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Preface 

 Intended mainly for undergraduate chemistry majors, this book contains most of 

the topics generally taught in classical thermodynamics courses, yet, frequently 

supplemented and further interpreted based on elementary statistical thermodynamic 

theory. We mainly base our choice of topics, their order of appearance and mode of 

presentation, as well as the solved problems appearing in the main text and at the end of 

each chapter, on our many years of teaching this beautiful (but hard to grasp) subject to 

generations of students. While the prevalent tradition prescribes to teach separately and 

successively classical and statistical thermodynamics, our approach here is far more 

liberal. Thus, wherever they seem helpful to the student, we integrate or even precede the 

introduction of the underlying statistical-molecular basis to the macroscopic 

thermodynamic phenomena. In particular, we have noted that many students (and not 

only chemistry majors) find it difficult to assimilate the formalism of classical 

thermodynamics, and hence are unable to appreciate its power and beauty.  Introducing 

concepts such as heat and work, the first law of thermodynamics, the efficiency of heat 

engines, or the classical formulations of the second law are still rather straightforward.  

To contrast, introducing a new state function called entropy, S, based on the conclusion 

that the ratio between the reversible heat increment revdQ  and the absolute temperature, 

T  , i.e., /revdS dQ T , is an exact differential leaves most students speechless. Adding 

to this conclusion the common saying that “entropy is a measure of disorder" – without 

providing its statistical-molecular origin – only adds to the student's confusion. Lacking 

the molecular-level basis and the statistical interpretation of entropy undermines the 

ability to appreciate the enormous fundamental importance and elegance of the entropy 

and related thermodynamic functions and phenomena, such as free energies, phase 

transitions, and chemical equilibrium.   

 With these notions in mind, we find it more logical and physically intuitive to 

introduce the concept of entropy based on its molecular-probabilistic interpretation and 

definition following the work of Boltzmann, Gibbs, and Maxwell. On this basis we shall 

follow (i.e., in a reversed chronological order) to derive the Clausius inequality and the 

classical statements of the second law of thermodynamics as originally formulated by 

Clausius and Kelvin following Carnot’s and their own studies of heat engines. We turn to 
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discuss the statistical and classical properties of entropy and their reflection in the second 

law of thermodynamics in Chapters 5-7, where we also introduce the Maxwell-

Boltzmann probability distribution, the canonical partition function, the notion of 

fluctuations, and several other elementary statistical thermodynamic concepts. Earlier, in 

Chapter 4, we present the first law of thermodynamics and the balance of heat and work 

in various thermodynamic systems and processes (transformations). Chapter 3 provides 

the basic mathematical constructs of thermodynamic state functions and the physical 

classifications of systems and processes. Still earlier, in Chapter 2, we discuss the 

microscopic origin of inter-molecular forces, and demonstrate their thermodynamic 

consequences as reflected in the equation of state of real gases. Chapters 8-20 are 

concerned with the traditional subjects discussed in thermodynamic textbooks, such as 

phase transitions, chemical equilibrium, and the properties of mixtures, but also involve 

some less traditional topics, such as self-assembly phenomena or liquid crystals’ phase 

transition.  In most chapters, statistical interpretations are interwoven with the classical 

thermodynamic discussion. 

 Our goal in the opening Chapter 1 is to provide a qualitative glimpse into some of 

the questions, concepts, and phenomena that will be discussed in more detail in 

subsequent chapters. In a rather descriptive fashion – using the phase transitions of a 

binary liquid mixture as an example – we comment on the relationships between inter-

molecular interactions and thermodynamic behavior, emphasizing the frequent 

thermodynamic interplay between energy and entropy. This chapter ends with a brief 

outline of the contents of each of the following chapters in this book. 

 Finally, we are of course aware of the existence of many outstanding textbooks of 

classical thermodynamics, among which are comprehensive and rigorous treatises such as 

Callen’s book, or the shorter and elegant monograph by Fermi. Many other excellent 

books, such as those by Denbigh, Reiss, and Klotz,  as well as many physical chemistry 

textbooks that focus on chemical thermodynamics, address most of the material discussed 

in the present book, some of which in greater detail.  There are also numerous superb 

statistical thermodynamics textbooks, varying in their level of rigor and the kind of 

audience that they address. The scope and depth of many classic treatises of statistical 

mechanics, such as the monumental books of Tolman, Fowler and Guggenheim, Landau 
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and Lifshitz, Mayer and Mayer, and Hill are obviously well above the needs of chemistry 

undergraduates, even advanced ones, and hence beyond the scope of this text. On the 

other hand, we found that many descriptions and analyses that appear in introductory or 

intermediate level textbooks, such as the excellent books by Hill, Reif, Widom or 

Chandler, can be understood by undergraduate students and help them appreciate the 

importance and elegance of thermodynamics. Incorporating ideas from such books into 

the classical thermodynamic theory has played an important role in the development of 

our thermodynamics courses, on which we base the present book. The combination we 

present here of the molecular and statistical interpretations in the classical 

thermodynamic treatment proved attractive to the majority of our students. Their repeated 

encouragement to transfer our many lecture notes, numerous homework assignments and 

(always open books and notes) examination problems, has been the ultimate motivation 

for writing this book.  We wanted to name this book “Molecular Thermodynamics”, 

because as physical chemists, we wished to emphasize the intimate relationships between 

the molecular-statistical aspects of many-molecule systems with their thermodynamic 

behavior. We noted, however, that this name has already been used by McQuarrie in his 

own excellent book, and have thus decided to compromise on a somewhat different title.  

There are several other good books that combine the statistical and classical treatments. 

We think that students and the teacher should have a choice. 
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Chapter 1.  THERMODYNAMICS AND MOLECULES 

 This introductory chapter previews some of the basic concepts and phenomena 

that will be discussed in later chapters, and outlines our approach to their presentation. 

Take a deep breath! This chapter is only intended as a first acquaintance with the subject. 

Concepts that at first may seem obscure and unsubstantiated, will become transparent in 

later chapters. The discussion here will be rather casual and associative, postponing 

rigorous definitions, mathematical proofs, and detailed analyses to Chapter 2 and 

onwards. We shall still assume that the reader is familiar, at least qualitatively, with some 

elementary concepts, such as thermal equilibrium, heat transfer, or mechanical work. The 

discussion also emphasizes the relationships between the thermodynamic properties of 

macroscopic systems, such as pressure  temperature or heat capacity, and the microscopic 

characteristics and inter-molecular of their constituent particles. This notion underlies the 

general approach of this book, whereby statistical thermodynamic interpretations and 

molecular-level insights are interweaved with the more methodical and traditional 

presentation of classical thermodynamics.  Although less systematic mathematically, the 

synergic discussion of classical and statistical thermodynamics is, in our opinion, 

considerably more intuitive and thus comprehensible to chemistry students.  

 Along with a few historical remarks, in Section 1.1  we emphasize both the power 

and elegance of classical thermodynamics, as well as its limitations, and the remedies 

provided by the statistical theory. In this very brief survey, we shall mention some (yet 

hardly a small fraction) of the names of the many great founding researchers of the 

science of thermodynamics. The history of this wide and exciting field has been 

documented in various books as well as in electronic documents. Some of the relevant 

bibliography will be mentioned in the lists of reference closing the chapters. In Section 

1.2 we mention the two basic laws of thermodynamics and the two fundamental 

thermodynamic functions that are directly related to these laws: energy and entropy. 

Using the mixing behavior of two molecular liquids as an example, we qualitatively 

demonstrate the interplay between energy and entropy in Section 1.3. Finally, Section 1.4 

provides an outlook on the rest of the book, where (unlike the casual nature of this 

chapter) the discussion is systematic, progressing methodically from one chapter to the 

next.   
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1.1 Classical and Statistical Thermodynamics 

 Thermodynamics is concerned with the properties of macroscopic systems and 

their changes of state. By definition, macroscopic systems are composed of many 

particles, such as atoms, molecules, paramagnetic spins, or photons. Classical 

thermodynamics provides general relationships between the various state functions that 

determine the mechanical and thermal properties of these systems, as well as  the rules 

dictating how these functions change in the course of different kinds of processes. The 

state functions, such as the energy, pressure, temperature and volume, are so named 

because they are fully determined by the state of a system, irrespective of the way the 

system reached that state, or its history..  

The foundations of classical thermodynamics were established in the nineteenth 

century, based on the seminal works of Carnot, Clausius, Joule, Kelvin, and many others, 

who studied the interplay between heat and work and the efficiency of heat engines. 

Their studies led to the formulation of the first law and second law of thermodynamics, 

and to Clausius’ colossal revelation of a new fundamental thermodynamic function – 

entropy. The beauty and power of classical thermodynamics are largely due to its general 

physical applicability and its mathematical elegance. Based mainly on the first and 

second laws and the knowledge of a small set of independent state functions (e.g., the 

number of molecules in the system, its volume, and the temperature) classical 

thermodynamics provides general mathematical relationships that allow to derive all 

other thermodynamic function of the system of interest.  One example among numerous 

relationships of this kind is the equation, sometimes referred to as the thermodynamic 

equation of state,  

                                   
, ,N T N V

E P
P T

V T

    
     

    
                                 (1.1) 

This equation relates the change in the energy, E , of a macroscopic system containing 

N particles, upon varying its volume, V , at constant temperature, T , to the change in its 

pressure P as a function of temperature at constant volume. The changes accounted for 

by the partial derivatives correspond to infinitesimal transitions between neighboring 

equilibrium states of the system. Remarkably, this equation is valid for any 
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thermodynamic system in equilibrium. Thus, for instance, for a dilute gas obeying the 

ideal gas law  

                                                                     PV NkT                                                   (1.2)       

 Eq. (1.1) yields  
,

/ 0
N T

E V   , indicating that the energy of the ideal gas is 

independent of its volume. Indeed, from experiment we know that the energy of, say, a 

monatomic ideal gas (in reality this is found for very dilute gasses) is given by

(3 / 2) (3 / 2)E NkT nRT  , with  denoting the absolute, or  Kelvin scale temperature, 

/ An N N  is the number of moles, where 236.022 10AN    is Avogadro’s number, 

-1 -18.314 J mol  KR   is the gas constant, and 16 -1/ 1.38 10  erg KAk R N     is 

Boltzmann’s constant.  

  In addition to providing essential theoretical relationships between different 

thermodynamic function, mathematical identities such as Eq. (1.1), are often of great 

practical interest because they supply the means for evaluating hardly measured 

properties based on observables that are more accessible. In this particular case, E can be 

derived using information about the more easily measured quantities ,  ,  P V N , and T . 

More generally, we note that the minimal number of independent observables needed to 

evaluate all other thermodynamic properties is very small. Specifically, only a triad of 

observables, for instance  , ,N V T  or  , ,N V E , or  , ,P V T , suffice to determine all the 

other thermodynamic state functions of a system containing a single chemical 

component. Two component systems involve a minimal set of four observables, e.g., 

1 2 , , ,N N V T  or 1 , , ,N P V T , three-component systems require one additional 

independent observables, etc. The minimal set of independent observables is reduced by 

one when intensive properties – those whose values are the same everywhere in the 

system, such as , T , or the number density, /N V  – are concerned. Thus, only two 

intensive properties suffice to determine the values of all the other intensive properties of 

a single-component system. Using again the ideal gas example, we note that  and T  for 

instance, determine the pressure of the gas, P kT , the average kinetic energy per 

particle, / (3 / 2)E N kT   , and all other intensive properties of the gas. The 

thermodynamic functions whose values are proportional to the size of the system, such as 

T

P
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,  N V  and E , are known as extensive functions. Rigorous definitions of extensive and 

intensive functions will be given in Chapter 3.  

 While useful and elegant, the general thermodynamic identities provided by the 

classical theory yield limited insight into the microscopic underpinnings of 

thermodynamic systems and their changes of state.  Following the realization that matter 

is composed of atoms and molecules rather than consisting of continuous media, during 

the second half of the nineteenth century the gap between the molecular and the 

macroscopic aspects of thermodynamic systems began to be bridged, leading to the 

development of the theory of statistical thermodynamics (or statistical mechanics). In 

addition to providing the means for expressing and evaluating thermodynamic functions 

in terms of the molecular properties and interactions, statistical thermodynamics also 

provides information on fluctuations in the values of these functions around their mean 

values. The notion of fluctuations is altogether absent in classical thermodynamics. It 

should be emphasized, however, that statistical thermodynamics does not replace, but 

rather complements, the classical theory. That is, the thermodynamic relationships in the 

classical theory remain valid in the statistical treatment, with the statistical averages of 

the thermodynamic observables fulfilling the roles of their (non-fluctuating) classical 

analogs, as briefly elaborated below, and in more detail in Chapter 7.   

 Historically, the first significant step toward relating the thermal properties of 

many-particle systems with their particulate nature was the formulation of the kinetic 

theory of gases and the Maxwell-Boltzmann distribution of molecular velocities, in the 

second half of the nineteenth century – well before the structures of atoms and molecules 

were known. The major developments of the statistical theory, establishing the 

relationships between the thermodynamic functions of macroscopic systems and the 

collective behavior of their constituent particles, followed soon afterwards. The most 

remarkable milestones in this development took place in the 1870s. These were the 

statistical definition and probabilistic interpretation of the entropy by Boltzmann, and the 

independent, essentially equivalent definition and interpretation of the entropy by Gibbs, 

who also introduced the concept of statistical ensembles.   

 Statistical thermodynamics provides the means for calculating the probabilities of 

finding a macroscopic system in any of its microscopic states – often referred to as 
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“microstates”. These probabilities, and hence all the thermodynamic properties of 

macroscopic systems can be derived based on one crucial hypothesis – the fundamental 

postulate of statistical thermodynamics – which states that: all the microscopic states of 

an isolated system in equilibrium are equally probable.  Although originally stated before 

the days of quantum mechanics this  postulate is applicable in both the classical and 

quantum mechanical versions of statistical thermodynamics. (Recall, that quantum 

mechanics was formulated roughly fifty years after the probabilistic interpretation of 

entropy.) The classical and quantum mechanical definitions of the microstates of a 

macroscopic system, and the correspondence between them, will be discussed in 

considerable detail in Chapter 5.  At this point we suffice with the statement that the 

quantum mechanical microstates are specified by the complete set of quantum numbers 

of the particles comprising the system, while in classical mechanics they are specified by 

the momentary coordinates and momenta of these particles.  

 By definition, an isolated system  contains a fixed number  of particles, say N

molecules of the same species, within a vessel of fixed volume V , whose thermally 

insulating– also known as athermal – walls prevent the exchange of energy with the 

surroundings, so that its energy, E , is also fixed. The probability of finding this “ , ,N V E

” system in any of its equi-energetic  states, s ,  is thus a constant  

                                                                       
1

sp 


                                            (1.3) 

 where ( , , )N V E   is the total number of microstates of the system in question, so 

that the probability distribution is normalized to unity, 1s
s
p  . Besides its role as a 

normalization factor,  , or more precisely its logarithm, is of fundamental 

thermodynamic significance. Explicitly,  

              lnS k                                                 (1.4) 

is the statistical definition of entropy introduced by Boltzmann1. This equality is a corner 

stone of statistical thermodynamics, which together with the fundamental hypothesis 

                                                 

1 Rather than   Boltzmann used the symbol W , standing for Wahrscheinlichkeit, meaning probability in 

German. We reserve here the letter W for “work”. 
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embodied by Eq. (1.3), provides the basis for the statistical interpretation of the second 

law of thermodynamics, as will be discussed in detail in Chapters 5-7.         

        Most systems of experimental relevance are not surrounded by thermally insulating 

walls, but rather by so-called diathermal walls, that allow the system to exchange energy 

in the form of heat, through particle collisions or radiation, with its surroundings. In 

many cases we are also interested in systems that can change their volume, or are open 

with respect to particle exchange with their surrounding environment. The probability 

distributions of these more complicated systems also follow from Equations (1.3) and 

(1.4). Consider for instance a closed system which, by definition, contains a given 

number of particles (say, all of the same kind) N , within a vessel of fixed volume V , 

surrounded by a heat reservoir of temperature T . When thermal equilibrium prevails, the 

temperature of the system is also T .  The thermodynamic state of this system is fully 

specified by the triad , ,N V T  of boundary conditions.  In Chapter 5 we shall see that  the 

probability distribution of finding such systems in their various microstates follows 

directly from the fundamental postulate of statistical thermodynamics stated above, as 

embodied by Eq. (1.3).  The result is the  Boltzmann distribution 

                                                                      
1 sE

kT
sp e

Q


                                             (1.5) 

where ( , )s sE E N V   is the energy of the system in microstate s , whose value depends 

on the number of particles in the system, and generally also on its volume. For the special 

case of an ideal gas Eq. (1.5) is equivalent to the Maxwell-Boltzmann distribution of 

molecular velocities, that was originally derived based on kinetic consideration, Exercise 

1.x. Like ( , , )N V E  in Eq. (1.3),  ( , , ) exp /s
s

Q Q N V T E kT    ensures the 

normalization of  distribution, 1s
s
p  . More significantly, in analogy to the 

thermodynamic significance of ln  as (being proportional to) the entropy, ln Q  is 

proportional to another central thermodynamic function, known as the work function or 

the Helmholtz free energy , A . A glimpse into the fundamental importance of this 

function will be given in the next section.  

  Thermal equilibrium in a system of given N ,V and T  is a dynamical condition, 

in the sense that heat is constantly exchanged between the system and its surrounding 
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heat bath, resulting in  instantaneous fluctuations in the energy of the system around its 

average value,  

                                                           s s

s

E p E                                                  (1.6) 

Like the equilibrium probabilities, sp , the average energy is a well defined and time-

independent function of N ,V and T . A common quantitative measure of the energy 

fluctuations is the standard deviation,  

                            
222

E E E E E                                                  (1.7) 

and calculated using the same state probabilities used to calculate E  or any other 

property, (Exercise 1.1). Similar definitions apply to the fluctuations in pressure, the 

fluctuations in the number of particles in open systems, etc. [Figure]  

 The concept of fluctuations does not exist in classical thermodynamics but, as 

noted above, the thermodynamic identities of the classical theory still hold in the 

statistical treatment, except that fluctuating functions in the statistical theory replace their 

non-fluctuating averages in the classical treatment. For instance, Eq. (1.1) is still 

applicable to a statistical ensemble of systems each with the same , ,N V T , yet with E  

replacing E  and P  replacing P .  Similarly, in systems characterized by fixed , ,N P T  

the energy and the volume undergo fluctuations, and Eq. (1.1) remains valid with E  

and V  replacing E  and V , respectively. Under most circumstances, the dynamical 

fluctuations in macroscopic systems are negligibly small, explaining the great success of 

the classical theory in explaining most the many relationships among thermodynamic 

functions. This is because the fluctuations are generally proportional to the number of 

particles in the system, N , implying extremely small values of the relative fluctuations, 

e.g., /E E N  , (Exercise 1.2). Similar scaling behaviors correspond to fluctuations 

in other quantities. In certain cases, however, in the vicinity of critical points for instance, 

the fluctuations can become very significant, as briefly mentioned in Section 1.3 and 

further elaborated in subsequent chapters.  
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1.2 Energy, Entropy and the Basic Laws 

 There are three basic laws of thermodynamics. The first law is concerned with the 

balance of energy between the system and its surroundings. The second law distinguishes 

between allowed and processes and those that cannot be realized in nature. The subject 

matter of the third law is the behavior of thermodynamic systems at temperatures close to 

the absolute zero2.  In this section we briefly introduce and comment on the first two laws 

of thermodynamics. 

 The first law of thermodynamics, reading  

                                                            E W Q                                                        (1.8) 

is the manifestation of the law of conservation of energy in macroscopic systems. It was 

first stated in this form by Clausius in 1850, relying on earlier studies of heat engines by 

Carnot and Clapeyron, and the equivalence of heat and mechanical work by Joule, 

Thompson (Lord Kelvin) and Rankin.  This law states that in any process that a 

thermodynamic system goes through, the change in its internal energy, E , is the sum of 

the heat, Q , and work, W , that the system exchanges with its surroundings. In Eq. (1.8) 

W is positive when work is done on the system, e.g., a gas is compressed to a smaller 

volume. Similarly, Q  is positive when heat flows into the system, through contact with a 

hotter body. The internal energy, or simply – the energy of a thermodynamic system – is 

the sum of all the energies of its constituent particles. For instance, the internal energy of 

a molecular liquid includes the kinetic energy of the molecules, their internal (vibrational, 

rotational and electronic) energies, as well as the inter-molecular interaction energies.  

The translational and rotational energies of the system as a whole are not included in E .  

 Heat engines are thermodynamic systems undergoing a cyclic process during 

which they exchange heat with several reservoirs of different temperatures, perform work 

on their surroundings, and return to their initial state at the end of each cycle. In 1824 

Carnot showed that among all the heat engines operating between two heat reservoirs, a 

hot one of temperature 2T  and a cold one of temperature 1T , reversible engines achieve 

the highest possible efficiency, 2/W Q   , as defined by the ratio between the work 

                                                 
2 A fourth law, often referred to as the zeroth law of thermodynamics, states that if systems A and B are 
each in thermal equilibrium with a third system C, they must also be in thermal equilibrium with each. 
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performed and the heat extracted from the hot reservoir, per cycle of the engine. The 

notion of reversibility will be clarified in more detail in Chapter 4. For now suffice it to 

mention that a reversible process is one that can be traced back, such that everywhere 

along the reversed transition the heat and work that the system exchanges with its 

surroundings are of the same magnitudes but of opposite signs to those exchanged in the 

original process. Carnot also showed that all reversible engines operating between 1T and 

2T  have exactly the same efficiency. and that this efficiency is only a function of the two 

temperatures of the reservoirs. This Carnot’s  efficiency is given by 

      
1

2 2

1
W T

Q T
                                                    (1.9) 

Note that in a cyclic process 0E  , so that by the first law, Eq. (1.8),  1 2W Q Q   , 

remembering that W and 1Q , are both negative.  

 In the early 1850s, based largely on Carnot’s principle, Clausius and Kelvin 

postulated two different, yet equivalent, forms of the second law of classical 

thermodynamics. Clausius' version states that a heat engine whose sole result is the 

transfer of heat from a cold to a hot reservoir cannot exist. In other words, such a process 

must involve the investment of work, rather than its production. The inverse cyclic 

process whose sole result is the transfer of heat from a hot to a cold reservoir is possible, 

and does not require work input. The second version of the second law, by Kelvin, states 

that there are no heat engines whose sole result is the extraction of heat from a single 

heat reservoir and its complete conversion into work. Here again, the inverse process, 

whereby mechanical work is fully converted into heat, is indeed possible. These two 

classical statements of the second law are equivalent, as we prove in Chapter 6.  

 Following these developments, in 1862 Clausius realized the existence of a new 

thermodynamic function of state: the entropy S . He also concluded that the total entropy, 

namely the sum of the entropies of a system and its surrounding – which together form 

one large isolated “super system” –  never decreases.  More explicitly, it always increases 

in irreversible processes, but remains unchanged in reversible ones. While in general we 

are interested in system that interact with their surroundings,  irreversible process can 

also take place in isolated systems of finite size, always as a result of the removal of an 

internal constraint. Irreversible process of this kind is, for instance, the spontaneous 
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mixing process taking place upon the removal of a partition separating between two 

compartments of an overall isolated system, each containing a different gaseous species. 

Other spontaneous processes involving an increase in entropy are, for example, the water 

formation reaction occurring when hydrogen and oxygen are allowed to mix and react, 

the flow of heat from a hot to a cold body upon bringing them into contact, or the 

diffusion of ink molecules when a drop of ink is added to a glass of water. Any removal 

of constraint results in a spontaneous process that increases the entropy, once all the 

internal constraints within an isolated system have been removed, the system reaches a 

state of complete equilibrium, at which point its entropy is maximal.  

 The removal of an internal constraint is invariably accompanied by a substantial 

increase of the number of microstates available to the isolated system, as illustrated by a 

simple example in Figure 1.1. This notion is at the base of the probabilistic interpretation 

of the entropy, as mathematically cast in Eqs. (1.3) and (1.4).  The irreversible nature of 

the spontaneous processes ensuing the removal of the constraint is the vanishingly small  

probability that the system will ever revisit in its initial state. Exercise (1.3), demonstrate 

this statement for one simple example. Other examples and a detailed discussion of the 

statistical origin of the entropy will be given in Chapter 5 and 6.  

  As mentioned above, the spontaneous direction of processes that take place in 

non-isolated systems can be derived by regarding the system of interest plus its 

surrounding as one large isolated super-system. Application of the principle of increasing 

entropy to this super-system yields extremum principles that depend on the boundary 

conditions appropriate to the system of interest. Of particular interest are processes taking 

place in systems coupled to a heat reservoir, so that the system temperature at the 

beginning and the end of any such process is the heat reservoir temperature, T . The 

extremum principle appropriate for systems of this kind involves a new extensive energy 

function  

                                                              A E TS                                                      (1.10) 

known as the Helmholtz free energy, or the work function. 

 

 In any spontaneous process taking  the system from an initial state 1 to a final 

state 2, the corresponding change in the work function is always negative, 
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2 1 0A A A    , so that A  is minimal when all constraints have been removed and the 

system has reached complete equilibrium. Among the numerous examples of such 

process are, for instance, the isothermal mixing of two or more different gases or liquids, 

chemical reactions, etc.  Regardless whether heat is absorbed or released by the  system 

in the course of a spontaneous process like this, its final and initial temperatures are 

equal, so that 0A E T S      . On the other hand, as will be shown in Chapters 9, 

when the system undergoes a controlled, reversible, isothermal process then 

maxA W    represents the maximal amount of work that the system can do on its 

surroundings, explaining the origin of the names “free energy” and “work function”.    

 Other extremum principles correspond to systems subjected to different boundary 

conditions. Of special interest are systems that in addition to being coupled to heat bath, 

are also kept under constant pressure, . Spontaneous processes in such systems involve 

a decrease in another thermodynamic function, the Gibbs free energy  

                           G H TS A PV                                          (1.11) 

 where  H E PV   is the function known as the heat function or enthalpy. Here too, in 

any spontaneous process 0G H T S E P V T S            , with G reaching its 

minimum at equilibrium. Furthermore,  is the maximal work that can be extracted 

from a system at constant pressure and temperature, e.g., the electrical work derived from 

the ionic reaction taking place in an electrochemical cell.  Because A and G dictate the 

maximal work that can be derived from macroscopic systems, they are both referred to as 

thermodynamic potentials.  

  

P

G
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1.3 Intermolecular Forces Influence Thermodynamic Behavior 

 A subtle interplay between energetic and entropic preferences underlies the 

outcomes of most thermodynamic phenomena. The balance between these – generally 

opposing – tendencies plays a central role in thermodynamic phase transitions, chemical 

reactions, surface adsorption, molecular self-assembly, and numerous other physico-

chemical processes. In this section, as a preview to this central thermodynamic issue, we 

briefly and qualitatively consider one familiar phenomenon: the mixing of two partially 

miscible molecular liquids. The qualitative analysis of this issue is also intended to 

highlight the intimate linkage between the molecular and macroscopic aspects of 

thermodynamic phenomena.  

   A schematic temperature-composition diagram describing the phase behavior of 

two  partially miscible liquids, say A and B,  is illustrated in Figure 1.1, with BX X  and 

1AX X   denoting their respective molar fractions. Specific (though less symmetrical) 

phase diagrams describe, for instance, the binary mixture of water and phenol (C6H5OH), 

or that of nitrobenzene (C6H5NO2) and n-hexane (C6H14). Delineated by the convex solid 

curve – known as the coexistence (or binodal) curve  – the X T  plane in Figure 1.1 is 

separated into two distinctive regions. Everywhere outside this curve, the two 

components mix homogenously with each other, forming one spatially uniform liquid 

phase. On the other hand, the area enclosed by the coexistence curve marks the two-

phase (or biphasic) region, within which the mixture breaks up into two phases of 

different compositions, coexisting in equilibrium with each other. Within each phase, the 

chemical composition, and all other intensive physical properties (e.g., density, color, 

refractive index) are spatially uniform. The solid blue circle at the top of the coexistence 

curve marks the critical point, specified by the critical temperature cT  and the critical 

composition cX . In the nitrobenzene/n-hexane mixture, 6 5 2(C H NO ) 0.62cX   and 

293cT K  ( 020 C ), and in the phenol/water mixture 6 5(C H OH) 0.1cX   and 340cT K  

( 067 C ). 

 The phase diagram in Figure 1.1 typifies mixtures where, on energetic grounds, 

the two molecular components prefer to stay segregated. Their reluctance to mix is due to 

the energetic barrier associated with the formation of A B  contacts in the mixture, 
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replacing the A A  and B B  prevailing in pure A  and B  liquids.  In analogy to the 

energy change in a chemical reaction of the form 2AA BB AB  , a quantitative 

criterion to the energetic cost of mixing A and B molecules is given  by 

                                                       2 ( )AB AA BBw w w w                                        (1.12) 

where AAw , BBw , and ABw  denote the depths of the intermolecular interaction potentials 

between the pairs of molecules A A , B B , and A B , respectively. As illustrated in 

Figure 1.2, interaction potentials are measured generally with respect to a reference state  

of zero energy associated with infinite distance between the interacting species. This 

means that AAw , BBw , as well as ABw  are all negative, because the interaction potential 

between any pair of electrically neutral molecules (including seemingly “repelling” pairs 

such as oil and water, for instance!) is always attractive, becoming repulsive only at very 

short distances.  

 Mixing is energetically unfavorable when 0w  . Note, however, that this does not 

mean that ABw  must be larger than both AAw  and BBw , only  larger than their arithmetic 

average ( ) / 2AA BBw w  which holds true for many pairs of molecules.   On the other 

hand, mixing is generally (though not invariably – delete?) favorable on entropic 

grounds, because the number of spatial arrangements available to A  and B molecules in 

the mixture is far larger than prior to their mixing, (Exercise 1.4). The resultant of the 

conflict between the energetic and entropic preferences of the mixture depends on 

temperature and composition.  The role of temperature is largely accounted for through 

the ratio /w kT , expressing the potential energy cost of mixing, which is of order w  per 

molecule, relative to the average kinetic energy per molecule which is of order kT . In 

later chapters we shall show that kT  is also on the order of the entropic contribution to 

the free energy, per molecule. 

 If / 1w kT  ,  as is the case for instance with oil and water at ordinary 

temperatures,  mixing is highly unfavorable, and the two liquids remain segregated.  The 

opposite limit, where / 1w kT  , corresponds to two liquids, e.g., Benzene and Toluene, 

that tend to mix with each other in all proportions. The case of partially miscible liquids 

described in Figure 1.1, corresponds to mixtures that are fully miscible with each other at 

temperatures above the critical temperature, cT , but not below this temperature. Below 
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cT  the two liquids mix uniformly on both sides of the coexistence curve, but not within 

the two phase region.  In the vicinity of the critical point the opposing entropic and 

energetic preferences balance each other, with ckT  and w  being of comparable 

magnitudes. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Schematic phase diagram of a mixture of two partially miscible liquids.  The 
dashed line denotes a transition from point a to b through the two phase region, whereas 
the dash-dotted curve delineates a continuous transition via one phase throughout. 
  

To illustrate the experimental content of the phase diagram in Figure 1.1 let us 

follow the succession of state changes along the two different trajectories leading from 

point a to point b. The first trajectory, represented by the horizontal dashed curve, 

describes an isothermal process taking place at the constant temperature lT . At point a 

the mixture consists of a single uniform phase with a small fraction of B  molecules 

randomly dispersed among the majority component A  molecules. Upon gradually adding 

B  molecules to the mixture a point is reached, corresponding to mixture composition 

X , where a droplet of a new phase,  , of different composition, X  , appears in the 

system. Further addition of B  molecules to the mixture enriches their mole fraction in 

the system, X , yet, as long as the mixture composition is still within the coexistence 

b a c 

    

 

 
One Phase 

Two  Phases 
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region, that is X X X   , the composition of the two coexisting phases remains 

unchanged, X   and X  .  The only quantity that varies with X  along the tie line – the 

line that connects  points , lX T  and , lX T  – are the relative amounts of molecules in the 

two phases, which are related by the lever rule / ( ) /( )N N X X X X      , (Exercise 

1.5). Once X  reaches X  , phase   disappears, and when X X   the solution is again 

monophasic, but now rich in B.  

 Assuming for simplicity that at any given temperature the volume of the mixture 

is independent of its composition, then as briefly mentioned above, the equilibrium state 

of the system corresponds to the minimum value of the Helmholtz free energy 

A E TS   for the given temperature and mixture composition. The discontinuous 

emergence of a new phase upon crossing the coexistence curve, and the subsequent 

coexistence of the two phases – a process known as a first order phase transition –is also 

characterized by a minimum of A , except that now this function has two minima, 

corresponding to two different compositions, both exactly equal depth. One minimum 

corresponds to mixture of composition X  and the other to . In Figure 1.1 we also 

note that the difference X X X    , known as the miscibility gap, decreases as T  

gets lower,  reflecting increasingly disparate phase compositions. This behavior indicates 

the increasing relative importance of the energetic over the entropic tendency as the 

temperature decreases, consistent with the abovementioned qualitative remark regarding 

the significance of the ratio /w kT .  The familiar case of oil and water, which do not mix 

at any ordinary temperature, represents the extreme dominance of the energetic factor; 

their “mixture” may be regarded as a biphasic system with composed one phase of 

composition , and the other with  .  

 Within the two-phase region, as the temperature increases the miscibility gap 

shrinks gradually, vanishing identically at cT . A familiar characteristic phenomenon that 

takes place near the critical point is the gradual disappearance of the sharp interface (the 

"meniscus") separating the two phases at low temperatures, which turns into a blurry   

mesh of large, branched, interlacing and fluctuating clusters of the two phases. Near the 

critical point the typical dimension of these clusters is comparable to the wavelength 

region of visible light, resulting in intense light scattering reflected in a "milky" 

X 

1 0oil waterX X   1 1oil waterX X  
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appearance of the solution, a phenomenon known as the critical opalescence.  Above the 

critical point the solution is monophasic again. The second, dash-dotted trajectory in 

Figure 1.1 which circumvents the critical point reveals that the transition from the A-rich 

phase (point a) to the B-rich phase (point b) can also be achieved continuously, keeping 

the system monophasic at all times.  

 Already in the next chapter we will see that a very similar phase behavior, 

exhibiting analogous first order transition and critical behavior characterizes another, 

seemingly rather different, physical phenomenon; the gas-to-liquid phase transition. In 

later chapters we will see that similar phase behaviors prevails in apparently even more 

remote systems, such as lattices of paramagnetic solids for instance.   

 In closing this section it is also appropriate to mention that the not all liquid 

mixtures obey the phase behavior described in Figure 1.1. There are, for instance, 

mixtures where mixing is favored by both entropy and energy, water and ethanol is one 

example, and others that display lower rather than upper critical points, or even both 

lower and upper critical points. Some of these will be discussed in subsequent chapters.  

 

 

1.4 Approach and Outlook 

 Both classical and statistical thermodynamics are complete theories that can be 

cast in rigorous and elegant mathematical-physical terms. Indeed, many outstanding 

textbooks are devoted to either one of these theories.  Being mainly intended to chemistry 

majors, this book includes most of the topics that generally appear in classical textbooks 

of chemical thermodynamic. Our approach is, however, rather “flexible”, in the sense that 

statistical and molecular-level interpretations are often interwoven in the discussion, 

sometimes preceding the classical treatment.  In Chapter 2, we describe the phase 

behavior of real gases, and interpret this behavior in terms of the long- and short-ranged 

interactions between the molecules. Chapter 3 provides the basic thermodynamic 

terminology, namely, the definition of various types of systems, and the elementary 

mathematics of state functions and their differentials. The first law of thermodynamics is 

introduced in Chapter 4, along with examples demonstrating its application to reversible 

and irreversible processes. Deviations from traditional chemical thermodynamics 
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textbooks appear mainly in Chapters 5, 6 and 7. These chapters are devoted to the 

introduction and discussion of entropy, the second law of thermodynamics, and the 

derivation of several elementary statistical thermodynamic concepts, such as the 

probability distribution in the canonical ensemble. Chapter 5 begins with the fundamental 

hypothesis of statistical thermodynamics, stating that in the state of equilibrium all the 

microstates of an isolated system are equally probable.  After discussing  and 

demonstrating how the number of microstates of a macroscopic system depend on it 

volume, energy and the number of particles, we introduce Boltzmann’s statistical 

definition of entropy and its basic properties. The law of increasing entropy is then 

derived based on the notion that entropy increase is a consequence of removal of 

constraints, and thus an increase in the number of microstates available to the system.  

This leads to Clausius inequality in Chapter 6, based on which we arrive (in reversed 

chronological order) at the original statements of the second law by Clausius and Kelvin 

in terms of heat engines operation, and then to the classical definition of entropy. In 

Chapter 7 we derive the Boltzmann probability distribution, introduce the canonical 

partition function and apply these concepts to several simple systems. The combination 

of the first and second law of thermodynamics, the definition of free energies and the 

mathematical consequences of Maxwell relations appear in Chapter 8. The significance 

of free energies as thermodynamic potentials that determine maximal work, spontaneity, 

and thermodynamic stability are discussed in Chapter 9. Open systems and the important 

role of the chemical potential are the subject matter of Chapter 10.  

 The principles and tools developed in the first ten chapters are applied to various 

systems and phenomena, starting in Chapter 11 onwards.  The topics considered include 

both classical thermodynamic phenomena such as chemical equilibrium and phase 

transitions, as well as some less frequently discussed systems such as liquid crystals and 

solutions of self-assembling molecules. In the spirit of previous chapters, wherever 

appropriate, a statistical-thermodynamic interpretation supplements the classical 

treatment. Chapter 11 deals in considerable detail with chemical reactions and their 

approach to equilibrium, adding the statistical expression of the law of mass action as a 

quotient of partition functions. Transition state theory and Langmuir adsorption will also 

be discussed in this chapter. The subject matter of Chapter 12 is phase transitions and 
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equilibria in one component systems. Here, in addition to Clausius-Clapeyron equation, 

phase diagrams, and Gibbs phase rule, we shall also discuss, albeit briefly, the classical 

theory of nucleation and the role of dimensionality in phase transitions. Chapter 13 

extends the discussion to multi-component systems, in which context we introduce the 

concept of partial molar properties, analyze liquid-vapor equilibria of ideal and non-ideal 

mixtures, and discuss the colligative properties of liquid solutions.  The phase behavior of 

non-ideal binary mixture is analyzed using lattice models and mean field theory in 

Chapter 14, emphasizing the analogy to the phase behavior of real gases and 

paramagnetic spin systems. Chapter 15 provides an introduction to the properties of ionic 

solutions, ionic reactions, and the principles of operation of electrochemical cells. 

Chapters 16 and 17 are concerned with the properties of complex fluids. Polymer 

solutions and liquid crystals are briefly discussed in Chapter 16, and self-assembling 

systems, such as micellar solutions, phospholipid membranes, and viruses, in Chapter17.  

 Incorporated in the main text of each chapter are several solved illustrative 

problems.   In addition, each chapter ends with a list of relevant exercises.  

 This book is intended for students who participated already in general chemistry 

and elementary physics courses and are thus familiar with basic chemical and physical 

concepts, including familiarity with calculus, linear algebra, as well as classical and 

quantum mechanics. We shall also assume that the reader is familiar with the common 

physical and thermal units, and the values of the universal constants (e.g., Avogadro’s 

number or Boltzmann’s constant). Nevertheless, as we go along, we shall occasionally 

repeat the definition of a given concept, or the value of a certain constant, wherever such 

a reminder seems helpful. 

 

 




