
1 
 

Intermolecular van der Waals Interactions 

 Our goal is to calculate the interaction energy, ( )U R ,  between two charge distributions 
located at a large distance  from each other, as illustrated in Figure 1. As is well known, for two 
neutral charge distribution (i.e., 0Q Q′= = )  6( ) / RU R C= − . The van der Waals constant C  
depends on the molecular characteristics of the two charge distributions, and if one or both of 
them possess a permanent dipole moment it depends on the temperature as well. Our main goal 
is to derive an explicit expression for C  for both polar and non-polar molecules, but we shall 
also consider the interaction energies between two ions (in which case 0,  0Q Q′≠ ≠ ) or an ion 
and a molecule (i.e., 0,  0Q Q′≠ =  or 0,  0Q Q′= ≠ ). To these ends we will need to carry out 
temperature and/or quantum mechanical averages of V, the electrostatic (Coulomb) interaction 
energy between the two charge distributions.  That is ( )U R V= .  

 Using cgs (electrostatic) units, and assuming that the two charge distributions are in 
vacuum, we have  
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In the second equality we have used the explicit expression for the ijR ’s, the distances between 

charges iq  of one charge distribution (the one on the left in Figure 1) and charge jq′  of the other,                                                          

                     2 2 2
, ( ) ( ) ( )i j i j i j i jR X x x Y y y Z z z′ ′ ′ = − + + − + + − +                              (2) 

 
Here , ,X Y Z  are the Cartesian coordinated of the vector R



 - an arbitrary vector connecting two 
reference points one in the first charge distribution and another on the second. The magnitude of

R


 is  2 2 2R R X Y Z = = + + 


. Similarly, ix  is the x component of the vector ir
  which 

measures the position of charge iq  from the reference point of the left charge distribution, etc.  
  
 
 
 
 
 
 
 
 Figure 1 
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The multipole expansion 
 We are interested in cases where all ir  and jr′  are much smaller than R . We can thus 

suffice in the low order terms of the Taylor expansion series of V around R , that is, 
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with all derivatives evaluated at  (for all , )ijR R i j= . We used here the notations   
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We shall ignore the first two sums in the curly brackets because they represent quadrupole terms 
(proportional to 31/ R ) whose contribution to the energy will not vanish only if one of charge 
distribution is not electrically neutral, in which case there will be more important terms (of order  

21/ R ) representing charge-dipole interactions. 

 The derivatives of V  requires the evaluation of the derivatives of 
2 2 21/ 1/ ( ) ( ) ( )ij i j i j i jR X x x Y y y Z z z′ ′ ′ = − + + − + + − +   at the point 

2 2 21/ 1/ R 1/ijR X Y Z = = + +  .  

The derivatives are found to be: 
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These can be substituted in Eq. (1) to get the desired expression. To simplify this expression we 
can assume that R



 is parallel to the z axis, which means 0X Y= = . We then find: 

                             2 3

2x x y y z zZ Z p p p p p pQ p QpQQV
R R R

′ ′ ′+ −′ ′′ −
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where 

                                                               x i i
i

p q x=∑                                                         (5) 

is the x component of the dipole moment of the first charge distribution, etc. Eq. (4) is known as 
the multipole expansion. The first term is the monopole-monopole interaction, the second is 
monopole-dipole, then comes dipole-dipole and then (not shown) monopole-quadrupole etc.  

 In the following discussion we shall be mainly interested in the interaction potential 
between two electrically neutral charge distributions, in which case only the dipole-dipole terms 
are relevant, 

                            3

2x x y y z zp p p p p p
V

R
′ ′ ′+ −

= +  (neutral distributions)                           (6) 

 It is often convenient to express Eq. (6) in polar coordinated.  To this end, let 
2 2 2
x y zp p p p p= = + +

  denote the magnitude of the dipole moment of the first charge 

distribution, with an analogous definition of p′ . In polar coordinates, 
sin cos ,  sin sin ,  cosx y zp p p p p pθ φ θ φ θ= = =   

and  sin cos ,  sin sin ,  cosx y zp p p p p pθ φ θ φ θ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =   

It is convenient to use the direction of the x  axis of the system to be parallel to the projection of 
one dipole, say p , onto the x,y plane, so that 0φ ≡ .  This means that 

sin ,  0,  cosx y zp p p p pθ θ= = =  and we obtain 

 

                      ( )3( , , , ) sin sin cos 2cos cosppV V R
R

θ θ φ θ θ φ θ θ
′

′ ′ ′ ′ ′= = −                              (7) 

(remembering that the we have chosen the z to be along R


.) 

 

 

Polarizability 
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  In the discussion that follows we shall also need an expression for the polarizability of a 
charge distribution.  
 The polarizability of a charge distribution, α , is a measure of the dipole moment induced 
in this distribution by the presence of an external electrical field E



, as defined by the equation: 
                                                                        p Eα=



                                                              (7) 

The polarizability is actually a tensor, and the notation in the last equation means: x xy yp Eα=  

etc.  In other words xyα  measures the moment dipole along x induced by an electric field along 

axis y. We shall be mainly interested in symmetrical charge distributions, e.g., atoms or 
symmetric molecules, in which case ij ijα αδ=  with 1 if ,  0 if ij iji j i jδ δ= = = ≠  denoting the 

familiar Kronecker Delta function. We shall be mainly concerned with this simpler case, so we 
can write 

                                                                                 p Eα=


                                                        (8) 

indicating that the dipole is along the direction of the field.  

A schematic illustration depicting the formation of an induced dipole in an electric field is given 
in Figure 2. 

 

                

                Figure 2 

 

 The polarization of the charge distribution upon applying an external electric field 
involves an energetic price associated with the separation of the charges. To calculate this energy 
recall that the work done by the field in moving a charge q  a small distance dr  is dW qE dr=





 . 
Suppose now that we gradually increase the magnitude of the electric field (pointing along the z 
axis) acting on a charge distribution. The incremental work done by the field is given by:  

i ii
dW E q dz Edp E dEα= = =∑  where zdp dp=  is the change in the dipole moment of the 

charge distribution. The total work done by the field in forming the induced dipole is thus given 
by 

                                                 2

0

1
2

E
W dW EdE Eα α= = =∫ ∫                                                  (9)   
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vdW interactions: Thermal and quantum-mechanical averaging 

 When considering the interaction energy, ( )U R V= , between two molecules 

possessing permanent dipole moments (e.g., H2O, HCl etc.) we will need to carry out thermal 
averaging of ( , , , )V R θ θ φ′ ′  (see Eq. (7) ) over the angles , ,θ θ φ′ ′ . This is because certain angles 
are more probable than others. The averaging involves their Boltzmann weights. Deriving the 
Boltzmann distribution is an important part of our course and will be discussed in detail 
separately. Below we shall assume that it is already familiar.  

 When considering the interaction between two symmetric (non-polar) charge 
distributions, such as that between atoms or symmetric molecules (e.g., CH4) that have no dipole 
moment, we will have to carry out a quantum-mechanical calculation associated with the 
interaction between two mutually induced dipole moments, as will be explained in greater detail 
below. To this end we will need to carry out a quantum-mechanical perturbation theory 
calculation. A very brief reminder of the basic equations that we will require will be given as 
needed.  

 There are three types of long range forces between neutral molecules. The first is 
between two dipolar molecules and is known as Keesom or dipole-dipole interaction, the second 
is between a dipolar and a nonpolar molecule. This interaction, first indicated by Debye, is due to 
the interaction of a permanent dipole with the induced dipole on the neutral molecule. Both 
Keesom and Debye interactions lead to 1/R6 dependence of the long range interactions. The third 
type of interaction is between  non-polar molecules. Here, momentary fluctuations of the charges 
(i.e., electrons) on one molecule may result in a momentary dipole moment. This dipole induces 
a momentary dipole in the second molecule; the two dipoles interact with each other and the 
interaction continues, following the (partially correlated) transient changes in the two charge 
distribution. The averaging of these interactions is quantum-mechanical and also leads to a 1/R6 
dependence. This last type of interaction was first derived by London and is known as dispersion 
interaction.  All three types of intermolecular forces are collectively called van der Waals forces, 
because they are responsible for the attractive part of the van der Waals equation. Let us now 
consider them one by one.  
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The interaction between two permanent dipoles (Keesom): 

 Here we need to average ( , , , )V R θ θ φ′ ′  over the relative orientations of two dipoles of 
given magnitudes, p  and p′ . The averaging is done using the Boltzmann weights of the different  
orientational configurations of the two dipoles.  That is 
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               (10)  

In the passage from the first to the second equality we have kept the leading terms of the Taylor 

expansion of the Boltzmann factor, assuming that ( , , , ) 1V R kTθ θ φ′ ′
 .  Then we note that 

the linear terms in V  in both the numerator and denominators vanish identically following the 
integration over sind d dθ θ φΩ =  and sind d dθ θ φ′ ′ ′Ω =  (recall, the range of ,θ θ ′  is 0 π→  and 

of ,φ φ′  is 0 2π→ , so that 
2

2

0 0

sin 4d d
π π

θ θ φ π=∫ ∫ ). This follows from the fact that : 
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With similar results for the “primed” charge distribution.  Given all these integrals we find: 

                                                  
2 2

6

2( )
3

p pU R
kT R

′
=                                 (Keesom)   (11)  
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The interaction between a permanent dipole and an induced dipole (Debye): 

 In this case, a dipolar charge distribution interacts with a non-polar one. The permanent 
dipole of the polar charge distribution, e.g., an HCl molecule, induces a dipole in another 
molecule, and the permanent and induced dipoles interact with each other. To calculate the 
interaction energy suppose that the permanent dipole is of magnitude p  and is directed along the 
z axis. It can be shown that the magnitude of the electric field at an arbitrary point at distance R  
(far from the dipole) and angle θ  with respect to the z axis (the dipole direction) is given by:  

                                                  2 1/2
3 (3cos 1)pE

R
θ= +                                              (12) 

Using R  and θ  to denote the position of the neutral charge distribution relative to the dipole, its 
polarization to form an induced dipole can be described as a gradual process involving the 
gradual charging of the permanent dipole, as accounted for by Eq (9). From Eqs (9) and (12) we 
thus obtain the Debye interaction energy:  

 
2

2
6

1( , ) (3cos 1)
2

pU R
R
αθ θ= +   

Further averaging over  θ  (and recall 2cos 1/ 3θ =  we find 

                                                     
2

6( , ) pU R
R
αθ =                     Debye                               (13)  

 

 Note also that permanent dipoles induce dipoles in polar molecules as well. The 
interaction between the permanent and induced dipoles adds to the interaction between the two 
permanent dipoles. 
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Dispersion interaction between two non-polar molecules (London): 

 The interaction energy between two electrically neutral non-polar molecules, A and B, 
involves the dipolar interactions between transient momentary dipoles on one  molecule and 
induced dipoles on the other. This interaction is purely quantum-mechanical and will be 
calculated using perturbation theory, with the dipole-dipole interaction potential (see Eq. (6)) 

                                                          3

2A B A B A B
x x y y z zp p p p p p

V
R

+ −
=                                             (14) 

representing the quantum-mechanical perturbation operator . That is, the Hamiltonian of the 
system is given by: 

                                                        0 A BH H V H H V= + = + +                                                  (15)  

with 0 A BH H H= + , the unperturbed Hamiltonian is the sum of the independent (non-
interacting) molecules A and B.  

 Using the Dirac notation, let 0 0,A Bn nλ =  denote the unperturbed wave functions, i.e.,  

                                       0 0 0 0 0 0 0
0 ( ) , ( ) ,

BAA B A B A Bn nH H H n n E E n n Eλλ λ= + = + =                   (16) 

with 0
An  and 0

Bn  representing the unperturbed wave functions of A and B, respectively. 

 According to perturbation theory, the interaction energy between A and B is given by                        
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∆ = ∆ + ∆ +

= = = − +
−

= − +
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∑

∑







                          (17) 

with 0 0 0 00,0 0,0 0, 0 0, 0A B A BV n n V n n= = = = =  etc.  

 Now we have to substitute V  from Eq. (15) and evaluate the matrix elements.  Since 
nonpolar do not have a dipole moment, certainly not in the ground state, the first order correction 
vanishes identically. Explicitly, this follows from the fact that:  

                                                  0,0 0,0 0 0 0 0 0A B A B
x x x xp p p p= ≡                                  (18) 
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We are thus left with the second order term, and we see immediately that it is also proportional 
to 1/R6.  Namely,  
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( )

1 0,0 0,0
( )

A B

A B

A B

BA BA

A B A B
dis

n n

A B A B
n nA B

A B A B
n nA B
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∑

∑
 (19) 

The passage from the first to the second line in Eq. (19) is based on the approximation whereby 
all the excitation energies are replaced by the ionization potential, i.e., 0 0

0A A AnE E I− →  etc. This 

is a common and generally very good approximation, providing a lower bound to the magnitude 
of the interaction. In passing from the second to the third line we extended the sum to all 0 0,A Bn n

and subtracted the first term,  0,0 0,0 0,0 0,0V V , which as noted above (see Eq. (18)) is 

identically zero. Finally, in passing to the last line we have used the general mathematical 
identity 

                                                      20 0 0 0
m

A m m A A=∑                                        (20) 

where A is any Hermitian operator.  

 Now, combining Eqs. (14) and (19) we find 

               

(2) 2
6
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2 2

1 1( ) 0,0 ( 2 ) 0,0
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1 1 [ 0 ( ) 0 0 ( ) 0 0 ( ) 0 0 ( ) 0
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z z
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+

       (21)             

In passing to the second equality we noticed that all terms that are linear in  A
xp  , B

xp , etc., such 

as A B A B
x x y yp p p p  etc. vanish identically. The third line is valid for symmetric molecules, in which 

case all six terms in the square brackets make identical contribution. Finally, if A and B have 
symmetric charge distribution, as is the case for atoms and symmetrical molecules, then we find 
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                                                2 2
6

6 1( ) 0 ( ) 0 0 ( ) 0
( )

A B
dis x x

A B

U R p p
R I I

= −
+

                        (22) 

 

Relating ( )disU R  to the polarizabilities of the interacting molecules: London’s formula 

 The polarizability of a molecule can also be calculated by perturbation theory. The 
starting point for such a calculation is the Hamiltonian of a molecule in an electric field. 
Assuming that the field is along the z axis,  

 0 0 0z i i z z
i

H H V H E q z H E p= + = + = +∑   

Let n  denote the n’th quantum state of the full (i.e., the perturbed) Hamiltonian, H. From 

perturbation theory: 

 (0) (1) (2)n n n n= + + +   

with (0)n  denoting the eigenstates of 0H .  The first order correction to the wave function is 

given by 
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The expectation value of the dipole moment in the perturbed system is given by 
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The zero order term is zero for non-polar molecules, thus (0) (0) 0zn p n = .  For the first order 

term we find: 
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We are mainly interested in the ground state, n=0. Using the approximation used earlier, namely
(0) (0)

0mE E I− ≈ , we find 
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This means that the polarizability is given by 

 
222 0 0zp

I
α =   

Comparing this result with the expression derived earlier for the dispersion interaction (Eq. (22)) 
we find (noting that there is no difference between the x, y and z directions): 

                                             6
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This famous expression is known as London’s formula.  

 

  

  

 

  


