
Topological Defects and the Optimum Size of DNA Condensates

Stella Y. Park,* Daniel Harries,# and William M. Gelbart*
*Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 USA, and #Department of
Physical Chemistry and The Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

ABSTRACT Under a wide variety of conditions, the addition of condensing agents to dilute solutions of random-coil DNA
gives rise to highly compact particles that are toroidal in shape. The size of these condensates is remarkably constant and
is largely independent of DNA molecular weight and basepair sequence, and of the nature of condensing agent (e.g.,
multivalent cation, polymers, or added cosolvent). We show how this optimum size is determined by the interactions between
topological defects, which unavoidably strain the circumferentially wound DNA strands in the torus.

INTRODUCTION

In many biological processes, intrinsic bias and redundancy
aid in accomplishing what at first glance may seem an
impossible feat. The packaging of DNA into a condensed
state within both prokaryotic and eukaryotic cells may be
such a process. It has been known for some time that
“naked” DNA undergoes a dramatic compaction in the
presence of various condensing agents, mainly multivalent
cations, neutral and charged polymers, and alcohols (for
recent reviews, see Bloomfield, 1991 and 1996, and refer-
ences therein). Even in the very dilute regime (well below
the bulk phase separation concentration), random-coil DNA
molecules condense either intramolecularly (collapse) or
intermolecularly (aggregation) to form toroids and rods of a
certain size. It is the condensation of DNA in this very dilute
regime, not the bulk DNA condensation (Durand et al.,
1992), which we discuss in this paper. The highly ordered
condensates occupy;1024 the volume of the random coils.
The local concentration of DNA within the torus is as large
as 400 mg/ml (0.4 g/cm3). (Note that the bulk concentration
of DNA in these very dilute solutions can be as small as
mg/ml.) Self-assembly processes involving collapse and ag-
gregation are not only observed in vitro, but are also impli-
cated in the organization/compaction of DNA inside the cell
nucleus, where a broad variety of condensing agents—both
histone (Ramakrishnan, 1997; Kornberg and Lorch, 1992)
and nonhistone (Lepault et al., 1987; Lerman, 1974; Livol-
ant, 1984)—are present.

Electron microscopy provides strong evidence for cir-
cumferential winding of DNA within the toroidal conden-
sates. Marx and Ruben (1983) have shown via freeze-etch
studies that their spermidine-condensed DNA toroids are
indeed circumferentially wound. Other experimental tech-
niques, such as x-ray diffraction (Maniatis et al., 1974),
provide data consistent with local hexagonal ordering of

DNA strands (in polymer-and-salt-induced (orC)-con-
densed DNA) having interaxial spacings of 25–30 Å (see
Fig. 1). All of these structural data apply to both in-
tra(mono)-molecular and inter(multi)-molecular condensa-
tion of DNA in dilute solutions, and highlight the high
degree of organization within the toroids.

Still more remarkable is the fact that the size of the
condensates appears to be largely independent of all of the
following: the molecular weight of DNA; genetic informa-
tion (base pair sequence of DNA); the condensing agent
used; and the background salt concentrations! More explic-
itly, over a wide range of DNA lengths (400–50,000 bp),
the size (and therefore the number of base pairs—about
50,000) of the torus remains invariant for DNA samples
from many different sources and for a wide variety of
condensing agents. It is this special condensate size whose
existence we propose to explain in the present work.

Until now, it has been the shape of toroidal condensates
that attracted most of the theoretical attention. Here, the
toroidal aspect ratio—the cross-sectional radius,b, to the
toroidal radius,R (see Fig. 1)—determines the shape of the
torus. The rod-like condensate, which we do not take into
consideration here, has a rod aspect ratio' (1/2p) z (toroi-
dal aspect ratio) in the same solvent. For example, Ubbink
and Odijk (1995) have recently proposed a model for
C-toroidal condensates in which they quantitatively analyze
the optimal toroidal shape for monomolecular collapse. The
size of the condensates is therefore simply dependent on the
length (molecular weight) of the chain considered. The
same authors have also studied nonideal (noncircular cross
section) toroids (Ubbink and Odijk, 1996). Likewise, Gros-
berg and Zhestkov (1986) and Vasilevskaya et al. (1997)
have also studied the DNA monomolecular collapse as a
coil-globule transition. Both groups present phase diagrams
as a function of DNA molecular weight. They determined
the maximum length of DNA that would form toroidal
condensates; beyond this length they propose that spherical
globules are dominant. This is in qualitative agreement with
the experimental findings that both toroids (Yoshikawa et
al., 1996; Laemmli, 1975) and spherical globules (Vasi-
levskaya et al., 1997) are observed for T4 “giant” DNA
(166,000 bp).
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It is also known that DNA molecules much shorter than
400 bp (e.g., 140 bp; Widom and Baldwin, 1980) will not
form toroids. A plausible explanation was presented by
Manning (1985). DNA bending was modeled as a series of
kinks with a certain kink angle and segment length (over
which the strand is straight). In this purely mechanical
model, a length was found beyond which buckling—asso-
ciated with toroid formation—can be observed for a given
ionic strength. For example, at a salt concentration of
;1023 M, this critical buckling length was;350 Å (100
bp). Alternatively, a kinetic model has been proposed by
Hud et al. (1995) in which the dynamics of loop formation
determine the toroidal shape. Their loop formation proba-
bility and free energy change must be related to the nucle-
ation rate and free energy change proposed for 60-bp seg-
ment loops (Manning, 1980).

Our aim is different from the goals of the previous
theories; we are specifically interested in the size of the
DNA condensates and its apparent insensitivity to molecu-
lar weight. This phenomenon is somewhat reminiscent of
the micellization of amphiphilic molecules (see, for exam-
ple, Ben-Shaul and Gelbart, 1994) and of the single-poly-
mer coil-globule transition (see, for example, Lifshitz et al.,
1978; Post and Zimm, 1979). As with micelles, the size of
the condensates may be a result of competition between
surface energy and dispersional entropy. And the uniform,
high density of DNA within the torus is suggestive of a
macromolecular globule. But, unlike micelles, where the
molecular length scale constrains the spherical radius, the
rod diameter, or the bilayer thickness, and unlike the coil-
globule transition, whereRglobule } contour length1/3, nei-
ther the diameter of the double helix nor its molecular
weight fixes either of the toroidal dimensions. Both the
micellization and coil-globule situations involve a single
length (structure) variable. Conversely, in the current prob-
lem, a toroidal DNA condensate can increase its volume
upon the addition of monomers (bp’s) by increasing either
its cross-sectional area or its radius (b2 andR, respectively,
in Fig. 1). Here, then, there are two variables involved, and
consequently there is no obvious basis for the preferred size
of the toroidal condensate.

In this paper, we represent DNA as a flexible rod (“gar-
den hose”) in which the primary (bp sequence) and second-
ary (double helix) structures are ignored. Continuing the
metaphor, imagine that a garden hose is wrapped around
itself or around a cylinder. It is immediately apparent that
crossovers—nonparallel portions—of strands are necessary

to “compact” the hose. These are topologically necessary
defects; they cannot be annealed out, as in typical liquid
crystalline or crystalline structures. We propose below a
simple model of these defects and their energies, and dem-
onstrate how their interactions lead to a specific size of
condensate.

MODEL

We consider a torus, shown in Fig. 1—which is character-
ized by the two radii,b and R—formed from one chain
(aggregation number,m 5 1) of lengthN, to be equivalent
to a torus formed fromm molecules of lengthN/m, which
are joined end to end such that the joined chains are equiv-
alent to a single chain. The interaxial distance (or the
monomer length),d, is typically 25–30 Å (Maniatis et al.,
1974). For convenience, we will refer to the torus as being
made up of an “N-length” chain of volumeV . b2R . Nd3

for all cases (i.e., allm’s). (Here and henceforth we drop
numerical factors (2,p, etc.) of order unity, thereby replac-
ing 5 with . in the corresponding equations.) Accordingly,
our theory for preferred size refers to a special value of the
total number of monomers,N (5 m z (N/m)), and not to the
chain aggregation number,m.

Imagine a chain ofN monomers (each of volume. d3)
that wraps around itself in an organized manner to make a
compact structure, specifically a torus (see Fig. 1), because
of some effective interstrand attraction. This attraction can
be due to electrostatics (Grønbech-Jensen et al., 1997,
Rouzina and Bloomfield, 1996, Oosawa, 1968, and Ray and
Manning, 1997) in the multivalent cation-induced conden-
sation, or to depletion interactions inC-condensation (Is-
raelachvili, 1992). Because the size appears to be indepen-
dent of the condensing agent used, as mentioned in the
Introduction, we merely require attraction between the
DNA strands and do not examine the nature of the effective
attraction. We assume circumferential winding and strand
preference for parallel configuration.

The “N-length” chain forms.b2/d2 (.V/Rd2) loops
(winds) with average radiusR. Each loop is parallel to the
other loops, except in the region where it crosses over itself
(see Fig. 2A). The ends of the strands (which will make up
other loops) in Fig. 2A will continue around and eventually
be parallel to the noncrossover part of the loop. (Note that
whenever “strands” are mentioned, they are part of a loop,

FIGURE 1 A circular torus and a cross-sectional view of circumferen-
tially wound strands.

FIGURE 2 (A) A loop within a torus. (B) Cross-sectional view within the
torus, where the dark circles represent a crossover pair of strands;d is the
interaxial distance. Note the local disruption of hexagonal order.

Park et al. DNA Condensation 715



and do not connote a different chain.) But these crossovers
disrupt the hexagonal packing (see Fig. 2B) and introduce
local curvature. They are not unlike the twist defects in the
hexagonal phases of polymeric liquid crystals (Selinger and
Bruinsma, 1992), but here the strands around the crossover
respond as if to a splay-type defect. Hence we are not
considering a localized chain exchange, but a non-localized
“twist” which affects every other strand in its vicinity. We
model the crossovers as hard-core inserts imbedded within
perfectly packed strands (see Fig. 3A for a 2D representa-
tion). We emphasize that these defects are simply conve-
nient models of the crossovers; both crossovers and inserts
impose extra local curvature cost and cohesive energy loss.

It may be helpful to note here that, for the remainder of
this paper, we will useR andV1/3 as the two length scale
variables for the torus. The shape of the torus is defined, at
fixed volume V, by R, in particular by the ratiob/R .
(V/R)1/2/R . (V/R3)1/2. Large ratios ofV/R3 correspond to a
“fat” torus, and small ratios to a “thin” one. A third length
scale specifies the defect structure and is defined below.

Because the strands are persistent chains rather than
simple particles, there is a “slack” length scale,l (see Fig.
3), over which the chains relax to their parallel configura-
tion. This length corresponds to the extent of the crossover
in the real defect. In other words,l is small if the crossover
is abrupt, and large if it is very gradual. Smalll corresponds
to high local curvature and small cohesion loss, and con-
versely, largel corresponds to small local curvature and
large cohesion loss.

We separate the total energy into two components: 1)
defect-free, or ideal, and 2) defect energies. The two fun-
damental physical quantities involved are the cohesion en-
ergy density,B/d ([ force per unit area), and the bending
energy constant,K ([ lpkBT, where lp is the persistence
length of the chain). We shall see that the relative magnitude
of these two quantities—in particular, the dimensionless
ratio, Bd3/K—determines the defect slack length (defect
“structure”), l*; the toroidal shape,R*; and ultimately, the
preferred size,V*.

Ideal (defect-free) energy

The volume of the torus isV . b2R, and the surface area
A . bR (. (V/R)1/2 z R . (V/R)1/2). UsingR as the average
radius of curvature for the loops, the energy of the torus

without defects is as follows:

Edefect-free. 2
B

d
V 1 BV1/2 R1/2 1 K

~V/d2!

R2 . (1)

The first two terms are the cohesive energy contributions
(bulk and surface), and the last term is the bending energy
contribution to the ideal energy. Here,V/d2 is the total
length of strand bent with an average curvature of 1/R.

A preferred shape of the torus (i.e., the ratiob/R .
(V/R3)1/2) for a given volume can be obtained through a
minimization of Eq. 1 with respect toR, giving R*ideal } V1/5

(Ubbink and Odijk, 1995; Grosberg and Zhestkov, 1986;
Vasilevskaya et al., 1997). Without including the effects of
defects, however, Eq. 1 is insufficient for determining a
preferred volume.

Defect energy

There are four contributions to the free energy of defects: 1)
defect elastic energy, 2) defect-defect interaction energy, 3)
loss of cohesion between the strands due to the presence of
defects, and 4) defect entropy. Each contribution will be
explained separately below.

1. The defect elastic energy is approximated using linear
elasticity theory. As explained below, all strands in the
cross-sectional area of the defect pay an extra elastic energy
cost along the slack length,l (see Fig. 3B). The torus can be
divided into .R/l l -length “columns” (see Fig. 4), from
which follows the number of defects per column,r .[(V/
Rd2)/(R/l)] . Vl/R2d2. When the defects are far from one
another, i.e., defect average center-to-center distances $ l,
the defects are noninteracting (r # 1), and the number of
l-length loop portions bent around one defect with curvature
k is .(V/Rd2). Fig. 3 B schematically illustrates this point:
all of the loop portions (of which only three are shown)
around one defect are bent and therefore, the total number of
l-length bent loop portions is (number of loops)3 (number
of defects) or (number of loops)2. The curvature,k, is .d/l2

(see Appendix A1). The defect elastic energy is therefore

Eelas. KS V

Rd2D2 Sd

l2D
2

l (2)

The above energy is positive, and is quadratic in the number
of defects. This nontrivial dependence onsizeandshapeof
the torus is a result of the fact that the deformation of
strands (loop portions) extends throughout the entire cross

FIGURE 3 Two-dimensional illustration of long-range effect of defects.
(A) One defect. (B) Two noninteracting defects. (C) Two interacting
defects. The slack length,l, and defect size,a, are shown schematically. In
B, the defects are noninteracting (i.e.,s . l), whereas inC, they are
interacting (i.e.,s 5 0). FIGURE 4 Schematic of 2pR/l “columns” (5 6 in the above torus).
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section of the torus. More explicitly, the strands relax only
through l and not in the plane of the cross-sectional area.
This is truly an anisotropic system, and the usual description
of defects in an isotropic elastic continuum (Eshelby, 1958)
is inapplicable. Therefore, even in the absence of defect-
defect interactions, Eq. 2 resembles a two-body effective
repulsion between the defects with 1/l3 dependence. Ifs 5
l, the intercolumn distance is exactlyl, and the columns do
“effectively” interact via a 1/l3 dependence. In other words,
there is an “intercolumn” (see Fig. 4) interaction that is
repulsive.

2. The defect-defect interaction energy is the excess elas-
tic energy cost associated with overlap of defect regions,
i.e., wheres , l (more than one defect per column). If there
are R/l “columns” (see Fig. 4), then an averagek2 can be
roughly calculated for a given number of defects per col-
umn,r. More explicitly, using thes 5 0 estimate whenever
s , l (see Fig. 3C), a discretized approximation of average
k2 can be calculated (see Appendix A2). This picture cor-
responds to noninteracting defects whens $ l, and strongly
interacting defects whens , l. The averagek2 can then be
used to calculate the elastic energy with defect interactions
for a given value ofr (number of defects per column).
When Eq. 2 is subtracted from this elastic energy, which
includes defect-defect interactions, we obtain the following
crude estimate of the defect interaction energy (see Appen-
dix A2):

Eint 5 0; l #
R2d2

V
~r # 1!

(3a)

.
Kd2

l3 S V

Rd2D2 F Vl

R2 d2 2 1G ; l .
R2d2

V
~r . 1!

(3b)

The first term in Eq. 3b involves the third power of the
number of defects. Because of this strong dependence on the
number of defects, there is a very large energetic cost to
increasing the number of defects within a column. This
interaction energy constitutes an additional effective repul-
sion between the defects.

3. The defect cohesion energy is the loss of cohesion due
to the presence of defects. Each defect, of which there are
.V/Rd2, is associated with the loss of.l d2 in cohesion
volume. The defect cohesion energy is then (becauseB/d is
the cohesive energy density):

Ecoh .
B

d S V

Rd2Dl d 2 (4)

4. Finally, the defect entropy is approximated by counting
the number of ways of arranging the defects within the
torus. Because each defect hasR/l columns available to it
and the total number of defects is.V/Rd2, the entropic

contribution to the defect free energy is as follows:

Eentropic. 2kBT ln FSRl D
V/Rd2G

(5)

. 2kBT S V

Rd2D ln SRl D
Note that each defect is considered independent but distin-
guishable, because each loop is distinguishable within the
torus. The above contribution serves as an effective (en-
tropic) attraction between the defects, because this term
lowers the energy when a large number of defects and/or
columns are present. Competition between effective repul-
sions (Eqs. 2 and 3) and the attraction (Eq. 5) between the
defects determines the optimum size. Note that Eq. 4 is an
isolated defect energy—i.e., a “perfect” defect energy—
where the defects do not feel each other. Although it is
necessary to consider this term for the optimum slack
length,l*, Eq. 4 will only change the particular value of the
optimum size and will not play a role in the competition
discussed above.

When the total defect energy is minimized with respect to
the defect structure (or slack length),l, the optimum valuel*
can be written as a function ofV andR. The resulting total
energy is then minimized with respect toR, and the pre-
ferred shape is obtained as a function ofV. For a range of
values of the dimensionless ratioBd3/K (5 3 1025 ,
Bd3/K , 1023), there is a preferred size,V*, as well as a
preferred shape,R*, for the torus.

The cohesive energy for DNA can be obtained crudely
from C-condensation experiments (Maniatis et al., 1974).
The lowest concentration of poly(ethylene oxide), or PEO,
which forms toroids is;80 mg/ml for an average molecular
weight of 7500. Treating PEO molecules as ideal particles
with a radius equal to the radius of gyration of one molecule
(' 20 Å), the depletion interaction (Israelachvili, 1992)'
22 3 1023 kBT per (Åd2) for a DNA separation of 8 Å. The
unit lengthd corresponds to' 28 Å, soB/d ' 0.06kBT/d3.
Using this value andK/d ' 20 kBT (lp/d ' 20 or lp ' 550
Å), we obtain an estimate ofBd3/K ' 0.003, comparable to
values in the range specified above.

Plots of the total energy density as a function ofV for
three values ofBd3/K are shown in Fig. 5. When theBd3/K
ratio is smaller than the minimum value (see Fig. 5A for
Bd3/K 5 5 3 1025), no condensation is possible (i.e.,V* '
0), and when the ratio is larger than the maximum value (see
Fig. 5 C for Bd3/K 5 1023), the finite-size torus becomes
the metastable structure (i.e.,V* ' `). For a value of the
dimensionless ratio within the range discussed in the above
paragraph (see Fig. 5B for Bd3/K 5 5 3 1024), there is a
preferred size; in Fig. 5B the preferred size is'15,000d3,
corresponding to'100,000 bp.

Although a systematic experimental study of toroidal size
as a function of varyingBd3/K would be extremely difficult,
there have been some studies in which the sequence depen-
dence of DNA persistent lengths has been probed (Schnell
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et al., 1998; Reich et al., 1992); the size and shape of the
toroidal condensates do vary for nonrandom (i.e., “syn-
thetic”) DNA molecules. For example, Reich et al. (1992)
find that some A-T-rich (more flexible) DNA molecules
form toroids with much smaller inner radii. It may be worth
noting here that we do find a smaller inner toroidal radius
with a decrease in the persistence length, and a decrease in
the preferred volume with an increase in the persistence
length, results not inconsistent with the two studies cited
above.

We find that if Bd3/K is within the stable range, a mini-
mum exists between the noninteracting and interacting de-
fect regimes. Within this range, for volumes smaller than

the minimum value (V , V*), the interaction energy is zero
(Eq. 3a), i.e., defects are noninteracting. And for volumes
larger than the preferred value (V . V*), the interaction
energy is nonnegligible (Eq. 3b), i.e., defects are interacting.
This implies that there is a maximum number of noninter-
acting defects that corresponds toV*. This maximum num-
ber of noninteracting defects determines, then, the preferred
size of the toroidal condensates.

DISCUSSION AND REMARKS

We have proposed in this paper that the consistently ob-
served size of DNA condensates is due to the presence of
strand crossovers, modeled as hard-core inserts. We show
qualitatively that within a range of the dimensionless energy
ratio, Bd3/K, there is a preferred size, as well as a preferred
shape, for the toroidal condensates. This size is due to the
torus supporting only a certain number of noninteracting
defects (or crossovers) for any givenV. In liquid crystals or
crystals, the macroscopic structure can be annealed so that
there is some fixed density of defects. Here, on the other
hand, the minimum number of defects is determined purely
by the number of loops, or the number of strands in a cross
section of the torus. Topologically, there is no way to
eliminate these defects within the torus. The only way to
achieve an optimum number and density of defects, there-
fore, is to limit the size of the condensate.

Within the model, the existence of a preferred number of
defects in the torus is due to the competition between the
defect elastic cost (both the elastic energy and the defect
interaction energy) and the defect entropy. The first can be
considered as the total “effective” repulsion between the
defects, and the second as a defect attraction. When the
torus becomes large enough, the repulsive terms—which
are quadratic and higher in the number of defects—become
dominant over the attractive term—which is roughly linear
in the number of defects. Although there is no well-defined
range of interaction in the torus, because this is not a true
thermodynamic system, e.g., the deformation range is not
small compared to the cross-sectional radiusb (.(V/Rd2)1/2),
the above competition is analogous to that between long-
range repulsion and the short-range attraction in true bulk
systems. For example, condensed domains in Langmuir
monolayers are limited in size because the molecules inter-
act via;1/r3 dipolar and;21/r6 dispersional interactions
(Andelman et al., 1994). This type of competition has also
been studied in nonbulk systems. For example, the shape
(cylinder versus necklace) transition of polyelectrolytes—
where the number and size of beads can vary (Dobrynin et
al., 1996)—is determined by the competition between short-
range attraction and the long-range Coulomb repulsion of
the charged monomers.

In this paper only the toroidal free energy is examined,
i.e., the conformational entropy of the chain is not dis-
cussed. The conformational entropy is dependent on the
aggregation number (m) and the molecular weight (N/m).

FIGURE 5 Plot of energy per volume (unitskBT/d3) as a function of
volume for three values of the dimensionless ratio of cohesive and elastic
energies: (A) Bd3/K 5 5 3 1025. (B) Bd3/K 5 5 3 1024. (C) Bd3/K 5
1023.
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The exact dependence on either of these quantities is not
clearly defined. Usually, in monomolecular collapse, a
Gaussian coil is assumed in which the confinement entropy
(de Gennes, 1979) is approximately.kBT z Rg

2/Rc
2 (where

Rg [ radius of gyration andRc [ radius of confinement). In
our present situation, however, the chain within the toroidal
condensate is obviously non-Gaussian. Even if we assume a
Gaussian chain, the entropy loss is similar to the bending
energy cost (see Eq. 1) when the size of confinement is the
toroidal radius,R, or equivalently, the volume of the globule
is .R3. The exclusion of the conformational entropy, then,
should not change the qualitative discussion of this model.

Furthermore, we have not included discussion of the size
distribution of the toroidal condensates, based on the size
dependence of the condensate energy. However, it is clear
that if an energetically preferred size exists, there will be a
maximum in the size distribution (i.e., an average size
should be observable). And the relative depth of the mini-
mum in the intensive energy will determine the width of the
distribution, i.e., a shallow well will produce a wide distri-
bution, and a deep one a narrow distribution.

We stress that ours is a qualitative and simple model
aimed at addressing the issue of size invariance in the DNA
toroidal condensates. The calculations are based on rough
estimates of the elastic energy, approximating DNA strands
as lines. We have also assumed that the elastic energy can
be separated into ideal and defect components. However,
the notable feature of this simple model is that topologically
unavoidable defects can be responsible for size invariance
in these mesoscopic structures.

APPENDIX 1

We approximate here the curvature,k, for derivation of Eq. 2 of text. If we
assume that the contour length of the strand around the defect is' l, then
we only need the curvature dependence onl. The curvature withinl will be
considered constant for all strands. Then the following geometric argument
can be made (see Fig. 6):

rc
2 5 ~rc 2 a!2 1 S12 lD2

rc <
l2

8a
; for a ,, l/2

k ;
1

rc
< 8

a

l2
(A1.1)

Here a is used rather than the interaxial spacing,d, for the following
reason: the amplitude of the crossover,a, is dependent on the designated
mode of winding. There are physical bounds for this value, however,
mainly 0, a , d/2. The exact value ofa does not change the qualitative
outcome of the theory. Therefore, we will choose a reasonable value within
the physical range. For the choice ofa ' O(0.1d), k ' d/l2. We use this
approximation of the strand curvature.

Because the defect elastic energy is proportional tok2 for the length of
defect, l, and the number ofl-length strands bent with this curvature
.(V/Rd2)2,

Eelas. KS V

Rd2D2 Sd

l2D
2

l (A1.2)

This is Eq. 2 of the text.

APPENDIX 2

A very crude approximation for the defect interaction energy is presented.
If r (.Vl/R2d2) is the number of defects (.V/Rd2) per column (number of
columns.R/l), the average value ofk2 for each integral value ofr can be
calculated. Then this discretized calculation ofk2 versusr can be used to
approximate the continuous defect interaction energy. The height of the
strand,h (see Fig. 6, whereh 5 a; also see explanation ofa in Appendix
1) increases by 2a for each added defect. Forr 5 2, for example (see Fig.
7), the averagek2 is

kr52
2#<

S8a

l2D
2

1 S83a

l2 D
2

2

<
10

r
konedefect

2

(A2.1)

Recall that in the case of one defect per column (r 5 1), the curvature is
'8a/l2 (cf. Eq. A1.2). The sum of allh2/a2 for a givenr is the coefficient
(12 1 32 5 10 in Eq. A2.1). Table 1 shows the general trend of the increase
in the coefficients.

The sum of allh2/a2 is approximatelyr2 (3r 2 1)/2. The average
curvature for any arbitraryr is then

kr
2#<

r2 ~3r 2 1!

2r
konedefect

2 (A2.2)

For the elastic energy with overlap, Eq. A2.2 is multiplied by the number
of l-length strands bent with this average curvature in the column
(.V/Rd2) and by the number of columns (.R/l). This is the defect elastic
energy when the defects are interacting. The defect interaction energy is
obtained by subtracting from this energy the noninteracting elastic energy
(cf. Eq. 2 of text or A1.2). That is, the defect interaction energy is the

FIGURE 6 Approximation of the curvature for a given height of strand,
a, and the length,l.

FIGURE 7 Schematic representation of the increase in curvature with
each added defect.
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excess elastic energy associated with the overlap of defects:

Eint . KS V

Rd2D SRl D r2~3r 2 1!

2r
ronedefect

2 l 2 Eelas

(A2.3)

.
Ka2

l3 S V

Rd2D2

@r 2 1#

Whenr #1 (when there are just as many or fewer defects than columns—
the case of noninteracting defects), Eq. A2.3 is set to 0. This is Eq. 3 of the
text.
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TABLE 1 Numerical coefficient for average curvature as
function of number of defects per column, r

r sum(h2)/a2

1 1
2 10
3 35
4 84
5 165

720 Biophysical Journal Volume 75 August 1998


