ks = p3? + kTlnp, (1.11)

with, cf. (1.9),
u3? = ~kTln(q,/V) = kT Ing° (1.12)

denoting the standard chemical potential “on the number density scale.”
Since the only volume dependent factor in qs 1s the translational partition
function, which is proportional to V, 45 = qs/V and consequently (o7 are
functions of T only (see Secs. 1.2.6 and 1.3.1). While the number densities
Ps are most convenient for statistical thermodynamic formulations, the pre-
dominant concentration scale in the phenomenological theories, as well as
in the experimental literature on amphiphile self-assembly [30-33], involves
the mole fractions, X, defined via

Ns  sng

B
7 Nt New

(1.13)

with Nige = Ny+N = Nu+3, Ny denoting the total number of molecules,
Le., amphiphiles and water, in solution. Note that X is the mole fraction of
amphiphiles incorporated into s-aggregates, as distinguished, say, from the
mole fraction of s-aggregates y, = ns/ ) ng = (N,/s)/ D (Ns/s); Yy = 1.
Note also that the X, do not sum up to 1, but instead

dX.=X, (1.14)

with X = N/Ny,; denoting the total mole fraction of amphiphiles in solu-
tion. In the dilute solution limit which is of interest here, X =1- X, < 1,
and Xy, >~ 1. X, and p, are related by

_ sn/V sp, o SPs

= = ~ 1.15
¢ Niot/V Ptot Pw ( )
with py, = Ny /V and pyor = Pw+ D 8p,.
From (1.11), (1.12) and (1.15) we find
Hs = pg + kT hl(Xs/s) (1.16)

where g (which we use as a shorthand notation for #5°%) is the standard
chemical potential “on the mole fraction scale”,

ue = pd? + kTln peoe = —kT In(q%/ pror). (1.17)
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In the dilute solution regime po; =~ py, and p8(= p%*) is independent of the
amphiphile concentration X. In principle, however, since p;o; depends on X,
so does u2 (unlike p3?). Notwithstanding this reservation, in the following
discussion we shall generally adopt the mole fraction scale, primarily in
order to comply with the more familiar, phenomenological, treatments.

Using (1.13) and (1.16), the Gibbs free energy of the system (not includ-
ing the solvent) can be expressed as

G = Znsaus == ZNsﬁs

= Niot |3 Xofis + kT ) (X,/5)In(X,/s)

G°({X.}) - T Sal{X.}). (1.18)

Il

The quantity

fis = ps/s (1.19)
will be referred to as the average chemical potential per amphiphile in an
s-aggregate. Note in particular that &; = p, is the monomer’s chemical
potential. In analogy to (1.19) we define ¢ = p2/s.

The second term in (1.18), Sz({X,}), is an entropic contribution ac-
counting for the ‘dispersity’ (or ‘mixing’) of the micellar size distribution.
In particular, S; is maximal when no aggregation takes place (i.e., when
X = X; and X, =0 for all s > 2) demonstrating that micellization, like
any aggregation process, is entropically unfavorable. More generally S, is
lowered by, and thus tends to oppose, any process which results in a smaller
number (or lower polydispersity) of solute particles in the system. Thus,
micellar growth is also an entropically unfavorable process. [It should be
noted that Sy({X,}) involves only the so-called “mixing entropy” of the
solutes. Solute-solvent mixing is not accounted for by Sy because G does
not include the solvent contribution. Solute-solvent mixing is included in
Giot = G+ Gy = G + 3 Nyjty,- The usual, ideal solution, mixing en-
tropy results when we write p,, = p2, +4&T In X, thus adding to (1.18) the
solvent term Nioe 3 Xyl + kT 3 Xy In Xy with Xy = Ny /Nioe:]

1.2.2 THE EQUILIBRIUM SIZE DISTRIBUTION

Expressed in terms of the mole fractions, X, the Helmholtz free energy A
is given by (cf. (1.10), (1.13) and (1.16)),

A= DNy (Xs/s) (43 + kT In(X,/s) — kT (1.20)

5

As noted in the previous section the most probable distribution {X}} is
the equilibrium size distribution, and A(N.V,T,{X}) is the free energy
of the self-assembling amphiphilic system. The most probable distribution
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corresponds to the set of X, which minimizes A, subject to the conserva-
tion constraint Y X, = X. The conditional minimization can be carried
out using the Lagrange multipliers method which, in our case, amounts to
solving

7] A
AX, (Nm [.LX) =0 (alls) (1.21)
with A given by (1.20). Here u is the Lagrange multiplier conjugate to the
constraint X = 3 X, with this later condition determining the numerical
value of p. The use of A/Nyo rather than A4 in (1.21) ensures that p is
intensive. This follows from the fact that A and pX Ny, = pN must have
the same dimensions and the same N-dependence, and that A ~ N. We
shall soon see that g is simply the amphiphile’s chemical potential.
From (1.21), (1.20) and (1.14) we find that for all s

X} = s-exp[~s (A — ) /KT] (1.22)

The numerical value of x can be determined by substituting (1.22) into
S {X:} = X and solving the resulting equation for p. Clearly, since the
/i%’s depend on T only, it follows that p = (X, T). From (1.16), (1.19) and
(1.22) we obtain

po= fis=f + (kT/s)In(X,/s) (alls)
5} (1.23)

where it should be understood that here, and hereafter, all X, stand for
their most probable values X7.

The last result reveals that p is nothing else but the chemical potential
of the amphiphiles in the solution which, at equilibrium, must be the same
everywhere in the system. This includes free monomers, for which p = fi1,
as well as amphiphiles incorporated in a micelle of (any) size s, for which
i = ji,. Note also that, consistent with the general thermodynamic relation
G = Np, the equality ps = sfis = sp indicates that p, may be regarded as
the Gibbs free energy of an s-aggregate. Of course, these are just different
but equivalent interpretations of the equality

G=2nsﬂszﬂzsns:Nﬂ (1'24)

Another obvious and common interpretation of (1.23) derives from the
notion that these equalities are the conditions for chemical equilibria in a
system in which all the chemical reactions

sA; = A, (all s), (1.25)

as well as linear combinations of these reactions (see below), take place
simultaneously. In the present context A, stands for an s-aggregate and
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Ay for a monomer. Of course one could start as well from (1.25) which
implies y, = sy as the description of dynamical chemical (association-
dissociation) equilibrium in the self-assembling solution. Then using (1.16)
for u; we obtain the law of mass action [30-33,62-64]

G = emolo it~ ) 1) = i, (1.26)
Here X /s corresponds to the concentration of “product”, and X, to that of
“reactant” (raised to the power s, the “stoichiometric coefficient” in (1.25));
finally, ug — su$ is the standard free energy change for the association “re-
action.” This “equilibrium quotient” result is entirely equivalent to (1.22),
since pp = gy = p$ + kT'In X,. Note, however, that this equivalence does
not imply that the set of reactions (1.25) is the actual self-assembly mecha-
nism in the system. (In fact the simultaneous association of s molecules to
form an aggregate is a highly unlikely kinetic event.) The multiple chemical
equilibria could similarly be described by other sets of independent (but
coupled) reactions, e.g., the step-wise association processes

A,y + A; = A, (127)
for which pg = py_1 + 1, consistent with (1.23). The equilibrium constants
L corresponding to (1.27) are simply related to the K,’s, via

X&/S K
= = 1.28
XIXS_]_/(S*—].) KS—I ( )

Ls

Clearly, this relation, as well as any other expression of the law of mass
action corresponding to a set of independent chemical reactions such as
(1.25) or {1.27), implies the same equilibrium values of X, as those given
by (1.22).

1.2.3 FrOM MONOMERS TO AGGREGATES——THE CMC

The sudden appearance of micelles at a certain monomer concentration (the
CMC) and the (near) constancy of the free monomer concentration upon
further increase in the total amphiphile concentration (see Fig. 1.1), resem-
ble a phase transition—in which the micelles play the role of a condensed
phase and the free monomers the vapor (or the solute). This cooperative
behavior indicates that even the smallest micelles formed contain a fairly
large number of molecules, typically several dozens. The existence of some
minimal aggregation number, m, can be explained by microscopic molecu-
lar packing considerations, as discussed in Sec. 1.3. In this section we shall
only consider the thermodynamic implications of this fact.

As noted with regard to (1.18), the association of monomers into aggre-
gates involves entropy loss. Thus, spontaneous aggregation must be associ-
ated with an “enthalpic” gain. More explicitly, from (1.22) or (1.26) we see
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that unless ji¢ < p (i.e., K, > 1) for at least some s > 1, X; will be much
smaller than X, for all X and T. If only micelles of sizes s > m appear,
then clearly fi2 > p¢ for all aggregates in the “gap” 2 < s < m, whereas
ji° < pg for s > m. The s-dependence of fi§ for s > m determines the size
distribution of the micelles as will be discussed in more detail in the next
section. For our present goal, which is to characterize the CMC regime, it
is both convenient and sufficient to assume for the moment that micelles
of only one size, m, are formed in the system. Thus, the solution contains
either free monomers at concentration X, or m-mers at concentration X,
with X1 + X,, = X. In terms of the i’s this scheme amounts to setting
ji% = oo for all s except s = 1 and m; it corresponds, approximately, to a
system of amphiphiles whose overwhelmingly preferred aggregation geom-
etry is spherical (Secs. 1.2.4 and 1.3.2).

The onset of micelle formation and the corresponding saturation of the
free amphiphile concentration takes place over a narrow (yet finite) range of
the total concentration X. Thus, any X or X; in this range may be taken as
an operational definition of the CMC. Generally, we can specify the CMC as
the (monomer or total) concentration corresponding to a solution in which
a certain fraction o of the amphiphiles are micellized. (It is common [30] to
use ¢ = 0.01—0.1; yet, larger values, e.g., ¢ = 1/2 are also common and for
mathematical purposes are often more convenient.) Let us denote by X =
CMC, X, = (1- cr)f( and X,, = o X, the critical values of the total, free
and micellized amphiphile concentrations, respectively. Then from (1.26)
we get

I

In(CMC) = - (;—”}T) (4§ ~ ) /KT + ——1n {m(lia)m]

m = — o) JKT (1.29)

In passing to the second equality we have taken into account that, typically,
m =~ 20 — 100 [30-33]. Neglecting the second term in the first equality is
justified (for all reasonable o} since generally (u$— /2, }/kT > 10. Choosing
& to be small implies that the free monomer concentration and the CMC
are the same, i.e.,

%, ~ CMC = exp [ (1§ — ji2,) /KT] (1.30)

To demonstrate the sharpness of the transition from free monomers to
micelles at the CMC we first use (1.26) to write

k=¥ Y=k, (Xl/)“{l)m (1.31)

Using X;/Xm = (1 — 0)/o we find

-1

Befe@ e
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where & = mo /(1 — o) is of order 1. This very simple relation shows clearly
how the fact that m > 1 is reflected in the monomer concentration. Below
the CMC, i.e., as long as (X1/X) < 1, the second term in the denominator
on the r.h.s. (right hand side) of (1.32) is negligible, so that 8X,/0X =~ 1
and X; ~ X, ie., all the amphiphiles are free monomers. On the other
hand, once X1 exceeds, even slightly, its CMC value Xl, we find X, /0X ~
(X,/X1)™ ! =0, and hence X; ~ X = constant. As a numerical example
consider, say, a surfactant (not very different from 5DS) for which CMC
o~ f(i = 107° and m = 50 (suppose o = 0.1 so that X’l = IOXm). It
follows from (1.31) that when X; = 0.9}1’1 for instance, X, = 107X is
still negligible. On the other hand, even at very high concentrations, e.g.,
X = 1000 CMC = 1000X,, the monomer concentration has only increased
to X; ~ 1.15X,.

Most of the free energy gain associated with amphiphile packing in a
micelle reflects the preference of the amphiphile’s hydrocarbon chain for
the hydrophobic environment inside the micellar core, as compared to the
aqueous environment of the free amphiphile. The CMC or, equivalently,
the saturation concentration (solubility limit) of free monomers, decreases
exponentially with this preference which is measured by Aj° = uf — i?;:
see (1.30). For most amphiphiles Af° increases nearly linearly with the
amphiphile chain length [30].

It should be noted that relative to X, the sharpness of the monomer-
micelle transition depends entirely on m. However, the absolute width,
i.e., the concentration range characterizing the transition, depends on X
as well. The lower is the CMC, the sharper is the transition. The depen-
dence on m reflects the cooperativity of the transition. As m increases,
the transition resembles more closely a real, first order phase transition, in
which the micelles correspond to a condensed phase, and the monomers are
the vapor. Several treatments of micelle formation are based on this anal-
ogy [57-59]. Such treatments can account for the behavior at the CMC and
for monomer-aggregate coexistence. On the other hand, since the micelles
are regarded as macroscopic phases, the size dependence of their thermody-
namic properties is necessarily ignored (corresponding to Sg = 0 in (1.18)).
Consequently, this “microphase” view of the micelle is, for instance, inad-
equate for discussing micellar growth.

Although the above technical discussion has been limited for convenience
of illustration to a monodisperse micellar system, all the qualitative conclu-
sions remain valid when larger micelles are also possible. We shall comment
briefly on this point in the next section.

1.2.4 MiceLLAR GROWTH

Micellar aggregates appear in various shapes and sizes, depending on the
molecular nature of the constituent amphiphiles (Sec. 1.3) as well as on
the total concentration and other thermodynamic parameters. There is,
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however, one basic structural feature commonly shared by all aggregates:
the width (diameter) of their hydrophobic core is always on the order of
the amphiphile’s molecular length. More precisely, since holes within the
hydrophobic region are energetically intolerable, the core diameter cannot
exceed 2/ where | is the length of the fully stretched hydrocarbon tail,
cf. Fig. 1.6. Consequently, at least one linear dimension of the hydrophobic
core in all aggregates is of order {. This simple notion is essential for un-
derstanding micellar growth, and suggests a classification of the aggregates
into three general categories as follows:

1. Globular aggregates—in which all three linear dimensions are of or-
der . A spherical micelle of radius R < [ can serve as a prototype of
this class.

2. Rod-like aggregates—in which two dimensions, those perpendicular
to the long (rod) axis, are of order I. A cylindrical micelle of radius
R <! and length h > 2! is the typical example of this class. Such mi-
celles are often described as spherocylinders, i.e., as cylinders capped
by hemispheres at their two ends (Fig. 1.6). As we shall see below,
end effects play an essential role in micellar growth; however, the
structural details of the ends are (qualitatively) irrelevant.

3. Bilayers—in which only one dimension is of order I, namely, the thick-
ness, which cannot exceed 2. An oblate, disk-like aggregate of thick-
ness w = 2! and diameter h > 2! can serve as a representative of
this class. Again, a more specific geometry (e.g., a disk-shaped body
surrounded by a semi-toroidal rim) may be assumed for these aggre-
gates; however, as with rod-like micelles, their growth characteristics
are governed by their dimensionality and not by structural details.

Quite generally, micellar growth is driven by the tendency to reduce unfa-
vorable end (“edge” or “surface”) effects. In particular, we shall see that
above a certain concentration disk-like micelles tend to grow, actually to
undergo a phase transition, to infinitely large sheet-like aggregates. An-
other possibility for bilayers to overcome the excess rim energy is to close
upon themselves and hence to form spherical vesicles [30-33]. (Similarly,
rod-like micelles can close into tori [66].) Vesicles serve as model systems for
biological membranes and are interesting entities in their own right. How-
ever, unlike spherical, cylindrical and disk-like aggregates whose growth
characteristics are dictated by the dimensionality and end effects which we
want to emphasize here, other factors control the size behavior of vesicles,
primarily curvature elasticity (Sec. 1.3.3). Thus, except briefly in Sec. 1.2.5,
we shall not discuss vesicles in this chapter.

1.2.4.1 The phenomenological approach [30-33]

As noted already in Sees. 1.2.1 and 1.2.3, micellar growth, like any other
aggregation process in dilute solution, reduces the translational (“mixing™)
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FIGURE 1.7. Schematic illustration of a rod-like micelle, described as a simple
sphero-cylinder.

entropy of the system. For growth to occur, the internal free energy per
molecule within the aggregate must decrease with size; that is, 9 must
decrease as s increases. Consider for example a spherocylindrical rod-like
micelle of s amphiphiles, of which m /2 comprise each of the two hemispher-
ical ends and s —m constitute the cylindrical body, cf. Fig. 1.7. Clearly, such
micelles tend to grow if the molecules feel more “comfortable” in a cylin-
drical rather than in a spherical environment. This is more quantitatively
expressed by the inequality Hoy < fopp, With 2, and A%y, denoting the
average free energy (standard chemical potential) of the molecules packed
in cylindrical and spherical environments, respectively. We similarly define
fp;; as the free energy per amphiphile in a planar bilayer.

The fi7 (g = sph,cyl, bil) play a central role in the phenomenological
approach to micellar growth which we follow largely in this section [30-
33.62-66]. In particular, this approach provides a simple way to analyze
the dependence of micellar sizes on the competition between the tendency
of molecules to organize into larger aggregates (when Biapn > [0y, OF 2, >
£g;;) and the accompanying loss in translational entropy. Note that larger
aggregates also correspond to lower (average) curvature of the hydrocarbon-
water interface. The jif depend on the molecular characteristics of the
amphiphiles, and can be calculated from molecular models or inferred from
experimental data (see Sec. 1.3). In the present discussion we shall be
mainly concerned with their relative magnitudes.

A key assumption in the phenomenological approach is that u of an
arbitrary aggregate can be expressed as a superposition of the jif’s corre-
sponding to its different microenvironments. That is,

B = 8yfi8 (1.33)
g

with s, denoting the number of molecules in microenvironment g- For ex-
ample, for the spherocylindrical micelle containing s — m molecules in the
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cylindrical body and m/2 molecules in each hemispherical end (Fig. 1.7),
we have

ps = silg = (s —m)figy +misy
= sigy +m (fgpn — fg) (s 2m) (1.34)

Similarly, for a disk-like micelle, 1§ can be expressed as a linear combination
of 19, and fi2; . corresponding, respectively, to the s — k molecules in the
central part, and the k£ molecules in the semi-toroidal rim (which for large
s becomes semi-cylindrical [68], i.e., G2, = oy and k ~ s1/2). More
generally, for a (large) d-dimensional aggregate, we can write

12 = 8fi% = spi%, + kT 5s4—1/4 (1.35)

Here jig, = uj_,, denotes the asymptotic standard chemical potential, i.e.,
the free energy per molecule in the main body of the aggregate and 6kT
is a measure of the excess edge (“surface”) free energy. Note that both
i5, and 6 depend on the aggregate’s dimensionality (or, more precisely,
on its geometry), e.g., for spherocylinders (d = 1),72, = oy and 6 =
m (g, — fioy)/kT. A relation similar to (1.35), known as the “capillarity
approximation”, is used in nucleation theory for the standard chemical
potential of a nucleation cluster [42-45]. In nucleation problems, one is
mainly concerned with d = 3, in which case 42, is identified as the “bulk”
chemical potential corresponding to the interior of the cluster, while the
second term in (1.35) accounts for the surface free energy, i.e., 6s%/3 ~
4w R%y, where R is the cluster’s radius and 7 is the surface tension. (Note
that, in general, for a d-dimensional cluster of radius R, the “volume” varies
as R% ~ s and the “surface” as R4—1 ~ sld-1)/d )

1.2.4.2 Dimensionality and micellar growth

Since at least one linear dimension of a micelle is restricted to be of order [,
micellar growth is limited to either d = 1 (as in rod-like micelles) or d = 2
(planar, or disk-like aggregates). Based on the expressions derived for X,
in Sec. 1.2.2 and the simple relation (1.35), one can show that micellar
growth in d = 1 and d = 2 (or, more generally, d > 1) are markedly and
qualitatively different from each other. In particular, we shall see that for
d = 2 a first-order phase transition from finite micelles (or even directly
from monomers) to infinite aggregates takes place at some low amphiphile
concentration, X. On the other hand, for d = 1, the average micellar size
varies continuously with X and remains finite at all concentrations.

Let us first derive the condition for coexistence between a saturated
(albeit dilute) solution containing monomers and finite micelles, and an in-
finite aggregate which, thermodynamically, constitutes a macroscopic con-
densed phase. According to the capillarity approximation and the phe-
nomenological approach described above, the amphiphile chemical poten-

tial (i.e., the free energy per molecule) in the infinite aggregate is ji = fi%..
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If these aggregates coexist in equilibrium with the monomers and finite
micelles, then fi% = pq = fi, and hence

Al = + kTIn X,
B0+ (kT/s)In(X,/s) (s = m) (1.36)

with X, and X, /s denoting the concentrations of monomers and s-micelles
at saturation. For further reference we rewrite the first equality in (1.36)
as =

X1 = exp [~ (A7 — us) /KT - (1.37)

For the second equality we use (1.35) to obtain
X, =s-exp [-55(4-1”“] (s > m) (1.38)

Now the difference between d = 1 and d = 2 (or any d > 1) is apparent.
The sum

X=X+> X (1.39)

converges to a finite total concentration X for d = 2, but diverges ford = 1.
Since (1.36) cannot be satisfied for d = 1, the conclusion is that an infinitely
long, one-dimensional, aggregate cannot coexist with an ideal solution of
finite, rod-like, micelles. Conversely, as we shall see below, for d = 1 the
condition X = X; + 3 X, can be satisfied for all X, with the appropriate
X, for finite rod-like micelles in dilute solutions. (Recall, however, that the
discussion here is limited to the dilute solution regime, where interaction
effects between micelles are negligible; see Sec. 1.4.)

Consider now the d = 2 case (the conclusions apply to all d > 1). Below
saturation, i.e., when X < X, the solution contains only monomers or
finite micelles, because fis < 5, for X, < X,; see (1.36). When X > X
a saturated dilute solution of monomers and micelles (with X; = bk
coexists with infinite two dimensional bilayer lamellae containing all the
other (X — X) amphiphiles: adding more amphiphiles just leads to more
bilayers, without affecting the micellar size distribution {X,}. Thus, X
marks the onset of a first-order phase transition. Note, finally, that for
disk-like micelles the surface term in (1.35), hence in (1.38), varies as si/?
because we have assumed large s (e.g., s > 100); for smaller sizes the
dependence on s is more complicated [68]. In practice, these details are
irrelevant because for systems of bilayer-forming amphiphiles (for which
fiy < i,y ii%,) X is generally negligible compared to the total amphiphile
concentrations of interest. (E.g., for long chain phospholipids § > 5 and
m > 50, implying extremely small X, for all s > m. Furthermore, for these
molecules 1$ — p, > 20, implying negligible Xi; see (1.37)).

The different qualitative behaviors of d =1 and d > 1 aggregates reflect
inverse “hierarchies” of the “surface free energy” and the translational en-

tropy contributions to fi,. Although this important point may already be
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clear from the discussion above, let us consider it from a more explicit ap-
proach, in the spirit of the analysis of Landau and Lifshitz [69]. To simplify
the discussion, we again suppress the effects of polydispersity, assuming
that all micelles are of one size s, hence Xy = 6, X. (We also ignore the
monomers, which are irrelevant for micellar growth; see below.) Thus, using
(1.23) and (1.35), we have

fs = pg+(kT/s)In(X/s)
= A% + kT 6574 4 (kT/s)In(X/s) . (1.40)
Hence, 5
fo _ KT 71 (d-1)/d 5
ds  s? [ bs L (eX)] (1.41)
with b = §/d.

Consider first the d > 1 case. For large enough s, say s > 3, the first term
in the square brackets, corresponding to the decrease in surface free energy
of the system (per molecule) is larger than the second term, In(s/eX),
which accounts for the loss of translational entropy as s increases. Hence,
beyond 3, fis falls off without bound (8ji5/8s < 0), reflecting the tendency
of the amphiphiles to form infinite aggregates. (For d = 2 and typical values
such as b = 5 and X =~ 1073 one finds that [i; starts decreasing already
above 3 = 3.) On the other hand, for d = 1 the surface term is constant,
hence 8fi,/8s = kT/s*|~b+In(s/eX)| vanishes (corresponding to the state
of minimum free energy) for a finite aggregation number, s = X exp(§+1).
In other words, no matter how large the growth parameter (the “surface
free energy™), or the total concentration X, the entropic contribution is
always sufficient to keep the micelles finite. This is a striking manifestation
of the “theorem” concerning “the impossibility of the existence of phases
in a one dimensional system” [69)].

We now turn to consider the polydispersity of micellar sizes. There is lit-
tle to say about disk-like (d = 2) micelles, whose size distribution reaches
its saturation value, as given by the X, of (1.38), already at low concen-
trations. On the other hand, rod-like micelles are characterized by a broad
and X-dependent size distribution, as discussed in the next section. The
main results obtained there are well known [31-33,53,63-68], but the pre-
sentation and emphasis are somewhat different.

1.2.4.3 From short to long micelles—the “sphere-to-rod transition” [31,
64-66]

We consider a solution of amphiphiles preferentially aggregating into rod-
like micelles, which for the sake of concreteness will be treated as sphe-
rocylinders; see Fig. 1.7. Thus, we express fi¢ as in (1.34) or equivalently
(1.35) with d = 1. Upon substitution into either of the general expressions
(1.26) or (1.22), X, can be rewritten in the simple form

X, = se~(@5t8) (g > m) (1.42)
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FIGURE 1.8. Size distribution of rod-like micelles in dilute solution, calcu-
lated using Eq. (1.42) for § = 15,m = 50, and three values of . The to-
tal concentrations corresponding to o = 10724 x 10~° and 2.5 x 10~% are
X =3.77x107%,2.54 x 107* and 6.57 x 1073, respectively.

with & = m(g9, — 22,)/kT > 0 denoting the rods’ growth parameter. (Note

that 72 = Hopn and i3, = ji2,,.) The quantity a can be expressed in several
different but equivalent forms; e.g.,

a = 1/¢" = (@, —p)/kT
In(X1/X1) = (1/s) In(X,/X,) (1.43)

The first equality identifies 1/« as 5*, the most probable aggregation num-
ber, as follows directly from 8.X,/8s = 0 and (1.42). In the second equality
4 is the chemical potential of amphiphiles in solution, cf. (1.22) and (1.23).
In the third and fourth equalities, « is related to the limiting (“saturation”)
concentrations of monomers, X, and s-micelles, X, respectively, cf. (1.36).
From the discussion in the previous section we know that a solution of rod-
like micelles (d = 1) is never saturated. Thus, as X increases, all X, ap-
proach X, very closely but never quite reach these values. Correspondingly
@ is positive and approaches zero as X increases. A typical progression of
Xs-distributions, upon increasing X, is shown in Fig. 1.8. Given the very
simple form of X, in (1.42), one can easily calculate any desired charac-
teristic of the size distribution, such as the averages (s), (s?), etc. The
monomer contribution to these quantities can be included explicitly and
exactly. However, for a number of reasons we prefer to completely ignore
the monomer terms in the discussion of micellar growth. First, this simpli-
fies all derivations. Second, we are explicitly interested in concentrations
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well above the CMC where the monomer concentration is both negligible
and essentially constant, i.e., X > X; = X, = constant. To see this more
clearly, we note that in this concentration regime X; < X; < X, with
X, denoting the monomer concentration at the CMC as given by (1.30),
and X, the limiting concentration (1.37). (From (1.30) and (1.37) we find
X1/X, ~ exp(—8/m) with §/m ranging typically between 0.1 and 0.5.)
We shall see below that at high concentrations s* ~ (s) ~ 1/a >» 1, hence
X1/X, = exp(—a) =~ exp(—1/s*) = 1. Finally, we note that although X,
is often expressed in terms of X, (see e.g., (1.26)), the monomers have no
influence on the micellar size distribution. This is because the growth of
spherical into cylindrical micelles, which is sometimes called “the sphere-
to-rod transition”, is governed completely by the two parameters § and «o; §
measuring the difference in free energy between spheres and cylinders and
« reflecting the total concentration. None of these parameters depend on
monomer properties!
The kth moment of X is defined by

Mk — 2 :sts - e—é' § :Sk+1€_as

s>m s>m
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where in the second equality we have used (1.42). In the passage to
the last equality we have used the approximation D v EXp(ng) =
exp(—am)/(1— exp(—a)) = 1/a, corresponding to the assumption am =
m/s* < 1. Based on this last assumption, we shall replace below the sum-
mations s > m by s > 0.

The zeroth moment is simply the total amphiphile concentration, My =
> X, =X - X, = X = exp(—6)/a?. From M; we obtain the familiar
result for the weight averaged size [31,32,63,64,66,70)

S = D 58X/ X,=2/a=2s"

= 2(Xeb)l/? (1.45)

Similarly, for the width of the micellar size distribution we obtain

1/2
o = [, = @2] " = (9 /v
= (Xé°/2)/? (1.46)
indicating significant size polydispersity, as reflected in Fig. 1.8.

Weight averages are calculated with respect to the “weight distribution”,
P,(s) = X s/ X, expressing the fraction of molecules incorporated in mi-

celles of size 5. Similarly, number averages are calculated using the “number
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distribution”, Pn(s) = ns/ Y n, = (X,/s)/ 3 (X,/s), corresponding to the
fraction of micelles of size s. Thus, the number averaged size is defined and
given by

fl

() > s(Xaf8)] D (Xe/s) = My/M-_,

= lja={(s), /2=35" (1.47)

Combining (1.42) and (1.47), we find

) = ?51)— exp[=s/ (s).] (1.48)

with 3" P,(s) = [ P.(s)ds = 1.
The analogous expression for P, (s) = X,;/X reads

a(8) = (:% exp [—2s/ (s),] (1.49)

w

which is another form of (1.42), appropriate for (s),, > m.

The basic characteristics of 1D micellar growth in dilute solution have
been confirmed by many experiments. For instance, light scattering mea-
surements [7,10] of the average size (hydronamic radius, Ry) of ionic (e.g.,
SDS) micelles corroborate (1.45). In particular, from plots of Ry vs. T it
has been possible to deduce the growth parameter § for different values
of the total salt (NaCl) concentration in the solution. The Coulomb re-
pulsion between surfactant head-groups is partially screened by the added
counterions. Thus, the added salt favors more strongly the cylindrical over
the spherical packing environment (see Sec. 1.3.2), implying larger § =
m( Haph — Beyt) /KT and larger micellar sizes. The above experiments enable
quantitative evaluation of §, which for SDS is = 20.

Deviations from the simple rod growth model described in this section
are obviously expected at high surfactant concentrations, where aggrega-
tion numbers are large and inter-micelle forces are no longer negligible (see
Sec. 1.4). However, deviations are also expected in dilute solutions when-
ever pg is not exactly a linear function of s. This, for example, may be the
result of curvature effects on the electrostatic interactions in ionic surfac-
tant solution [71], the addition of cosurfactants, or the flexibility of large
“worm-like” micelles [78-81]. These issues as well as a more detailed ac-
count of experimental results are discussed by Porte in the next chapter
(see also Sec. 1.2.5 below).

1.2.5 OTHER AGGREGATES

The discussion in Sec. 1.2.4 has been focused on the role of dimensional-
ity in micellar growth. Accordingly, we have considered only three basic
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aggregation geometries: spheres, cylinders and planar bilayers, and their
“combinations”—e.g., as spherocylinders or disk-like micelles with semi-
toroidal rims. Furthermore, it has been assumed that all aggregates in so-
lution have the same geometry. Clearly, this is an approximation, and the
possibility that aggregates of different shapes, e.g., rod-like and disk-like,
can co-exist in solution must be taken into account.

To examine the above possibility, let us consider two aggregation geome-
tries g and g’. (The symbol g has been previously used, e.g., in (1.33),
to denote a “basic” geometry such as sphere or cylinder. Hereafter, we
shall also use it for “complex” geometries such as spherocylinders.) From
(1.22) or (1.26) one expects that if the free energy per molecule in the
two geometries is similar (yet not strictly equal), namely ASg = Hy g,
then X, , = X, 4, i.e, the solution will contain similar numbers of s, g
and s, ¢’-aggregates. This conclusion is valid for small s only; for large
s there will always be a single dominant geometry. This can be under-
stood quite generally using (1.35) from which it follows that for large s,
Apg = pg o — te g = 8[[2, o — i3 4] = sAfZ,, where we have neglected
the surface term in u?. (Recall that fid,, g is the chemical potential in the
main part of the aggregate, e.g., for g = rod, [0, = fioy and for ¢’ = disk,
3,gr = lpy-) Now, suppose for concreteness that A2, = HFroo,g' —fog.g > 0,
Le., g is the (asymptotically) more stable geometry. Clearly, even if Aji2,
is not large compared to kT, this (“monomeric”) difference is largely mag-
nified when comparing large aggregates, for which Aug = sApg, > kT,
implying X, o /X, o = exp[—Aus/kT] < 1.

Free energy differences corresponding to amphiphile packing in different
aggregation geometries, Aji% , are typically a few tenths of kT [30-33].
Thus, if e.g., A2, /kT ~ 0.1 then already for s ~ 100 one expects a single
geometry to prevail. However, for these low aggregation numbers one also
has to consider the contribution of the surface terms (cf. (1.35)) which have
been ignored in the above analysis. Theoretical analyses indicate that in
some systems, at low concentrations, when the micelles are typically small,
the solution contains different micellar shapes, e.g., oblate (or disk-like)
and prolate (or rod-like) particles (68]. It is also possible that a cross-over
from dominance by one geometry to another will take place at some range
of concentration and hence of micellar sizes [55,68,82]. However, since these
behaviors concern small aggregates they are very difficult for experimental
measurements to probe.

The (possible) appearance of micellar aggregates in different geometries
may also be regarded as shape fluctuations of these complex particles. Thus,
not surprisingly, such fluctuations are expected to be more pronounced
when the aggregates are small. Shape fluctuations of different kinds are
also observed for large micelles. Of particular interest in this context are
the “giant” rod-like micelles which, similar to polymers, show a high degree
of flexibility, and are often described as “worm-like” micelles. For these
aggregates the form (1.34), for the standard chemical potential of a (rigid)
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rod-like aggregate, should be extended to include contributions accounting
for the conformational flexibility of the micelle [66]: see Sec. 2.2.3.

Semi-flexible rod-like micelles (even relatively short or somewhat rigid
ones) can bend so that their ends fuse, thus forming a ring (torus) shaped
aggregate. The bending free energy associated with the formation of the
ring (see Sec. 1.3.4) provides a positive, hence unfavorable, contribution to
ps- Furthermore, ring closure involves a loss of conformational entropy. On
the other hand, the ring closure relieves the unfavorable free energy price
corresponding to the two ends, cf. (1.34). Since this last term is the driving
force for the growth of rod-like aggregates, it is clear that the relative
abundance of rings and rods will be determined by the difference between
the bending and the edge free energies [66].

A more interesting case where “bending and fusion” relieves unfavorable
edge free energy corresponds to the formation of vesicles, i.e., bilayers which
close upon themselves to form a nearly spherical bubble [30-33,53,83-87].
Recall from Sec. 1.2.4 that large planar disk-like micelles are unstable. Thus
vesicle formation not only relieves the excess free energy associated with
the rim of a disk-like micelle, but also allows for the possibility of finite
aggregates composed of (non-planar) bilayers. As usual, the size distribu-
tion of vesicles in dilute solution is determined by the variation of ©s with
s, which correlates with the vesicular radius R. In the simplest approxi-
mation it is assumed, based on simple molecular packing constraints (see
Sec. 1.3.2), that the amphiphiles cannot organize into vesicles of radius R
(size s) smaller than some critical value R, (size s.), and that fi3 is constant
for s > s.. Then, clearly, entropy considerations imply that most vesicles
will be of radius R.. (From (1.22) or (1.26) we see that if /i is constant then
Xs/s decreases exponentially with s.) A rather different approximation cor-
responds to assuming that i ~ k/R?* with k denoting the bilayer’s bending
constant {Sec. 1.3.4). Then, assuming that the average area per molecule is
the same for all vesicles, it follows that s ~ R? and hence fi ~ 1/s or p° =
constant. This model yields X, = As[X; exp(Bul)]® = Asexp(sfpy), with
A = exp(—Bu3) = constant (cf. (1.22) and (1.26)). This distribution is con-
siderably broader than the one corresponding to i = constant. It can be
improved by including the {logarithmic) dependence of the elastic constant
on vesicle size, which also improves the agreement with experiment [83].

Finally, we note that so far we have only considered “pure”, that is, sin-
gle component, aggregates. Generally speaking, the formation and growth
of mized aggregates are governed by the same principles prevailing in so-
lutions of pure aggregates {88-90]. However, additional complexities (and
possibilities) arise, because of the new thermodynamic degree of freedom
corresponding to amphiphile composition. Consider, for example, a solu-
tion of two amphiphiles A and B, each of which separately prefers the
formation of aggregates of different geometry. Suppose, for example, that
A prefers a cylindrical environment whereas B has a slight preference for
a spherical geometry. Because of the natural thermodynamic tendency for
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mixing, the two amphiphiles will tend to form mixed aggregates (although
the formation of separate A and B aggregates is also a possibility). Most
likely, the mixed aggregates formed in this system will be rod-like micelles
in which the B molecules will tend to concentrate in the spherical ends,
while the A’s prefer the cylindrical body. In other words, the molecular
compaositions in the two regions of the micelle can be different. (This corre-
sponds to minimizing the packing free energy; see Sec. 1.3.) Furthermore,
the overall A/B ratio in a micelle may depend on its size. These qualita-
tive notions can be cast in standard statistical thermodynamic terms, and
although the mathematical procedure is more involved than in Sec. 1.2.4,
the derivations are rather straightforward. For example, in the case of a
mixed system of rod-like micelles it has been shown that {s),, ~ X?/° as
compared to the (s),, ~ X'/? behavior for pure aggregates [88]. Surfactant
segregation (“repartitioning”) into different regions of a micelle has been
observed in several experimental studies [91-93]. However, the variation of
{8)w according to X?/5 still awaits experimental verification.

Another example of an interesting and extensively studied class of sys-
tems corresponds to binary mixtures of phospholipids (e.g., lecithin) and
‘detergents’ (e.g., bile salts) and ternary systems including cholesterol as
well. Here, the stable aggregation geometry as well as the micellar size de-
pends on overall composition. For example, below a certain bile salt/lecithin
ratio a dilute solution of these molecules consists of stable mixed vesicles.
However, above this ratio the vesicular form becomes unstable and the
solution (becomes transparent and) contains mixed micelles instead. It is
believed that these micelles are composed of a disk-like (bilayer) body con-
taining mainly lecithin, which is surrounded by a bile-salt rim [92].

There are many other examples of multi-component amphiphilic systems
exhibiting diverse structures in dilute solutions. Even richer polymorphism

is found in concentrated solutions, as is amply demonstrated in Sec. 1.4

and in some of the other chapters in this volume.

1.2.6 THE AGGREGATE’S PARTITION FFUNCTION:
RoTATION-TRANSLATION CONTRIBUTIONS

The basic premise of the phenomenological approach to micellar growth
described in the previous sections is that the standard chemical potential
of an s-aggregate, u9, is a weighted sum of contributions from the differ-
ent regions of the aggregate, as expressed generally in (1.33) or, for simple
geometries by (1.34) and (1.35). In the standard treatments of micellar
growth, such expressions are usually postulated, without attempting to
Jjustify or assess their validity. This may be related to the common inter-
pretation of u% as “the internal free energy of the aggregate”, in analogy
to the free energy of a (stationary) macroscopic system. Eq. (1.33) cor-
responds to extending this analogy to macroscopic systems composed of

several subsystems g.
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For finite aggregates some caution is required in identifying the degrees
of freedom contributing to the free energy represented by #9. To this end
we now return to the basic statistical thermodynamic relation (1.12) (or
(1.17))

ug = —kT'In(q,/V) (1.50)

and examine to what extent (1.33) is consistent with the general expression
for the aggregate’s partition function. (Note that £ in (1.50) is in fact p%°
which differs from p¢ of (1.17) by an additive constant.) As stressed at
the very beginning of Sec. 1.2.1, a rigorous calculation of ¢, is hopeless,
because micellar aggregates are such complex systems. Nevertheless, one
could expect that the more modest goal of evaluating the s dependence
of g; is, perhaps, more feasible. We shall see, however, that even this goal
involves some highly nontrivial difficulties.

Let f = t+r+c denote the number of degrees of freedom (d.f.) of a single
amphiphile. For a monomer in solution, ¢ = 3 is the number of translational
(center of mass) degrees of freedom, r = 3 is the number of overall rotations
of the molecule, and ¢ is the number of internal or conformational degrees
of freedom. Consider, for example, a simple amphiphile of the form P-
(CHjy)n-1-CHs, with P denoting the polar head group, which for simplicity
will be assumed to be structureless. It is well known that the flexibility of
these molecules is due, almost exclusively, to internal rotations around C-C
bonds (see Sec. 1.3.3). All other modes, such as C—H and C-C stretches
and C-C-C, C-C-H or H-C-H bends can be treated as frozen. (In fact, all
we need to assume in order to ignore these modes in the present discussion
is to establish that they are not affected by the state of aggregation of the
amphiphiles.) Thus, the number of relevant internal degrees of freedom is
¢ = n — 1, corresponding to the number of internal rotations around the
backbone (non-terminal) C-C bonds.

In a micelle, due to the high packing density and the strong interactions
between neighboring molecules, all f degrees of freedom of a given molecule
are strongly coupled to each other, as well as to those of the other molecules.
The translational motions are strongly hindered, and are more adequately
described as vibrations, with occasional small jumps of the center of mass
(or head-group) of the molecule. Without specifying the exact character
of these motions, we shall assume that they can be treated classically.
(This assumption may not be valid, for example, for the crystalline states
of lipid bilayers.) The overall molecular rotations are even more strongly
hindered. In fact, in the aggregate an overall rotation of the amphiphile,
with a given (frozen) conformation, is obviously impossible; any rotation
Mmust involve conformational changes of both the rotating chain itself and
its neighbors. Thus, in the aggregate, it is more appropriate to describe
the conformational state of a molecule by ¢ +r (rather than by ¢) degrees
of freedom; ¢ numbers specify the bond (e.g., trans/gauche) sequence b =
by---b. of the chain (with {b;} the successive dihedral angles), and r = 3
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numbers specify the overall orientation of the chain, 2, with respect to some
fixed coordinate system. Here, and in Sec. 1.3, we shall refer to o = b, Q2
as the conformational state of the molecule. For concreteness let us assume
that the corresponding r + ¢ d.f. are non-classical.

Based on the division of the s f d.f. of the aggregate into 3s (hindered)
classical translations and (f — 3)s conformational d.f., the aggregate’s par-
tition function is given by

gs = h;s‘sf /dp35[dr35 ZBXP[—,BH ('p3S,T'3S,aS)] (1.51)
! “

where h is Planck’s constant and 8 = 1/kT. r>5 and p3% refer to the 3s
position coordinates and 3s conjugate momenta of the s molecules, and
o’ to their chain conformations. The Hamiltonian can be separated into
kinetic and potential energy contributions

38
i s pr/Zm + W (r*%,a®) (1.52)
i=1
The potential energy W includes all the intermolecular interaction po-
tentials, the internal (conformational) chain energies, and the interactions
between the aggregated molecules and the surrounding solvent. With H
given by (1.52) the integration over momenta in (14?) is immediate, yield-
ing
ZS
s = PES
with A = {h?/27mkT)'/? denoting the de Broglie wavelength of a sur-
factant molecule, m being the amphiphile’s mass. Z, is the aggregate’s
configurational integral

1
Zs = o /dras Esexp [-8W (r3%,a)] (1.54)

(1.53)

Substituting (1.53) into (1.50) we can express the standard chemical po-
tential as a sum of momentum and configurational terms

He = pem+udc
= skTln)3 — kT In(Z,/V) (1.55)

Recall from (1.26) that the micellar size distribution X, is governed by
the s-dependence of p2 — su$ = s(ig — ug) or, equally, by 4f — a2 with r
denoting an arbitrary size. Since i%™ = kT In )3 is a constant, it is clear
that the momentum term in (1.55) is of no consequence for the micellar
size distribution [53]. More explicitly, from (1.26) and (1.55), we see that

) (Z/V) L56)

Xs — SXIS(Zl/V)S
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depends only on the configurational factors in the aggregate’s partition
function. Note also that the momentum terms in (13 satisfy trivially the
phenomenological expression p? = 3 Sgig, cf. (1.33). (This follows imme-
diately from the fact that we can define kT In \3 = fig™ = constant, hence
fg™ = skT In A% = 37 5,1%™.) Thus, not only X, but also the validity of
(1.33) depends only on the configurational part of 1o,

For a given o, the potential energy W (r35, o) can be expressed as a
function of 3(s — 1) relative position coordinates r; — r;, or in terms of
3(s — 1) (independent) coordinates measured with respect to the aggre-
gate’s center of mass. Accordingly, the remaining three coordinates may
be chosen to represent a particular (“reference”) particle, or the center of
mass. Integrating over these coordinates in (1.54) yields a factor of V, im-
plying that Z,/V is volume independent. Note further that the factor V
extracted from Z, is the configurational integral associated with the trans-
lational motion of the aggregate as a whole. Accordingly, Z,/V can be
interpreted as the configurational integral of an immobile aggregate. More
precisely, this corresponds to a non-translating aggregate because there is
ho restriction on its overall rotational motions. For an aggregate with well
defined geometry, g, one can always separate three (Euler) angles, speci-
fying its overall orientation in space [42-45]. Since W, is independent of
these angles, an additional factor of 872, corresponding to the integral over
the three angles, can be extracted from Z,. Thus, Z° = Z,/87%V or, see

(1.54),

Z° 1 fd’ras Z exp [«—BW (735, a5, g)} (1.57)
o5

* = B2Vl

can be interpreted as the configurational integral of a completely station-
ary (i.e., non-translating and non-rotating) aggregate. The symbol ¢ in
W(r3%,a%; g) is meant to emphasize that the integral in (1.57) includes
only those configurations corresponding to a stationary aggregate of a well-
defined geometry g.

From the discussion above, it follows that u%¢ = —kT In Z° is the (config-
uration part of the Helmholtz) free energy of a stationary aggregate. In the
limit of a macroscopic aggregate (s — co) of a single basic geometry g, poc
becomes an extensive thermodynamic property and hence ud°/s — 3¢ =
constant. Similarly, for an aggregate comprising several “macroscopic re-
gions” g we expect p2® — 3~ 8gHg°, as suggested by the phenomenological
representation (1.33). Thus, for large aggregates (1.33) is certainly an ad-
equate expression for ug. Whether (1.33) is equally appropriate for small
micelles is not as obvious, and requires detailed analysis of Z,.

An exact calculation of Z, remains beyond our scope. But even the more -
qualitative question regarding the s dependence of Z, for finite aggregates
is highly non-trivial. For example, it can be shown that the transformation
of dr3S from laboratory to center-of-mass coordinates involves a Jacobian
containing a factor s3 [44]. Additional s* factors arise from the separation
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of the overall rotational motion (see below). These factors in Z, suggest
that x5 contains, in addition to terms varying linearly with s, also terms
proportional to Ins. The In s terms become negligible as s — oo, but for fi-
nite s their inclusion in g can significantly affect the calculation of X [54].
It should be stressed, however, that it is not clear that the s* factors re-
sulting from coordinate and angle transformations account for the entire
s-dependence of Z;. Very similar questions arise in nucleation theory [42-
45], where considerable controversy still exists regarding the most consis-
tent way to separate the external motions of a cluster from the internal
motions of its constituent particles.

In (1.53), based on (1.52) and (1.51), we have expressed g, as a product of
configurational and momentum factors. But this is not the only reasonable
representation of g,. Another one corresponds to a factorization of g, into
a product of translational, rotational and internal partition functions,

Go=gs gitgs . (1.58)

This form has been adopted by a number of authors in their analyses of
amphiphile self-assembly [48-52,54]. We shall briefly consider (1.58) below,
because it clearly demonstrates the (possible) appearance of s* factors in g,.
Eq. (1.58) represents a common factorization of molecular partition func-
tions; namely, for diatomic or polyatomic molecules, it is always possible
to separate out the center-of-mass translation [94]. Neglecting vibration-
rotation coupling, one can also separate a rotational partition function, so
that ¢! corresponds to a vibrational partition function. Similarly, it can
be shown that (1.58) is valid for any aggregate with well-defined center-of-
mass and moments of inertia (i.e., well- defined shape and mass distribu-
tion) [42,43]. Accordingly, we can write

po = pgTR 4+ p! (1.59)
with .
P T = —kTn (¢ ¢ /V) (1.60)
and
27 = <ETlng! (1.61)

The translation-rotation partition function g7 ¢/ = ¢T'® involves six de-

grees of freedom; three corresponding to center of mass translation and
three to the overall rotations of the aggregate when regarded as a rigid
body. Thus, the internal partition function involves 3s — 6 internal po-
sition and 3s — 6 internal momentum coordinates, defined relative to an
aggregate-fixed system of coordinates. Formally, ¢ can be expressed as

1
q:j s pEEE /dp3s—6fdr35—6 Zsexp [—'ﬁH[ (p33—6?r33—6,a33)]

(1.62)
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The s-dependence of this quantity is extremely complicated and generally
unknown except in highly idealized cases. As noted already with respect to
Z4 there are, for example, s-dependent factors associated with the Jacobian
of the transformation from the laboratory to the aggregate-fixed coordinate
system. (Also, the 1/s! factor can be modified, as “part of it” should be
absorbed into the symmetry numbers of the rotational partition function.)

On the other hand, the translational-rotational factors in (1.58) are
simple. The translational partition function is g7 = V/A2?, with A, =
A/st? = (h?/2msmkT)Y/? denoting the deBroglie wavelength of the s-
mer. The rotational partition function is given by gf* = 87%/(A 4 ;)% with
Arot,s = (h? /21 I,kT)Y2, I, being the geometric mean of the aggregate’s
three moments of inertia, e.g., for rod-like micelles I, ~ s7/2. Thus for rods,
say, po TR includes a —51n s term (5 = 3/2 +7/2). Now, if we assume that
the separation pu = 3 Sgltg should be applied to the internal free energy
part only (¢27) in (1.59), then obviously u2 will contain In s contributions.
E.g., for rods, it is easy to see that, instead of uj = sji2, +0kT (setd =1
in (1.35)) we get pd = sl + (6 — 5lns)kT. Using this expression for u?,
one finds a slower than X'/? increase of (s) with total concentration [54],
which can be attributed to the fact that the translation-rotation entropy
decreases with (s) and thus resists growth.

In the classical limit, when all the 3s degrees of freedom corresponding
to molecular translations are classical, g, is given generally by (1.51). In
this limit the two representations (1.53) and (1.58) are equivalent in prin-
ciple, provided the aggregate structure is consistently defined. (This sets
constraints on coordinate integrations in the calculation of partition func-
tions.) For dimers (s = 2) held together by a harmonic potential, this can
be rigorously shown, provided the dimer is “tight”, so that the vibrational
amplitude is small compared to the distance between the two particles. The
generalization to larger s-clusters, even simple ones like a linear array of
“atoms” bound by harmonic restoring forces, is highly non-trivial. Thus,
although we recognize that (in the classical limit) the two schemes (1.53)
and (1.58) are equivalent, we cannot evaluate the exact s-dependence of
9s,q! or Zs. Clearly, both p2¢.= —kT'InZ? and p2! = —kTlng! rep-
resent “internal free energies.” Since we are equally ignorant about their
exact s-dependence (except in one case—see below), the phenomenologi-
cal expression may be arbitrarily applied to either p or u%?. The only
difference is that in the second case p¢ = u%! + TR will contain the
Ins terms mentioned above. In the asymptotic (s — co) limit, the differ-
ence disappears, but for finite aggregates it may affect the calculated size
distribution.

It should be noted that there is one limiting, albeit somewhat hypotheti-
cal regime, where (1.58) is exact, whereas (1.53) is totally inadequate. This
is the case of “rigid” (or solid) aggregates, i.e., aggregates in which all the
intermolecular distances are fixed. Of course, in this case only the external
rotations and translations (i.e., 6 degrees of freedom) can be treated as
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classical. (Hence (1.51) is not applicable.} In this case the internal free en-
ergy —kT In g’ is simply the internal energy of the aggregate, which can be
expressed as a sum of contributions from different microenvironments, i.e.,
S 84€q, with & denoting the energy per molecule in environment g. As a
simple (idealized) example, suppose that a rod-like micelle is a rigid linear
string of s beads, held to each other by nearest neighbor attractive poten-
tials. Then, of course, the internal energy is exactly 2¢, + (s — 2)ey, with
¢; and e corresponding to the energies of the terminal and non- terminal
beads, respectively.

General discussions of rotation/translation vs. internal contributions to
the micelle size distributions are found in the literature as early as 1957,
when Hoeve and Benson [48] considered a factorization of gs, which is vir-
tually identical to (1.58). They calculated g2 assuming a liquid-drop model
of the micellar interior, in conjunction with an estimate of the surface free
energy. Then they determined the size distribution along the lines pre-
scribed in Sec. 1.2.4. This approach has been extended from the canonical
to the constant pressure ensemble by Aranow [49]. A detailed statistical-
thermodynamic analysis, discussing various representations, and consid-
ering (qualitatively) the connection to the phenomenological descriptions
has been given by Wulf [50]. Poland and Scheraga have also explicitly sep-
arated out the “external” (translation and rotation) contributions from
gs, Writing them as proportional to s", with n = 3/2 (from translation)
+5/2 (from rotation) in the case of spheres [51]. (Note that the mean
moment of inertia I, ~ ([alplc)/? scales as s°/2 for spherical aggre-
gates.) These s%/2 factors in g, give rise to Ins terms in u¢ which are
partially cancelled in the Poland- Scheraga theory by contributions of the
same form from Ingl. This partial cancellation between “external” and
“internal” contributions has been considered most systematically by Na-
garajan and Ruckenstein [52], with a rather different set of approximations
invoked to treat the micellar interior. But, clearly, the subtle questions

raised in this section require a great deal of further consideration before
any firm conclusions can be reached concerning the relevant s-dependence

of standard chemical potentials in the phenomenological treatment of self-
assembly.

1.3 Molecular Organization of Aggregates

In Sec. 1.2 we have elaborated upon the central role of x in amphiphile
self-assembly and micellar growth. In the phenomenological approach (see
(1.33)) pQ is expressed as a superposition of the ji’s, with 47 represent-
ing the free energy per molecule in a microenvironment characterized by

a single geometry g. So far, however, we have not considered at all the
microscopic aspects of these quantities, namely, their relation to molecular
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parameters and intermolecular interactions. This is our goal in the present
section. We shall describe several theoretical models for the structure and
thermodynamics of amphiphilic aggregates, and examine their underlying
assumptions from a statistical thermodynamic point of view.

The importance of molecular theories of amphiphilic aggregates extends
beyond their implications for micellar growth. There are numerous sys-
tems in chemistry, biology and other fields where the internal structure
and properties of these systems are of utmost importance. To mention one
important issue, the conformational statistics of the phospholipid molecules
constituting biological membranes play a crucial role in determining the flu-
idity, elasticity and stability of these systems. Thus, Sec. 1.3.3 is devoted to
a discussion of chain packing and conformational statistics of amphiphiles
in various microenvironments. Curvature elasticity of amphiphilic films is
treated explicitly in Sec. 1.3.4. Beforehand, we consider in Sec. 1.3.1 the
separation of head-group and chain (or, surface vs. bulk) contributions to
the free energy. Simple yet instructive and useful models for the structure
and relative stability of amphiphilic aggregates are the subject matter of
Sec. 1.3.2.

1.3.1 SEPARATION OF HEAD AND Tall. CONTRIBUTIONS

In this section we focus on the statistical-thermodynamic properties of am-
phiphiles packed in a microenvironment of well-defined geometry g. Specif-
ically, the thermodynamic system of interest is an (immobile) aggregate,
or portion thereof, containing s amphiphiles which {neglecting end effects)
can be treated as equivalent particles. A large section of a long cylindrical
micelle, a sheet of a planar bilayer, a spherical micelle or a spherical vesicle
are typical examples.

Let F(s,g,T) denote the configurational free energy of the system, with
f = F/s the free energy per molecule. We are interested in the macroscopic
(s — oo) limit, where end effects are negligible and f = f(g,T) is strictly
intensive. (The s — oo limit is clearly an idealization for small micelles or
vesicles.) In this limit f(g, T is identical to the configurational part of a5
as discussed in Sec. 1.2.6, i.e.,

f(g:.T) = ag© (1.63)

Recall also that when s — co the various standard chemical potentials, e.g.,
AgC figy 13 /s OF wu2! /s, differ from each other by uninteresting additive
constants. For notational convenience we shall use f(g, T) rather than any
of the above p°’s.

As usual, F' is related to a configurational integral Z,

F(s,9,T) = —kTIlnZ(s,g,T) (1.64)
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with
Zleq,T) = C/drss Zexp (—-BW (r%%,a%;g)] . (1.65)

As in (1.54) W is the potential energy of the aggregate assuming that the
surrdunding solvent is a continuous medium, so that W is in fact a po-
tential of mean force [94]. Note that Z(s,g,T) corresponds to the s — oo
limit of Z° in (1.57), which is the configurational integral of a stationary
aggregate. Accordingly, we can identify C as 1/87?Vsl. (1/s! corrects for
the overcounting of configurations implied by the (unrestricted) integra-
tion over the position coordinates of the (identical) molecules. The 1/8w*V
factor cancels out after integrating over the center of mass coordinates and
rotation angles of the aggregate.)

As emphasized in the previous section, the calculation of Z is practically
impossible because of the great complexity of amphiphilic aggregates. The
most detailed approaches to date involve computer simulations, mainly
molecular dynamics studies of the kind already discussed in Sec. 1.1 [36-
41,95-105]. However, as stressed there, even these studies involve many
difficulties and must employ drastic simplifying assumptions, as well as
rely on uncertain intermolecular potentials. Some interesting results derived
from computer simulations have been described in Sec. 1.1, and others will
be mentioned in Sec. 1.3.3 below. However, most of the following discussion
will be devoted to simple, but general, phenomenological models (Sec. 1.3.2)
and mean-field theories (Sec. 1.3.3) where the “standard picture of micelles”
outlined in Sec. 1.1 serves as a basic premise.

According to the “standard picture” every aggregate is composed of two
well-defined regimes:

1. A hydrophobic core containing the hydrocarbon tails, packed such
that the monomer {chain segment) density is uniform and liquid-like.

2. A surface region containing the polar head-groups, surrounded by
solvent molecules (including counter ions in the case of charged am-
phiphiles), see Fig. 1.6. The two regimes are separated by a well-
defined interface. The area per head-group, a, at the hydrocarbon-
water interface and the principal curvatures ¢ = ¢;, ¢» of this interface
fully specify the geometry of the aggregate, i.e., g =a,c.

In the above model the head-groups always see the same (rather smooth)
hydrocarbon surface, regardless of the many-chain configuration a® within
the hydrophobic core. Thus, associating rq,-,7s in W(r®$,a®; g) with the
head-group positions relative to the interface, we can write W(r®,a%;g) =
Wi (r33; 9)+Wi(a¥; 735, g). W}, accounts for all the contributions to W from
the head-group (surface) region. That is, Wp = Whp + Whs + Wi + Wyt
includes, respectively, head-group/head-group, head-group/solvent, head-
group/hydrocarbon (tail) and tail/solvent interactions. A simple approx-
imation for W,,, which includes the interactions between the solvent and




1. Statistical Thermodynamics of Self-Assembly 43

those segments of the tails residing at the interface, would be W,, = vA,
with ~ denoting the (effective) hydrocarbon-water interfacial tension and
A = sa being the total surface area. The geometry (g = a,c¢) dependence
of W}, enters mainly through its dependence on a, the ¢ dependence being
weaker.

The tail term W, accounts for all the interactions between chain seg-
ments inside the hydrophobic core. In Sec 1.3.3 we show that W,, which
determines the probabilities P(a®) of the various chain configurations o,
depends strongly on the aggregation geometry, g. On the other hand, the
dependence of W, on head-group positions, 3% is weak. Because of head-
tail connectivity the statistical weights of the a® are correlated with r35.
Imagine, however, that the head-groups were clamped at some fixed lat-
tice points corresponding to their equilibrium positions at the hydrocarbon
water-interface. Then r3% is fully specified by the geometry g = a, c of the
interface, implying W, = W;(a%;g). Similarly, averaging over 3% would
also yield W; = W,(a®; g). Since only small deviations from this behavior
are expected when the head-groups are fluctuating around the equilibrium
positions, we can safely write

W(rsS,a% g) = Wa(r®; g) + Wi(e®; ) (1.66)

It follows from this decomposition that (cf. 1.65)

Z(s,g,T) = Zn(s, 9. T)Z¢(s5,9,T) (1.67)
with
Zn(5,9,T)=C / dr35 exp [~ W) (3%, 9)] (1.68)
Zy(s,9,T) = Y _exp [-fW:(a®;g)] (1.69)
; S

From (1.67) we see that the aggregate’s free energy is a sum of head and
tail contributions, F' = Fj, + Fy with Fj, = —kTInZy, and F; = —kTIn Z;.
Similarly, f = F/s is also a sum of head and tail terms

f(g) = falg) + fe(g) (1.70)

with both f, = Fi/s and f; = F;/s depending on the aggregation geometry
g.

In the next section we describe a phenomenological theory of f(g). The
term “phenomenological” used here refers to a theory which, based on some
basic physical principles and assumptions, postulates a certain functional
form for the free energy (f(g) in our case). In other words, phenomenologi-
cal theories cireumvent the difficulties associated with direct calculation of
partition functions. Quite often in complex systems the evaluation of parti-
tion functions involves so many approximations and assumptions that more
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physical insights are gained from phenomenoclogical models. Nevertheless,
in Sec 1.3.3 we shall describe a mean-field theory for f;(g) which corre-
sponds to an approximate evaluation of Z, and which provides consider-
able insight into the microscopics of chain packing statistics in hydrophobic
environments.

1.3.2 HYDROCARBON DROPLET MODELS

Two phenomenological models for f(g) have largely dominated the discus-
sion of amphiphile packing and micellar size and shape in recent years.
These models, one due to Tanford [30] and the other to Israelachvili,
Mitchell and Ninham (IMN) (31] share many common features but dif-
fer markedly in some important aspects. Consistent with the “standard
picture of the micelle”, both theories treat the hydrophobic core as a liquid
hydrocarbon droplet. More specifically, it is assumed that the hydrocarbon
tails in the hydrophobic regions of the aggregates behave like the corre-
sponding chains in the bulk liquid alkane. Following this assumption, both
models assume that the tail term in {1.70) is a constant, independent of
the micellar geometry, i.e.,

fi(g) = ft = constant . (1.71)

Furthermore, in both the Tanford and the IMN models, the dependence
of fn(g) = fau(a,c) on the area per head-group a is evaluated in terms of
the “opposing forces” (see Sec. 1.3.2.2 below). The difference between the
two approaches is manifested in the different criteria for determining the
optimal aggregation geometry, i.e., the one corresponding to minimal f(g).

In this section we present, in a common language, the basic concepts un-
derlying these different phenomenological models, and comment critically
on the various approximations involved. We shall mainly follow the IMN
approach which provides a simple and elegant (“first order”) scheme for
determining the optimal geometry. The relation to Tanford’s model will be
mentioned at the appropriate junctures.

1.3.2.1 Geometric packing constraints and surface-volume relations

Let { denote the length of a fully extended amphiphile chain. [ scales lin-
early with the number of chain segments, n; e.g., for simple alkyl tails,
—(CHz)n—1—CHj, the length of an all-trans chain is [30] I(4) ~ 1.541.27n.
The volume per chain, v, as measured in the bulk liquid alkane, also scales
with n, e.g., for alkyl chains [30] v(A3) = 27.5 + 27n. Since there are no
holes in the hydrophobic core, its smallest dimension must be smaller than
2l. For instance, in a spherical micelle the radius R cannot exceed the
length of a fully stretched chain, i.e., R < [. The same constraint applies
to the radius R of (the circular cross section of) a cylindrical aggregate.
Similarly, in planar bilayers R < {, where R = D/2 is the half-thickness of
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the bilayer. In the following discussion we shall continue to consider g =
sphere, cylinder and bilayer, the three “basic” geometries.

For a spherical micelle of radius R which contains s amphiphiles, the total
volume of the hydrophobic core is V = (4/3)7R® = sv, and its total surface
area is A = 47R? = sa, implying o = 3v/R. Similar considerations yield
a = 2v/R and a = v/R for cylinders and planar bilayers, respectively. From
the packing constraint R <[ it now follows that the areas per head-group
in the three basic geometries must satisfy

a Z amin(9) = ig G{) (1.72)

with i, = 1,2 and 3 for spheres, cylinders and bilayers, respectively.
(Note i, = 3 — d with d denoting the dimensionality of the aggregate,
cf. Sec. 1.2.4.)

As a numerical example illustrating the significance of (1.72) consider,
say, a 12-carbon tail such as in SDS. Setting n = 12 in the above expressions
for the volume per chain and all-trans length, we find for this molecule
v = 350A% and [ ~ 16.7A. (According to Tanford {30], the first CH; group
of the tail resides mainly outside the hydrophobic core, so that v &~ 32043
and [ = 15.5A, but we ignore these subtleties here.) These values imply that
the minimal area per SDS head-group (see (1.72)) in a spherical micelle is
a = 63A2, and the corresponding lower limits for cylinders and bilayers are
42A? and 21A2?, respectively. The last value, 21A2, is indeed close to the
common estimate of the minimal cross sectional area of (all-trans) chains
in bilayers and monolayers (see Chap. 12).

This example has demonstrated that SDS chains, for example, can be
packed into different types of aggregates, provided the area per molecule,
a, complies with (1.72). We now turn to consider which of these geometries
is the optimal one.

1.3.2.2 The opposing forces

In the phenomenological models f is expressed as an explicit function of a,
" whereas its dependence on curvature c centers only as a correction. Thus,
for the present discussion we shall assume f(g) = f(a,c) = f(a). (We
treat curvature elasticity of amphiphile films, i.e., the ¢ dependence of f,
in Sec. 1.3.4.) Both IMN and Tanford express f(a) as

f(a) fula) + fi
= wal S +fi (1.73)

with f, representing the constant tail contribution, as assumed in (1.71).
The first two terms in the second equality correspond to one of the sim-

plest representations of f;, in terms of the “opposing forces” [30-33]. The

first term, va, is the interfacial free energy associated with hydrocarbon-

water contact, with v denoting the effective surface tension. (Recall that
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va is related to the Wy, term of W), as described in Sec. 1.3.1.) Since va
increases with a, this term tends to reduce the area per head group, and
in this sense corresponds to an attractive interaction between head-groups.
On the other hand, as a decreases, head-group-head-group repulsion in-
creases due to electrostatic or excluded volume interactions, or both. The
second term in (1.73), x/a, is the leading term of the repulsive poten-
tial (per molecule) in a system of ionic or zwitterionic head-groups. The
constant s can be estimated from simple models, or empirically (together
with ) from experimental data [30-33,53]. Many authors have studied the
electrostatic free energy in the interfacial region in a more quantitative
fashion [30,33,55,106-111] based either on solving the Poisson-Boltzmann
equation [55,106-108] or via computer simulations [111]. For the qualitative
discussion here it suffices to represent these effects by the simple form x/a.
If the repulsion is predominantly steric (excluded area), other representa-
tions may be more adequate than £/a, e.g., a van der Waals-like repulsion
Inf1/(a — &), with @ denoting the excluded area per head-group [112].

Let a; denote the area per head-group which minimizes f},(a). From
(1.73) we find that ap, = \/(x/7). The parameters x and (to a lesser ex-
tent) v depend on the nature of the head-groups and the properties of the
surrounding solution (e.g., the ionic strength). Thus ay, is also determined
by the properties of the head-group and the solution, but is independent
of the amphiphile tail. Substituting x = vya} into (1.73), we get

F(@) = 2van + L(a—an)? + fi. (1.74)

The second term here accounts for the excess free energy associated with
packing the amphiphile with an area per head-group a different from the op-
timal area a4. The common estimates of ¥ range between (25-50) erg/cm?
which, at room temperature, correspond to = (0.05 — O.I)kT/A“’. Thus,
for example, if a; = 3042, a = 40A2 and v = 0.05kT/A? we find that the
excess free energy is =~ 0.1kT per molecule.

1.3.2.3 The optimal aggregation geometry

The physical content of the assumption (1.71) is that the chains can adjust
conformationally so as to comply with any packing geometry, at no free
energy cost. The accuracy of this approximation is discussed in more detail
below (cf. Sec. 1.3.3). Subject to this approximation, @ = a; minimizes
not only fu(a), but f(a) = fr(a) + fi as well. Thus, in the IMN model ay,
represents the optimal area per head-group.

The next, and very crucial, step in the IMN model is to assume that in
all aggregation geometries the area per amphiphile head-group is always
@ = ay, thus ensuring that f(a) is always at a minimum (= 2vay + f,).
But the condition a = aj can be satisfied by more than one aggregation
geometry, and is thus not sufficient to determine the optimal geometry. For

example, if for a given amphiphile aj, > 3(v/l), then according to (1.72) the
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FIGURE 1.9. The packing (conformational) free energy of amphiphile tails in
the three basic aggregation geometries, as a function of the area per head-group.
The dashed lines, indicating a constant value for f; for all values of a which are
consistent with the molecular packing constraints, correspond to the hydrocar-
bon-droplet assumption (see text). The full lines represent typical results obtained
from more detailed theories of chain packing in the different microenvironments
(115, 116, 120-122].

molecules can be packed into spheres, cylinders or planar bilayers at the
same free energy cost: f(a = ap). According to IMN the amphiphiles will
preferentially organize in spherical micelles, because for a given total con-
centration, this arrangement maximizes the “mixing” (disperson) entropy
of the system—as discussed in Sec. 1.2.2. If, however, 3(v/l) > ar > 2(v/l},
spherical micelles are unstable because they require a > 3(v/l) > as.
In this case, for similar reasons as above (i.e., maximum dispersion en-
tropy), cylindrical micelles are the preferred micellar geometry. Finally, if
2(v/l) > ap = (v/l), a planar bilayer is the only stable aggregation geome-
try (among the three basic shapes considered). These conclusions are sum-
marized schematically in Fig. 1.9. Figure 1.9 displays also the dependence of
f on a as derived from mean field theories which take into account the vari-
ation of f; with g, i.e., without assuming f;(a) = constant (see Sec. 1.3.3.)
The differences between the minima of the f(a) curves corresponding to the
different aggregation geometries are typically of the order of (0.1 — 0.5)kT,
i.e., of the same order of magnitude implied by (1.74) for @ — ax &~ 10A%.
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We conclude this section with a comment on Tanford’s interpretation [30]
of the (hydrocarbon droplet) assumption f, = constant, which differs di-
ametrically from that of IMN. He assumes that the chains preserve the
same degree of conformational freedom in all the aggregates. In particu-
lar, he assumes that, as in bulk hydrocarbon liquids, the mean end-to-end
chain length, b, obeys b & 0.75 in all aggregation geometries. Combining
this requirement with simple geometric considerations (of the type leading
to (1.72)), one can calculate the values of a corresponding to any aggre-
gation geometry (spheres, oblate or prolate micelles, etc.). Tanford then
uses (1.73) to calculate f(a) for each possible geometry, and the optimal
one is chosen to be the one corresponding to the minimal value of f(a).
In general, the average a corresponding to the stable geometry is different
from ay, ie., ap does not play any significant role in Tanford’s model.

1.3.3 CHAIN PACKING STATISTICS

All the information about chain organization in an aggregate of geometry
g (or portion thereof) is contained in the many-chain distribution function

1
P(ay,az,...,a5) =  exp [-pW(a®, )] (1.75)
t
which gives the probability of finding the s chains in configuration
ap, s -0ag = a. Z; = Zy(s,g,T) is the configurational integral (1.69).
Thermodynamic functions can also be expressed in terms of P(a?®). In par-
ticular, the configurational free energy is given by

Ft = Et —TS; = —kTIn Zt
= 3 P(@®)Wy(®) +kT)_ P(a®)ln P(c¥) (1.76)
as G:S
with B, = 3> s P(aS)Wi(a®) = kT?(8InZ,/8T) and S =

—k 5" P(a®)InP(a®) = kIn Z, + kT(81n Z,/8T) denoting the system'’s en-
ergy and entropy, respectively.

Owing to the great complexity of amphiphilic aggregates, computer sim-
ulations appear to be the only reasonable approach for calculating many-
chain properties related to P{ca®). However, these studies encounter var-
ious kinds of technical difficulties, as noted already in previous sections.
On the other hand, it should be realized that most of the experimental
measurements of chain conformational statistics in micelles and bilayers
involve single chain properties such as bond order parameter profiles or
segment spatial distributions. These properties are determined by the sin-
glet probability distribution function (pdf) of chain conformations P(a),
which gives the probability of finding a given chain in conformation o, re-
gardless of (i.e., averaged over) the conformations of all other chains. The
singlet probability of finding chain 1, for instance, in conformation a; = a
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is given by
Pla)= Y Plaas,-as) (1.77)
az, 08

In addition to conformational properties, P(a) can be used to calculate,
in the mean-field approximation, any thermodynamic function of interest
(see below).

The calculation of P(a) and derivable conformational and thermody-
namic properties is the central objective of the mean-field (or “single-
chain”} theories of chain packing in micelles and bilayers. Several authors,
beginning with Marcelja’s study of lipid chain packing and phase transitions
in bilayers [113], have formulated such theories, differing from each other
in various respects (e.g., lattice vs. non-lattice models) but also sharing
some common important features (e.g., the assumption of uniform liquid-
like hydrophobic core) [113-128]. The common and discrepant aspects of
the various approaches have been critically analyzed elsewhere [121].

In the discussion below, we follow closely the approach described in
[120-126]. Our goal is to describe the basic conformational and thermo-
dynamic characteristics of chains packed in microenvironments of different
geometries. Qur treatment is based largely on the application of a simple
explicit expression which we shall derive for P{«). Underlying our deriva-
tion are simple geometric packing considerations which will be discussed
first.

1.3.3.1 Chain packing constraints

Figure 1.10 describes schematically a portion of the hydrophobic core of an
aggregate containing s chains, originating from an interface of total area
A. The local geometry g = a,c1,cp is specified by the average area per
molecule a = A/s and the local curvatures ¢; = 1/R; and ¢ = 1/R3,
with Ry, R, denoting the principal radii of curvature. Let a(z) denote the
average cross sectional area available per chain at (normal) distance z from
the interface. Using ¢ > 0 for convex interfacial curvatures (viewed from
the hydrophobic core), we have

a(z) =a [1 —(c1+ )z + 616222] (1.78)

with a = a(0). Thus, for planar interfaces (¢; = ep = 0) such as in lipid
bilayers or surfactant monolayers a(z) = a = constant. In spherical micelles,
where ¢; = ¢z = 1/R, the area diminishes rapidly towards the center:
a(z) = a(l — z/R)?. For chains packed in cylindrical geometries (¢; =
1/R, ¢ = 0) the area decreases linearly with the distance from the interface:
a(z) = a(l — z/R). On the other hand, a(z) increases with z for chains
packed in concave geometries such as the inner leaflet of a vesicle, the
surface of a water-in-oil microemulsion droplet, or the cylinders constituting
reversed hexagonal phases.
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T(x)

FIGURE 1.10. Schematic illustration of the origin of chain packing (uniform
monomer density) constraints in the hydrophobic core. ¢(x; a)dx is the volume
occupied by (or the number of monomers of) the ‘central’ chain within the layer

T,z -+ dz when the chain is in conformation «. m(z) is the lateral pressure profile
(see text). Also illustrated is a “free chain”, i.e., one with no neighbors around
and which is thus not subjected to packing constraints.

Let ¢(z; a)dz denote the volume taken up by a chain in conformation a,
in the shell 2,z +dz of the hydrophobic core; see Fig. 1.10. More precisely,
in our calculations we identify ¢(z; a)dz/v with the number of (centers of)
segments of an c-chain within z,z + dz, where v is the volume per chain
segment in the bulk liquid hydrocarbon phase. Note that ¢ has dimensions
of area. (For alkyl chains v = 1(CH,) = 27A3, except for the terminal CH,
group which can be counted as two segments: v(CHj) =~ 2v(CH,) [30].)
Except for lipid chains in the crystalline (“gel”) bilayer phase, which is not
of interest here, p; = 1/v represents an upper limit to the monomer density
in the hydrophobic regions of amphiphilic assemblies.

The local monomer density at distance z from the interface is plr) =
pi{d(z))/a(x) where (p(z)) = 2. P(a)¢(z; ). Since p(z) < pp = 1/v we
get

(p(z)) = zP(a)qb(:n;a) < a(x) (1.79)

with the equality holding when the monomer density is uniform and liquid-
like throughout the hydrophobic core. Note, however, that the condition
of uniform density p(z) = p = constant is weaker than p(z) = p1. p must
satisfy p = pi(v/9), where v = [(¢(z))dz = J #(z; a)dz is the chain’s total
volume, and ¢ = f a(x)dz is the available volume per chain.

Following the discussion in Sec. 1.1, we shall assume that the condition of
uniform monomer density applies to “compact” aggregates such as micelles
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and lipid bilayers. An example of a “non-compact” system is a surfactant
monolayer adsorbed at a water-air or water-oil interface [124]. We shall
often refer to monolayers throughout this section, but our interest will
be focussed on compact aggregates. We therefore rewrite (1.79) for the
important case of uniform monomer density,

(¢(2)) =D Pla)p(z; @) = a(z) (1.80)

which represents a key mathematical constraint on the singlet pdf P(a).

The extension of (1.80) to mixed aggregates is straightforward, e.g., for
binary aggregates containing chains of types A and B, in proportions X 4
and Xp = 1 — X 4, respectively, we have

XaS Pa(e)pa(zia)+ Xa ) Pp(B)¢s(z:0)=alz),  (181)
a B

with o« and 3 representing the conformations of chains A and B, respec-
tively. This condition is also applicable to hydrophobic cores which are
packed by segments of chains originating from different interfaces, such as
in lipid bilayers [122].

1.3.3.2 The singlet distribution

The potential energy Wy(ay - -+, ) in (1.75) and (1.76) is a sum of single
(internal) chain energies €(c;) and an intermolecular interaction potential
U(ay ---, ). The internal energies ¢(a) are easily calculated, e.g., in the
rotational isomeric state model [129] (see below) and their contribution to
P(a®) and Z; is simple. On the other hand, the effects of U are complicated,
and their analysis requires a number of approximations.

Qur first approximation is to separate u into two terms Me®) =
Upnc(e®) 4+ Uuye- The first term, Uno(a®) = ¥ Unelei, o;), is a sum of short
range, or more specifically hard-core, repulsive interchain potentials. Thus,
Upe(a®) = co for all configurations where (segments belonging to any) two
chains or more overlap in space; otherwise, that is, for non-overlapping
configurations, Upe(a®) = 0. The second term, Uses, incorporates the long-
range attractive potentials, and is assumed to be independent of oy, -, s
for chains packed at uniform monomer density. In other words, Uy = su is
regarded as a uniform attractive background, with u denoting the average
“cohesive” energy per chain: for simplicity, we shall set u = 0. According
to the above separation of U(a®), the configurational properties are deter-
mined by the hard-core (excluded volume) repulsive potential Upe(@®). This
approximation is inspired by a similar representation of U which underlies
many theories of simple liquids whose structure is known to be dominated
by the short range potential [130].




52 Avinoam Ben-Shaul, William M. Gelbart

From the discussion above it follows that

/ i i 5
W(a®) = { > ;€(a;), non over!applgg a (1.82)
00, overlapping o

Thus, P(c®) = 0 for forbidden configurations, whereas for the allowed con-
figurations P(a®) o« exp[—3Y_ e(e)]. Using the definition of E; in (1.76)
and of P(e) in (1.77), we find that (1.82) implies E; = >, >~ P(a;)e(a;) =
53, Pla)e(a) = s(e). Thus, E, becomes a simple sum of single chain en-
ergies. Clearly, (1.82) does not greatly simplify the calculation of Z;, since
exact counting of the allowed configurations remains an impossible task.
However, it allows the derivation of a simple expression for P(a), as out-
lined next by two approaches.

(i) Mean-field approach
In this approach P(a®) is expressed as a product of singlet pdf’s

P(aa, -, 05) = P(a1) -+ P(as) (1.83)

thus neglecting interchain correlations. Substituting (1.83) into (1.76) and
using Ey/s = )" P(a)e(a) = {¢) we find that the free energy per chain,
ft = F/s, is a simple functional of P(a),

fr=""P(a)e(a) + kT Y P(a) In P(c) (1.84)

with (&) = 3 P(a)e(e) and s, = —kY_ P(c) In P{a) representing the en-
ergy and entropy contributions to f;.

Eq. (1.84) is the exact free energy per chain only when (1.83) is valid, i.e.,
when the chains are independent, as would be the case if the chains are far
apart from each other. Otherwise, (1.84) is an approximation to F/s even if
P(a) is the exact singlet pdf. In general, P(«) is not known, but then f; can
be used as a variational free energy for deriving the best approximation for
P(c): the desired pdf is the one which minimizes f, subject to whichever
constraints P{a) must fulfill.

Consider first the limit of non-interacting (or “free”) amphiphiles corre-
sponding to a system in which a >> af, where ay is the effective cross sec-
tional area of a single, isolated, chain; see Fig. 1.10. In this case, P(«) is not
subject to any constraint, except the normalization condition 3 P(a) = 1.
It can be shown that in this case f; is minimized by [120]

Py(a) = yifexp[fae(a)l ; (1.85)

where y; = ) exp[—Be(e)] is the partition function of the free chain.
Note that the conformational freedom of the free chain is limited by the

existence of the hydrocarbon-water interface, which restricts the chain to
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its hydrophobic side. Clearly, the number of allowed chain conformations,
and consequently yy, depend on the curvature of the interface, e.g., yy is
smaller for micelles (because of their convex interface), as compared to pla-
nar bilayers or inverted micelles. For micelles, bilayers and other compact
aggregates, the free-chain is a hypothetical limiting case. In monolayers it
represents the real chain in the limit of low surface density [124].

In the free chain limit {¢;(z)} < a(z), and (1.79) is trivially satis-
fied. This packing constraint becomes relevant only when a (recall that
a = a{z = 0)) reduces to a value such that (¢f(z)) exceeds a(x) for some
z. (This may be taken as an operational definition of ay.) At smaller a’s
excluded volume interactions become important, and the chains must be
stretched, thus “sacrificing” conformational freedom, in order to satisfy
the packing constraint. The packing constraints (1.79) for monolayers and
(1.80) for compact liquid-like hydrophobic cores are the mathematical ex-
pression of (1.82) in the mean-field approach.

The minimization of f; (see (1.84)) subject to (1.80) yields

Pla) = Lexp [—ﬁe(a) -5 [ a(ta a)dx] (1.86)

with

y= Zexp [—ﬁe(a) - ﬁ/w(z)¢(:c;a)dm] ‘ (1.87)

Here w(z) is a continuous set of Lagrange multipliers conjugate to the
uniform packing constraint (w(z)) = a(z). w(z) can be interpreted as the
lateral pressure or (negative) stress profile; see Fig. 1.10. Indeed, P(c) is 2
generalized isothermal-isobaric probability distribution and y is the corre-
sponding partition function. The integral [ w(z)¢(z;a)dz is a generalized
“PV™ term, representing the “mean-field” ezperienced by a “central” chain
in conformation o due to the presence of close-by neighbor chains. Con-
sistent with this interpretation, we note that the free chain limit, (1.85),
corresponds to w(z) = 0. The integral [ w(x)dx = m; is the lateral pressure
required to squeeze the chains so as to satisfy the packing constraint (1.80).

The numerical values of the w(z) are determined by the packing con-
straints; namely, substituting (1.86) and (1.87) into (1.80), one gets, for
every value of =

Z [#(z; @) —- a{z)]exp [—ﬁe(a) - ﬁ/ﬂ(m’)qb(m’;a)d:v'] =0. (1.88)

a

These “self-consistency” equations can be solved numerically for the n(z),
provided of course that the ¢{z;a) are known. A convenient solution pro-
cedure is to divide the hydrophobic core into L layers of thickness Ax.
Correspondingly the integral in (1.88) (and similarly in (1.86) and (1.87))

transforms into a layer sum, and hence (1.88) becomes a set of L coupled
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nonlinear equations, fori =1,..., Lt

L
> [#i(@) —ailexp | ~fe(a) ~ B) mpi(@)| =0 (1.89)

a g=1

with the correspondence a(z)Ar — a;, ¢(z; a)Ar — ¢i(a) and =(z) — m;.
(Note that both a; and ¢; now have the dimensions of volume.) Clearly, the
7; and hence P(a) depend on the aggregation geometry, which in (1.89) is
fully accounted for by the a;.

The ¢;() depend on the nature of the hydrophobic tails. For amphiphiles
with simple alkyl tails, P-(CHj),_;-CHj3, the rotational-isomeric-state
(RIS) scheme [129] provides an excellent model (P denotes the polar head).
In this model each of the n—1 internal bonds has three possible (“isomeric”)
states, t,g%,g~ (¢ = trans, ¢ = gauche) corresponding to dihedral angles
of 0°, +120° and —120°, respectively. The dihedral angle of bond Cr—Cr4q
is the angle between the planes defined by Cx_1 Cx Ci4a, and Cy Ciyy
Ci42- Al C C C bond angles are fixed (at 112°) and similarly the C-C bond
length (at 1.53A). The energy of a g* bond is ¢, = 500cal/male relative to
€; = 0. Thus the internal chain energy is e(a) = ng(a)es, where ny(e) is
the number of g bonds in conformation . A certain fraction of the 37!
possible bond sequences, {b}, are self-intersecting (non-self-avoiding) and
are discarded from the calculation [122-126].

A bond sequence, b, is specified by the n — 1 rotational isomeric states
of the (non-terminal) C-C bonds, e.g., b = ¢,t¢,...,t (“all trans”), b =
t,t,...,g", etc. Each bond sequence specifies the coordinates of all chain
segments relative to any triad of segments, say P-C;—-Cs, but not the over-
all positional orientation of the chain. We thus characterize an arbitrary
conformation a by = b, 2,6 with € denoting the three Euler angles
specifying the overall orientation of the chain, and § denoting the position
of the head group P within a small interval around the interface. In most
calculations so far, all 37~! bond sequences b have been generated, and
(arbitrarily) sampled with 36 2,6 values for each b, thereby obtaining a
total of 36 x 33"~ !a’s. This number is considerably reduced after discarding
those o which violate either the interface inpenetrability or the chain’s ex-
cluded volume conditions. That is, a chain is restrained from either passing
through the interface (into the aqueous region) or intersecting itself. For
each o generated, one calculates ¢;(a), (@) = ¢(b), and any conformational
property of interest, such as bond order parameters or segment distribu-
tions in space. The ¢;(c) are substituted into (1.89) to solve for the ;.
Then, P(a) = (1/y) exp[—Pe(a) — B3 mi¢i()] is known and can be used
to calculate any conformational or thermodynamic property of interest.

The lateral pressure profile in a planar bilayer composed of -(CHa)1;—
CH; chains modeled by the above RIS scheme is shown in Fig. 1.11a.
Also shown is the density profile of a free chain (¢(z))f, as compared to
the constant density profile in a compact bilayer, (#(z)} = a. Note that
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FIGURE 1.11. (a) Normalized density profiles ((¢(z))¢/a, dashed curves) of free
chains originating from either one of the two interfaces of a planar bilayer com-
posed of twelve-carbon chains, as a function of the distance from one interface.
The dotted curves represent the density profiles in each of the two monolayers
when the chains are packed with an area per head-group a = 33A%. Their sum is
the constant monomer density, as described by the horizontal dashed line. The
solid lines describe the (normalized) lateral pressure experienced by the chains
when packed at the above value of e [124, 125]. (b) Schematic qualitative illus-
tration of the origin of the results shown in (a).
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the shape of m(z) is qualitatively similar to the chain distortion profile
(¢(z)); — a. Similarly, it has been shown that 7(z) increases in magnitude
as a decreases, consistent with increased chain stretching [124]. A pictorial
explanation of these notions is provided in Fig 1.11b.

The singlet pdf resulting from the minimization of f; subject to the
inequality constraint (1.79) is also given by (1.86). As expected, it can be
shown that for those values of z for which ¥ P(a)¢(z,a) = (¢(z)) < a(z),
the packing constraint is irrelevant, and n«(z) = 0. On the other hand, for
those = where (¢(z)) = a(z) we get w(z) > 0. [Note, however, that since,
for all o, [ ¢(z;)dz = v is the constant chain volume, P(a) and hence
also sy = —k Y P(a)In P(a) remain the same if m(x) — m(z)+ constant.
The choice m(z) > 0 is consistent with the interpretation of m as a pressure.
Further support for this choice is given in the alternative derivation of P(c),
outlined in section (ii) below.]

Substituting (1.86) into (1.84) and using (¢(z)) = a(z), we get

Tt

—kTlny — fvr(z)a(:n)dm (1.90)
= —~kTlnz (1.91)

with the second equality (1.91) serving as the definition of z. Since the
integral on the right hand side of (1.90) is a “PV” term, and since f; is a
Helmholtz free energy, the function

e =—kTIny (1.92)

is the Gibbs potential per chain, i.e., it is the (configurational part of the
tail’s) chemical potential. Note also that (1.92) is the familiar relationship
between the Gibbs free energy (here p;) and the isothermal-isobaric par-
tition function (here y). Consistent with these interpretations, it can be
shown (see below) that for a planar layer, where a(z) = a,

g = f r(z)de = —85,/8a (1.93)

is the total lateral pressure acting on the chains.

Recall that f;, as given by (1.84), is an approximation to the system’s
free energy even if P(a) is the exact singlet pdf. On the other hand, it is
not clear if, and to what extent, Eq. (1.86) for P(a) is an approximation,
even though it was derived by the minimization of (1.84). In fact, as will
be demonstrated below, conformational properties calculated using (1.86)
are in excellent agreement with results from many-molecule computer sim-
ulations. An explanation for the high accuracy of (1.86) is provided by an
alternative derivation of P(a) which does not invoke explicitly a mean-field
approximation. We next sketch briefly this derivation.
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(ii) Derivation of P(«) from Z;
From the definitions (1.75) and (1.77) of P(a®), and from the assumption
(1.82) that W;(a®) is dominated by excluded volume interactions, it follows
that
Zy(s = 1,§(e), T)
Zt (sl g T)

Here, §(c) is the geometry of the volume available to the s — 1 chains
surrounding a (central) chain in conformation . Apart from the Boltzmann
factor associated with the self energy e(a), Z;(s—1, §(a), T") is the statistical
weight of conformation a. The shape of the “hole” prescribed by the o-
chain uniquely specifies its area profile ¢(z;a). The geometry, g, of the
s-aggregate is characterized by A(z) = sA(z), cf. (1.78). Similarly, the
geometry of the (s — 1)-aggregate, g(a), will be characterized by Az) —
#(z; ).

Noting that InZ; is extensive (i.e., of order s), expanding InZ;(s —
1,3(a),T) = InZ,(s — 1,{A(z) — ¢(z; )}, T) about A(z) and neglecting
terms of order 1/s, we get [120]

Pla) =

exp [—Be(a)] (1.94)

InZ(s — 1, {A(z) — ¢(z; )}, T) — In Z,(s, {A(z) }, T)
_ dlnZ, §ln Z; _
T TTas ]d“‘" (6A($) ) ¢(zi0)

B =f f dom(2)d(z; ) (1.95)

Here, py = ~kTO(In Z,/85) a(z), = (OF;/85) a(z),r is the chain’s chemical
potential, and the functional derivative
§1ln Zg éFt 5ft

(@) = 53m) T TiAw) T se() (1.96)

is the lateral pressure profile. Substituting (1.05) into (1.94) we regain P(«)
as given by (1.86), with a rigorous thermodynamic interpretation of w(x)
as the lateral pressure and of Gu; = —kT Iny as the Gibbs free energy per
molecule {cf. (1.92)). Consistent with this interpretation, one can derive
additional useful relations, e.g.,

lny

i = a(z) (1.97)

éx(z) ~  ém(z)

which, using (1.87), is recognized as the packing constraint (1.80) in its
more explicit form (1.88). Note also that the integral (over z) of (1.96)
describes —8f;/8a for the case da(z)/da = 1, thus leading to (1.93).

The key step. in the above derivation is the assumption that g(a) is
uniquely specified by A(z) — ¢(z; @). This implies equal statistical weights
for all conformations with the same {¢(z;a)} regardless of their exact
shape. (The internal energy e(a) is treated exactly.) A direct way to test
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FIGURE 1.12. C-D bond order parameter profiles of Cg chains packed in a planar
bilayer—the area per head-group is a = 25A2 [120]. The triangles represent the
experimental results of Seelig and Niederberger [131], the squares correspond to
the molecular dynamics simulations of van der Ploeg and Berendsen [95] and
the diamonds describe the results of Gruen’s mean-field theory [116]. The circles
describe the results obtained [120] by the mean field theory described in the text.

the accuracy of this prediction and hence of (1.86) is by comparison with
computer simulations.

Figure 1.12 shows four C-H orientational bond order parameter profiles,
Sk, of -(CHy)s—CHj chains, packed in a planar bilayer with an area per
head-group a = 25.5A2. The order parameter of C~H bond is defined by

Sk =Y _ P(a)Py(cosbi(a)) (1.98)

where Py(z) = (322 —1)/2 is the second-order Legendre polynomial. 85 (c)
is the angle between bond Cj—H of a chain in conformation & and the
“director”, i.e., the normal to the hydrocarbon-water interface. In the limit
that all chains are fully stretched (i.e., all-trans) and are normal to the
interface, 5y = —0.5, since the C—H bonds are then parallel to the interface.
On the other hand, for a random distribution of bond orientations, Sk = 0.
The C-H bond order parameters are simply related to Si, the skeletal (C—
C bond) order parameters, via S = —2S5k. S is defined as in (1.98) but
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with @) denoting the angle between the director and the vector connecting
carbons Ci_; and Cg4).

One of the curves in Fig. 1.12 represents the experimental data of Seelig
and Niederberger, obtained from magnetic resonance measurements of the
quadrupole splittings of selectively deuterated C-H (i.e., C-D) bonds [131].
These results were accurately reproduced through many-chain molecular
dynamics simulations by van der Ploeg and Berendsen (95], who employed
realistic intra- and inter-chain interaction potentials. Their results, corre-
sponding to a = 95.5A2 are also shown in Fig. 1.12. The value of a is
the only input parameter which has been used to calculate the third S
profile, as outlined above. More explicitly, this value of o was used to cal-
culate P(a) of (1.86) by solving (the discretized) self-consistency equations
(1.89) for Cq chains modeled by the RIS scheme (120]. The agreement be-
tween the MD results and the (much simpler) calculations based on (1.86)
is obviously excellent. Similar agreement is found with respect to other
conformational properties, as well as for average chain energies (e), and
entropies s, = —k Y P(a)In P(a). The fourth Sy profile shown in Fig. 1.12
was obtained by Gruen [116], based on an assumed form for P(a) which is
essentially identical to (1.86) (although Gruen's method of calculation was
different).

1.3.3.3 Chain conformational characteristics

Using P(a) one can calculate any single chain property of interest. Further-
more, with the aid of mean-field expressions such as (1.84), it is possible
to calculate and analyze various thermodynamic functions, for instance,
elastic moduli of amphiphilic films, as described in the next section. In this
section we briefly discuss some of the basic characteristics of chain packing
in planar and curved aggregates.

Some basic qualitative characteristics of chain conformational statistics
in micelles and bilayers can be inferred from Fig. 1.11 which illustrates the
conformational distortions experienced by free chains upon close-packing
among neighboring chains. On the average, a free chain is a “random-coil”
with a globular (“turnip-like”) shape. The confinement of the chain to one
(the hydrophobic)' side of the interface includes a certain degree of chain
alignment, affecting mainly the first few chain segments connected to the
interface. This “residual” ordering is clearly reflected in the order param-
eter profile of the free -(CHy)11~CHs chain anchored to the flat interface
of a planar bilayer, as shown in Fig. 1.13. The confining effect of the in-
terface is somewhat more stringent in convex aggregates (such as spherical
micelles), implying slightly larger Sy values of the free chains, as confirmed
by detailed calculations [121]. Similarly, the conformational free energy, Ity
of a free chain in a micelle is expected to be higher than in a bilayer, be-
cause of the greater loss of conformational freedom (see Fig. 1.9). However,
in general, the interfacial restrictions on chain conformational freedom are
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FIGURE 1.13. C-D bond order parameter profiles for Cy2 chains in a planar bi-
layer. The circles correspond to chains packed with area per head-group a = 2542
the solid circles are for chains with gauche energy e; = 500 cal/more, whereas
the open circles are for “athermal” chains, i.e., ¢, = 0. All other data are for
€g = 500 cal/more. The solid triangles represent the results for a = 32A? and the

solid squares for @ = 40A%. The open diamonds are the results for a free chain.
(Calculated by D. Hornreich and by 1. Szleifer.)

considerably less important than those implied by the packing constraints
(¢(z)) = a().

As the area per chain in a bilayer decreases, the chains are further
squeezed and stretched compared to their free state, resulting in increased
values of Sk, cf. Fig. 1.13. Recall from Sec. 1.3.2 that ¢ = v/R in a bi-
layer, where v is the chain’s volume and R is the bilayer’s half-thickness.
The minimal area per chain, @min, corresponds to fully extended, all-trans,
chains so that amy, = v/l, where [ is the chain length. (For alkyl chains,
@min = 21A2.) The initial plateau, followed by a rather rapid fall, character-
izing S in bilayers, can be explained as follows. If the chains were infinitely
long we would obviously expect Sy = constant, since a{x) = constant. How-
ever, since the chains are finite, at some point (say, £} down the imaginary
cylinder implied by a(z) = a, they begin to terminate with some distri-
bution of chain ends. Beyond %, increased conformational freedom (larger
effective a) is available to the “dangling ends” of the chains which have not
yet terminated, resulting in lower Sj values for the large k [120-122].




