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Abstract

The simulation and analysis of a temporal solitentyrbation (interaction) with a
dispersive truncated Airy pulse traveling in a moehr fiber at the same center
wavelength (or frequency). True Airy pulses remsétf-similar while propagating
along a ballistic trajectory. However, they aranité in energy due to the infinite tail
that prevents the energy integral from convergingarder to be realized, Airy pulses
must therefore, be truncated. The truncation isiedrout by apodizing the infinite
Airy tail. Despite the truncation Airy pulses remaielf-similar over extended ranges
while the ballistic trajectory is completely pregsi. This allows them to interact with
a nearby soliton on account of the acceleratingefvant property.

The interactions are governed by the Nonlinear &lihger equation for
which no analytical solution currently exists férvese initial conditions. Therefore,
numerical simulations are required. The numericathod chosen is the split step
Fourier method which is a mathematical algorithmgmpagation of the pulses. By
providing the simulation program with the initiadunch conditions we are able to
follow the interactions as they progress.

Analysis of the simulation is carried out by tragki the fundamental
parameters of the emergent soliton during propagattime position, amplitude,
phase and frequency—that alter due to the primaliision with the Airy main lobe
and the continuous co-propagation with the dispkAsey background. Following the
collision, the soliton intensity oscillates asataxes in the dispersed Airy background,
trying to settle in to a new soliton state. Furth®r varying the initial parameters of
the Airy pulse such as initial phase, amplitude amé position, different outcomes
are witnessed which allows for a broader understgnaf the interaction.

Due to the spectral repositioning of the Airy spact by dispersion, the
interaction is found to resemble coherent inteomsti at times and incoherent at
others. The results indicate that in certain cagEmanent change in frequency and
intensity occurs, depending on the configurationtted initial parameters chosen.
These changes are made apparent through changémenposition and in the
accumulated phase of the soliton. Furthermore, rdowp to the perturbation theory
local changes in time position and phase can atsmroindependently from the

frequency change and intensity change, respectively
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1 Introduction

Bessel beams which were thought to be unique iffradlionless beams that
have been theoretically introduced in 1987 [1] &idr experimentally demonstrated
in ref. [2]. However, it was not until recently tha new addition was introduced—
Airy beams. An Airy wave packet was first introédcin 1979 [3] in the context of
guantum mechanics. It was theoretically demonstrétat a nonspreading Airy wave
packet is a solution to the Schrodinger equation &oparticle with no external
potential (free particle). While Bessel beams argtadionary solution, Airy beams
have a remarkable ability tiveely acceleratedespite the absence of any external
potential. However, Airy beams as well as Bessahtserequire an infinite amount of
energy to be realized. A solution to this predicatrie the truncation of the beams
that was first demonstrated on Bessel beams t@eutih the creation of non-
diffracting beams [2]. It was only recently thaetlatter solution was applied to an
Airy function to achieve non-diffracting Airy beani-6]. Despite truncation, Airy
beams remain quite resilient to diffraction andystelf-similar over extended
propagation distances. Furthermore, the charatiteaisceleration is fully maintained.
Truncated Airy beams are easily attainable by apgla cubic phase mask across a
Gaussian beams in the Fourier plane. These unituleuées and experimental ease
have sparked much interest surrounding Airy beakssso, they have become the
topic of research in many research groups. Spatialhcated Airy beams have been
applied in creating curved plasma channels [7}igarclearing [8], plasmonic energy
routing [9], and are capable of recovering fromtigppeobscurations due to their
energy redistribution mechanism [10], making theseful for imaging in scattering
media [11].

As it is known, the diffraction equation of liglaind temporal dispersive
equation are isomorphic, therefore the attributeso@ated with spatial Airy beams
can be directly translated to temporal Airy puls@isnilar to truncated Airy beams it
iS necessary to impose a cubic spectral phase emptise to achieve temporal
truncated pulses. Such methods include shapingitpods [12] or propagation in
cubic dispersive media (at the zero dispersion Veagghs) [13]. The resulting
truncated pulse can achieve large propagation riista without succumbing to
dispersion (in normal or anomalous dispersion meadtdch can lead to spatially and

temporal confined pules or light bullets [12, 14&]ght bullets are an interesting



combination of a truncated spatial Bessel beamaatndncated Airy temporal profile.
When combined they create localized (confined) besof light both spatially and
temporally. It is also possible to engineer Airylgms to collide in time or space to
achieve significantly high power enhancements [15].

Airy pulses and beams have also been experimavitath nonlinear medias,
particularly intensity dependent Kerr media. Intswases the Airy waveform is no
longer an analytical solution to the Nonlinear $ciimger equation (NLSE). Due, to
the intensity distribution of the Airy beams andges the nonlinearity is strongest at
the peak intensity and subsides with the minordatbat follow. Therefore, the peak
intensity experiences a greater amount of self@ha®dulation (SPM) or self-
focusing, offering a unique advantage when relatil@v powers are applied to Airy
beams. These allow for prolong propagation undeh swnditions [16]. As power is
increased the formation and shedding of spatiatos@ or multiple solitons can be
observed [17]. Similarly the same phenomenon casdea in the temporal domain
[18]. Finally, creation and switching of Airy bearhg parametric process was also
demonstrated in a quasi-phased matched (QPM) riE@lialong with spatiotemporal
control in high-harmonic generation obtained by QstMictures [20].

Since Airy beams or pulses are not an analytidatism to the NLSE they are
unable to maintain their shape during propagatiorthe presence of the optical
potential created by the Kerr effect. However, ara solution exists in the form of a
soliton [21- 23] (soliton: a general term for a smlthat maintains its shape during
propagation in nonlinear media). This stable solutmaintains a balance between
diffraction (dispersion—time domain) and self-forgs (SPM—time domain) which
allows it to keep its intensity profile. It is aatibnary solution and does not accelerate
during propagation. Solitons have been extensigalgied in both spatial [24] and
temporal domains [25]. Research in to the lattes wainly out of interest for use in
optical communications [26, 27]. Soliton “repeatsd”’ networks were first conjured
by Hasegawa [28] while Mollenauer, Stolen and Gorldder demonstrated temporal
soliton propagation [29]. In particular, solitonlisan interactions were studied to
investigate the effects that they have on solit@seld communications. These
interactions are categorized as either coherent 3®]1 31] (interactions between
successive bits) or incoherent [27, 32] (collisidietween pulses of different wave

division multiplexing (WDM) channel, due to grouplecity mismatch).



Soliton perturbations were also extensively studieel fiber loss or local
amplifications) [33-41]. These interactions (catiss and perturbations) establish the
limiting factors for soliton-based optical commuations [27].

The following thesis deals with the simulationimteractions between a weak
truncated Airy pulse and soliton pulse in a singlede fiber (SMF) as the nonlinear
medium. By keeping the Airy pulse weak, we presetsdinear characteristics and
can treat the interaction as a perturbation ofstiable soliton solution. Placing these
pulses at proximity to one another, yet non-oveuiag, and launching them at the
same center frequency the Airy pulse can accelevateeract with the soliton.

To better understand the interaction we vary thegtivee amplitude, phase and
time separation of the Airy pulse relative to tleiten. This is based on insight from
soliton-soliton and soliton-Continuous wave (CWattlshow that these parameters
influence the outcome of the interaction.

The results obtained show that the interactiomdeed influenced by the
variation of these parameters. For example, arrast@eg result arises due to the
variation of the time separation, which not onhakges the collision distance. Such a
variation also changes the duration of the intewacat collision point as will be
shown later.

Chapter 2 introduces the NLSE equation, whicthésgoverning equation for
propagation. Being a second order differential &qnathe NLSE has only a few
known analytical solutions and in most cases ivesblby numerical methods.
Chapter 3 elaborates on these methods, in pantigala the split step Fourier method
(SSFM) and includes the considerations and linategtiwhen it is employed. Chapter
4 is the implication of the SSFM in the investigatiof the soliton-Airy interaction,
and deals with the intricate details of the intéoac Finally, the work is concluded in

the last chapter with a summary of my findings paodsible future work.



2 Theoretical background.

The NLSE is the propagation equation that govdrasehavior of optical pulse when
the pulse widths are between ~10ns to 10fs. Wheicabgpulses propagate inside a
fiber they are influenced by both dispersion andlinear effects. These manifest
themselves through changes in the pulse shapepaatism. In this Chapter we will

review the basic mechanism of both dispersion drednonlinear phenomena and

introduce the Airy and soliton pulses.

2.1The pulse propagation equation.

To derive the pulse propagation equation we shedt fecall and define a few
equations and relations. Maxwell’s equations (24)-2re the foundations of all the

electromagnetic analysis and as such the propagatioptical fields in fibers [23].

vxE-_B (2.1)
ot

VxH=3+P (2.2)
ot

V-D=p (2.3)

V-B=0 (2.4)

E-is the electric fieldH- the magnetic fieldD- electric flux,B- magnetic flux,J- the
current density in the mediump; the free charge density. In optical fibers bathnd
p can be set to zero since there is no net chardenarcurrents present. The first
relations are the relations between the flux dessdit andB that are brought upon by
the electric and magnetic fielandH respectively.
D=¢,E+P (2.5)
B=uH+M (2.6)
€o-IS the vacuum permittivity andeplis the vacuum permeability? andM are the
induced electric and magnetic polarizations respelgt We focus on the electrically
induced polarizations since in optical fibér is equal to zero. The nonlinear wave
equation for the electric field can now be attaibgdaking the curl of Eq. (2.1) and
applying the rest of the Maxwell equations to arat equation (2.7).



E:-———/J —_— (27)
c

When the frequency of the electric field is farnfrdhe resonance frequency of the

medium, the response Bfcan be simply describe by:
P=¢,(y"E+ y?EE+ y®EEE +...) (2.8)
This is an expansion of the polarization that hasnbinduced in the medium by an

external electric filed: g,- is the vacuum permittivity andy-is the electric

susceptibility that describes the response of tbadbelectrons and molecules
(nucleus) in the presence of an external electeid.f To first order,P is linearly
dependent ok and is a sufficient description as it is the mantdbution. Although,
when the intensity increases past a certain thtégEkdectric field on the order of the
binding atom [42]), higher order terms start to tedaute and this is the source for
nonlinear optics (NLO). The primary terms in NLCeahe second and third order
which relate toy® and y® coefficients respectively in Eq. 2.8. When an elect
field is substituted into equation(2.8), we receavevide range of phenomena's from
the combinatorial combinations [23, 43]. These &rgher grouped in to two
categories; Phase matched processes and intemsign gorocesses [23, 43]. Phase
matching implies that conditions are such that ¢herier frequencies interact to
produce new frequencies combinations. While innisitly driven process the carrier
frequency of the field remains the same but infagems through changes in the
refractive index. This induces a chirp that canatgenew frequencies (around the
center frequency). Second harmonic generation (Sdh@)third harmonic generation
(THG) are two examples of a phased matched praneskich two or three photons

interact to produce new frequencies respectivelyaniples of intensity driven

processes include optical rectificationyQ -process) and self-focusing (spatial

domain) or self-phase modulation (time domain) (3R -process). In our case

the propagation is influenced by SPM since the itimms for phase matching are not

present leading to a low probability for phase g to occur. In addition, in most
mediums, they'® processes have zero contributions due to symrpebpgerties [23,

42, 43] leaving the main contribution from the thorder term as the lead term (Eq.
2.9).

P (rt)=¢ 7 E(r,OE(,DE(,L) (2.9)



SPM arises from the dependence of the refractidexron the intensity. This can be

seen in the frequency domain with the followingafetquations [23]:

n(@,[E[")=n(e)+ n|E[ (2.10)

n(a;)=1+%Re[;z<“(a))] (2.11)
_3Rel,0

n, = 8Re(lxxxx) (2.12)

Equation 2.10 defines the refractive index in thespnce of a high intensity electric

field. In Eqg. 2.10n, is a measurement of the fiber nonlinearity defibgdq. 2.12.

We split the polarization to a linear and nonlimeantribution (Eq.2.13).
P(r,t)=P_(r,t)+ Py (r,t) (2.13)

Substituting this in to Eq. (2.7) we arrive at:

10°E  0°R 0°Py,

= +
co Har THTae

Prior to solving Eq. 2.14 we will require to makeveral simplifying assumptions.

VE? (2.14)

First, Py is treated as a small perturbatiorPig since in practice it is on the order of
10° [23]. Second, the optical field is assumed to r@@mits polarization so that the
scalar approach is valid. Third the pulse spectisnassumed to have a narrow
spectral width @/we<<1). For examplexo~10", this will coincide with pulse widths
as short as 0.1ps. Lastly, we will assume thatntleelium’s nonlinear response is
instantaneous. (The instantaneous response of tedium assumes that the
contributions are from the electrons and not théemdar vibrations that result in the
Raman effect. We shall not concern ourselves wighRaman contribution and thus
are limited to pulses widths that are larger thas) 1A solution can now be presented
as a multiplication of three terms [23].

| =

E(r,t) == %{F(x Y) A2 )exp(, z-m, t c§ (2.15)

2
Without loss of generality we assume that the smiUE is in thex direction.
The functionF(x,y) dictates spatial dependence of the field and pwates the
geometry of the medium. For example in an opticaérf the fields’ first mode
(fundamental mode) that develops due to the boyndanditions has an intensity
distribution similar to a Gaussian intensity prefilThe spatial dependence is found by
finding the eigenvaluetor F(x, y)with a given choice of coordinate presentatior] [23

when Eg. (2.15) is substitute in to Eq. (2.14). ldger, the complete derivation

10



requires the transitions between the time domaoh the frequency domain where
significant simplifications are gained. We shalt pooceed with the full derivation of
the spatial dependence but will proceed under searaption that the fiber is a single
mode fiber (having only the transverse electric @odur main concern is the
behavior of the temporal envelopéz,t) of the field during propagation along the z
direction. Therefore, Eq. 2.16 is also the consegeef the latter substitution with

the added assumption that regards the envelopbwaly varying with respect t@

(‘82,6/822‘« ﬂOZM), where f,-is the wave number. This resulting equation is

usually referred to as Nonlinear Schrodinger EquiefNLSE).
oA oA . O°A « L2
—+f,—+if,—+—=A=iy|A A 2.16
o7 B ot B, oF | 2 7/| | ( )

The first term is the differentiation of thz,t) with respect t@. The next two terms
from the left, are the consequence of the expansidhe wave numbef which is

frequency dependent.
B0) = o+ (- 0p) By 5 (00 Bt < (0= 09°. (2.17)

pr-represents the group velocity of the pulge- 1/, , B - is the quadratic dispersion

coefficient (GVD: Group velocity dispersion). Thaufth term is the loss or gain term
determined by the sign of Last is the nonlinear term arising from SPM, aged

out earlier the refractive index is dependent lom ¢lectric field according to this
relation:n=n, + nz| E|2 ,which is known as the Kerr effeqgtjs defined by Eq. (2.13):

_ o,
CA4

At -parameter is known as the effective are of therfibode. It relates the mode

(2.18)

distribution to the size of the core. An exampleuldobe a Gaussian distribution;

A, =7W, w- is the width of the Gaussian (depending on how ®aussian is

defined).

11



2.2The Dispersion phenomena.

In this section we will discuss in detail the effeof group velocity dispersion (GVD)

by treating the optical fiber as a linear opticadium. In such a case the nonlinear
term in Eq. (2.16) is neglected. To simplify thirfgsther we will also assume a loss-
less fiber. However first we must set the criteviaen a medium can be considered

linear.

2.2.1 Propagation regimes

Representation of EqQ. (2.16) in the retarded timmamé allows for further

simplifications with the following transformatioh =t— zg, = t— ;/ y, [23]:

g—'j+iﬁ2%‘+%A=iy|A|2 A (2.19)
T —is the time in the retarded time frame movingraup velocity.

To determine the propagation regions it is necgs$ar us introduce the
normalized form of Eq. (2.19), which will allow féihe definition of the characteristic
lengths for the dispersion and the nonlinear phemais and thus establishing the
criteria for pulse propagation regions.

Defining Eq. (2.20) where=T/T,, To is the initial pulse width an8, is the initial
power, we can substitute Eq. (2.20) in to Eq. (RtéSarrive at Eq. (2.21).
Az7)=Rexpta?2)U(z) (2:20)

oU _ sgn(s, )o°U _ exp(-az)
oz 2L, o L,

ufu (2.21)

sgn(fB,)- is the sign function and has the values of Hietheling on the sign gi..

Lp andLy. (EqQ.(2.22)) are the characteristics lengths ferdtspersion and nonlinear
phenomena's respectively and they offer a scalevtiach the effect of the dispersion
and nonlinear effects becomes relevant. The physitarpretation ofLy. is the

distance at which the phase shift contribution is attained through SRMile after

Lp a Gaussian pulse would have accumulated an irereaguration by@. We are

now in a position to define the propagation regimes

2
T Ly = (2.22)

L =0
? |,B2| 7R,

12



1. Lp =Ln<L are of the same magnitude and both are smallar.thaeither of
terms in Eg. (2.21) can be neglected and bothimnfilience the pulse during
propagation.

2. Lp<L <L in this case the nonlinear term in Eq. 2.21 caméglected and
the pulse evolution is governed by GVD only.

3. Ln<L <Lp for this case the dispersion term is negligiblal d@he pulse

evolution is governed by nonlinear term.

2.2.2 Dispersion-induced pulse broadening

Assume we are in condition 1, then Eq. (2.21) aasitmplified to:

i6U(z,T) _B,2°U(z T
0z 2 0T?

To solve Eq. (2.23) we transfer over to the Fout@mnain were Eq. (2.23) has a

(2.23)

simpler form;
. 0U (z,0) _ P ai
| T = > COQLJ (Z, CO) (224)
U(z,0)= U(O,a))exp{i—zﬂza)2 z} (2.25)

Solving Eg. (2.24) leads to the solution Eq. (2.28)ich states that any initial
condition can be propagated in the frequency donmapredetermined distance by a
multiplication of an exponential phase term thatbmth frequency and distance
depended. An analysis of Eq. (2.25) shows that sgeletral component receives a
change in phase proportional to its frequency gitvan distance. This however does
not change the power spectrum but does alter thee gemporal profile. Therefore,

we can propagate any arbitrary initial conditionajransformation to the frequency
domain, carry out the propagation and return byntakhe inverse Fourier transform
Eq.(2.26).

U(z1) =%T U(O,w)exp{i—zﬂzwz 7 'wtj do (2.26)

Figure 2.1 shows an example of a broadening Gausgsise (initial condition given

by Eq. (2.27) without any spectral alterations agippropagation.

T2
u@,T)= ex;{—z_l_zj (2.27)

0

13
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Fig. 2.1. (a) The evolution of Gaussian pulsenveih initial amplitude of 1, initial width of 1, ia loss less fiber and no

nonlinear effects.(b) The broaden Gaussian puldéfatent dispersion length&4=1),(c) Initial and final power spectrum.

Dispersion can either compress or broaden a puwperdling on the sign of the
product between the quadratic disperdigs) and the chirp. The chirp is defined as
the instantaneous frequency across the pulse, sindathematically defined as;

ow=-0¢/0T , where ¢is the argument of the temporal phase term of thsep In

addition, S, can either positive or negative. Whgh is positive, this is known as
normal-dispersion, were low frequency componerasgelr faster than high frequency
components. While wheg, is negative the opposite is true and this is kn@sn
anomalous dispersion. When the medium has anomadispsrsion it is possible to
achieved optical solitons with dispersion balanding spectrum generated by SPM

(both produce a chirp at the same magnitude butgfmin sign).
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2.3 Airy

Airy wavepackets having been first theoreticallggested by Berry and Balazs [3],
with little interest devoted till recently when @todoulideset. al.demonstrated [4-

6] Airy beams by truncation of the Airy tail. Theparked much interest among many
research groups (see the section 1-Introducationiis section we will review in

brief Airy beams and follow up with Airy pulses @ftshowing the analogy between

the dispersion equation and diffraction equation.

2.3.1 Airy function

Before moving on to Airy beams in space, we revieWwrief the Airy function and
the truncation procedure. The Airy function has ynarathematical definitions [44],

one integral presentation is:

Airy (x) :cho{gjt xtjdt IIm( X == 0 (2.28)
4 0
Figure 2.3a shows a plot of an Airy function and.F2.3b is of a truncated Airy
beam:
Airy .. (x) = Airy(x)exp(ax) /;a> 0 (2.29)
0.6 T T T T T .
(@) | | | | | |
R I T A T e o &
i |
TR A
S0 11t AR 981 f
9 N o5 8 ) S S i
it s ot IR ot e s
0%, -410 -310 x-zlo -110 (:) 0% Tr-lzjtr:)caﬂon C-an()mdem:-(;g

Fig.. 2.3. (a) Airy function,(b) Truncated Airy fation with different truncations.

The zeros of the Airy function along with other pesties can be found in [44.]

15



2.3.2 Airy beams in space
An initial condition of a truncated Airy (in normaéd units) of the form:
U(s,¢ =0)= Airy(9exp(as (2.30)
Will diffract according to [2]:
U(s &)= Airy[ s—(&12)% + iaflexp(as-( &°/2)- {£°112)
+i &8 12)i &s 12))

Wheres is the normalized transverse coordingde- ¥ %) andg is the normalized

(2.31)

propagation distan((ez 27 r//io). When setting@=0 one receives the theoretical

non-diffracting Airy beam (is such a case the eperfthe beam_[ u (s,g)\zds does

—0

not converged). The origin of the Airy's parabatanslation is in its argument. When
looking at constant plaing—(&/ 2)2 = constan the relation betweesand¢ is

quadratic.

2.3.3 Airy pulses in time
The mathematical equations of diffraction (Eq.(2)Zd dispersion (Eq.(2.33)) are

isomorphic [23].With a simple translation betwder> — 5, and x <> T we can move
between the two domains.

iau(x,z)k+la U(szo
oz 2 %

V@2 40U, (2.33)
oz 2 ot

(2.32)

To transfer equations (2.30) and (2.31) to the timmain we make the following

substitution:

S—)l; §—>Z—’82 (2.34)

Equations (2.35) and (2.36) are there equivalemdtled time domain respectively.

U(T,z=0)= Airy(_l_l) exp(a?T) epr% ) (2.35)

0 0 0
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U(T,z):Airy[Tl—(z—ﬂzJ - %rﬁ“r mﬂ]exp[a% (2( T J)— a/%]x

o \2T]
T vy
+ —_
J T é( Tij

exp[{— [Zﬂzj —26(—V2+—(

In EqQ. (2.35) and (2.36) we added an initial velpparametev [3] that causes a shift
in the carrier frequency and thus contributes afitadal term to the translation of
the peak in time %/TO =v 28,/ T +( 8,/2 '[f)z . (In the diffraction analogy, the
velocity term is a linear spatial phase tilt). Atpbf exemplary dispersed Airy pulses
(Eq.(2.36)) with different initial conditions is @Wwn in figure 2.4.
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Fig. 2.4. Airy intensity distribution when propaiet with in a dispersion medium,having no losstiahconditions are: initial
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From figure 2.4 we can see that Airy pulses maintheir shape while propagating

over extended regions. For comparison, Gaussisegwan travel/3 Lp (whereLp

is the dispersion length) before the peak interisitgduced by half, whereas an Airy
pulse can travel several dispersion lengths; famgle, an Airy pulse witl0.05
(0.005)truncation coefficient can propagdisly (16.7 Lp) before the peak intensity
is reduced by half (Fig. 2.5). The increase in gispn lengths for larger truncation is
explained by the fact that as we increase the #timt coefficient we further broaden
the pulse in positive side of the axis thus theawitie pulse the less it disperses.

25

Truncation coefficient
Fig. 2.5. Distance propagated (normalized to the chariatt dispersion lengtlhp)
to reach half power of the primary peak for a Tated Airy with different truncation coefficientsl(ie line). The red line
is the distance required for a Gaussian to realftpbak power.
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2.4The Nonlinear phenomena

The nonlinear phenomena manifest itself throughdbépendence of the refractive
index on the intensity of the electric field. Thiauses self-phase modulation that
leads to the broadening of the spectrum of oppciddes. To focus on the nonlinear
phenomena in the absence of dispersion, we cafi.s€l. Though, in practice if the

power and pulse width satisfyp>>L \., we would be in the nonlinear propagation

regime.

2.4.1 SPM-Induced Spectral broadening

Assuming that such conditions are met:

oy _iexp(az), e, (2.37)
7 L

To solve EQ.(2.37), we substitute=V exp(i¢NL) as a probable solution. Therefore,
separating to its real and imaginary parts we get:
v d¢,, exp(-az)

oz 0z Ly,

Form Eg. (2.38) we deduce that the amplit¥de independent df, thus, the equation

for the phase can be analytical integrated:

2
d (2.T)=[U(0.T)[ (Lo / L) (2.39)
Leff =[1-exp(-a 2) | Ja
Equation 2.39 reviles that during propagation thkse shape remains unaltered (Fig.
2.2a), and the SPM gives rise to an intensity-dépehphase shift. The phase profile
would be that of the pulse shape aftgr in a lossless fiber (Fig. 2.2b).
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2.4.2 Cross phase modulation

When two fields with different or same frequencypropagate in a SMF they

can interact through the nonlinear term. Whea A + A, is inserted into Eq. (2.19)

new terms are produced in each equation [23, 4248h

oA | ++i4, Azi+ A_L |7|A1| A1+2'7|A2| A
0z oT XPM (2.40)
a'iz-H,Bz 6'I"62\2+ A = '7|A2| A2+2'7/|AJJ A,

In the Eqg. (2.40) we ignored terms that oscilldtéha new frequencies

2Q, —Q,0r2Q, - Q, since they require phase matching in order toymedny
significant contribution, thus we are left with tbess-phase modulation (XPM). Due
to the presence of two fields the refractive ingdemow influenced by the intensity
from both fields. Each field now produces a nordinghase shift proportional to its

intensity on the other filed.
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2.5The Soliton Pulse

Solitons are eigen-functions of the NLSE in anomaldispersion media, brought
about by the balance between dispersion and seBefocusing due to the Kerr

effect(L, = Ly =|8,|/T¢ =1/7B). It was first analytically derived by V.E Zakharov

and A.B. Shabat that showed that the soliton @latisn to the NLSE with the aid of
the Inverse Scattering Method (ISM) [21]. The fiostler soliton solution has the
canonical form [6, 15] (with units):

U(T.2)= Asech((T~ Ty ) /T )exp( %,/ T (2.41)
Tsoliorr INitial time position of the soliton.
Equation (2.41) states that the soliton maintamshape (Fig. 2.6a) and only acquires
a cumulative phase that is linearly dependent emptbpagation distance (Fig. 2.6b).
Solitons can also arise in the presence of anrarpipulse shape with an energy
surplus with respect to the soliton condition [28]. The formation of the soliton
evolves during the propagation with the pulse shrepdff excess energy to settle in a

soliton state.

10
10

Q‘S’ . l:l. ; 1;0 I;!' =0
“e, 9 =10 o Desmsese :
Fig.. 2.6. (a) Soliton propagation with=Ly =1,(b) a linearly accumulated phase during pgagan.

21



3 Numerical Simulation for pulse propagation.

The Nonlinear Schrédinger Equation (NLSE) is a im@dr partial differential
equation that does not generally lend itself tddital solutions except for some
cases in which the inverse scattering method canipdoyed [21]. Therefore
numerical approaches are necessary for solvinyltI&E. These are classified into
two broad groups, 1) finite-difference methods ahgseudospectral methods [23].
The method used extensively is the pseudospegiiabtep Fourier method (SSFM).
Pseudospectral methods are generally faster bge©of magnitude while achieving
the same accuracy.

3.1Introduction to the Split Step Fourier method.

The NLSE (Eq. (2.19)) can be expresses as the stuwodifferential operators [23].

g—’:=(6+ N) A (3.1)

In Eq. 3.1Dis the linear operator the accounts for disperaiwhloss (gain)}Al is a

nonlinear operator that governs the nonlinear &ffacthe fiber during propagation.

D=—t2 % /A% 2% 3.2
2 0T> 60T° 2 (3:2)

N=iy|A’ (3.3)
These operators act together continuously and amebusly on the pulse during
propagation. When applying the split-step Fouriethnnd an assumption is made that

over a small distandethese two operators are independent on one another

Propagation for to z+h is carried out by applying the following expressio

A(z+h T)~ exp(hD)exp(hN) Az T (3.4)
D can be more conveniently applied in the Fouriendio. Therefore, using the
Fourier identityd" f (t)/ dt” = (iw) f (@), D is transformed to the Fourier domain
where its application is much more practical.

p_i0p, 10°p « (3.5)

Propagation along the fiber is carried out by ecn$ively operating on each segment

with N and thenD keeping the order, due to the non-commuting ndiatereen the

operators, till the whole fiber is complete. Howewbhe SSFM ignores the non-
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commuting nature of the operators [23]. Therefem@mplifications and improvements
in accuracy of the SSFM simulation can be implemént~or example one variation
to improve the accuracy is to apply the dispersiparator to the first half of the
segment then operate on the full segment with tméimear operator and complete the
second half with another application of the disjger®perator for the remaining

segment.

A(z+ h T = exp(g bj expa‘h N 2 d'z)exég AI% Az (3.6)

The advantage gained through this variation istti@nonlinear contribution is not

taken at the boundaries but integrated over theeegy However, if the step size is
small this can be taken to eJep(hN ). The latter method is known as the symmetrized

SSFM and in this case the leading error term rsl thider in the step size[23].

3.2The Algorithm.

Based on the last variation our algorithm is depetb

+ Step 1: Divide the fiber in to segments (Fig. 3.1).

% Step 2: Split the segment in two equal parts.

+ Step 3: Operate on the first half with the dispmraperator.

« Step 4: Operate on the entire segment with theimean operator.

« Step 5: Operate on the second half with the dispeperator.

% Step 6: Repeat steps two through five for the atjasegment with the result
obtained from the previous segments.

Length of fiber
> |« R EERERD Jb S o
h h h h h h
Ap A] A2 A3 Ay An-1 An

Fig. 3.1. Segmentation of the fiber (left). Sepiaraof a segment into two parts for applicationtled dispersion operator
(right).
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3.3Considerations and Limitations.

There are some considerations and limitations nmast be addressed prior to the
application of SSFM. The prominent one is the st h (the length of a fiber
segment). To acquire a reasonable accuracy weeasth would be at least two
orders of magnitude less than the dominant phenangenerning the propagation.
However, the optimum choide depends on the complexity of the problem at hand.
For example, a pulse can compress or broaden pgrdisn, continuously changing
Lp. Thereforeh must be adjusted accordinglyLif is reduced during propagation to
maintain reasonable accuracy. To be able to takeaiccount such scenarios we take
h to be at least 3 orders of magnitude smaller thardominant initial characteristic
length.

Another consideration is due to the repetitiveuratof the Fourier transform
when the pulse energy reaches the ends of the wimgow energy gets feedback
(cycled back from end to the other) into the pw@sd does decay creating unreliable
results. This can be overcome by simply makingtitine window large enough, thus
confining the pulse in the time window over thegagation range. The latter method
although very practical in most cases and simp&eahbimiting factor. The drawback
is that this requires large vectors resulting irrenorocessing time and requires more
memory. A more advance solution is the introductdrimiting window that when
the pulse reaches the ends of the time window nieegy is absorbed preventing the
feedback. In this case, care must be taken so dugralecay of the pulse will be
carried out and not an abrupt cutoff of the pul$ectv will also generate a reflection
due to an abrupt transition. To prevent this froapgening the criteria to keep in
mind is the rate of temporal spread with respethéocstep size, which needs to ensure
that the amount of temporal spread takes place @few steps. This is also true in
the frequency domain and a delicate balance mug&epe Last, when dealing with
pulses that are less than 5ps, further terms nautken into account in the operators.
These terms are added to the nonlinear operatoa@daused by Raman scattering,

though are not present in our simulation scen@3j. [
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4 Airy-Soliton interactions

Our initial intention was to demonstrate an ovestalf a Gaussian pulse by
utilizing the parabolic trajectory of an Airy pulsé@hough, with our chosen
configuration, the broadening rate of the Gaussiarm faster than that of the Airy's
acceleration. Thus, the Gaussian pulse engulfedAthepulse and the two pulses
propagate through one another while experiencitegference.

However, a solution presented it self in the forfna goliton pulse. Solitons do
not broaden during propagation and are a statidmatryequire a nonlinear medium to
form. This requirement limits us to launching a wédry pulse in order to stay in the
linear propagation regime. This intern raises dar@sting question on the nature of
the interaction, can a soliton pulse act as ancabtpotential barrier for the
accelerating Airy pulse [45] (as an event horizonas a shepherding pulse [46]? Our
initial trials did not indicate this, however, we thelieve that this warrants further
research, particularly with a soliton that is munbre intense (shorter pulse width)
which will increase the depth of the optical poinivell.

Seeing that the soliton was experiencing changesomngnued on the path of
introducing an Airy pulse as a perturbation to séton pulse. We found preferable
for sake of calculations and analysis to continulh Wlimensionless equations and
operators and assume a lossles€] fiber for the Airy pulse (Eg.(4.1)) perturbation
of a soliton pulse (Eq.(4.2)).

u(r,&) = Airy[ 7 —( £/ 2)* +iaflexp(ar — (a£% 1 2)— i(E3112)
+i 8% 12¥%i &r 12))
u.(z,&) = asechér ) expia z (4.2)

The unique ballistic propagation feature of theyAiulse gives it the ability to

(4.1)

accelerate or decelerate (depending on the taction) and allows for interactions
(collisions) between pulses having the same ceinggjuency. By positioning the
soliton pulse along the ballistic path of the Aihey can cross and interact with one
another.

These interactions are demonstrated through naoaiesimulations via the
Split Step Fourier Method (SSFM) with a time windo#wl1300 time units divided to
32768 sampling points, and propagated to a distahd®0 Soliton periods (155
units, whereLp=1 in our normalized NLSE Eq.) with 1500 output gastion

distances (not to be confused with the SSFM sinaulattep size which is less than
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one thousandth dfp). Insight from the well-known soliton-soliton [223, 29, 30]
and soliton-continuous wave (CW) [33, 36, 37] iat#ions are applied to better
understand the observed phenomena. It is knownréhative phase, amplitude (or
total energy), the initial separation and frequeraf§set (difference in group
velocities) play a role in the outcome of the iat#ion; thus in our simulations we
vary these initial parameters of the perturbing yApulse to take them into
consideration. Consequently the launched initiadditions are Eq. (4.3) (Fig. 4.1a,
with figure 4.2 showing individual propagation ingity plots):

u(¢ =0,7)=sed(7)+ rAiry ¢—z, )expér )expid) (4.3)
The varied parameters in Eq. (4.3) are the am@itadior between the Airy pulse
and the soliton (normalized), the initial Airy tinosition 7o with respect to the
soliton (launched at zero), and the relative phtasé the Airy pulse. We choose
such that at the point of collision the intensayios between the accelerated Airy lobe
and the soliton will be, 4, 2, 1 and0.5 percent (note that the Airy peak intensity at
collision is already attenuated with respect tntded conditions on account of the
truncation and dispersive propagation). These lany ivterference values ensure that
the Airy will propagate in the quasi-linear regied can be treated as a perturbation
of the soliton [34]. The minimal time separationzgf-6 is chosen to achieve at least
a -30dB dip between the Airy and soliton at our time pang (Fig. 4.1b), to ensure
essenitially no initial overlap. We also choosenaalé enough truncation coefficient
(a=0.005), which guarantees that the peak collisidansity of the Airy launched at
our largest separationpE-10) will not be less thar®5% of that launched at the
smallest separation=-6) for every chosen launched amplitude. HencehallAiry
pulses have the same energy for a givemlue and only a small variation in peak

intensity at the point of collision.
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Fig. 4.1. Exemplary initial launch conditions corspd of both the Airyg=0.005 8% intensity at collision,
70=-6) and the normalized soliton. (a) linear scaledB)scale (the variation in dip values is an actifaf the
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Fig. 4.2. Intensity plots for propagation of (afrancated Airy pulsea=0.005, and (b) a normalized
soliton both ta20 L. Insets show launched intensity distributions.

4.1 Simulations Results

Exemplary Airy-Soliton interactions are shown ingFi4.3, launched at a time
separation of 10 time unitsy€-10) and an intensity ratio 8% for two relative
phases (0 and). The propagating Airy decelerates (wavefront nsoteelater time) to

collide with the trailing soliton pulse. The coibs distance is given by:
é: = \/4(Tsoliton - 2-0 +7 peak off se) (44)

wheresoiion IS the Soliton time position (in our casgii=0) andtpeak Offset is the

offset of the main Airy peak with respect to theryAdelay time 7y (tpeak offset IS

numerically calculated for a given truncation,. e.g,, ..~ 1.014 for a=0.005.
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Fig.4.3 Airy-soliton interactions with an initigseparation of 10 and intensity ratio of 8% at sl
for two phases. (8§=—r, (b) 6=0

The interaction can be separated to two regimesnteirest: the primary
collision region between the pulses (occurring ppraximately 3€<15, for our
selected initial time separations), responsible the main variation in the
fundamental soliton parameters of phase, amplitindguency and time position [34],
and a relaxation region accompanied by continuoteraction with the dispersed
Airy tail (occurring at®>15). During the primary collision3<¢<15) both pulses lose
their identities and cannot be distinguished [3id¢ do interference throughout the
collision region [39]; however as the Airy waveftamoves towards later times the
pulses reform and emerge having perturbed parasae®nce the truncated Airy
pulse has the same center frequency and must nmaitdafirst moment, it never
completely crosses over the soliton; however thegefvant consisting of the main
lobe, which has been designed to maintain its ifewithin the collision range, and
subsequent lobes, do cross the soliton. (The Aith wur truncationcoefficient of
a=0.005was designed to decay to half peak powef=d6.7, beyond the collision
zone.) Therefore, the Airy-soliton interactions alassified as incomplete collisions,
defined as having either an initial temporal overta a terminal overlap after the
collision (occurring in our case), as opposed tmglete collisions, (i.e. full crossing
of the pulses achievable through non overlappingdbédths and GVD [27,34,37]).
These complete collisions, as present in wave idivismultiplexing (WDM)
collisions, are known to be independent of relatplease and do not undergo a
permanent frequency change after collision. Consettyy our findings show that the
soliton undergoes a permanent frequency shift mesoases (Fig. 4.4 demonstrates
the most extreme case fag=—6), and that the interaction (and frequency shgt) i
strongly dependent on relative phase, as in coheseliton-soliton [23, 27] and

soliton-CW [33] interactions.
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Fig. 4.4. Airy-soliton interaction withp,=—6 and 8% intensity ratio showing a permanent
frequency change when (63—7/2, and (b)=r/2 over157 L, units (LOOsoliton periods).

An analysis of soliton-soliton collisions in WDM sems and coherent soliton
interactions is carried in [27], offering an ex@#on for the dependence on relative
phase or the lack of it based on perturbation thdeweloped by Haust. al [34, 35].
The derivation distinguishes between coherent ao-aoherent interaction. For
example, soliton-soliton collisions in a WDM systeare regarded as incoherent
interactions. The perturbation term taken into aotan this case is only the cross
phase modulation (XPM); the remaining terms oritingafrom the NLSE nonlinear
response are neglected due to rapid beating tleadg® out to zero [39]. However, in
the coherent derivation (i.e. soliton-soliton ca@er interactions) the beat term
between the two waveforms is taken into considemati

Our investigative case bears similarity to cohenatgractions at times, especially
pronounced at closer initial separation while dteottimes the interaction is more
incoherent in nature. A larger initial separatidhe spectral repositioning by
dispersion, results in an interaction between wawve$ with a reduced spectral
overlap. This distinction can be better understdiyd observing the Airy pulse
evolution in time-frequency space as a functionpadpagation distance. Figure 5
shows the spectrogram (time-frequency space) @vaiving Airy pulse at different
propagation distances (which basically shears ting gpectrogram), demonstrating
the spectral repositioning and the amount of speabverlap of the colliding
wavefront with the soliton. (The soliton's timedtency signature is denoted by the
green ellipse.) A more significant spectral overtegiween soliton and Airy at point
of collision is observed for an initial separatioh z=-6 (compare middle column
spectrograms in Fig. 4.5). Upon further propagatithe soliton propagates with
quasi-CW light background from the dispersed Amgmonstrated by the spectral

overlap found in the right column in Fig. 4.5. Aetpropagation distance grows this

29



dispersed background radiation becomes more mooweic and approaches the
same carrier frequency as the soliton. The contiauieteraction results in oscillations
of the solitons frequency and amplitude and theeclimth the time position and phase

will oscillate [33].

Frequenc
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Collision

-50 0

-50 0
Time Time

Fig. 4.5. Spectrogram of the Airy pulse at threlecded distances for two initial separations; upper
row: 7;=-6, lower row: z;=-10. Left column: launch condition, center column:catlision distance
(5.29Lp units and6.63, respectively), right column: at distance wheig Avavefront is at a temporal
shift of twice the initial time separatio7.@9 L, units and 9.38 respectively). Green ellipse denotes
the soliton extent over time and frequency.

4.2 Analysis

We track the soliton fundamental parameters poardilision £<3) and those of the
perturbed emergent solitod>15) from the SSFM results, as we cannot extragt an
useful information throughout the collision regi@s, the soliton is indistinguishable.
We extract the emergent soliton characteristics1ftioe numerical results and not
resort to the well-developed perturbation theoryalgsis, as the Airy-soliton
interaction case is incomplete [34]. Perturbatidreory analysis requires the
interaction to be complete and that the perturbasipectrum not exceeds that of the
soliton, neither of which holds for the Airy pul®4]. Furthermore, the perturbation
theory analysis is intensity based, eliminating tekative phase dependence of the
pulses, which is present in our Airy-soliton intdran. (Although, it may be possible
to expand the perturbation theory to encompasstgrario as well, see appendix A).
To derive high resolution emergent soliton paransedevoid of sampling effects,
we locate the intensity peak at each propagatistanice, select a sufficient number of
intensity samples around the peak value, and thply @ sech)? intensity profile fit

to the selected samples. The benefit of this pnaeei$ that it allows us to construct a
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continuous soliton intensity profile with respect time at a given distance, from
which we extract the intensity, time position, aedporal width at high resolution
and with no discretization effects. This procedgeaerates smoothly varying curves
for the soliton parameters' evolution. (The solifdrase is extracted from the sample

with peak intensity.)

4.2.1 Soliton power

The soliton peak power behavior is analyzed aldmg gropagation range and is
charted in Fig. 4.6a for the closest Airy-solit@paration §,=-6), highest Airy power
(8%) and for two representative relative phasesA). The emergent soliton exhibits
peak power oscillations that are dependent on tileiog Airy pulse phase. We
further see that the two curves are vertically ldispd, indicating a different mean
soliton intensity (both oscillate nearly about tlaeinched (original) soliton peak
power). We next chart the mean peak soliton intgrisr different initial Airy phases
and launched powers abh=—6 (see Fig 4.6-b). (The mean soliton intensity is
calculated far from collision, by establishing smli power and background power
from the maximum and minimum interference valugsese interferences are due to
the soliton’s natural SPM.) We observe sinusoidgpethdence on the initial Airy
phase for all powers, indicating an energy transietween the pulses during the
primary collision [19]. Similar sinusoidal behavios observed at larger time
separations (i.e.zp=—8 and 7,=-10), albeit at a lesser magnitude (Fig. 4.6-c shows
mean intensity fluctuation only at tf8% collision intensity for clarity). Since the
overall colliding energy is the same, regardlessndfal time separation (i.e., all
energy contained in the Airy's delayed lower frague components), the less
pronounced effect at larger initial separations olestrates that with greater time
separation a more incoherent collision betweenokand the Airy occurs due to a
larger frequency offset at collision (as previouskplained by spectrograms). For the
largest time separation we find that the mean sitgns nearly unchanged, while for
the shortest time separation the mean intenspgyadominantly linearly dependent on
Airy amplitude, indicating coherent interaction belor (Fig. 4.6-d).
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Fig. 4.6. Soliton intensity oscillations. (a) Ingity oscillation (intensity ratio of 8% ang=-6). Also

shown envelope fit of the forrib/\/; , (b) Mean intensity of the oscillations with awssoidal fit, (c)

dependence with respect to the Airy's initial phfaseall the time separations (intensity ratio 668
(d) Mean intensity for all separatiomgth at 8% intensity ratio for thed=0, (with a second order
polynomial fit; behavior predominantly linear) .

We also see the intensity oscillations decay inmitade along the propagation as the
soliton relaxes. The functional form of the decayni agreement with [39, 40, 41] that
states that within the region of the asymptotiaisoh the non-soliton part decays as
&'1’2 (Fig. 4.6-a). The period between oscillations esuslightly from one oscillation
to another (on account of the dispersed Airy bawmkgd center frequency
approaching that of the soliton), converging towaadconstant period oftddistance
units (corresponding to the distance a soliton excdates Z phase), as the soliton
propagates away from the collision region. The ingatomes from the interference
between the soliton SPM with the dispersed, novsigGaV, Airy background.

4.2.2 Soliton Time and Center Frequency

We next track the soliton change in time positietg( Fig. 3,60=—-7). Solitons
experience time position change through local feegy changes during the collision
and permanent frequency changes which map to tiosédign alterations by group
velocity dispersion (GVD) [33,35-38]. Fig. 4.7 @ahe soliton time shift for several
phases at collision witl8% Airy pulses for each of the three investigatedetim
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separations 7#=—6, -8, —10). The most prominent feature is a soliton permanen
frequency change after the main collision, whicleurs after the collision with the
Airy’s wavefront and is much more pronounced atelanitial time separations. The
frequency change is also strongly dependent omivelphase between the Airy and
soliton, and can be positive or negative (solitavels slower or faster, respectively).
As the propagation progresses, the time shift lasef about the time shift induced
solely by the permanent frequency change. Thesdatiens are attributed to the
ongoing propagation through the dispersed Airy areldependent on its amplitude
and frequency detuning [33]. All solitons also ex@ece a discrete time shift after the
primary collision, which appears weakly dependentte initial time separation and
phase.

0.0§

-0.05

Time shift

-0.1

“Time shif

-0.15
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Fig. 4.7. Time shift for all initial separationstivian 8% intensity ratio for selected phases.
(a) ©o=—6, (b) 7=—8 , (c) =-10. Note that the scale of the time shift is identical in all three cases.

We find the permanent frequency change experiebgdte soliton by applying a
linear fit to each trace in Fig. 4.7 (the fit isrfpemed from about mid propagation
distance up the end), where the slope represeatiseuency change. The frequency
change is dramatically stronger for closer timeasafions (Fig. 4.8-a, fof=—z/2 at
which a large positive frequency change is obsefeedll separations), while for
larger separations the frequency change eventdalyppears. This behavior is in line
with our previous finding that at small initial septions the collision has coherent
interaction characteristics, while for larger sepians the collision is incoherent
(exhibiting no permanent frequency change). Thisctesion is supported by the
linear dependence on Airy amplitude for the clogese separation 7p=—6). The

permanent frequency change is also sinusoidallem#ggnt on the Airy phase (Fig.
4.8-b).
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Fig. 4.8. (a) Soliton frequency change with resgecamplitude atf=z/2, (b) Sinusoidal fit with
respect to Airy phase for all amplitudes wit=—6 of the frequency change.

We plot the soliton discrete time shifts after gnenary collision for all separations at
different Airy intensities and its weak phase dejste in Fig. 4.9. The time shifts
are all negative (towards the Airy wavefront) asamplete collisions [27, 34, 38],
depend quadratically on the Airy's initial amplieudith little dependence on initial
separation (Fig. 4.8-a), and are hardly dependetiny initial phase (Fig. 4.8-b).

This behavior bears the signature of completesiolis with the main and subsequent
lobes [34, 27]. To obtain an estimate for the ditxtime shift generated by the
primary collision (which is within the collision ne, hence masked by interference),
we use the linear fit lines for the soliton timespiimn (previously used to measure the
frequency change) calculated at the collision dista given by Eq. (4.4) for each
initial time separation case. Hence, the primaiiston results in a nearly fixed
discrete time shift for the soliton and bears igeaure of complete collision, while
the soliton acquires a permanent frequency chaangegithe same collision for close

Airy launch (coherent collision characteristic, daghe spectral overlap at collision).
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Fig. 4.9. Estimated time shift form, (a) Time shifth respect to Airy's initial amplitude for alitial
time separationsg=0), Time shift with respect to Airy's initial phaaad amplitude with,=-10 and a
sinusoidal fit profile .
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4.2.3 Soliton Phase

The last emergent soliton parameter we follow esghase. Solitons continuously
acquire phase along the propagation distance, amslitract this constant term in all
our results (using the launched soliton paramesadhat we only witness the phase
difference between that of the expected phaseettiperturbed soliton and that of
emergent soliton (see Fig. 4.10 for 8% Airy inten$or all the separations and select
phases). As in the time shift results (Fig. 4.69, see a discrete phase offset after the
primary collision, in all cases equaling about O&lians, and divergent and
oscillatory phase in the relaxation region. Whhie bscillatory behavior is explained
by the continuous interaction with the dispersed/ Alackground radiation (resultant
of local intensity and frequency oscillations), fihreear component is a reflection of
the emergent soliton perturbed parameters of metmsity and center frequency.
Both terms contribute to the accumulated phaseadipewith respect to and
quadratically on the amplitude and frequency changk the soliton [27]. For
example, in Fig. 4.10-a we see that for the inplahses ob=—r and 6=0 there is a
linearly-dependent phase difference attributedigdtea change in mean intensity, as
the emergent soliton had only a mean intensity gha(see Fig. 4.6-b) and no
permanent frequency change (see Fig. 4.8-b) faettmunched conditions. (A change
of approximately 0.4 radian is accumulated betweistances of 50 to 150, which
translates to mean intensity change of approximdi€l08, exactly as found in Fig.
4.6-b). In addition, we find that for the casedsf-~/2 andf=z/2 the small change in
frequency of approximately 4xE@esults in a negligible change since the phase ter
is quadratically dependent on frequency change.
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Fig. 4.10. Phase difference along the Airy propagafor select Airy initial phases with an intenysit
ratio of8% (a) 7,=—6, (b) 7p=—38, (C) 7p)=—10.
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5 Conclusions

We have demonstrated the unique attributes of niterdaction between a colliding
Airy pulse and a soliton pulse at the same ceméguency through split-step Fourier
method simulations. The interactions are made blesdiy the ballistic trajectory

property of the Airy pulse.

Our findings show that the interactions are desdritby two regions of
propagation. The first region, at which the primaoflision occurs with the intense
main lobe of the Airy wavefront, it is responsilite the main change of the soliton
fundamental parameters. The nature of the intemacsit the primary collision is
strongly dependent on the initial Airy-soliton tirseparation, varying from coherent
to incoherent interaction. At close separations,dbllision event is accompanied by
spectral overlap between the Airy and soliton. THeisults in a coherent interaction
that perturbs the soliton frequency and amplitustelarger initial time separations,
the interaction is incoherent as there is a deeregaspectral overlap and the rapidly
oscillating phase of the interference term doesagotimulate to significant frequency
and amplitude changes. In both cases, howevegdiiten does experience a discrete
time and phase change, due to a complete collisitm the Airy main lobe. The
second region of propagation is beyond the coliigeent, which is primarily defined
by continuous interactions with the dispersed Aaw, resulting in oscillations of the
time shift and phase through local intensity angléode changes respectively. The
soliton experience slow relaxation throughout teecondary region, as the Airy
disperses and the oscillations’ magnitude dimirgshe

The nature of the interactions that were simulatetl of collisions. In all cases,
the Airy pulse propagated through the soliton puldes is in contrast to an intense
soliton acting as an event horizon that can blbekAiry pulse propagation [45]. An
interesting future research effort could be to stigate the conditions leading to a
soliton barrier, by possibly choosing a more ineeasd shorter duration soliton. In
our simulations the Airy bandwidth exceeds thathef soliton, emphasizing the effect
of dispersion.

While we performed all our analysis in one dimenalotemporal media, i.e.
dispersive and nonlinear fiber propagation, all badings should hold in one and
two dimensional spatial propagation cases in Kexdianas the underlying equations
defining the interactions are isomorphic.
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6 Appendix

6.1 The Perturbation theory:

In this section we will briefly review the fundamals of the perturbation theory
developed by Haust. al. and discusses in brief the modifications needeexfmand
the perturbation found in ref. [34] to encompass smenario as well. In ref. 34 the
interactions are of the incoherent type and arg anensity dependent. Since the
Airy-soliton perturbation is quasi- coherent itriecessary to also review coherent

interactions as well.

6.1.1 Theory
Let us first define the dimensionless NLSE; we bdxy defining these dimensionless
variables.

rel 2 oy A 6.1)

T L TR

To further simplify we also defineu=./yL, A and Eqg. (2.21) transforms it to Eq.

(6.2) which is the dimensionless form of the NLSE.

ou idu .

—=———+iulu 6.2

or 2071° || 6.2)
In Eq. (2.43) we assume tlsgin(g, )=—1, which is the appropriate choice from

anomalous media. For Eq. (6.2) the fundamentaisopresentation is [27]:

Uy (7,£) = Asech{ AT —7,-Q¢)) ex;é—iQr+i§( R-Q%)&+ i¢oj (6.3)

1- the dimensionless time.
Q-the dimensionless center frequency.
A-amplitude.

To generalize Eq. (6.2) we shall add a perturbagom to the equation [27].

H 2
M _TOU iufusR (6.4)
o, 20r
The perturbation ternir, can be a function ot,£and ofu,, w* and any of their
derivatives. We proceed under the assumptiontligaterms found in R are small so
that its influence on the soliton dynamics canrbated to first order.

Consider the cas® = 0and assume a solution of the form:

u(r,8) = %(f,g)m(f,g)exp(% Azf) (6.5)
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Equation (6.5) is composed of the fundamental@ol#long with a small perturbation
from it. The perturbation term is a multiplicatimf two terms, the perturbation
(6(z,&)) and its SPM. Substitution of Eq. (6.5) in to £6.4) is the first step for the
basis of the soliton perturbation theory. Sincedbtailed mathematical derivation is
complex and lengthy it will not be developed he2&]] However, the basis of the
theory along with its application will be demons#ch in short. Returning to the

substitution we arrive at:

ou

=M spy Mgy, O s O sy 4 sy (1,0) (6.6)
oA o¢ o0Q 0t,
The latter equation can be interpreted as twoindistcontributions from the

perturbation. The first is composed of all the termaving derivatives ofi, and the
second is that labeléd, . They physical meaning of this is: The first ispensible

for any displacements of the soliton parameterdeathie second is any change to the
field that cannot be reduced to changes in théosoparameters, an excitation of the
so called soliton “continuum”. The above derivaivfound in Eq. (6.6) can be
expressed with the linear combination of these base functions.

1

f, ZK{l_ A7 - 7,) tanh( Az = 7,) )} 1y (6.7)
f, =iu, (6.8)

fo =—i(7—75)Uq (6.9)

f, = Atanh( A(-7,)) 4, (6.10)

Correlating (Eqg. (6.7)-(6.10)) these definitionstihe derivatives in Eq. (6.6) we get
Eq.(6.11). The weight (amplitude) of each changeésfactor found after each base
function in Eqg.(6.11). To find the magnitude of @teange for each soliton parameter
it is necessary to define the inner product fos thinction space EQq.(6.12). The
physical meanings of the terms found in Eq.(6.1®) the displacements of th8 |

soliton parameter byf;Ajwith f, properly taking care to modify th& jparameter

only of the soliton.
su=f,6A(E)+ f¢§¢(§)+ (&) + f,0610(§)+5q;(r,§) (6.11)
<f|g>:ReIdrf*g (6.12)
To attain the proper factor for each term it isessary to project the perturbation on
the adjoint space with the aid of the inner prodpictviously defined. This now

requires us to define the adjoint base functions:
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f, =if, (6.13)

f, =if, (6.14)
fo=—2f, (6.15)
f=x o (6.16)

At this stage, it is important to note here that $bliton continuum is perpendicular to
these functions and therefore as stated previale®g not contribute to these values.
Therefore, we can continue with the projection loé {perturbation on the adjoint

functions.
ds A .
i Re[dr f,R (6.17)
9% _ pshsr, d&(g)mej o R (6.18)
dg dg
ds0 .
Fh Re[dr fyR (6.19)
949 _ ;s Refdz f; R (6.20)
dé o

The first equation in this set of four governs Hagiations in amplitude of the soliton
as it undergoes the perturbation. The second gesvdre phase profile at each
distance. The additional terms found in the phasevative (Eq. (6.18)) (other than
the projection term) are brought about by depenglefithe exponential phase term in
(Eq.(6.3)) on both frequency and amplitude (theetelence on amplitude is the
SPM) which is reflected in Eq.(6.18). The third dodrth are the variations in center

frequency and the first momentum in time (time postz,) respectively. As seen in

Eq. (6.20) there are two contributions, the fissthe projection and the second is the
contribution from frequency variations. Which ispapent in the translations in time
as indicated by th@&in thesech¢ largument (Eq.(6.3)) .The above equations are
correct when the changes in the observables ard. shmugh, it is possible to
expand these equations to further accommodate rgege in the observables but

this is beyond the scope of derivation.

6.1.2 Incoherent soliton interactions

In ref. [34] and [27] the interactions are of timeaherent type between two solitons

(Eq.(6.21)) of different wavelengths (and not betwesolitons as successive bits) in a
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wavelength division multiplexing (WDM) systems. Tmsure an incoherent

interaction the conditid, —Q,| > 1 must be satisfied.

u(r,§)=ul(r,§)+ uz(r,(f) (6.21)
Whereu, (z,&)is:
Uj(7.¢)= Asec{ A (174 (¢))) exb-0, (£)+ig (£)  (6.22)
Rewriting Eq. (6.4) fou, after substitution of(6.21):

oy _ iy,
or 20r°
Under the condition imposed on the frequency seéjoaxat is possible to neglect the

+iluy + U, U, (6.23)

terms oscillating at the frequen@y—Q,. Therefore, Eq. (6.23) can be approximated

by:
ou  io'y g 02
—=— +iu,| U +2iu,| u 6.24
or 20r° | 1| ' —_~|st ; ( )
From here we can recognize the perturbation teias the XPM:
R=2ilu," u (6.25)

In this case we can clearly see that interactionoisinfluenced by the field of the
perturbation but on its intensity distribution wiiis the same as in [34]. Therefore, to

expand on the perturbation theory we need to tdkekaat coherent interactions.

6.1.3 Coherent soliton interactions
An example of a coherent interaction [27] is betwégo solitons at the same center

frequency with a certain time separatigfj — T,| > max(Y A ,1 A ) that are launched

into to the fiber (successive bits in a stream)imypropagation they interact through
the tail end of one another.

Substituting equation (6.21) in to (6.4) the noaéinterm will produce the following:
iu, +u,| (U + ) s ifuf” w21 u]” gt i G, (6.26)

Since the dominate terms arises’ from the tailotit@n 2 on soliton 1 (and vice versa)

whenr = T,, the terms retained from Eq. (6.26) are thosgRi¥l and first-order terms

in Uz. From here we can also define the perturbatian m(6.4).

R=2ilu|’ u+ iy, (6.27)
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Equation (6.27) shows that interaction is dependarthe field of the tail of soliton 2
that is in the vicinity of soliton 1 and thus isgse dependent. It also shows that the

intensity and amplitudes have influence on therauton.

6.1.4 Airy-soliton expansion

From this point we can expand the perturbatiommepass the Airy perturbation of
a soliton by using Eq. (6.27) as the perturbatiermt in equations (6.17)-(6.20).
However, substitution of Eq. (4.2) asand Eq. (4.1) as, we will have to solve the
evolution integrals for the soliton parameters nuicadly. This so, since the Airy
function does not have an indefinite integral. R@sy in a process similar to that of
the SSFM, but allows for following the soliton pareters during the collision process

as well.
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Airy-Soliton Interactions in Kerr Media*

Amitay Rudnick and Dan M. Marom”

Department of Applied Physics, Hebrew Universityerisalem, Jerusalem, 91904, Israel
danmarom@cc.huji.ac’il

Abstract: We investigate and analyze temporal soliton attons with a dispersive
truncated Airy pulse traveling in a nonlinear fitsdrthe same center wavelength (or
frequency), via split step Fourier numerical sintiola. Truncated Airy pulses, which
remain self-similar during propagation and haveaBidtic trajectory in the retarded
time frame, can interact with a nearby soliton tisyaiccelerating wavefront property.
We find by tracking the fundamental parameters hf emergent soliton—time
position, amplitude, phase and frequency—that Hiey due to the primary collision
with the Airy main lobe and the continuous co-piggizon with the dispersed Airy
background. These interactions are found to releauherent interactions when the
initial time separation is small and incoherenbtiiers. This is due to spectral content
repositioning within the Airy pulse, changing thature of interaction from coherent
to incoherent. Following the collision, the solitortensity oscillates as it relaxes.
The initial parameters of the Airy pulse such asidghiphase, amplitude and time
position are varied to better understand the natfitiee interactions.

©2011 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.3270) Kerr effe®60.5530) Pulse propagation and
temporal solitons
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*Chapter 4 follows this paper
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Soliton shedding from Airy pulses in Kerr media

Yiska Fattal, Amitay Rudnick and Dan M. Marom

Department of applied physics, Hebrew UniversitiyaBRam, Jerusalem 91904, Israel
"yiska.fatal@mail.huji.ac.il

Abstract: We simulate and analyze the propagation of tnemtaemporal Airy
pulses in a single mode fiber in the presence lépbase modulation and anomalous
dispersion as a function of the launched Airy powed truncation coefficient.
Soliton pulse shedding is observed, where the eznégpliton parameters depend on
the launched Airy pulse characteristics. The Solitanporal position shifts to earlier
times with higher launched powers due to an eashedding event and with greater
energy in the Airy tail due to collisions with tlaecelerating lobes. In spite of the
Airy energy loss to the shed Soliton, the Airy putontinues to exhibit the unique
property of acceleration in time and the main lobeovers from the energy loss
(healing property of Airy waveforms).

©2011 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.3270) Kerr effe®60.5530) Pulse propagation and
temporal solitons.
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1. Introduction

Airy pulses [1], whose electric field temporal glefis defined by an Airy function which is a one-
sided, oscillating function having infinite energye a solution to the linear dispersion equation
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and exhibit two interesting features: during pragamn the waveform maintains its shape in the
presence of dispersion and its wavefront acceleiatéme (or travels along a ballistic trajectoiy)a
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time frame moving at the group velocity. HoweveungtAiry pulses are impractical as they contain an
infinite amount of energy. By apodizing the Airylpe, i.e. truncating the semi-infinite oscillatiomis

our case with a decaying exponential envelopewgneeform maintains its two unique properties over
an extended propagation range despite its finierggn(Fig. 1(a)) [2]. Truncated Airy pulses occur
naturally if a Gaussian pulse is propagated ifberfat the zero dispersion point, under the infbeecof
cubic dispersion.

In complete analogy to the Airy pulse solution he dispersion equation (1), spatial Airy beams
are a solution to the paraxial equation. Spatiay Aeams have been investigated extensively itette
few years, and found to be useful for various agpions such as optical micromanipulation [3],
optical switching [4], plasma channel generatioh, [@nd laser filamentation [6]. More recently,
temporal Airy pulses are being investigated, ia tiontext of spatiotemporal light bullets in linear
conditions [7] and in nonlinear conditions [8], aimd the context of one dimensional Airy pulse
propagation, under the influence of strong nonliggiving rise to supercontinuum and solitary wav
generation [9].

In this study, we analyze temporal Airy pulse piggtaon in media exhibiting Kerr nonlinearity as
occurring in single mode silica fibers, leadingtite phenomena of self-phase modulation (SPM) and
anomalous dispersion. The influence of the Kerrlinear effect on spatial Airy beams was
investigated under relatively weak parameters aamsient narrowing of the Airy main lobe—caused
by SPM—was observed [10]; however, we are intedesteoperating under much higher intensities
where the nonlinear effect results in soliton slegldrom the Airy pulse and not just a small
perturbation of the Airy beam. Although we analyeenporal Airy pulse propagation in fiber, our
results are also valid for spatial Airy beams difting in Kerr media on account of the isomorphism
between the dispersion equation (1) and the pdrditieaction equation.

1

0.6

Distance [Ld]

3 -5 0
Time [To] Time [To]

Fig. 1 — (a) Intensity distribution as a functiditiome and propagation distance for truncated Ainyse in
the linear regime (or low launch power). (b) Lauedtiry pulse in time (blue solid curve), compated
soliton pulse (red dashed curve).

The evolution of light pulses in single-modspeérsive-nonlinear medium is governed by the
Nonlinear Schrodinger Equation (NLSE),

2
(AL TR AP A ) (2
oz 20T
wherep, is the dispersion coefficient,is the nonlinear coefficient anilis the wave amplitude that
depends on local tim&; and distance- Due to the addition of the nonlinear potental $PM term)
in the NLSE, the Airy function is no longer a vadidlution and we cannot predict analytically theyAir
pulse evolution. The Soliton, on the other handa isvell-known solution of the NLSE. For the

canonical first order case, its profile\ﬁgo Sech( /T, ) Expizs, /roz , WhereP, is peak power and,

is duration and it is obtained only when thereggikbrium between the dispersion and the nonlinear
effect, leading to the condition

R 'To2 = @ 3)
Ve

The soliton then maintains its form and power leyegvided no losses are present. Cases of
perturbed soliton propagation (i.e. when theresanall deviations from the condition set in Eq. 3yeve
extensively investigated [12-16], which help useiptet the emergent soliton behavior in our
simulations.

In this paper, we propagate Airy pulses with d#far intensities and apodization values and
investigate both the resulting ‘emergent solitoa‘gmeters, as well as the behavior of the resiéiugl
pulse. All our simulations are based on numeriotltons of the NLSE, using the split-step Fourier
method (SSFM). This numerical method was chosen tdudts efficiency in simulating one-
dimensional pulse propagation [17].
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Normalization terms

In our simulations we used the normalized NLSE f{ti#]

2
. OA 10°A 2
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where|f,|= y=Ty=1, and the launched Airy pulse profile is defirzed

A(T,z0)=[R K (3-Ai( )-Exp( a T (5)

where O<a«l is the truncation coefficient, &) is a truncation-dependent factor that sets thsepu
peak intensity to 1 for ang/value . This factor was numerically calculated amuhfi to be in parabolic
dependence with the truncation coefficiehtis the time variable in a frame of reference tinaves
with the wave group velocity, i.€.=t- 4\/g , andR is a dimensionless parameter we vary for scaling

the Airy power. AtR=1 the Airy main lobe intensity profile looks quiggmilar to the fundamental
soliton, as shown in Fig. 1(b).

We measure the propagation distanckginnits, defined ak, =T,2/, , which in our normalized
coordinates equals 1.

2. Effects of launched Airy power

In order to investigate the influence of Airy latled power on its evolution, we varied the scaling
parameterR in the range 0.1-2 and for eveR value we propagated the pulse using the SSFM
algorithm. Fig. 2 shows pulse evolution examplesstdectr values. At low launched power, the Airy
pulse performs the acceleration in time and subsgtuit succumbs to dispersion. However, wiken

is sufficiently large (above 0.9) a stationary walipulse is formed out of the centered energy athau
Airy main lobe. The soliton exhibits periodic osailbns in the soliton amplitude and width as a
function of propagation distance. In addition, wigness the resilience of the temporal Airy waveform
to shedding of a fraction of the energy as a sulithe wavefront continues to propagate along a
parabolic trajectory. Similar resilience has bebava in main lobe masking for spatial Airy beams
[11] and in supercontinuum generation for temp@iigy pulses propagation [9].
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Fig. 2 — Intensity distributions as a function iofi¢ and propagation distance in the nonlinear pyapan
regime for: (aR=0.8, (b)R=1.2, and (cR=2.

The emergent soliton

Unsurprisingly, the shed pulse profile well confserio a hyperbolic-secant function, or that of a
soliton with background radiation. We fit a secHfgckground radiation profile at every propagation
distance and track the emergent solitpeak power, duration and time position along trepagation
distance. We find that the power x durafigmoduct oscillates about the equilibrium conditigri)
defined in Eq. (2). These oscillations about theblstasoliton are known to arise as a result of
interference between dispersive background radiatia the formed solitddi 2, 13].

We examined the relations between the soliton laioihs and the launched Airy peak power. In
Fig 3(a) the oscillations of soliton width are showas a function of propagation distance for sdRect
values. The pulse width narrows and the oscillatipariod decreases with higher launch power. The
decreasing oscillation period with increasing ldupower is depicted in Fig. 3(b). Similar behavior
was reported in [13], where the amount of excessggnthat was supplied to the launched soliton was
expressed in the evolved soliton oscillations meridnother property of the oscillations is the
modulation depth that sharply decreases with irsg@ééanitial peak power (Fig. 3(c)). We can reldie t
low modulation depth to the greater stability of ormed soliton and conclude that high launched
peak power is required for stable soliton formation
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Fig. 3 — (a) Oscillations of soliton width for diffent launched peak power, (b) soliton oscillatiemgth
of period as a function of launched peak powersdifon oscillations modulation depth as a functad
launched peak power.

Additional soliton parameters as soliton peak tipzsition and phase also oscillate in similar
manner as the peak power and width. Fig. 4 (ahajvs the evolution of time position and phase as a
function of propagation distance (phase fluctuaticare plotted after subtracting the soliton’s
accumulated linear phase term). These oscillatioasttee result of interaction with the background
radiation as explained in [14] and demonstrateld %} for the problem of background radiation thet i
formed by soliton amplification in optical commuatmon.

From the results in Fig. 4(a) we see that the jpositf the emergent soliton is also dependent on
launch power. We plot the mean time position of émeergent soliton in Fig. 4(b). More intense
excitation results in the soliton appearing at arlier time. This phenomena is explained by the fac
that for low values oR a relatively long time is required for accumulatiof enough energy by SPM
for the soliton formation and shedding, and dutimg time the Airy pulse is accelerating and '&s'i
the accumulating energy with it to later times. FBogerR values there is enough energy in the Airy
main lobe for soliton formation and shedding atarly point.
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Fig 4 — (a) Soliton peak time position along pragémn distance, (b) mean soliton peak time posidsa
function of launched power. Note that Airy peakdiposition at launch is at t=-1. (c) soliton pedlage
oscillations along propagation distance for sdehched powers.

The accelerating wavefront

As seen in Fig. 2, the Airy wavefront continuegxtibit the parabolic acceleration in time, evedem
the influence of Kerr effect and after sheddingrgnéo the soliton. To study whether this accelerati
continues with the properties of the linear propagawe compared the nonlinear propagations to
linear, as the intensity is scaled with tReparameter. Note that the linear Airy pulse evolutis
identical for every intensity value.

These linear propagation results are compared tmohndéinear ones by tracking the main lobe
acceleration trajectory for each case and extmdtiformation about its peak power and position.
Furthermore, we calculate the accelerating eneiggyililition along propagation distance.

Fig. 5 shows the Airy main lobe parabolic trajegtand peak power as a function of propagation
distance, under linear and nonlinear propagatamnthree select launched power cases. We seenthat t
wavefront continues to exhibit the parabolic trigeg in time (blue curves), which is almost ideatic
in the linear and the nonlinear propagation caaiispugh the nonlinear peak slightly trails theséin
peak, on account of a delay associated with theggrehedding to the soliton. The intensity evolatio
of the accelerating wavefront is shown in green. d&ie see that in the nonlinear propagation its peak
power performs decaying oscillations, as opposethéomonotonic decay in the linear case. The
oscillations of the peak power in the nonlinearecase known to be a result of the interplay between
the SPM and the dispersion. Similar influence oMSh the Airy accelerating main lobe was already
observed in [10]. However, the peak power osaill&ithere exhibit faster decay due to a relatively
large truncation coefficient, 0.1-0.3 vs. 0.033%ha current simulations.

48



60, 60, 60
—— Nonlinear propagatian 15 N —— Nonlinear propagatian N —— Nonlinear propagatign 4
/\ | Linear propagation : / \ — Linear propagation 2 [ — Linear propagation
a0/ \ 4 401/ 7/ 40| 35
= / \ >0 >0 / 3 2>
E, \ 1 g = 1'5'@ = 2.5@
o 20 T 20 *\ T Q 20 S
: EE o 28 -
0.5 . \ = .
0 N 0 \\: 0.5 0] < / ~ 1
@R=1 B)R=12 ©R=2  ——__ 05
-20 —lo -20 —o -2 0
0 5 10 0 5 10 0 5 10
Distance [Ld] Distance [Ld] Distance [Ld]

Fig. 5 — Airy accelerating tail trajectories in Brdistance space(blue) and in intensity-distan@eesp
(green) for (aR=1, (b)R=1.3 and (cR=2.

Next, we investigate the energy distribution of Hueelerating wavefront. It is important to note
that the simulations preserve the launched pulseggnalong the propagation distance, as well as
preservation of 'center of gravity' (first order ment) position according to the finite pulse enexgy
the uniformity of the media [2]. The power spectrafithe Airy pulse is symmetric about the central
frequency, and upon propagation in anomalous dispemedia the high frequencies components are
delayed (low frequency components are advanced) r@gpect to central frequency group delay (in
anomalous media), such that the pulse total enisrgyentually divided to two equal fractions about
T=0- half of the energy at each direction. In thespnce of Kerr nonlinearity, considerable parhef t
pulse energy is shed to the soliton that propagatehe group velocity, and the remaining energy
disperses in opposite directions with less thaalfdi the launched energy dispersing to each @lde
to soliton shedding).

The energy that is carried in the accelerating wawef(delayed components) was found by
summing the energy over positive time at everyadise sample. These calculations were performed
with both the linear and nonlinear propagations.

Fig. 6(a) shows the delayed energy evolution of Hoeelerated Airy wavefront along the
propagation distance for various Airy launched pev8he energy is normalized by the launched
pulse energy, such that we can see the relativeyepertion of the accelerating wavefront for linea
and nonlinear cases. For Bllivalues, the energy evolution of the linear propiaga coincides to one
curve that asymptotically approaches the valueatff launched pulse energy, according to its linear
nature. For the nonlinear propagations we cleatythat afRk grows the fractional energy amount that
is delayed is decreasing, where the oscillatoryabien is due to the soliton oscillations which take
place in the boundary of the right half propagatiene. Those curves and those of Fig. 6(b), which
chart the energy evolution of the formed soliton ddferentR values, show the fact that the formed
soliton not only has more intensity whBris growing, but also carries a larger energy foacfrom
the whole pulse. This can also be seen in Fig. &fbgre the mean soliton relative energy was
calculated for everR value. From Figs. 6(b-c) we also see the energgguvation—the normalized
delayed energy is missing energy that is about dfathe shed soliton energy, where the other half
originates from the faster propagating energy camepts. WherR=2, for example, the soliton energy
fraction is about 0.39 and the missing fractiommadrgy amount from the delayed energy is about 0.19,
half of 0.39.
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Fig. 6 — (a) Airy tail relative energy for the lmeand the nonlinear cases, (b) soliton relativergn (c)
soliton relative energy as function of launched pow

3. Truncation coefficient effect

The ability of Airy pulses to exhibit their uniqueditures is strongly related to the degree of trimca

in the apodization function. As the truncation issger, the Airy pulse quickly loses the unique
features of the Airy pulse and disperses. Here 8l w examine how the truncation degree influences
the soliton shedding and pulse propagation undeKthr effect.

We employ the same pulse profile defined in EdfiXdng the intensity scaling paramet®to 1.5
while varying the truncation coefficient in the ¢gn0.01-0.1, as shown in Fig. 7(a), and propadpe t
apodized Airy for every truncation value. Fig. ®pshows two examples of the Airy pulse evolution
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in time-distance space. We see that when the ttioncags small the Airy original features as self-
similarity and acceleration in time are more nailde. The influence of the truncation degree on
emergent soliton properties and on the acceleratagefront was examined in the same manner as in
the previous section.
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Fig. 7 — (a) Launched Airy amplitude for severalnization values, (b)-(c) Intensity distributions as
function of time and propagation distance for: gb9.01, (c) a=0.09.

The emergent soliton

Larger truncation coefficient values make the exptiakapodization of the Airy function stronger and
the Airy tail is shortened; there is a negligibféeet on the main Airy lobe, as shown in Fig. 7(a).
Hence the emergent soliton , which forms from tre@nniobe, achieves stability faster (after a shorte
propagation distance) in cases of larger truncataeificients, as the newly formed soliton experen
less collisions with the accelerating Airy tail, g®wn in the propagation images in Fig. 7. Theegfor
the Sech fit process was started from a different propiagadistance for every truncation value.

From the soliton fit data we see that the emergelition parameters do not experience significant
variations for different truncation values, as shaw the soliton parameters evolution curves in Fig
8(a-b). However, the soliton mean peak time pasitoes shift considerably from the launched Airy
peak position, and this shift increases for smalencation values (see Fig. 8(c)). This behavior is
explained by the interaction between the forme#mofrom the main lobe and the accelerating lobes
of the Airy tail, which constitute collision perhations to the soliton and cause temporal shithef
soliton in the direction opposed to the accelegalivbes [16]. This temporal shift to earlier times
depends on the perturbation energy, which increfmesmall truncation coefficient values. It is
important to note that even without perturbing b@e. while propagating Airy with strong
truncation), the soliton is not necessarily fornsdhe launched Airy peak position because of the
acceleration that the original pulse undergoesrbetite soliton is shed. Also, the launched Airykpea
time position is not constant with different trutioa coefficients (dashed red line in Fig 8(c)),aas
result of a shift from the multiplication by theponential apodization function.
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Fig. 8 — Effect of different launched truncatiorlues on oscillations of (a) soliton width and (lo)iton
peak phase, (c) soliton peak time position as fanabf truncation coefficient. Note that Airy petitne
position at launch is truncation value dependengvadenced by the dashed red line.

The accelerating wavefront

The extent to which the truncated Airy maintairssfirm and continues to accelerate before dispgrsin
strongly depends on the truncation coefficient.ithe previous section, we compared the linear and
the nonlinear propagations in order to investigéte Airy’s accelerating wavefront behavior for
different truncation values. In the linear propa&waregime, the truncation coefficient determinethb
the distance at which the accelerating wavefrongtiis distinguishable, and the total Airy energy

according toE,;, = (87a)"Y2[2]. In our investigation range for truncation déeiént, the linear Airy
varies widely.
After tracking the accelerating wavefront trajegtdor every truncation value, we compare the

main lobe trajectory and peak power under the timea the nonlinear propagation regimes (Fig. 9).
The main finding here is that the intensity of #ueelerating main lobe in the nonlinear regimedgre
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curves) first experiences SPM and focuses to thee ggeak power (with no dependence on truncation
value). This peak is then shed to the soliton &ede¢maining accelerating wavefront immediatelgraft
the soliton shedding is at lower power comparedh® linear propagation case. However, as a
consequence of chromatic dispersion, the high #eqy components travel slower and eventually the
leading wavefront main lobe re-emerges and mattiesnain-lobe power of the linear propagation
case (the Airy self-healing property). In spite tbhfs wavefront matching between the linear and
nonlinear propagations we see that in the nonlipeapagation the accelerating main lobe remains
distinguishable for longer distances than in ling@apagation for a given truncation value. This ifirgd

is related to the differences between the radiagioergy distribution in the nonlinear and in theer
propagations. In the linear propagation (see exarnmpFig. 1(a)) the dispersed Airy intensity roughl
converges to a Gaussian distribution in time withpagation distance that eventually (after a aertai
distance) engulfs the accelerating main lobe. i onlinear propagation the dispersive radiation
intensity is no longer Gaussian distributed duthtosoliton formation and the energy centering &bou
it, making the accelerating peak visible for longewpagation distance.
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Fig. 9 —Airy accelerating wavefront trajectories in timestdince space (blue) and in intensity-distance
space (green) for (a) a=0.01, (b)a=0.04 and (cP8=0.

As the emergent soliton has roughly the same erferggll truncation values, its relative energy
fraction in the launched pulse energy is largerifigreasing truncation values (Fig 10a), theretbee
relative energy fraction in the accelerating Ainawefront decreases (Fig. 10b). In the linear
propagation regime the accelerating Airy energyaglvasymptotically approaches one half of the
whole pulse energy, although its energy growth igteuncation factor dependent. In the nonlinear
case the delayed Airy energy fraction decreasas ftos value as the truncation is growing, as the
nearly constant soliton energy is missing.
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Figure 10 — Examples of energy evolution along pgapion distance of (a) the relative energy of the
emergent soliton (the soliton energy itself is fardependent on truncation coefficient) and (b)
accelerating wavefront.

4. Soliton time position for power and truncation

In the previous sections we showed that: (1) thergent soliton time position is at earlier timesewh
the launched power increases (at fixed truncatilue) to quick build-up of a soliton. At lower powers
self-focusing results in the eventual build-up ld soliton, but as the conditions materialize tlsnm
lobe is undergoing the ballistic trajectory leadiogsoliton shedding at a later time position. A2Y
the emergent soliton time position is at earligrets when the truncation coefficient decreasesxed f
launched power) due to collision perturbations witie accelerating tail lobes. The time shift
associated with collision perturbations dependstten energy; hence higher truncation coefficients
result in lower Airy tail energies and reduced teolitime shifts. These two effects are graphically
depicted in Fig. 11(a).

To verify that these two effects independently andsgstently occur, we varied both the Airy
launched power and the truncation coefficient aarinvestigation range (Fig, 11(b)). Indeed we see
this trend continuing; the emergent soliton mearetposition shifts to earlier (later) times for dieva
(larger) truncation coefficients and for higherwr) launched power levels. These results reinforce
our finding that soliton is shed at an earliergimhen the launched power is higher, and thatsiofis
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with the accelerating Airy tail lobes shift the fim in the direction counter to the acceleratioa,
towards earlier times.
-0.7 (Late)

(a) Early Soliton shedding Late Soliton shedding
(higher launched power) |\ (lower launched power)

Truncation coefficier

-1.4 (Early

11 12 13 14 15 16 17 18 19 2
Launched power (R)

Figure 11 — (a) Schematic illustration of the sesrof temporal shift of the emergent Soliton. (b)
Distribution of Soliton mean time position as adtion of truncation coefficient and launched povrer
our investigation range.

5. Summary

In this paper we investigated the propagation dfuacated temporal Airy pulse in nonlinear Kerr
media. The phenomena of soliton shedding from thginal Airy pulse under sufficiently strong
excitation was already identified [8,9], but inghiork we investigated in detail the propertieghaf
soliton and the remaining Airy radiation. We chaegiced the emergent soliton parameters under
different truncation and power conditions and iffesdt the mechanisms at play, in accordance to
processes known from literature. The soliton patarseperform oscillations due to the presence of
background radiation from the dispersed Airy pulBke temporal position of the emergent soliton
depends both on the Airy launched power and trimtatoefficient, due to the location of the
shedding event and the interaction with the acagtey Airy tail. We also observed the SPM influence
on the accelerating Airy main lobe, and we foundt tthe SPM has large effect on the accelerating
main lobe visibility in comparison the linear trated Airy propagation. Finally, we found that the
energy distribution of the Airy pulse along the pagation depends on the launched power and the
truncation degree.

In this work we studied the soliton shedding pheeonanfor relatively intense launched Airy
pulses. This research avenue can continue to agberhaunched pulse powers, however eventually
the well-understood phenomena explored here startseak down. Fig. 12 shows the time-space
evolution when launching the Airy pulse with a powactor of four R=4). We see that for such
intense excitation three solitons are shed, the saliton in a consistent manner to that descrimrd,
and two additional weaker soliton s at both higlied lower center frequencies. This result was still
obtained with the standard nonlinear Schrodingeiaggn (Eq. 4). However, for proper simulation of
intense Airy pulse excitation, one should also aditiitional terms to account for higher-order
nonlinear effects such as Raman scattering andtsgiping.
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Figure 12 — Intensity distributions as a functiohtione and propagation distance fB=4, showing
multiple soliton shedding at high launched peak @mw
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