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Parametrization of Membrane Shape

In this section we present the parametrization procedure for the membrane

shape. Our description is based on the Monge representation where a posi-

tion vector ~r of the bilayer upper or lower leaflets, or bilayer mid-plane (see

Fig. 1B of the main text) is given by ~r ≡ (x, y, h(x, y)). The height func-

tion h(x, y) is the distance between the curved surface and the flat reference

(x, y) plane. In the Monge gauge the metric of the surface is given by:

gij =
∂~r

∂ui
× ∂~r

∂uj
, i, j = 1, 2 (1)

where u1 ≡ x, u2 ≡ y. From Eq. 1

g ≡ |gij | = 1 + h2

x + h2

y (2)

with hx ≡ ∂xh(x, y) and hy ≡ ∂yh(x, y). The area element of the curved

surface is:

dA =
√

gdxdy =
√

1 + h2
x + h2

ydxdy (3)

and the Cartesian components of the local surface element normal unit vec-

tor ~n = (nx, ny, nz) are given by:

nx =
−hx√

g
(4)

ny =
−hy√

g
(5)

nz =
1√
g

(6)

With that, one can derive for the local curvature:

c(x, y) =
(1 + h2

y)hxx + (1 + h2
x)hyy − 2hxhyhxy

2g3/2
(7)
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where hxx ≡ ∂xxh(x, y), hyy ≡ ∂yyh(x, y), and hxy ≡ ∂xyh(x, y). Eq. 3

and Eq. 7 are used throughout the equations in the main text and in the

Supporting Material.

Elements of membrane remodeling

In the transformation of a membrane that is spontaneously flat at equi-

librium into a highly curved structure, BAR appears to take advantage

of a special set of structural features. First, the electrostatic interactions

between positively charged residues on BAR’s concave surface and phos-

pholipid headgroups may cause membrane deformations out of the bilayer

plane, resulting in a pulling of the membrane towards, or away from the

protein. The same electrostatic interactions may also cause lateral seques-

tration of charged phospholipids near the protein(1–7). This process of lipid

demixing in the bilayer plane has been predicted to be particularly signifi-

cant in membranes containing multivalent lipids, such as phosphatidylinos-

itol 4,5-biphosphate (PIP2) lipids(1, 3). Segregation of such highly charged

lipids (net head-group charge of -4.0 at neutral pH(8)) would not only en-

hance the overall electrostatic interactions between BAR and membrane,

but could lead as well to local asymmetry between the spontaneous curva-

tures of the two monolayers comprising a lipid membrane, simply because

the head group of PIP2 is larger than most mono-valent lipids, such as

phosphatidylserine (PS) or zwiterionic lipids, like phosphatidylcholine (PC).

Such asymmetry would be sufficient to produce a local “positive” curvature

in the two bilayer leaflets, towards the BAR(9–11). Therefore, sequestering

charged lipids could potentially lead to a new stable state, in which bilayer

bending forces favor membranes with local non-zero curvature.

These components of the interaction energy are accounted for in the

approach we describe here. Moreover, the mechanism for coupling local
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lipid composition with membrane curvature may be complemented by a

“local spontaneous curvature” mechanism (11), in which the asymmetry

between the spontaneous shapes of two monolayers is achieved by insertion

of amphipathic N-terminal helices of certain BAR domains into the lipids

polar headgroups region(11–21). In this mechanism, the insertion of an

amphipathic peptide into one of the leaflets of a flat membrane produces an

increase in the local spontaneous curvature of that leaflet because of the local

bending of the monolayer where the helix is embedded(9–11). Differences in

the spontaneous curvatures of two monolayers comprising a lipid membrane

establishes a new equilibrium state, in which, bilayer elastic forces support

a locally curved membrane shape.

Free energy minimization

In this section we detail the free energy minimization procedure implemented

to obtain an equilibrium state for BAR-membrane complex. Because the free

energy functional F (Eq.(2) of the main text) contains electrostatic, mobile

ion mixing, lipid mixing, and membrane bending energy contributions, F

must be minimized with respect to all these relevant degrees of freedom

in a self-consistent manner. In particular, minimization with respect to

mobile ion concentrations leads to the non-linear Poisson-Boltzmann (PB)

equation(22–28):

∇2Ψ = λ−2

D sinhΨ (8)

Solving this equation yields the electrostatic potential Ψ.

In order to minimize the free energy functional with respect to the lipid

compositional degrees of freedom, we use the Cahn-Hilliard (CH) formalism

(29), carried out here as discussed in detail in Ref.(1). Briefly, according to

the CH description, lipids diffuse in the membrane plane due to the local
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gradients in their electrochemical potentials(30, 31), where the steady-state

solution of the CH equations at long times is obtained self-consistently with

the PB equation and corresponds to the lipid distribution that minimizes

F with respect to all local lipid mole fractions. Thus, propagating local

lipid compositions with these diffusion-like equations eliminates the need to

tackle an additional 2D boundary condition on the membrane surface(1, 32,

33), which in general is easily solvable only for systems of high geometric

symmetry.

In order to implement the CH formalism for a membrane composed

of binary mixtures of charged and neutral lipids, we first use free energy

functional expression (Eq.(2) of the main text) to derive the electrochemical

potential of charged lipids on either leaflet as:

µ = µ◦ +
∂F

∂N
= µ◦ +kBT

[

ln
φ(1 − φ0)

φ0(1 − φ)
+ zΨ

]

+aκ(c0

n − c0

c)(c− c0(φ)) (9)

Here N is the number of charged lipids on a single membrane layer, and µ◦

represents the standard chemical potential for the charged lipid species(that

is independent of φ). The temporal evolution of the spatial charged-lipid

compositions on both leaflets are linked to the Laplacians of the correspond-

ing electrochemical potentials through the pair of CH equations:

∂φu(~r, t)

∂t
=

Dlip

kBT
∇2

LB(µu)

∂φl(~r, t)

∂t
=

Dlip

kBT
∇2

LB(µl) (10)

Here Dlip is the lipid diffusion coefficient that should not affect the equi-

librium state, and the subscript LB denotes the Laplace-Beltrami operator

(the analog of the Laplace operator on curved surfaces). The evolution of

neutral lipids follows from the above equations taken together with the in-

compressibility relations. We stress that, in general, the CH equations are
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implemented to describe time evolution of globally conserved fields. Here

we do not intend to study dynamic aspects of lipid diffusion, but rather use

Eqs. 10 and 9 for the sole purpose of minimizing the free energy functional

F with respect to local lipid fractions. This is achieved by iteratively solving

the resulting dimensionless CH equations for lipid compositions on the two

leaflets:

φ(~r, t′ + ∆t′) = φ(~r, t′) + ∆t′∇′2

LB

[

ln
φ(~r, t′)(1 − φ0)

φ0(1 − φ(~r, t′))
+ zΨ(~r, t′)

]

(11)

+ ∆t′a′κ′(c0
′

n − c0
′

c )∇′2

LB

[

c′(~r, t′) − c0
′

(φ(~r, t′))
]

where we have used primed variables to denote the following unitless quan-

tities:

t′ = tDlip/ξ
2; κ′ = κ/kBT ; c′ = cξ; a′ = aξ2 (12)

where ξ is the lattice constant.

We also note that according to Eqs. 9 - 11, lipids may locally demix not

only due to electrostatic interactions with the protein but also due to their

tendency to preferentially form different spontaneous shapes. As an exam-

ple, monovalent acidic PS, or poly-valent PIP2 lipids have inherent positive

spontaneous curvature at neutral pH(11), and therefore are expected to as-

sociate into positively curved membrane regions. Neutral PC lipids, on the

other hand, would prefer negatively curved membrane patches(11). There-

fore, it is obvious that an additional minimization of the free energy func-

tional with respect to membrane shape is necessary and that the procedure

should be carried out self-consistently together with the electrostatic and re-

pulsive interactions, as well as with lipid mixing. This presents a formidable

challenge, since in principle one has to consider all possible changes in mem-

brane geometry, and couple these shape deformations to other degrees of
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freedom.

Here, the combined scheme is used to efficiently account for bilayer de-

formations and self-consistently with the PB equation; together with the

CH equations the method converges to the (local) minimum of the total

free energy. Our strategy is based on representing the membrane shape as a

linear superposition of Gaussian functions (used here as a basis set). With

that, we sample membrane deformations by varying only the Gaussian am-

plitudes. This procedure significantly reduces the dimensionality of phase

space that needs to be explored. The Gaussian’s amplitudes are varried

randomly, and trial moves are accepted if the free energy is reduced. To

ensure self-consistency, at each trial move we solve the PB equation for the

electrostatic potential. To couple shape changes to lipid demixing, we al-

ternate the steps for membrane deformations with the CH moves for local

lipid compositions. The outline of the algorithm can be found in the next

section.

In several calculations reported in Results we make the simplifying as-

sumption that the lipid composition within a membrane patch is constant

and homogeneous. In such cases, there is no need to solve the CH equa-

tions for local lipid fractions, and our minimization scheme reduces to per-

forming random moves for local membrane heights self-consistently with

solving electrostatic problem. In addition, when we discuss homogeneous

mixtures (no lipid segregation), we conveniently express elastic properties

of the membrane per bilayer and describe membrane geometry with re-

spect to the bilayer mid-plane(see Fig.1B)(34, 35). In particular, we as-

sume that the bending modulus of the bilayer κ = 2κm(34–36), and we

denote the spontaneous curvature of the bilayer mid-plane by c0. Then

the elastic free energy expression in Eq.(6) of the main text simplifies to:

Fb = 1

2
κ
∫

Am

dAm(cm − c0)
2(34, 35), where cm is the local curvature of the
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mid-plane and the integration is carried out over the bilayer mid-plane sur-

face.

To introduce the N-helix membrane interaction in our model, an addi-

tional energy term must be added to the free energy functional (Eq.(2) of

the main text) in a manner similar to the work in Ref.(9, 10), and the cou-

pling between peptide insertion and BAR interaction must be considered in

the self-consistent form adopted in the model. However, the nature of the

coupling among these degrees of freedom is not known, which makes the

formulation of a free energy functional that can couple the electrostatic and

elastic degrees of freedom that will also include peptide insertions quite chal-

lenging. Here we use a simplified approach to couple the N-helix inclusions

to the electrostatic contributions, by modeling insertion effects implicitly.

Thus, we define a locally positive spontaneous curvature region on the bi-

layer adjacent to the adsorbing BAR domain (shown in Fig. 3 of the main

text), and use a phenomenological approach that assumes that the inclusions

(two insertions per BAR dimer) perturb the bilayer asymmetry and its elas-

tic properties primarily around the area of insertion(9). We account for

insertions at different depths by varying the value for the spontaneous cur-

vature assigned to this local membrane region(10). For each insertion depth,

the bilayer adjusts its geometry locally, and the deformations at steady state

for each penetration depth is found by minimizing the modified free energy

functional which now contains an elastic free energy term that accounts for

the non-zero spontaneous curvature region near the adsorbed BAR dimer.

Basic steps in the free energy minimization algorithm

In this section we detail the basic steps in the free energy minimization al-

gorithm. Our method is based on the idea that any two-dimensional surface
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shape can be represented by a linear combination of a suitable set of analyt-

ical functions, called the basis set(see for example (37, 38)). One common

choice, used here, is the basis set of Gaussian functions(38). Imagine N

two-dimensional Gaussians centered at different locations and each having

the following functional form:

gi(x, y) = Ai × exp

[

−
(

(x − x0

i )
2

σ2

xi

+
(y − y0

i )
2

σ2

yi

)]

, i = 1, ...N. (13)

where the i-th Gaussian is centered at (x0

i , y
0

i ), and its amplitude and two

variances, along x and y directions, are Ai, σxi and σyi respectively. Then

the height with respect to a flat reference plane of the bilayer mid-surface at

point (x,y) can be approximated as a linear superposition of these Gaussian

functions:

h(x, y) ≈
N
∑

i=1

gi(x, y) (14)

Eq. 14 becomes exact as N → ∞. The advantage here is that, with a careful

choice of N and all (x0

i , y
0

i )-s (see the next section, Simulation Details), it

becomes sufficient to systematically vary only the Gaussian’s amplitudes

and variances in order to efficiently sample membrane deformations. This

procedure significantly reduces the dimensionality of the phase space one

has to explore. To further simplify calculations, we set σx and σy variances

of all N Gaussians to be identical and fixed, so that we perform the sampling

procedure only on the Gaussian’s amplitudes.

The algorithm starts with designing a membrane mid-surface of certain

initial geometry using Eqs. 13 and 14. With parallel translation, we obtain

the locations of the two charged surfaces: the upper and lower leaflets(see

Fig. 1B of the main text). We then place the desired number of lipids in

both leaflets by creating suitable charge densities on the two layers; usually

we start with a homogeneous distribution of lipids on both leaflets. With
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the membrane geometry fixed, the BAR dimer is positioned in the desired

orientation near the membrane, and Cahn-Hilliard moves are performed to

vary the local lipid compositions(1), and to achieve lipid demixing under

the influence of the electrostatic forces from the BAR and the elastic forces,

which act to locally separate lipids according to their spontaneous curvature

values. To achieve self-consistency, the non-linear PB equation is solved after

each CH step to update the electrostatic potential in space. This iterative

process is repeated until significant lipid segregation is observed(1), usually

for 300-400 steps, depending on the lipid content.

Then, we fix the lipid composition and perform trial moves on the mem-

brane shape by executing the following steps:

1) With the BAR fixed in the same orientation as during the CH proce-

dure, solve the non-linear PB equation.

2) The electrostatic, bending, lipid mixing and repulsive energy contri-

butions are calculated to obtain the adsorption free energy of the BAR-

membrane complex:

∆Fold = F old
complex − Freference (15)

Here F old
complex is the total free energy of the complex, and Freference is the

total free energies of the BAR-membrane reference state.

3) Randomly pick the i-th Gaussian, and attempt to change its amplitude

Anew
i = Aold

i +∆r, where ∆r is a uniform random number in the range [-1;1].

4) Using the updated list of Gaussian amplitudes, construct a trial con-

figuration of the bilayer mid-surface and upper and lower leaflets.

5) Position BAR as in step 1 next to the trial membrane and calculate the

adsorption free energy of the BAR-membrane complex, ∆Fnew. Note that

the lipid composition does not change between old and trial configurations.

6) If ∆Fnew ≤ ∆Fold, accept the trial configuration of the membrane
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and go to step 3. If ∆Fnew > ∆Fold, discard the trial configuration and go

to step 3.

Steps 3-6 are repeated until the membrane locally adopts its shape with

respect to particular existing lipid distribution. Then, fixing the membrane

geometry, we again perform Cahn-Hilliard iterations to relax the local lipid

compositions, which is followed by trial steps for varying bilayer shape.

The entire loop is repeated multiple times and convergence of the algo-

rithm to equilibrium is verified by confirming that there is no change, within

numerical uncertainty, in the adsorption free energy with additional steps.

Because in the algorithm the system is driven along a free energy gradient,

it is tacitly assumed here that the balance of bending, electrostatic, lipid

mixing and repulsive contributions exists only in one particular configura-

tion, i.e. that the landscape of the free energy functional as defined in Eq.2

of the main text has only a single minimum. The validity of this assumption

is supported by our test calculations with different initial membrane shapes.

Thus, we performed the minimization procedure on BAR/membrane sys-

tems where the membrane was initially either flat or had substantial spheri-

cal deformation in the region near the adsorbed BAR. The results indicated

that both starting points converged to the same final structure, however we

found that the convergence from the pre-formed spherical configuration was

faster. Therefore, we used membranes with pre-formed spherical domes as

the initial starting point for all the simulations reported here.

We also note that any change in membrane shape will be accompanied

by change in number of lipids in the simulation cell. In order to maintain a

constant charge density on the two leaflets, we imagine the simulation box

being coupled to a large lipid reservoir that can constantly exchange lipids

with the central cell. Accordingly, at each of shape perturbation we correct

the free energy functional in Eq.2 of the main text by the standard term
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∆f = −∆N × fbulk(39), where ∆N = Nnew − Nold is the difference in lipid

number in the trial and current states, and fbulk is the free energy per lipid

in the bulk membrane (away from the adsorbed BAR).

Simulation details

We consider here the BAR domain from the Amphiphysin protein (PDB

ID code 1URU) and represent it in full-atomistic 3D details, by assigning

to each atom a radius and a partial charge. This BAR module contains 12

positive residues along its concave surface, and thus is characterized by a

higher charge density on the membrane-facing side as compared with other

BAR domains (see Fig.1 of the main text)(12).

The BAR is fixed in space near the membrane in an orientation with

its long axis parallel to the flat membrane’s (x,y) plane, and the short axis

perpendicular to that plane (along z) as depicted in Fig. 1B. Calculations

for different BAR orientations revealed that such positioning of the BAR

next to membranes compared to any tilted orientation resulted in the most

favorable binding free energies and largest membrane deformations (data not

shown). We do not explicitly consider the amphiphatic N-terminal helices of

the BAR domain, but instead, model the effects of the N-helical insertions

implicitly through their effect on the membrane elastic properties.

We focus on lipid membranes of 30:70 PS/PC (φ = 0.3), and 4:96

PIP2/PC (φ = 0.04) average compositions. Assuming an area per lipid

headgroup of a=65Å2 for all lipids, these mixtures correspond to charge

densities of σ ∼ −0.004e and σ ∼ −0.0025e respectively. Our choices of

membrane compositions are motivated by the following: 1) 30:70 PS/PC is

a biologically relevant composition that mimicks the model membrane used

in atomsitic simulations by Blood et al (40, 41); 2) The average composi-
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tional range of PIP2 lipids is known to be 1%-5% (8). In agreement with

experimental observations (3), we have recently demonstrated(1) that, as

charged proteins diffuse on a 75:24:1 PC/PS/PIP2 membrane, they primar-

ily sequester PIP2 lipids, whereas the PS lipid distribution remains largely

uneffected by the adsorbed protein. Thus, exploring PS- vs. PIP2-containing

mixtures enables us to specifically address the role of lipid sequestration in

the process of membrane remodeling by BAR domains. To make numeri-

cal calculations simpler, we consider here both model membranes as binary

mixtures of both 4:96 PIP2/PC and 30:70 PS/PC.

The spontaneous curvatures of PS and PC lipids were set to c0

PS=1/144

Å−1 and c0

PC=-1/100 Å−1 respectively, values that were also reported in

the literature(11, 42–44). The spontaneous curvature of PIP2 lipid is not

known from experimental measurements. We assume here c0

PIP2
=1/70 Å−1,

in light of the substantial difference in head group size between PIP2 and

monovalent PS.

For all calculations the lipid membrane was modeled as a low dielectric

slab (εm = 2) of dimensions 256Å × 256Å × 40Å. Electrostatic calculations

were performed using a modified version of the publicly available open source

software: APBS version 0.4.0(45). The system was placed on a 256Å ×
256Å × 256Å cubic grid with grid spacing of 1Å, and the non-linear PB

was discretized with the finite-difference method. The APBS software was

modified to include periodic boundary conditions in the (xy) bilayer in-

plane directions. The charge, ion accessibility, and dielectric maps were

configured and supplied to APBS. After each MC or CH step in the free

energy minimization procedure, these maps were updated and fed back to

the PB solver to obtain new electrostatic potential.

The periodic box contained 1:1 electrolyte solution of n0 =0.1M concen-
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tration, corresponding to a Debye length of λD ≈ 10Å:

λD =

(

ε0εwkBT

2e2n0

)1/2

(16)

Here kB is Boltzmann’s constant, T=300K - the temperature, e - the el-

ementary charge, ε0 - the permeability of free space, and εw = 80 is the

dielectric constant of the aqueous solution.

As a basis set for the minimization procedure, we chose N=841 Gaussians

placed equidistant from each-other on a two-dimensional (x,y) grid 9Å apart.

The variances σx and σy for all Gaussians were taken as 20Å. This setup not

only ensured complete coverage of the membrane surface by the Gaussians,

but also provided strong overlap between neighboring Gaussian functions

and made the minimization scheme efficient. Further, we used the intrinsic

2-fold symmetry of the BAR domain so that step 3 in the Monte Carlo

algorithm (see previous section) was carried out simultaneously and in an

identical manner on two symmetrically situated Gaussians.

The free energy minimization cycles were performed repeatedly until we

observed no change, within numerical uncertainty, in the adsorption free

energy with additional steps, implying no changes in lipid distribution and

in membrane shape with further iterations.
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Figure Captions

Figure S1. Adsorption of the Amphiphysin BAR domain on membranes of

σ = −0.004e/Å2 average surface charge density (φ0

PS = 0.3) and with

preformed spherical deformation. The variation in the binding free

energy (in kBT units) is shown versus the radius of the spherical cap.

Inset depicts the BAR (in ball-and-stick representation) adsorbed onto

a membrane deformed into a spherical cap of R=100 Å (green). We

show only the portion of the membrane’s upper leaflet neighboring

the BAR, close to the spherical deformation. The membrane shape

smoothly transitions to the flat state in the bulk.
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Figure S1 (GK, HW and DH)
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