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Abstract 

The simulation and analysis of a temporal soliton perturbation (interaction) with a 

dispersive truncated Airy pulse traveling in a nonlinear fiber at the same center 

wavelength (or frequency). True Airy pulses remain self-similar while propagating 

along a ballistic trajectory. However, they are infinite in energy due to the infinite tail 

that prevents the energy integral from converging. In order to be realized, Airy pulses 

must therefore, be truncated. The truncation is carried out by apodizing the infinite 

Airy tail. Despite the truncation Airy pulses remain self-similar over extended ranges 

while the ballistic trajectory is completely preserved. This allows them to interact with 

a nearby soliton on account of the accelerating wavefront property.  

The interactions are governed by the Nonlinear Schrödinger equation for 

which no analytical solution currently exists for these initial conditions. Therefore, 

numerical simulations are required. The numerical method chosen is the split step 

Fourier method which is a mathematical algorithm for propagation of the pulses. By 

providing the simulation program with the initial launch conditions we are able to 

follow the interactions as they progress. 

Analysis of the simulation is carried out by tracking the fundamental 

parameters of the emergent soliton during propagation—time position, amplitude, 

phase and frequency—that alter due to the primary collision with the Airy main lobe 

and the continuous co-propagation with the dispersed Airy background. Following the 

collision, the soliton intensity oscillates as it relaxes in the dispersed Airy background, 

trying to settle in to a new soliton state. Further, by varying the initial parameters of 

the Airy pulse such as initial phase, amplitude and time position, different outcomes 

are witnessed which allows for a broader understanding of the interaction.  

Due to the spectral repositioning of the Airy spectrum by dispersion, the 

interaction is found to resemble coherent interactions at times and incoherent at 

others. The results indicate that in certain cases permanent change in frequency and 

intensity occurs, depending on the configuration of the initial parameters chosen. 

These changes are made apparent through changes in time position and in the 

accumulated phase of the soliton. Furthermore, according to the perturbation theory 

local changes in time position and phase can also occur independently from the 

frequency change and intensity change, respectively. 
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 תקציר

פולסים . פולס סוליטון ואיירי נפיץ וקטום ; פולסים בין שניהואינטראקצי תתנגשויו בה עוסקחקר זה מ

 בעל שני הינופולס איירי . תקדמים בתוך סיב אופטי לא ליניאריהינם בעלי אותו תדר נושא והם מאלו 

 אינו אך, יסטי מסלול בלאורךומתקדם ל שמר את צורתו במהלך התקדמותוהוא מ ;דופןות תכונות יוצא

 קטימה של הזנב תממשי נדרשל  כודי להפכ . לשמרו על מנת אינסוף אנרגיה כיוון שנדרשת אקיימבר 

התכונה של ש  נמצא למרות הקטימה,עם זאת.  דועךט המתבצע על ידי הכפלת הזנב באקספוננהאין סופי

 פולס , על כן.געת כלל האצה אינה נפתיכול לאורך מרחק רב ותותו נשמר צורתו במהלך התקדמימורש

 . ה בפולס סוליטון המקורב לו ולאחר מכן לעבור עמו אינטראקצי להתנגש,אייר מסוגל להאיץ

עת עתה  ול הלא ליניארית של שרדינגרהמשוואה על ידי מה שמכונה וכתב מהאופי האינטראקצי

י נעזר בשיטת  אלו אנתכדי לדמות את מהלך אינטראקציו.  לתאי התחלה אלו אנליטילא קים פתרון

שיטה זו הינה אלגוריתם מתמטי לקידום ). split-step Fourier method(סטפ פורייה -המכונה ספליט

בהינתן תנאי התחלה לתוכנית הקידום ניתן לעקוב אחרי התפתחות . הפולסים בעזרת התמרת פורייה

   .התהתנהגו וההאינטראקצי

 במהלךבסיסיות של פולס הסוליטון ה תכונות האחרניתוח הסימולציה נעשה בעזרת מעקב   

, ) הזמני הראשוןמנטהמו (המיקום הזמני שלו; הינן של סוליטון תויהבסיסתכנות ה . ולאחריהההתנגשות

לאורך  ההתנגשות המרכזית ובמהלך ה משתנותאל תכונות ).מרכזי(פאזה והתדר הנושא , עוצמה

 שואף  הסוליטוןההתנגשות בסופה של . גם לאחר ההתנגשותהתקדמותו באיירי הנפיץ אשר נמצא ברקע

 של םההתחלתיי מדדיםב ביצוע שינויםבנוסף  .להתייצב לתוך מצב סוליטוני אחר המתאים למצבו החדש

אשר הרחיב את הידע , טווח רחב של תוצאות .)ועוצמה, פאזה ,מיקום זמני התחלתי( הניב יפולס האייר

   .  העל אופי האינטראקצי

כתבים ו המםתנאיהי פ לתקוהרנטי קוהרנטית ללא האינטראקצימ ה סוג אתהופכת יההאינטראקצ  

 . עקב ההזזה הספקטרלית של מרכבי הספקטרום של האיירי על ידי תופעת הנפיצה השילוח במהלך

  התדר הנושא והעוצמה הכלליתם במדדים  כגון שיש שינוי על כךמצביעותהתוצאות של האינטראקציה 

 ם בהתאהמצטברת שינוים במיקום הזמני והפאזה באמצעותתנים לאבחנה שינוים אלו ני. של הסוליטון

ללא תלות (עצמאיים   גם שינוים יתכנו ההפרעות תתאוריי  על פיר לכךבמע. לשינוים שהוצגו קודם

   .מצטברתשל המיקום הזמני והפאזה ה) מהצבשינוי התדר או העו



 4

Table of Contents 

1 INTRODUCTION .............................................................................................5 

2 THEORETICAL BACKGROUND. ....................................................................8 

2.1 The pulse propagation equation. .............................................................................8 

2.2 The Dispersion phenomena....................................................................................12 
2.2.1 Propagation regimes 12 
2.2.2 Dispersion- induced pulse broadening 13 

2.3 Airy ..........................................................................................................................15 
2.3.1 Airy function 15 
2.3.2 Airy beams in space 16 
2.3.3 Airy pulses in time 16 

2.4 The Nonlinear phenomena.....................................................................................19 
2.4.1 SPM-Induced Spectral broadening 19 
2.4.2 Cross phase modulation 20 

2.5 The Soliton Pulse.....................................................................................................21 

3 NUMERICAL SIMULATION FOR PULSE PROPAGATION. .......................22 

3.1 Introduction to the Split Step Fourier method. .....................................................22 

3.2 The Algorithm. ........................................................................................................23 

3.3 Considerations and Limitations..............................................................................24 

4 AIRY-SOLITON INTERACTIONS .................................................................25 

4.1 Simulations Results.................................................................................................27 

4.2 Analysis ...................................................................................................................30 
4.2.1 Soliton power 31 
4.2.2 Soliton Time and Center Frequency 32 
4.2.3 Soliton Phase 35 

5 CONCLUSIONS ...................................................................................................... 36 

6 APPENDIX ...................................................................................................... 39 

6.1 The Perturbation theory:........................................................................................39 
6.1.1 Theory 39 
6.1.2 Incoherent soliton interactions 41 
6.1.3 Coherent soliton interactions 42 
6.1.4 Airy-soliton expansion 43 

7 SUBMITTED PAPERS ...................................................................................44 
 



 5

1 Introduction 

 Bessel beams which were thought to be unique are diffractionless beams that 

have been theoretically introduced in 1987 [1] and later experimentally demonstrated 

in ref. [2]. However, it was not until recently that a new addition was introduced—

Airy beams.  An Airy wave packet was first introduced in 1979 [3] in the context of 

quantum mechanics. It was theoretically demonstrated that a nonspreading Airy wave 

packet is a solution to the Schrödinger equation for a particle with no external 

potential (free particle). While Bessel beams are a stationary solution, Airy beams 

have a remarkable ability to freely accelerate despite the absence of any external 

potential. However, Airy beams as well as Bessel beams require an infinite amount of 

energy to be realized. A solution to this predicament is the truncation of the beams 

that was first demonstrated on Bessel beams to utilize in the creation of non-

diffracting beams [2]. It was only recently that the latter solution was applied to an 

Airy function to achieve non-diffracting Airy beams [4-6]. Despite truncation, Airy 

beams remain quite resilient to diffraction and stay self-similar over extended 

propagation distances. Furthermore, the characteristic acceleration is fully maintained. 

Truncated Airy beams are easily attainable by applying a cubic phase mask across a 

Gaussian beams in the Fourier plane. These unique attributes and experimental ease 

have sparked much interest surrounding Airy beams. As so, they have become the 

topic of research in many research groups. Spatially truncated Airy beams have been 

applied in creating curved plasma channels [7], particle clearing [8], plasmonic energy 

routing [9], and are capable of recovering from spatial obscurations due to their 

energy redistribution mechanism [10], making them useful for imaging in scattering 

media [11].  

 As it is known, the diffraction equation of light and temporal dispersive 

equation are isomorphic, therefore the attributes associated with spatial Airy beams 

can be directly translated to temporal Airy pulses. Similar to truncated Airy beams it 

is necessary to impose a cubic spectral phase on the pulse to achieve temporal 

truncated pulses. Such methods include shaping techniques [12] or propagation in 

cubic dispersive media (at the zero dispersion wavelengths) [13]. The resulting 

truncated pulse can achieve large propagation distances without succumbing to 

dispersion (in normal or anomalous dispersion media) which can lead to spatially and 

temporal confined pules or light bullets [12, 14]. Light bullets are an interesting 
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combination of a truncated spatial Bessel beam and a truncated Airy temporal profile. 

When combined they create localized (confined) bundles of light both spatially and 

temporally. It is also possible to engineer Airy pulses to collide in time or space to 

achieve significantly high power enhancements [15]. 

 Airy pulses and beams have also been experimented within nonlinear medias, 

particularly intensity dependent Kerr media. In such cases the Airy waveform is no 

longer an analytical solution to the Nonlinear Schrödinger equation (NLSE). Due, to 

the intensity distribution of the Airy beams and pulses the nonlinearity is strongest at 

the peak intensity and subsides with the minor lobes that follow. Therefore, the peak 

intensity experiences a greater amount of self-phase modulation (SPM) or self-

focusing, offering a unique advantage when relatively low powers are applied to Airy 

beams. These allow for prolong propagation under such conditions [16]. As power is 

increased the formation and shedding of spatial solitons or multiple solitons can be 

observed [17]. Similarly the same phenomenon can be seen in the temporal domain 

[18]. Finally, creation and switching of Airy beams by parametric process was also 

demonstrated in a quasi-phased matched (QPM) media [19] along with spatiotemporal 

control in high-harmonic generation obtained by QPM structures [20].  

Since Airy beams or pulses are not an analytical solution to the NLSE they are 

unable to maintain their shape during propagation in the presence of the optical 

potential created by the Kerr effect. However, a natural solution exists in the form of a 

soliton [21- 23] (soliton: a general term for a pulse that maintains its shape during 

propagation in nonlinear media). This stable solution maintains a balance between 

diffraction (dispersion—time domain) and self-focusing (SPM—time domain) which 

allows it to keep its intensity profile. It is a stationary solution and does not accelerate 

during propagation. Solitons have been extensively studied in both spatial [24] and 

temporal domains [25]. Research in to the latter was mainly out of interest for use in 

optical communications [26, 27]. Soliton “repeaterless” networks were first conjured 

by Hasegawa [28] while Mollenauer, Stolen and Gordon later demonstrated temporal 

soliton propagation [29]. In particular, soliton-soliton interactions were studied to 

investigate the effects that they have on soliton based communications. These 

interactions are categorized as either coherent [21, 30, 31] (interactions between 

successive bits) or incoherent [27, 32] (collisions between pulses of different wave 

division multiplexing (WDM) channel, due to group velocity mismatch).  
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Soliton perturbations were also extensively studied (i.e. fiber loss or local 

amplifications) [33-41]. These interactions (collisions and perturbations) establish the 

limiting factors for soliton-based optical communications [27]. 

  The following thesis deals with the simulation of interactions between a weak 

truncated Airy pulse and soliton pulse in a single mode fiber (SMF) as the nonlinear 

medium. By keeping the Airy pulse weak, we preserve its linear characteristics and 

can treat the interaction as a perturbation of the stable soliton solution. Placing these 

pulses at proximity to one another, yet non-overlapping, and launching them at the 

same center frequency the Airy pulse can accelerate to interact with the soliton.   

To better understand the interaction we vary the relative amplitude, phase and 

time separation of the Airy pulse relative to the soliton. This is based on insight from 

soliton-soliton and soliton-Continuous wave (CW) that show that these parameters 

influence the outcome of the interaction.  

 The results obtained show that the interaction is indeed influenced by the 

variation of these parameters. For example, an interesting result arises due to the 

variation of the time separation, which not only changes the collision distance. Such a 

variation also changes the duration of the interaction at collision point as will be 

shown later.  

 Chapter 2 introduces the NLSE equation, which is the governing equation for 

propagation. Being a second order differential equation the NLSE has only a few 

known analytical solutions and in most cases is solved by numerical methods.  

Chapter 3 elaborates on these methods, in particularly on the split step Fourier method 

(SSFM) and includes the considerations and limitations when it is employed. Chapter 

4 is the implication of the SSFM in the investigation of the soliton-Airy interaction, 

and deals with the intricate details of the interaction. Finally, the work is concluded in 

the last chapter with a summary of my findings and possible future work.  
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2 Theoretical background. 

The NLSE is the propagation equation that governs the behavior of optical pulse when 

the pulse widths are between ~10ns to 10fs. When optical pulses propagate inside a 

fiber they are influenced by both dispersion and nonlinear effects. These manifest 

themselves through changes in the pulse shape and spectrum. In this Chapter we will 

review the basic mechanism of both dispersion and the nonlinear phenomena and 

introduce the Airy and soliton pulses. 

2.1 The pulse propagation equation. 

To derive the pulse propagation equation we shall first recall and define a few 

equations and relations. Maxwell’s equations (2.1-2.4) are the foundations of all the 

electromagnetic analysis and as such the propagation of optical fields in fibers [23].   

 
t

∂
∇× = −

∂
B

E  (2.1) 

  

)2.2(  
t

∂
∇× = +

∂
D

H J    

 ρ∇ ⋅ D =  (2.3) 

 ∇ ⋅ B = 0  (2.4) 

E-is the electric field, H- the magnetic field, D- electric flux, B- magnetic flux, J- the 

current density in the medium, ρ- the free charge density. In optical fibers both J and 

ρ can be set to zero since there is no net charge and no currents present. The first 

relations are the relations between the flux densities D and B that are brought upon by 

the electric and magnetic field E and H respectively.  

 ε0D = E + P  (2.5) 

 µ0B = H + M  (2.6) 

ε0-is the vacuum permittivity and µ0- is the vacuum permeability. P and M are the 

induced electric and magnetic polarizations respectively. We focus on the electrically 

induced polarizations since in optical fiber M is equal to zero. The nonlinear wave 

equation for the electric field can now be attained by taking the curl of Eq. (2.1) and 

applying the rest of the Maxwell equations to arrive at equation (2.7).  
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2 2

2
02 2

1

c t t
µ

∂ ∂
∇ −

∂ ∂
E P

E = -  (2.7) 

When the frequency of the electric field is far from the resonance frequency of the 

medium, the response of P can be simply describe by:    

 (1) (2) (3)
0( )ε χ χ χ=P E + EE + EEE + ....  (2.8) 

This is an expansion of the polarization that has been induced in the medium by an 

external electric filed: 0ε - is the vacuum permittivity and χ -is the electric 

susceptibility that describes the response of the bond electrons and molecules 

(nucleus) in the presence of an external electric field. To first order, P is linearly 

dependent on E and is a sufficient description as it is the main contribution. Although, 

when the intensity increases past a certain threshold (Electric field on the order of the 

binding atom [42]), higher order terms start to contribute and this is the source for 

nonlinear optics (NLO). The primary terms in NLO are the second and third order 

which relate to (2)χ  and (3)χ coefficients respectively in Eq. 2.8. When an electric 

field is substituted into equation(2.8), we receive a wide range of phenomena's from 

the combinatorial combinations [23, 43]. These are further grouped in to two 

categories; Phase matched processes and intensity driven processes [23, 43]. Phase 

matching implies that conditions are such that the carrier frequencies interact to 

produce new frequencies combinations. While in intensity driven process the carrier 

frequency of the field remains the same but influence is through changes in the 

refractive index. This induces a chirp that can create new frequencies (around the 

center frequency). Second harmonic generation (SHG) and third harmonic generation 

(THG) are two examples of a phased matched process in which two or three photons 

interact to produce new frequencies respectively. Examples of intensity driven 

processes include optical rectification ((2)χ -process) and self-focusing (spatial 

domain) or self-phase modulation (time domain) (SPM) ( (3)χ -process). In our case 

the propagation is influenced by SPM since the conditions for phase matching are not 

present leading to a low probability for phase matching to occur. In addition, in most 

mediums, the (2)χ  processes have zero contributions due to symmetry properties [23, 

42, 43] leaving the main contribution from the third order term as the lead term (Eq. 

2.9).  

 ( 3 )

0
( , ) ( , ) ( , ) ( , )

NL
t t t tε χ= ⋮P r E r E r E r  (2.9) 
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SPM arises from the dependence of the refractive index on the intensity. This can be 

seen in the frequency domain with the following set of equations [23]: 

 ( ) ( )2 2

2,n n nω ω= +ɶ E E  (2.10) 

  ( ) ( )(1)1
1 Re

2
n ω χ ω = +  ɶ  (2.11) 

 ( )(3)
2

3
Re

8 XXXXn χ=  (2.12) 

Equation 2.10 defines the refractive index in the presence of a high intensity electric 

field. In Eq. 2.10, n2 is a measurement of the fiber nonlinearity defined by Eq. 2.12.  

 We split the polarization to a linear and nonlinear contribution (Eq.2.13).  

 ( , ) ( , ) ( , )L NLt t t= +P r P r P r  (2.13) 

 Substituting this in to Eq. (2.7) we arrive at:  

 
222

2
0 02 2 2

1 NLL

c t t t
µ µ

∂∂∂
∇ − = +

∂ ∂ ∂
PPE

E  (2.14) 

Prior to solving Eq. 2.14 we will require to make several simplifying assumptions. 

First, PNL is treated as a small perturbation to PL, since in practice it is on the order of 

10-6 [23]. Second, the optical field is assumed to maintain its polarization so that the 

scalar approach is valid. Third the pulse spectrum is assumed to have a narrow 

spectral width (∆ω/ω0<<1). For example ω0~1015, this will coincide with pulse widths 

as short as 0.1ps. Lastly, we will assume that the medium’s nonlinear response is 

instantaneous. (The instantaneous response of the medium assumes that the 

contributions are from the electrons and not the molecular vibrations that result in the 

Raman effect. We shall not concern ourselves with the Raman contribution and thus 

are limited to pulses widths that are larger than 1ps). A solution can now be presented 

as a multiplication of three terms [23].  

 }{ 0 0

1
ˆ( , ) ( , ) ( , )exp( ) .

2
t x F x y A z t i z t c cβ ω= − +E r  (2.15) 

Without loss of generality we assume that the solution E is in the x direction. 

The function F(x,y) dictates spatial dependence of the field and incorporates the 

geometry of the medium. For example in an optical fiber the fields’ first mode 

(fundamental mode) that develops due to the boundary conditions has an intensity 

distribution similar to a Gaussian intensity profile. The spatial dependence is found by 

finding the eigenvalues for F(x, y) with a given choice of coordinate presentation [23] 

when Eq. (2.15) is substitute in to Eq. (2.14). However, the complete derivation 
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requires the transitions between the time domain and the frequency domain where 

significant simplifications are gained. We shall not proceed with the full derivation of 

the spatial dependence but will proceed under the assumption that the fiber is a single 

mode fiber (having only the transverse electric mode). Our main concern is the 

behavior of the temporal envelope A(z,t) of the field during propagation along the z 

direction. Therefore, Eq. 2.16 is also the consequence of the latter substitution with 

the added assumption that regards the envelope as slowly varying with respect to z 

( )2 2 2
0A z Aβ∂ ∂ << , where 0β -is the wave number. This resulting equation is 

usually referred to as Nonlinear Schrödinger Equation (NLSE).  

 
2

2

1 2 2 2

A A A
i A i A A

z t t

α
β β γ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (2.16) 

The first term is the differentiation of the A(z,t) with respect to z. The next two terms 

from the left, are the consequence of the expansion of the wave number β which is 

frequency dependent.   

 2 3
0 0 1 0 2 0 3

1 1
( ) ( ) ( ) ( )

2 6
β ω β ω ω β ω ω β ω ω β= + − + − + −  (2.17) 

β1-represents the group velocity of the pulse 11gv β= , β2 - is the quadratic dispersion 

coefficient (GVD: Group velocity dispersion). The fourth term is the loss or gain term 

determined by the sign of α. Last is the nonlinear term arising from SPM, as pointed 

out earlier  the refractive index is dependent on the electric field according to this 

relation: 
2

0 2n n n E= + ,which is known as the Kerr effect; γ is defined by Eq. (2.13): 

 2 0

eff

n

cA

ω
γ =  (2.18) 

     Aeff -parameter is known as the effective are of the fiber mode. It relates the mode 

distribution to the size of the core. An example would be a Gaussian distribution; 

2
effA wπ= , w- is the width of the Gaussian (depending on how the Gaussian is 

defined). 



 12

2.2 The Dispersion phenomena.  

In this section we will discuss in detail the effects of group velocity dispersion (GVD) 

by treating the optical fiber as a linear optical medium. In such a case the nonlinear 

term in Eq. (2.16) is neglected. To simplify things further we will also assume a loss-

less fiber. However first we must set the criteria when a medium can be considered 

linear.  

2.2.1 Propagation regimes 

Representation of Eq. (2.16) in the retarded time frame allows for further 

simplifications with the following transformation 1 gT t z t z vβ= − = −  [23]: 

 
2

2

2 2 2

A A
i A i A A

z T

α
β γ

∂ ∂
+ + =

∂ ∂
 (2.19) 

 T – is the time in the retarded time frame moving at group velocity.  

To determine the propagation regions it is necessary for us introduce the 

normalized form of Eq. (2.19), which will allow for the definition of the characteristic 

lengths for the dispersion and the nonlinear phenomena's and thus establishing the 

criteria for pulse propagation regions.   

Defining Eq. (2.20) where 0T Tτ = , T0 is the initial pulse width and P0 is the initial 

power, we can substitute Eq. (2.20) in to Eq. (2.19) to arrive at Eq. (2.21).   

                                             0( , ) exp( 2) ( , )A z P z U zτ α τ= −                         (2.20) 

 
2

22
2

sgn( ) exp( )

2 D NL

U U z
i U U

z L L

β α
τ

∂ ∂ −
= −

∂ ∂
 (2.21) 

sgn(β2)- is the sign function and has the values of ±1 depending on the sign of β2.  

LD and LNL (Eq.(2.22)) are the characteristics lengths for the dispersion and nonlinear 

phenomena's respectively and they offer a scale for which the effect of the dispersion 

and nonlinear effects becomes relevant. The physical interpretation of LNL is the 

distance at which the π phase shift contribution is attained through SPM, while after 

LD a Gaussian pulse would have accumulated an increase in duration by 2 . We are 

now in a position to define the propagation regimes.  

 
2

0

2 0

1
D NL

T
L L

Pβ γ
= =  (2.22) 
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1.  LD ≈ LNL<L  are of the same magnitude and both are smaller than L, neither of 

terms in Eq. (2.21) can be neglected and both will influence the pulse during 

propagation. 

2. LD<L <L NL in this case the nonlinear term in Eq.  2.21 can be neglected and 

the pulse evolution is governed by GVD only. 

3. LNL<L <L D for this case the dispersion term is negligible and the pulse 

evolution is governed by nonlinear term. 

2.2.2 Dispersion- induced pulse broadening  

Assume we are in condition 1, then Eq. (2.21) can be simplified to:  

 
2

2
2

( , ) ( , )

2

U z T U z T
i

z T

β∂ ∂
=

∂ ∂
 (2.23) 

To solve Eq. (2.23) we transfer over to the Fourier domain were Eq. (2.23) has a 

simpler form; 

 22( , )
( , )

2

U z
i U z

z

βω
ω ω

∂
= −

∂

ɶ
ɶ  (2.24) 

 2
2( , ) (0, )exp

2

i
U z U zω ω β ω =  

 
ɶ ɶ  (2.25) 

Solving Eq. (2.24) leads to the solution Eq. (2.25) which states that any initial 

condition can be propagated in the frequency domain to a predetermined distance by a 

multiplication of an exponential phase term that is both frequency and distance 

depended. An analysis of Eq. (2.25) shows that each spectral component receives a 

change in phase proportional to its frequency at a given distance. This however does 

not change the power spectrum but does alter the pulse temporal profile. Therefore, 

we can propagate any arbitrary initial condition by a transformation to the frequency 

domain, carry out the propagation and return by taking the inverse Fourier transform 

Eq.(2.26).  

 2
2

1
( , ) (0, )exp

2 2

i
U z t U z i t dω β ω ω ω

π

∞

−∞

 = − 
 ∫ ɶ  (2.26) 

Figure 2.1 shows an example of a broadening Gaussian pulse (initial condition given 

by Eq. (2.27) without any spectral alterations during propagation.   

 
2

2
0

(0, ) exp
2

T
U T

T

 
= − 

 
 (2.27) 
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Dispersion can either compress or broaden a pulse depending on the sign of the 

product between the quadratic dispersion (β2) and the chirp. The chirp is defined as 

the instantaneous frequency across the pulse, and is mathematically defined as; 

Tδω φ= −∂ ∂ , where φ is the argument of the temporal phase term of the pulse. In 

addition, β2 can either positive or negative. When β2 is positive, this is known as 

normal-dispersion, were low frequency components travel faster than high frequency 

components. While when β2 is negative the opposite is true and this is known as 

anomalous dispersion. When the medium has anomalous dispersion it is possible to 

achieved optical solitons with dispersion balancing the spectrum generated by SPM 

(both produce a chirp at the same magnitude but opposite in sign). 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 2.1. (a)  The evolution of Gaussian  pulse with an initial amplitude of 1, initial width of 1, in a loss less fiber and no 

nonlinear effects.(b) The broaden Gaussian pulse at different dispersion lengths (LD=1),(c) Initial and final power spectrum.  
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2.3 Airy  

Airy wavepackets having been first theoretically suggested by Berry and Balazs [3], 

with little interest devoted till recently when Christodoulides et. al. demonstrated [4-

6] Airy beams by truncation of the Airy tail. This sparked much interest among many 

research groups (see the section 1-Introducation). In this section we will review in 

brief Airy beams and follow up with Airy pulses after showing the analogy between 

the dispersion equation and diffraction equation. 

2.3.1 Airy function 

Before moving on to Airy beams in space, we review in brief the Airy function and 

the truncation procedure. The Airy function has many mathematical definitions [44], 

one integral presentation is: 

 ( ) ( )
3

0

1
cos /; Im 0

3

t
Airy x xt dt x

π

∞  
= + == 

 
∫  (2.28) 

 
Figure 2.3a shows a plot of an Airy function and Fig. 2.3b is of a truncated Airy 

beam:  

 ( ) ( ) ( )T . exp /; 0runAiry x Airy x ax a= >  (2.29) 

 

 
 

The zeros of the Airy function along with other properties can be found in [44.] 
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Fig.. 2.3. (a) Airy function,(b) Truncated Airy function with different truncations. 
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2.3.2 Airy beams in space 

An initial condition of a truncated Airy (in normalized units) of the form: 

 ( , 0) Airy( )exp( )U s s asζ = =  (2.30) 

Will diffract according to [2]: 

 
2 2 3

2

( , ) Airy[ ( / 2) ]exp( ( / 2) ( /12)

                ( / 2) ( / 2))

U s s ia as a i

i a i s

ξ ξ ξ ξ ξ

ξ ξ

= − + − −

+ +
 (2.31) 

Where s is the normalized transverse coordinate ( )0s x x=  and ξ is the normalized 

propagation distance( )02z nπ λ= . When setting a=0 one receives the theoretical 

non-diffracting Airy beam (is such a case the energy of the beam, ( )
2

,U s dsξ
∞

−∞
∫  does 

not converged). The origin of the Airy's parabolic translation is in its argument. When 

looking at constant plains, ( )2
2s constantξ− =  the relation between s and ξ is 

quadratic.  

2.3.3 Airy pulses in time  

The mathematical equations of diffraction (Eq.(2.32)) and dispersion (Eq.(2.33)) are 

isomorphic [23].With a simple translation between 2k β↔ −  and x T↔ we can move 

between the two domains. 

 
( ) ( )2

2

, ,1
0

2

U x z U x z
i k

z x

∂ ∂
+ =

∂ ∂
 (2.32) 

 
2

2
2

( , ) ( , )
0

2

U T z U T z
i

z T

β∂ ∂
− =

∂ ∂
 (2.33) 

 
To transfer equations (2.30) and (2.31) to the time domain we make the following 

substitution:   

 2
2

0 0

;  
zT

s
T T

β
ξ→ →  (2.34) 

Equations (2.35) and (2.36) are there equivalence in the time domain respectively. 

 
0 0 0

( , 0) Airy( )exp( )exp( )
T aT T

U T z i
T T T

ν
= =  (2.35) 
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1 1

12 2 2

( , ) Airy[ ]exp[ ( ) ]

                exp[ ( ( ) ( ))]

z z

T T T T T

z T

T T T T

z z zT T a
U T z ia a a

T T

z zT
i a

T

β β

β

β β βν ν

β βνν ν

   
   
   

     
     
     

= − − + − − ×

− + − + + −

(2.36) 

 

In Eq. (2.35) and (2.36) we added an initial velocity parameter ν [3] that causes a shift 

in the carrier frequency and thus contributes an additional term to the translation of 

the peak in time as ( )22 2
0 2 0 2 02T T z T z Tν β β= + . (In the diffraction analogy, the 

velocity term is a linear spatial phase tilt). A plot of exemplary dispersed Airy pulses 

(Eq.(2.36)) with different initial conditions is shown in figure 2.4.  

 
Fig. 2.4. Airy intensity distribution when propagating with in a dispersion medium,having  no loss. Initial conditions are: initial 
width of 1 and amplitude of 1,(a)  Non truncated Airy, Truncated Airy with a= 0.05 (b) ν=0, (c) ν=3 and (d ) ν= -3.  

(a-2) 

(b-2) 

(a-1) 

(c) 

(b-2) 

(d) 
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From figure 2.4 we can see that Airy pulses maintain their shape while propagating 

over extended regions. For comparison, Gaussian pulses can travel 3 LD (where LD 

is the dispersion length) before the peak intensity is reduced by half, whereas an Airy 

pulse can travel several dispersion lengths; for example, an Airy pulse with 0.05 

(0.005) truncation coefficient can propagate 5.5LD (16.7 LD) before the peak intensity 

is reduced by half (Fig. 2.5). The increase in dispersion lengths for larger truncation is 

explained by the fact that as we increase the truncation coefficient we further broaden 

the pulse in positive side of the axis thus the wider the pulse the less it disperses.  
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Fig. 2.5. Distance propagated (normalized to the characteristic dispersion length ,LD) 
to reach half power of the primary peak for a Truncated Airy with different truncation coefficients (blue line). The red line 
is the distance required for a Gaussian to reach half peak power. 
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2.4 The Nonlinear phenomena 

The nonlinear phenomena manifest itself through the dependence of the refractive 

index on the intensity of the electric field. This causes self-phase modulation that 

leads to the broadening of the spectrum of optical pulses.  To focus on the nonlinear 

phenomena in the absence of dispersion, we can set β2 =0. Though, in practice if the 

power and pulse width satisfy LD>>L NL, we would be in the nonlinear propagation 

regime. 

2.4.1 SPM-Induced Spectral broadening 

Assuming that such conditions are met: 

 
( ) 2exp

NL

i zU
U U

z L

α−∂
=

∂
 (2.37) 

To solve Eq.(2.37), we substitute ( )exp NLU V iφ= as a probable solution. Therefore, 

separating to its real and imaginary parts we get: 

   

 
( ) 2exp

0; ;NL

NL

zV
V

z z L

αφ −∂∂
= =

∂ ∂
 (2.38) 

Form Eq. (2.38) we deduce that the amplitude V is independent of z, thus, the equation 

for the phase can be analytical integrated: 

 
( ) ( ) ( )

( )

2
, 0, /

1 exp /

NL eff NLz T U T L L

Leff z

φ

α α

=

= − −  
 (2.39) 

 

Equation 2.39 reviles that during propagation the pulse shape remains unaltered (Fig. 

2.2a), and the SPM gives rise to an intensity-dependent phase shift. The phase profile 

would be that of the pulse shape after LNL in a lossless fiber (Fig. 2.2b).  
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2.4.2 Cross phase modulation  

When two fields with different or same frequency co-propagate in a SMF they 

can interact through the nonlinear term. When 1 2A A A= + is inserted into Eq. (2.19) 

new terms are produced in each equation [23, 42, and 43]: 

 

2
2 21 1

2 1 1 1 2 12

2
2 22 2

2 2 2 2 1 22

2
2

2
2

SPM XPM

A A
i A i A A i A A

z T

A A
i A i A A i A A

z T

α
β γ γ

α
β γ γ

∂ ∂
+ + + = +

∂ ∂

∂ ∂
+ + = +

∂ ∂

��������� �����������
 (2.40) 

In the Eq. (2.40) we ignored terms that oscillate at the new frequencies 

1 22Ω − Ω or 2 12Ω − Ω  since they require phase matching in order to produce any 

significant contribution, thus we are left with the cross-phase modulation (XPM). Due 

to the presence of two fields the refractive index is now influenced by the intensity 

from both fields. Each field now produces a nonlinear phase shift proportional to its 

intensity on the other filed.  

 

(a) 

 

(b) 

 

 

(c) 

 
 
Fig. 2.2. (a) A Gaussian pulse maintains its shape during propagation in a nonlinear fiber with initial amplitude of 1 for 4LNL. 
(b)  A Gaussian induced phase profile at the end of propagation (c) Initial and final power spectrum showing the induced chirp 
across the spectrum. 
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2.5 The Soliton Pulse 

Solitons are eigen-functions of the NLSE in anomalous dispersion media, brought 

about by the balance between dispersion and self-phase focusing due to the Kerr 

effect 2
2 0 0( 1 )D NLL L T Pβ γ= ⇒ = . It was first analytically derived by V.E Zakharov 

and A.B. Shabat that showed that the soliton is a solution to the NLSE with the aid of 

the Inverse Scattering Method (ISM) [21]. The first order soliton solution has the 

canonical form [6, 15] (with units):  

 2
0 2 0( , ) sech(( ) / )exp( )solitonU T z A T T T i z Tβ= −  (2.41) 

Tsoliton- Initial time position of the soliton. 

Equation (2.41) states that the soliton maintains its shape (Fig. 2.6a) and only acquires 

a cumulative phase that is linearly dependent on the propagation distance (Fig. 2.6b). 

Solitons can also arise in the presence of an arbitrary pulse shape with an energy 

surplus with respect to the soliton condition [23, 26]. The formation of the soliton 

evolves during the propagation with the pulse shedding off excess energy to settle in a 

soliton state. 

   

 

(a) 

 
Fig.. 2.6. (a) Soliton propagation with LD=LNL=1,(b)  a linearly accumulated  phase  during propagation.   
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3 Numerical Simulation for pulse propagation. 

The Nonlinear Schrödinger Equation (NLSE) is a nonlinear partial differential 

equation that does not generally lend itself to analytical solutions except for some 

cases in which the inverse scattering method can be employed [21].  Therefore 

numerical approaches are necessary for solving the NLSE. These are classified into 

two broad groups, 1) finite-difference methods and 2) pseudospectral methods [23]. 

The method used extensively is the pseudospectral split-step Fourier method (SSFM). 

Pseudospectral methods are generally faster by 2 orders of magnitude while achieving 

the same accuracy.  

3.1 Introduction to the Split Step Fourier method. 

The NLSE (Eq. (2.19)) can be expresses as the sum of two differential operators [23].   

 ˆ ˆ( )
A

D N A
z

∂
= +

∂
 (3.1) 

In Eq. 3.1D̂ is the linear operator the accounts for dispersion and loss (gain),̂N is a 

nonlinear operator that governs the nonlinear effects in the fiber during propagation. 

 
2 3

32
2 3

ˆ
2 6 2

i
D

T T

ββ α∂ ∂
= − + −

∂ ∂
 (3.2) 

 
2

N̂ i Aγ=  (3.3) 

These operators act together continuously and simultaneously on the pulse during 

propagation. When applying the split-step Fourier method an assumption is made that 

over a small distance h these two operators are independent on one another. 

Propagation for z to z+h is carried out by applying the following expression.   

 ˆ ˆ( , ) exp( )exp( ) ( , )A z h T hD hN A z T+ ≈  (3.4) 

D̂  can be more conveniently applied in the Fourier domain. Therefore, using the 

Fourier identity ( ) ( ) ( )n nd f t dt i fω ω= , D̂  is transformed to the Fourier domain 

where its application is much more practical.  

 
22

32ˆ
2 6 2

ii
D

ω βω β α
= − −  (3.5) 

Propagation along the fiber is carried out by  consecutively operating on each segment 

with N̂ and then ̂D  keeping the order, due to the non-commuting nature between the 

operators, till the whole fiber is complete. However, the SSFM ignores the non-
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commuting nature of the operators [23]. Therefore, simplifications and improvements 

in accuracy of the SSFM simulation can be implemented.  For example one variation 

to improve the accuracy is to apply the dispersion operator to the first half of the 

segment then operate on the full segment with the nonlinear operator and complete the 

second half with another application of the dispersion operator for the remaining 

segment.  

 ( )ˆ ˆ( , ) exp exp( )exp ( , )
2 2

z h

z

h h
A z h T D N z dz D A z T

+
   ′ ′+ ≈    
   ∫  (3.6) 

 

The advantage gained through this variation is that the nonlinear contribution is not 

taken at the boundaries but integrated over the segment. However, if the step size is 

small this can be taken to be ˆexp( )hN . The latter method is known as the symmetrized 

SSFM and in this case the leading error term is third order in the step size h [23]. 

3.2 The Algorithm. 

Based on the last variation our algorithm is developed: 

� Step 1: Divide the fiber in to segments (Fig. 3.1).  

� Step 2: Split the segment in two equal parts. 

� Step 3: Operate on the first half with the dispersion operator. 

� Step 4: Operate on the entire segment with the nonlinear operator. 

� Step 5: Operate on the second half with the dispersion operator. 

� Step 6: Repeat steps two through five for the adjacent segment with the result 

obtained from the previous segments.  

 

         
Fig. 3.1. Segmentation of the fiber (left).  Separation of a segment into two parts for application of the dispersion operator 

(right).  
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3.3 Considerations and Limitations. 

There are some considerations and limitations that must be addressed prior to the 

application of SSFM. The prominent one is the step size h (the length of a fiber 

segment). To acquire a reasonable accuracy we aspire that h would be at least two 

orders of magnitude less than the dominant phenomena governing the propagation.  

However, the optimum choice h depends on the complexity of the problem at hand. 

For example, a pulse can compress or broaden by dispersion, continuously changing 

LD. Therefore h must be adjusted accordingly if LD is reduced during propagation to 

maintain reasonable accuracy. To be able to take into account such scenarios we take 

h to be at least 3 orders of magnitude smaller than the dominant initial characteristic 

length.  

 Another consideration is due to the repetitive nature of the Fourier transform 

when the pulse energy reaches the ends of the time window energy gets feedback 

(cycled back from end to the other) into the pulse and does decay creating unreliable 

results. This can be overcome by simply making the time window large enough, thus 

confining the pulse in the time window over the propagation range. The latter method 

although very practical in most cases and simple has a limiting factor. The drawback 

is that this requires large vectors resulting in more processing time and requires more 

memory. A more advance solution is the introduction of limiting window that when 

the pulse reaches the ends of the time window the energy is absorbed preventing the 

feedback. In this case, care must be taken so a gradual decay of the pulse will be 

carried out and not an abrupt cutoff of the pulse which will also generate a reflection 

due to an abrupt transition. To prevent this from happening the criteria to keep in 

mind is the rate of temporal spread with respect to the step size, which needs to ensure 

that the amount of temporal spread takes place over a few steps. This is also true in 

the frequency domain and a delicate balance must be kept. Last, when dealing with 

pulses that are less than 5ps, further terms must be taken into account in the operators. 

These terms are added to the nonlinear operator and are caused by Raman scattering, 

though are not present in our simulation scenario [23].  
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4 Airy-Soliton interactions 

Our initial intention was to demonstrate an overtake of a Gaussian pulse by 

utilizing the parabolic trajectory of an Airy pulse. Though, with our chosen 

configuration, the broadening rate of the Gaussian was faster than that of the Airy's 

acceleration. Thus, the Gaussian pulse engulfed the Airy pulse and the two pulses 

propagate through one another while experiencing interference.  

However, a solution presented it self in the form of a soliton pulse. Solitons do 

not broaden during propagation and are a stationary but require a nonlinear medium to 

form. This requirement limits us to launching a weak Airy pulse in order to stay in the 

linear propagation regime. This intern raises an interesting question on the nature of 

the interaction, can a soliton pulse act as an optical potential barrier for the 

accelerating Airy pulse [45] (as an event horizon) or as a shepherding pulse [46]? Our 

initial trials did not indicate this, however, we do believe that this warrants further 

research, particularly with a soliton that is much more intense (shorter pulse width) 

which will increase the depth of the optical potential well.  

Seeing that the soliton was experiencing changes we continued on the path of 

introducing an Airy pulse as a perturbation to the soliton pulse. We found preferable 

for sake of calculations and analysis to continue with dimensionless equations and 

operators and assume a lossless (α=0) fiber for the Airy pulse (Eq.(4.1)) perturbation 

of a soliton pulse (Eq.(4.2)).  

 
2 2 3

2

( , ) Airy[ ( / 2) ]exp( ( / 2) ( /12)

                ( / 2) ( / 2))

u ia a a i

i a i

τ ξ τ ξ ξ τ ξ ξ

ξ ξτ

= − + − −

+ +
 (4.1) 

 2( , ) sech( )exp( )su a a ia zτ ξ τ=  (4.2) 

The unique ballistic propagation feature of the Airy pulse gives it the ability to 

accelerate or decelerate (depending on the tail direction) and allows for interactions 

(collisions) between pulses having the same center frequency. By positioning the 

soliton pulse along the ballistic path of the Airy they can cross and interact with one 

another. 

 These interactions are demonstrated through numerical simulations via the 

Split Step Fourier Method (SSFM) with a time window of 1300 time units divided to 

32768 sampling points, and propagated to a distance of 100 Soliton periods (157LD 

units, where LD=1 in our normalized NLSE Eq.) with 1500 output inspection 

distances (not to be confused with the SSFM simulation step size which is less than 
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one thousandth of LD). Insight from the well-known soliton-soliton [21, 23, 29, 30] 

and soliton-continuous wave (CW) [33, 36, 37] interactions are applied to better 

understand the observed phenomena. It is known that relative phase, amplitude (or 

total energy), the initial separation and frequency offset (difference in group 

velocities) play a role in the outcome of the interaction; thus in our simulations we 

vary these initial parameters of the perturbing Airy pulse to take them into 

consideration. Consequently the launched initial conditions are Eq. (4.3) (Fig. 4.1a, 

with figure 4.2 showing individual propagation intensity plots):   

 ( ) ( )0( 0, ) sec ( )exp( )expu h rAiry a iξ τ τ τ τ τ θ= = + −  (4.3) 

The varied parameters in Eq. (4.3) are the amplitude ratio r between the Airy pulse 

and the soliton (normalized), the initial Airy time position τ0 with respect to the 

soliton (launched at zero), and the relative phase θ of the Airy pulse. We choose r 

such that at the point of collision the intensity ratios between the accelerated Airy lobe 

and the soliton will be 8, 4, 2, 1 and 0.5 percent (note that the Airy peak intensity at 

collision is already attenuated with respect to launched conditions on account of the 

truncation and dispersive propagation). These low Airy interference values ensure that 

the Airy will propagate in the quasi-linear regime and can be treated as a perturbation 

of the soliton [34]. The minimal time separation of τ0=-6 is chosen to achieve at least 

a -30dB dip between the Airy and soliton at our time sampling (Fig. 4.1b), to ensure 

essenitially no initial overlap. We also choose a small enough truncation coefficient 

(a=0.005), which guarantees that the peak collision intensity of the Airy launched at 

our largest separation (τ0=-10) will not be less than 95% of that launched at the 

smallest separation (τ0=-6) for every chosen launched amplitude.  Hence all the Airy 

pulses have the same energy for a given r value and only a small variation in peak 

intensity at the point of collision. 
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4.1 Simulations Results 

Exemplary Airy-Soliton interactions are shown in Fig. 4.3, launched at a time 

separation of 10 time units (τ0=-10) and an intensity ratio of 8% for two relative 

phases (0 and π). The propagating Airy decelerates (wavefront moves to later time) to 

collide with the trailing soliton pulse. The collision distance is given by: 

  0  4( )soliton peak off setξ τ τ τ= − +  (4.4)  

where τsoliton is the Soliton time position (in our case τsoliton=0) and τpeak offset is the 

offset of the main Airy peak with respect to the Airy delay time τ0 (τpeak offset is 

numerically calculated for a  given truncation, e.g. 1.014peak offsetτ ≈  for a=0.005.  

(a) Airy (b) Soliton 

 
Fig. 4.2. Intensity plots for propagation of (a) a truncated Airy pulse (a=0.005), and (b) a normalized 
soliton both to 20 LD.  Insets show launched intensity distributions. 
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Fig. 4.1. Exemplary initial launch conditions composed of both the Airy (a=0.005, 8% intensity at collision, 
τ0=-6) and the normalized soliton. (a) linear scale, (b) dB scale (the variation in dip values is an artifact of the 
sampling). 
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The interaction can be separated to two regimes of interest: the primary 

collision region between the pulses (occurring at approximately 3<ξ<15, for our 

selected initial time separations), responsible for the main variation in the 

fundamental soliton parameters of phase, amplitude, frequency and time position [34], 

and a relaxation region accompanied by continuous interaction with the dispersed 

Airy tail (occurring at ξ>15). During the primary collision (3<ξ<15) both pulses lose 

their identities and cannot be distinguished [37] due to interference throughout the 

collision region [39]; however as the Airy wavefront moves towards later times the 

pulses reform and emerge having perturbed parameters. Since the truncated Airy 

pulse has the same center frequency and must maintain its first moment, it never 

completely crosses over the soliton; however the wavefront consisting of the main 

lobe, which has been designed to maintain its identity within the collision range, and 

subsequent lobes, do cross the soliton. (The Airy with our truncation coefficient of 

a=0.005 was designed to decay to half peak power at ξ=16.7, beyond the collision 

zone.) Therefore, the Airy-soliton interactions are classified as incomplete collisions, 

defined as having either an initial temporal overlap or a terminal overlap after the 

collision (occurring in our case), as opposed to complete collisions, (i.e. full crossing 

of the pulses achievable through non overlapping bandwidths and GVD [27,34,37]). 

These complete collisions, as present in wave division multiplexing (WDM) 

collisions, are known to be independent of relative phase and do not undergo a 

permanent frequency change after collision. Consequently, our findings show that the 

soliton undergoes a permanent frequency shift in some cases (Fig. 4.4 demonstrates 

the most extreme case for τ0=−6), and that the interaction (and frequency shift) is 

strongly dependent on relative phase, as in coherent soliton-soliton [23, 27] and 

soliton-CW [33] interactions. 
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Fig.4.3  Airy-soliton interactions with an initial separation of 10 and intensity ratio of 8% at collision  
for two phases. (a) θ=−π , (b) θ=0 
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An analysis of soliton-soliton collisions in WDM systems and coherent soliton 

interactions is carried in [27], offering an explanation for the dependence on relative 

phase or the lack of it based on perturbation theory developed by Haus et. al. [34, 35]. 

The derivation distinguishes between coherent and non-coherent interaction. For 

example, soliton-soliton collisions in a WDM system are regarded as incoherent 

interactions. The perturbation term taken into account in this case is only the cross 

phase modulation (XPM); the remaining terms originating from the NLSE nonlinear 

response are neglected due to rapid beating that average out to zero [39]. However, in 

the coherent derivation (i.e. soliton-soliton coherent interactions) the beat term 

between the two waveforms is taken into consideration.  

Our investigative case bears similarity to coherent interactions at times, especially 

pronounced at closer initial separation while at other times the interaction is more 

incoherent in nature. A larger initial separation, the spectral repositioning by 

dispersion, results in an interaction between waveforms with a reduced spectral 

overlap. This distinction can be better understood by observing the Airy pulse 

evolution in time-frequency space as a function of propagation distance. Figure 5 

shows the spectrogram (time-frequency space) of an evolving Airy pulse at different 

propagation distances (which basically shears the Airy spectrogram), demonstrating 

the spectral repositioning and the amount of spectral overlap of the colliding 

wavefront with the soliton. (The soliton's time-frequency signature is denoted by the 

green ellipse.) A more significant spectral overlap between soliton and Airy at point 

of collision is observed for an initial separation of τ0=-6 (compare middle column 

spectrograms in Fig. 4.5). Upon further propagation, the soliton propagates with 

quasi-CW light background from the dispersed Airy, demonstrated by the spectral 

overlap found in the right column in Fig. 4.5. As the propagation distance grows this 
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Fig. 4.4. Airy-soliton interaction with τ0=−6 and 8% intensity ratio showing a permanent 
frequency change when (a) θ=−π/2, and (b) θ=π/2 over 157 LD units (100 soliton periods). 
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dispersed background radiation becomes more monochromatic and approaches the 

same carrier frequency as the soliton. The continuous interaction results in oscillations 

of the solitons frequency and amplitude and therefore both the time position and phase 

will oscillate [33]. 

 

4.2 Analysis 

We track the soliton fundamental parameters prior to collision (ξ<3) and those of the 

perturbed emergent soliton (ξ>15) from the SSFM results, as we cannot extract any 

useful information throughout the collision region, as the soliton is indistinguishable. 

We extract the emergent soliton characteristics from the numerical results and not 

resort to the well-developed perturbation theory analysis, as the Airy-soliton 

interaction case is incomplete [34]. Perturbation theory analysis requires the 

interaction to be complete and that the perturbation spectrum not exceeds that of the 

soliton, neither of which holds for the Airy pulse [34]. Furthermore, the perturbation 

theory analysis is intensity based, eliminating the relative phase dependence of the 

pulses, which is present in our Airy-soliton interaction. (Although, it may be possible 

to expand the perturbation theory to encompass this scenario as well, see appendix A).  

To derive high resolution emergent soliton parameters devoid of sampling effects, 

we locate the intensity peak at each propagation distance, select a sufficient number of 

intensity samples around the peak value, and then apply a sech(•)2 intensity profile fit 

to the selected samples. The benefit of this procedure is that it allows us to construct a 
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Fig. 4.5. Spectrogram of the Airy pulse at three selected distances for two initial separations; upper 
row: τ0=-6, lower row: τ0=-10. Left column: launch condition, center column: at collision distance 
(5.29 LD units and 6.63, respectively), right column: at distance where Airy wavefront is at a temporal 
shift of twice the initial time separation (7.49 LD units and 9.38, respectively). Green ellipse denotes 
the soliton extent over time and frequency. 
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continuous soliton intensity profile with respect to time at a given distance, from 

which we extract the intensity, time position, and temporal width at high resolution 

and with no discretization effects. This procedure generates smoothly varying curves 

for the soliton parameters' evolution. (The soliton phase is extracted from the sample 

with peak intensity.)  

4.2.1 Soliton power  

The soliton peak power behavior is analyzed along the propagation range and is 

charted in Fig. 4.6a for the closest Airy-soliton separation (τ0=-6), highest Airy power 

(8%) and for two representative relative phases (0 , π). The emergent soliton exhibits 

peak power oscillations that are dependent on the colliding Airy pulse phase. We 

further see that the two curves are vertically displaced, indicating a different mean 

soliton intensity (both oscillate nearly about the launched (original) soliton peak 

power). We next chart the mean peak soliton intensity for different initial Airy phases 

and launched powers at τ0=−6 (see Fig 4.6-b). (The mean soliton intensity is 

calculated far from collision, by establishing soliton power and background power 

from the maximum and minimum interference values. These interferences are due to 

the soliton’s natural SPM.) We observe sinusoidal dependence on the initial Airy 

phase for all powers, indicating an energy transfer between the pulses during the 

primary collision [19]. Similar sinusoidal behavior is observed at larger time 

separations (i.e., τ0=−8 and τ0=−10), albeit at a lesser magnitude (Fig. 4.6-c shows 

mean intensity fluctuation only at the 8% collision intensity for clarity). Since the 

overall colliding energy is the same, regardless of initial time separation (i.e., all 

energy contained in the Airy's delayed lower frequency components), the less 

pronounced effect at larger initial separations demonstrates that with greater time 

separation a more incoherent collision between soliton and the Airy occurs due to a 

larger frequency offset at collision (as previously explained by spectrograms). For the 

largest time separation we find that the mean intensity is nearly unchanged, while for 

the shortest time separation the mean intensity is predominantly linearly dependent on 

Airy amplitude, indicating coherent interaction behavior (Fig. 4.6-d). 
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We also see the intensity oscillations decay in magnitude along the propagation as the 

soliton relaxes. The functional form of the decay is in agreement with [39, 40, 41] that 

states that within the region of the asymptotic solution the non-soliton part decays as  

ξ -1/2 (Fig. 4.6-a). The period between oscillations varies slightly from one oscillation 

to another (on account of the dispersed Airy background center frequency 

approaching that of the soliton), converging towards a constant period of 4π distance 

units (corresponding to the distance a soliton accumulates 2π phase), as the soliton 

propagates away from the collision region. The beating comes from the interference 

between the soliton SPM with the dispersed, now quasi-CW, Airy background.  

4.2.2 Soliton Time and Center Frequency 

We next track the soliton change in time position (e.g. Fig. 3, θ=−π). Solitons 

experience time position change through local frequency changes during the collision 

and permanent frequency changes which map to time position alterations by group 

velocity dispersion (GVD) [33,35-38]. Fig. 4.7 plots the soliton time shift for several 

phases at collision with 8% Airy pulses for each of the three investigated time 
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Fig. 4.6.  Soliton intensity oscillations. (a) Intensity oscillation (intensity ratio of 8% and τ0=-6). Also 

shown envelope fit of the form 1 z , (b) Mean intensity of the oscillations with a sinusoidal fit, (c) 

dependence with respect to the Airy's initial phase for all the time separations (intensity ratio of 8%), 
(d) Mean intensity for all separations with at 8% intensity ratio for the θ=0, (with a second order 
polynomial fit; behavior predominantly linear) .  
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separations (τ0=−6, −8, −10). The most prominent feature is a soliton permanent 

frequency change after the main collision, which occurs after the collision with the 

Airy’s wavefront and is much more pronounced at closer initial time separations. The 

frequency change is also strongly dependent on relative phase between the Airy and 

soliton, and can be positive or negative (soliton travels slower or faster, respectively). 

As the propagation progresses, the time shift oscillates about the time shift induced 

solely by the permanent frequency change. These oscillations are attributed to the 

ongoing propagation through the dispersed Airy and are dependent on its amplitude 

and frequency detuning [33]. All solitons also experience a discrete time shift after the 

primary collision, which appears weakly dependent on the initial time separation and 

phase.  

 

We find the permanent frequency change experienced by the soliton by applying a 

linear fit to each trace in Fig. 4.7 (the fit is performed from about mid propagation 

distance up the end), where the slope represents the frequency change. The frequency 

change is dramatically stronger for closer time separations (Fig. 4.8-a, for θ=−π/2 at 

which a large positive frequency change is observed for all separations), while for 

larger separations the frequency change eventually disappears. This behavior is in line 

with our previous finding that at small initial separations the collision has coherent 

interaction characteristics, while for larger separations the collision is incoherent 

(exhibiting no permanent frequency change). This conclusion is supported by the 

linear dependence on Airy amplitude for the closest time separation (τ0=−6). The 

permanent frequency change is also sinusoidally dependent on the Airy phase (Fig. 

4.8-b).  
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Fig. 4.7. Time shift for all initial separations with an 8% intensity ratio for selected phases. 
(a) τ0=−6, (b) τ0=−8 , (c) t0=-10. Note that the scale of the time shift is not identical in all three cases.  
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We plot the soliton discrete time shifts after the primary collision for all separations at 

different Airy intensities and its weak phase dependence in Fig. 4.9. The time shifts 

are all negative (towards the Airy wavefront) as in complete collisions [27, 34, 38], 

depend quadratically on the Airy's initial amplitude with little dependence on initial 

separation (Fig. 4.8-a), and are hardly dependent on Airy initial phase (Fig. 4.8-b). 

This behavior bears the signature of complete collisions with the main and subsequent 

lobes [34, 27]. To obtain an estimate for the discrete time shift generated by the 

primary collision (which is within the collision zone, hence masked by interference), 

we use the linear fit lines for the soliton time position (previously used to measure the 

frequency change) calculated at the collision distances given by Eq. (4.4) for each 

initial time separation case. Hence, the primary collision results in a nearly fixed 

discrete time shift for the soliton and bears the signature of complete collision, while 

the soliton acquires a permanent frequency change during the same collision for close 

Airy launch (coherent collision characteristic, due to the spectral overlap at collision). 
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Fig. 4.9. Estimated time shift form, (a) Time shift with respect to Airy's initial amplitude for all initial 
time separations (θ=0),  Time shift with respect to Airy's initial phase and amplitude with τ0=-10 and a 
sinusoidal fit profile . 

 
Fig. 4.8. (a) Soliton frequency change with respect to amplitude at θ=π/2, (b) Sinusoidal fit with 
respect to Airy phase for all amplitudes with τ0=−6 of the frequency change.  
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4.2.3 Soliton Phase 

The last emergent soliton parameter we follow is the phase. Solitons continuously 

acquire phase along the propagation distance, and we subtract this constant term in all 

our results (using the launched soliton parameters) so that we only witness the phase 

difference between that of the expected phase of the unperturbed soliton and that of 

emergent soliton (see Fig. 4.10 for 8% Airy intensity for all the separations and select 

phases). As in the time shift results (Fig. 4.6), we see a discrete phase offset after the 

primary collision, in all cases equaling about 0.2 radians, and divergent and 

oscillatory phase in the relaxation region. While the oscillatory behavior is explained 

by the continuous interaction with the dispersed Airy background radiation (resultant 

of local intensity and frequency oscillations), the linear component is a reflection of 

the emergent soliton perturbed parameters of mean intensity and center frequency. 

Both terms contribute to the accumulated phase linearly with respect to ξ and 

quadratically on the amplitude and frequency changes of the soliton [27].  For 

example, in Fig. 4.10-a we see that for the initial phases of θ=−π and θ=0 there is a 

linearly-dependent phase difference attributed solely to a change in mean intensity, as 

the emergent soliton had only a mean intensity change (see Fig. 4.6-b) and no 

permanent frequency change (see Fig. 4.8-b) for these launched conditions. (A change 

of approximately 0.4 radian is accumulated between distances of 50 to 150, which 

translates to mean intensity change of approximately 0.008, exactly as found in Fig. 

4.6-b). In addition, we find that for the case of θ=−π/2 and θ=π/2   the small change in 

frequency of approximately 4×10-3 results in a negligible change since the phase term 

is quadratically dependent on frequency change. 

 

 

0 50 100 150
-0.5

0

0.5

1

Distance

P
h

a
se

 d
iff

er
en

ce
 [

R
ad

]

 

 

θ=-π θ=-π/2 θ=0 θ=π/2

(a) 

0 50 100 150
0

0.1

0.2

0.3

Distance

P
h

as
e 

d
iff

er
en

ce
 [

R
ad

]

 

 

θ=-π θ=-π/2 θ=0 θ=π/2

(b) 

0 50 100 150
0

0.1

0.2

0.3

Distance

P
h

as
e

 d
iff

e
re

n
ce

 [
R

ad
]

 

 

θ=-π θ=-π/2 θ=0 θ=π/2

(c) 

 

Fig. 4.10. Phase difference along the Airy propagation for select Airy initial phases with an intensity 
ratio of 8% (a) τ0=−6 , (b) τ0=−8, (c) τ0=−10.  
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5 Conclusions 
We have demonstrated the unique attributes of the interaction between a colliding 

Airy pulse and a soliton pulse at the same center frequency through split-step Fourier 

method simulations. The interactions are made possible by the ballistic trajectory 

property of the Airy pulse. 

Our findings show that the interactions are described by two regions of 

propagation. The first region, at which the primary collision occurs with the intense 

main lobe of the Airy wavefront, it is responsible for the main change of the soliton 

fundamental parameters. The nature of the interaction at the primary collision is 

strongly dependent on the initial Airy-soliton time separation, varying from coherent 

to incoherent interaction. At close separations, the collision event is accompanied by 

spectral overlap between the Airy and soliton. This results in a coherent interaction 

that perturbs the soliton frequency and amplitude. At larger initial time separations, 

the interaction is incoherent as there is a decrease in spectral overlap and the rapidly 

oscillating phase of the interference term does not accumulate to significant frequency 

and amplitude changes. In both cases, however, the soliton does experience a discrete 

time and phase change, due to a complete collision with the Airy main lobe. The 

second region of propagation is beyond the collision event, which is primarily defined 

by continuous interactions with the dispersed Airy tail, resulting in oscillations of the 

time shift and phase through local intensity and amplitude changes respectively. The 

soliton experience slow relaxation throughout this secondary region, as the Airy 

disperses and the oscillations’ magnitude diminishes.  

The nature of the interactions that were simulated are of collisions. In all cases, 

the Airy pulse propagated through the soliton pulse. This is in contrast to an intense 

soliton acting as an event horizon that can block the Airy pulse propagation [45]. An 

interesting future research effort could be to investigate the conditions leading to a 

soliton barrier, by possibly choosing a more intense and shorter duration soliton. In 

our simulations the Airy bandwidth exceeds that of the soliton, emphasizing the effect 

of dispersion. 

While we performed all our analysis in one dimensional temporal media, i.e. 

dispersive and nonlinear fiber propagation, all our findings should hold in one and 

two dimensional spatial propagation cases in Kerr media as the underlying equations 

defining the interactions are isomorphic. 
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6 Appendix 

6.1 The Perturbation theory: 

In this section we will briefly review the fundamentals of the perturbation theory 

developed by Haus et. al. and discusses in brief the modifications needed to expand 

the perturbation found in ref. [34] to encompass out scenario as well. In ref. 34 the 

interactions are of the incoherent type and are only intensity dependent. Since the 

Airy-soliton perturbation is quasi- coherent it is necessary to also review coherent 

interactions as well.  

6.1.1 Theory 

Let us first define the dimensionless NLSE; we begin by defining these dimensionless 

variables.  

 
0 0

;
D

T z A
U

T L P
τ ξ= = =  (6.1) 

To further simplify we also define: Du L Aγ=  and Eq. (2.21) transforms it to Eq. 

(6.2) which is the dimensionless form of the NLSE.  
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In Eq. (2.43) we assume that 2sgn( ) 1β = − , which is the appropriate choice from 

anomalous media. For Eq. (6.2) the fundamental soliton presentation is [27]: 

 ( ) ( )( ) ( )2 2
0 0 0, sech exp

2

i
u A A i A iτ ξ τ τ ξ τ ξ φ = − − Ω − Ω + − Ω + 

 
 (6.3) 

τ- the dimensionless time. 
Ω-the dimensionless center frequency. 
A-amplitude. 
  
To generalize Eq. (6.2) we shall add a perturbation term to the equation [27]. 
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The perturbation term R, can be a function of ,τ ξ and of u0, u0*  and any of their 

derivatives.  We proceed under the assumption that the terms found in R are small so 

that its influence on the soliton dynamics can be treated to first order.  

Consider the case 0Ω = and assume a solution of the form: 

 ( ) ( ) ( ) 2
0, , , exp

2

i
u u Aτ ξ τ ξ δ τ ξ ξ = +  

 
 (6.5) 
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Equation (6.5) is composed of the fundamental soliton along with a small perturbation 

from it. The perturbation term is a multiplication of two terms, the perturbation 

(δ(τ,ξ)) and its SPM. Substitution of Eq. (6.5) in to Eq. (6.4) is the first step for the 

basis of the soliton perturbation theory. Since the detailed mathematical derivation is 

complex and lengthy it will not be developed here [27]. However, the basis of the 

theory along with its application will be demonstrated in short. Returning to the 

substitution we arrive at:  

 ( )0 0 0 0
0

0

,c

u u u u
u A u

A
δ δ δφ δ δτ δ τ ζ

φ τ
∂ ∂ ∂ ∂

= + + Ω + +
∂ ∂ ∂Ω ∂

 (6.6) 

   
 The latter equation can be interpreted as two distinct contributions from the 

perturbation. The first is composed of all the terms having derivatives of 0u  and the 

second is that labeled cuδ . They physical meaning of this is: The first is responsible 

for any displacements of the soliton parameters while the second is any change to the 

field that cannot be reduced to changes in the soliton parameters, an excitation of the 

so called soliton “continuum”.  The above derivatives found in Eq. (6.6) can be 

expressed with the linear combination of these four base functions.  

 ( ) ( )( ){ }0 0 0

1
1 tanhAf A A u

A
τ τ τ τ= − − −  (6.7) 

 0f iuφ =  (6.8) 

 ( )0 0f i uτ τΩ = − −  (6.9) 

 ( )( )
0 0 0tanhf A A uτ τ τ= −  (6.10) 

Correlating (Eq. (6.7)-(6.10)) these definitions to the derivatives in Eq. (6.6) we get 

Eq.(6.11). The weight (amplitude) of each change is the factor found after each base 

function in Eq.(6.11). To find the magnitude of the change for each soliton parameter 

it is necessary to define the inner product for this function space Eq.(6.12). The 

physical meanings of the terms found in Eq.(6.11) are the displacements of the jth 

soliton parameter by jf j∆ with jf properly taking care to modify the jth parameter 

only of the soliton.  

 ( ) ( ) ( ) ( ) ( )
0 0 ,A cu f A f f f uφ τδ δ ξ δφ ξ δ ξ δτ ξ δ τ ζΩ= + + Ω + +  (6.11) 

 Ref g d f gτ ∗= ∫  (6.12) 

To attain the proper factor for each term it is necessary to project the perturbation on 

the adjoint space with the aid of the inner product previously defined. This now 

requires us to define the adjoint base functions: 
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 Af ifφ= −  (6.13) 

 Af ifφ =  (6.14) 

 
0

i
f f

A τΩ = −  (6.15) 

 
0

i
f f

Aτ Ω=  (6.16) 

At this stage, it is important to note here that the soliton continuum is perpendicular to 

these functions and therefore as stated previously does not contribute to these values. 

Therefore, we can continue with the projection of the perturbation on the adjoint 

functions.  

 *Re A

d A
d f R

d

δ
τ

ξ
= ∫  (6.17) 

 
( ) *

0 Re
dd

A A d f R
d d φ

δ ξδφ
δ τ τ

ξ ξ
Ω

= + + ∫  (6.18) 

 *Re
d

d f R
d

δ
τ

ξ Ω

Ω
= ∫  (6.19) 

 
0

*0 Re
d

d f R
d τ

δτ
δ τ

ξ
= − Ω + ∫  (6.20) 

The first equation in this set of four governs the variations in amplitude of the soliton 

as it undergoes the perturbation. The second governs the phase profile at each 

distance. The additional terms found in the phase derivative (Eq. (6.18)) (other than 

the projection term) are brought about by dependence of the exponential phase term in 

(Eq.(6.3)) on both frequency and amplitude (the dependence on amplitude is the 

SPM) which is reflected in Eq.(6.18). The third and fourth are the variations in center 

frequency and the first momentum in time (time position- 0τ ) respectively. As seen in 

Eq. (6.20) there are two contributions, the first is the projection and the second is the 

contribution from frequency variations. Which is apparent in the translations in time 

as indicated by theξΩ in thesech( )• argument (Eq.(6.3)) .The above equations are 

correct when the changes in the observables are small. Though, it is possible to 

expand these equations to further accommodate large change in the observables but 

this is beyond the scope of derivation. 

6.1.2 Incoherent soliton interactions 

In ref. [34] and [27] the interactions are of the incoherent type between two solitons 

(Eq.(6.21)) of different wavelengths (and not between solitons as successive bits) in a 
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wavelength division multiplexing (WDM) systems. To insure an incoherent 

interaction the condition 1 2 1Ω − Ω ≫  must be satisfied.  

 ( ) ( ) ( )1 2, , ,u u uτ ξ τ ξ τ ξ= +  (6.21) 

Where ( ),ju τ ξ is: 

 ( ) ( )( )( ) ( ) ( )( )0, sech expj j j j j ju A A i iτ ξ τ τ ξ ξ φ ξ= − − Ω +  (6.22) 

Rewriting Eq. (6.4) for u1 after substitution of(6.21): 
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21 1
1 2 122
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i u u u

τ τ
∂ ∂
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∂ ∂

 (6.23) 

Under the condition imposed on the frequency separation, it is possible to neglect the 

terms oscillating at the frequency1 2Ω − Ω . Therefore, Eq. (6.23) can be approximated 

by: 
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2

XPM
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τ τ
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 (6.24) 

From here we can recognize the perturbation term R as the XPM: 

 
2

2 12R i u u=  (6.25) 

In this case we can clearly see that interaction is not influenced by the field of the 

perturbation but on its intensity distribution which is the same as in [34]. Therefore, to 

expand on the perturbation theory we need to take a look at coherent interactions.  

6.1.3 Coherent soliton interactions 

An example of a coherent interaction [27] is between two solitons at the same center 

frequency with a certain time separation ( )1 2 1 2max(1 ,1 )T T A A− ≫ that are launched 

into to the fiber (successive bits in a stream). During propagation they interact through 

the tail end of one another.   

Substituting equation (6.21) in to (6.4) the nonlinear term will produce the following: 

 ( ) 2 2 2 *
1 2 1 2 1 1 1 2 1 22i u u u u i u u i u u iu u+ + + +:  (6.26) 

Since the dominate terms arises’ from the tail of soliton 2 on soliton 1 (and vice versa) 

when 1Tτ ≈ , the terms retained from Eq. (6.26)  are those of SPM and first-order terms 

in u2. From here we can also define the perturbation term R in(6.4). 

 
2 2 *

1 2 1 22R i u u iu u= +  (6.27) 
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Equation (6.27) shows that interaction is dependent on the field of the tail of soliton 2 

that is in the vicinity of soliton 1 and thus is phase dependent. It also shows that the 

intensity and amplitudes have influence on the interaction.  

6.1.4 Airy-soliton expansion 

From this point we can expand the perturbation to encompass the Airy perturbation of 

a soliton by using Eq. (6.27) as the perturbation term in equations (6.17)-(6.20). 

However, substitution of Eq. (4.2) as u1 and Eq. (4.1) as u 2 we will have to solve the 

evolution integrals for the soliton parameters numerically. This so, since the Airy 

function does not have an indefinite integral. Resulting in a process similar to that of 

the SSFM, but allows for following the soliton parameters during the collision process 

as well.  
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1. Introduction  

Airy pulses [1], whose electric field temporal profile is defined by an Airy function which is a one-
sided, oscillating function having infinite energy, are a solution to the linear dispersion equation  

2
2

2
,

2

A A
i

z T

β∂ ∂
=

∂ ∂
                                                        (1) 

and exhibit two interesting features: during propagation the waveform maintains its shape in the 
presence of dispersion and its wavefront accelerates in time (or travels along a ballistic trajectory) in a 
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time frame moving at the group velocity. However, true Airy pulses are impractical as they contain an 
infinite amount of energy. By apodizing the Airy pulse, i.e. truncating the semi-infinite oscillations, in 
our case with a decaying exponential envelope, the waveform maintains its two unique properties over 
an extended propagation range despite its finite energy (Fig. 1(a)) [2]. Truncated Airy pulses occur 
naturally if a Gaussian pulse is propagated in a fiber at the zero dispersion point, under the influence of 
cubic dispersion. 

In complete analogy to the Airy pulse solution to the dispersion equation (1), spatial Airy beams 
are a solution to the paraxial equation. Spatial Airy beams have been investigated extensively in the last 
few years, and found to be useful for various applications such as optical micromanipulation [3], 
optical switching [4], plasma channel generation [5], and laser filamentation [6]. More recently, 
temporal Airy pulses  are being investigated, in the context of spatiotemporal light bullets in linear 
conditions [7] and in nonlinear conditions [8], and in the context of one dimensional Airy pulse 
propagation, under the influence of strong nonlinearity giving rise to supercontinuum and solitary wave 
generation [9].  

In this study, we analyze temporal Airy pulse propagation in media exhibiting Kerr nonlinearity as 
occurring in single mode silica fibers, leading to the phenomena of self-phase modulation (SPM) and 
anomalous dispersion. The influence of the Kerr nonlinear effect on spatial Airy beams was 
investigated under relatively weak parameters and transient narrowing of the Airy main lobe—caused 
by SPM—was observed [10]; however, we are interested in operating under much higher intensities 
where the nonlinear effect results in soliton shedding from the Airy pulse and not just a small 
perturbation of the Airy beam. Although we analyze temporal Airy pulse propagation in fiber, our 
results are also valid for spatial Airy beams diffracting in Kerr media on account of the isomorphism 
between the dispersion equation (1) and the paraxial diffraction equation.   

 

Fig. 1 – (a) Intensity distribution as a function of time and propagation distance for truncated Airy pulse in 
the linear regime (or low launch power). (b) Launched Airy pulse in time (blue solid curve), compared to a 
soliton pulse (red dashed curve). 

     The evolution of light pulses in single-mode dispersive-nonlinear medium is governed by the 
Nonlinear Schrödinger Equation (NLSE), 

2
22

22

A A
i A A

z T

β
γ

∂ ∂
= −

∂ ∂
                                                 (2) 

where β2 is the dispersion coefficient, γ is the nonlinear coefficient and A is the wave amplitude that 
depends on local time-T, and distance-z.  Due to the addition of the nonlinear potential (or SPM term) 
in the NLSE, the Airy function is no longer a valid solution and we cannot predict analytically the Airy 
pulse evolution. The Soliton, on the other hand, is a well-known solution of the NLSE. For the 

canonical first order case, its profile is 2
0 0 2 0Sech( / ) Exp( / )P t T iz Tβ⋅ , where P0 is peak power and T0 

is duration and it is obtained only when there is equilibrium between the dispersion and the nonlinear 
effect, leading to the condition 

2
0 0

2
.P T

β
γ

⋅ =                                                              (3)  
                                                                                                                        

The soliton then maintains its form and power level, provided no losses are present. Cases of 
perturbed soliton propagation (i.e. when there are small deviations from the condition set in Eq. 3) were 
extensively investigated [12-16], which help us interpret the emergent soliton behavior in our 
simulations.   

In this paper, we propagate Airy pulses with different intensities and apodization values and 
investigate both the resulting ‘emergent soliton’ parameters, as well as the behavior of the residual Airy 
pulse. All our simulations are based on numerical solutions of the NLSE, using the split-step Fourier 
method (SSFM). This numerical method was chosen due to its efficiency in simulating one-
dimensional pulse propagation [17].   
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Normalization terms 

In our simulations we used the normalized NLSE form [17] 

2

21 2
sgn( ) ,

22
A A

i A A
z T

β
∂ ∂

= −
∂ ∂

                                                    (4) 

where |β2|= γ=T0=1, and the launched Airy pulse profile is defined as: 

( ) ( ) ( ), 0 ( ) Ai ExppA T z R K a T a T= = ⋅ ⋅ ⋅ ⋅                                    (5) 

where 0‹a«1 is the truncation coefficient, and Kp(a) is a truncation-dependent factor that sets the pulse 
peak intensity to 1 for any a value . This factor was numerically calculated and found to be in parabolic 
dependence with the truncation coefficient. T is the time variable in a frame of reference that moves 
with the wave group velocity, i.e. gT t z v= − , and R is a dimensionless parameter we vary for scaling 

the Airy power. At R=1 the Airy main lobe intensity profile looks quite similar to the fundamental 
soliton, as shown in Fig. 1(b). 

We measure the propagation distance in Ld units, defined as 2
0 2dL T β= , which in our normalized 

coordinates equals 1. 

2. Effects of launched Airy power  

In order to investigate the influence of Airy launched power on its evolution, we varied the scaling 
parameter R in the range 0.1-2 and for every R value we propagated the pulse using the SSFM 
algorithm. Fig. 2 shows pulse evolution examples for select R values. At low launched power, the Airy 
pulse performs the acceleration in time and subsequently it succumbs to dispersion. However, when R 
is sufficiently large (above 0.9) a stationary soliton pulse is formed out of the centered energy about the 
Airy main lobe. The soliton exhibits periodic oscillations in the soliton amplitude and width as a 
function of propagation distance. In addition, we witness the resilience of the temporal Airy waveform 
to shedding of a fraction of the energy as a soliton; the wavefront continues to propagate along a 
parabolic trajectory. Similar resilience has been shown in main lobe masking for spatial Airy beams 
[11] and in supercontinuum generation for temporal Airy pulses propagation [9]. 
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Fig. 2 – Intensity distributions as a function of time and propagation distance in the nonlinear propagation 
regime for:  (a) R=0.8, (b) R=1.2, and (c) R=2. 

The emergent soliton  

Unsurprisingly, the shed pulse profile well conforms to a hyperbolic-secant function, or that of a 
soliton with background radiation. We fit a sech(·)+background radiation profile at every propagation 
distance and track the emergent soliton  peak power, duration and time position along the propagation 
distance. We find that the power × duration2 product oscillates about the equilibrium condition (=1) 
defined in Eq. (2). These oscillations about the stable soliton are known to arise as a result of 
interference between dispersive background radiation and the formed soliton [12, 13].  

We examined the relations between the soliton oscillations and the launched Airy peak power. In 
Fig 3(a) the oscillations of soliton width are shown as a function of propagation distance for select R 
values. The pulse width narrows and the oscillations period decreases with higher launch power. The 
decreasing oscillation period with increasing launch power is depicted in Fig. 3(b). Similar behavior 
was reported in [13], where the amount of excess energy that was supplied to the launched soliton was 
expressed in the evolved soliton oscillations period. Another property of the oscillations is the 
modulation depth that sharply decreases with increased initial peak power (Fig. 3(c)). We can relate the 
low modulation depth to the greater stability of the formed soliton and conclude that high launched 
peak power is required for stable soliton formation. 
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Fig. 3 – (a) Oscillations of soliton width for different launched peak power, (b) soliton oscillations length 
of period as a function of launched peak power, (c) soliton oscillations modulation depth as a function of 
launched peak power. 

Additional soliton parameters as soliton peak time position and phase also oscillate in similar 
manner as the peak power and width. Fig. 4 (a, c) shows the evolution of time position and phase as a 
function of propagation distance (phase fluctuations are plotted after subtracting the soliton’s 
accumulated linear phase term). These oscillations are the result of interaction with the background 
radiation as explained in [14] and demonstrated in [15] for the problem of background radiation that is 
formed by soliton amplification in optical communication. 

From the results in Fig. 4(a) we see that the position of the emergent soliton is also dependent on 
launch power. We plot the mean time position of the emergent soliton in Fig. 4(b). More intense 
excitation results in the soliton appearing at an earlier time. This phenomena is explained by the fact 
that for low values of R a relatively long time is required for accumulation of enough energy by SPM 
for the soliton formation and shedding, and during this time the Airy pulse is accelerating and 'carries' 
the accumulating energy with it to later times. For larger R values there is enough energy in the Airy 
main lobe for soliton formation and shedding at an early point. 
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Fig 4 – (a) Soliton peak time position along propagation distance, (b) mean soliton peak time position as a 
function of launched power. Note that Airy peak time position at launch is at t=-1. (c) soliton peak phase 
oscillations along propagation distance for select launched powers. 

The accelerating wavefront 

As seen in Fig. 2, the Airy wavefront continues to exhibit the parabolic acceleration in time, even under 
the influence of Kerr effect and after shedding energy to the soliton. To study whether this acceleration 
continues with the properties of the linear propagation we compared the nonlinear propagations to 
linear, as the intensity is scaled with the R parameter. Note that the linear Airy pulse evolution is 
identical for every intensity value.  

These linear propagation results are compared to the nonlinear ones by tracking the main lobe 
acceleration trajectory for each case and extracting information about its peak power and position. 
Furthermore, we calculate the accelerating energy distribution along propagation distance. 

Fig. 5 shows the Airy main lobe parabolic trajectory and peak power as a function of propagation 
distance, under linear and nonlinear propagation, for three select launched power cases. We see that the 
wavefront continues to exhibit the parabolic trajectory in time (blue curves), which is almost identical 
in the linear and the nonlinear propagation cases, although the nonlinear peak slightly trails the linear 
peak, on account of a delay associated with the energy shedding to the soliton. The intensity evolution 
of the accelerating wavefront is shown in green. We can see that in the nonlinear propagation its peak 
power performs decaying oscillations, as opposed to the monotonic decay in the linear case. The 
oscillations of the peak power in the nonlinear case are known to be a result of the interplay between 
the SPM and the dispersion. Similar influence of SPM on the Airy accelerating main lobe was already 
observed in [10]. However, the peak power oscillations there exhibit faster decay due to a relatively 
large truncation coefficient, 0.1-0.3 vs. 0.0335 in the current simulations.  
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Fig. 5 – Airy accelerating tail trajectories in time-distance space(blue) and in intensity-distance space 
(green) for (a) R=1, (b) R=1.3 and (c) R=2. 

Next, we investigate the energy distribution of the accelerating wavefront. It is important to note 
that the simulations preserve the launched pulse energy along the propagation distance, as well as 
preservation of 'center of gravity' (first order moment) position according to the finite pulse energy and 
the uniformity of the media [2]. The power spectrum of the Airy pulse is symmetric about the central 
frequency, and upon propagation in anomalous dispersive media the high frequencies components are 
delayed (low frequency components are advanced) with respect to central frequency group delay (in 
anomalous media), such that the pulse total energy is eventually divided to two equal fractions about 
T=0- half of the energy at each direction. In the presence of Kerr nonlinearity, considerable part of the 
pulse energy is shed to the soliton  that propagates at the group velocity, and the remaining energy 
disperses in opposite directions with less than a half of the launched energy dispersing to each side (due 
to soliton  shedding).  

The energy that is carried in the accelerating wavefront (delayed components) was found by 
summing the energy over positive time at every distance sample. These calculations were performed 
with both the linear and nonlinear propagations. 

Fig. 6(a) shows the delayed energy evolution of the accelerated Airy wavefront along the 
propagation distance for various Airy launched powers. The energy is normalized by the launched 
pulse energy, such that we can see the relative energy portion of the accelerating wavefront for linear 
and nonlinear cases. For all R values, the energy evolution of the linear propagations coincides to one 
curve that asymptotically approaches the value of half launched pulse energy, according to its linear 
nature. For the nonlinear propagations we clearly see that as R grows the fractional energy amount that 
is delayed is decreasing, where the oscillatory behavior is due to the soliton oscillations which take 
place in the boundary of the right half propagation plane. Those curves and those of Fig. 6(b), which 
chart the energy evolution of the formed soliton for different R values, show the fact that the formed 
soliton  not only has more intensity when R is growing, but also carries a larger energy fraction from 
the whole pulse. This can also be seen in Fig. 6(c), where the mean soliton relative energy was 
calculated for every R value. From Figs. 6(b-c) we also see the energy preservation—the normalized 
delayed energy is missing energy that is about half of the shed soliton energy, where the other half 
originates from the faster propagating energy components. When R=2, for example, the soliton  energy 
fraction is about 0.39 and the missing fractional energy amount from the delayed energy is about 0.19, 
half of 0.39. 
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Fig. 6 – (a) Airy tail relative energy for the linear and the nonlinear cases, (b) soliton relative energy, (c) 
soliton relative energy as function of launched power. 

3. Truncation coefficient effect 

The ability of Airy pulses to exhibit their unique features is strongly related to the degree of truncation 
in the apodization function. As the truncation is stronger, the Airy pulse quickly loses the unique 
features of the Airy pulse and disperses. Here we wish to examine how the truncation degree influences 
the soliton shedding and pulse propagation under the Kerr effect.  
We employ the same pulse profile defined in Eq. 4, fixing the intensity scaling parameter R to 1.5 
while varying the truncation coefficient in the range 0.01-0.1, as shown in Fig. 7(a), and propagate the 
apodized Airy for every truncation value. Fig. 7(b-c) shows two examples of the Airy pulse evolution 
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in time-distance space. We see that when the truncation is small the Airy original features as self-
similarity and acceleration in time are more noticeable. The influence of the truncation degree on 
emergent soliton properties and on the accelerating wavefront was examined in the same manner as in 
the previous section. 
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Fig. 7 – (a) Launched Airy amplitude for several truncation values, (b)-(c) Intensity distributions as a 
function of time and propagation distance for:  (b) a=0.01, (c) a=0.09. 

The emergent soliton  

Larger truncation coefficient values make the exponential apodization of the Airy function stronger and 
the Airy tail is shortened; there is a negligible effect on the main Airy lobe, as shown in Fig. 7(a). 
Hence the emergent soliton , which forms from the main lobe, achieves stability faster (after a shorter 
propagation distance) in cases of larger truncation coefficients, as the newly formed soliton experiences 
less collisions with the accelerating Airy tail, as shown in the propagation images in Fig. 7. Therefore, 
the Sech(·) fit process was started from a different propagation distance for every truncation value.   

From the soliton fit data we see that the emergent soliton parameters do not experience significant 
variations for different truncation values, as shown in the soliton parameters evolution curves in Fig 
8(a-b). However, the soliton mean peak time position does shift considerably from the launched Airy 
peak position, and this shift increases for smaller truncation values (see Fig. 8(c)). This behavior is 
explained by the interaction between the formed soliton from the main lobe and the accelerating lobes 
of the Airy tail, which constitute collision perturbations to the soliton and cause temporal shift of the 
soliton in the direction opposed to the accelerating lobes [16]. This temporal shift to earlier times 
depends on the perturbation energy, which increases for small truncation coefficient values. It is 
important to note that even without perturbing lobes (i.e. while propagating Airy with strong 
truncation), the soliton is not necessarily formed at the launched Airy peak position because of the 
acceleration that the original pulse undergoes before the soliton is shed. Also, the launched Airy peak 
time position is not constant with different truncation coefficients (dashed red line in Fig 8(c)), as a 
result of a shift from the multiplication by the exponential apodization function.  
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Fig. 8 – Effect of different launched truncation values on oscillations of (a) soliton width and (b) soliton 
peak phase, (c) soliton peak time position as function of truncation coefficient. Note that Airy peak time 
position at launch is truncation value dependent, as evidenced by the dashed red line. 

The accelerating wavefront 

The extent to which the truncated Airy maintains its form and continues to accelerate before dispersing 
strongly depends on the truncation coefficient. As in the previous section, we compared the linear and 
the nonlinear propagations in order to investigate the Airy’s accelerating wavefront behavior for 
different truncation values. In the linear propagation regime, the truncation coefficient determines both 
the distance at which the accelerating wavefront is still distinguishable, and the total Airy energy 

according to 1/2(8 )AiryE aπ −= [2]. In our investigation range for truncation coefficient, the linear Airy 

varies widely.  
After tracking the accelerating wavefront trajectory for every truncation value, we compare the 

main lobe trajectory and peak power under the linear and the nonlinear propagation regimes (Fig. 9). 
The main finding here is that the intensity of the accelerating main lobe in the nonlinear regime (green 
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curves) first experiences SPM and focuses to the same peak power (with no dependence on truncation 
value). This peak is then shed to the soliton and the remaining accelerating wavefront immediately after 
the soliton shedding is at lower power compared to the linear propagation case. However, as a 
consequence of chromatic dispersion, the high frequency components travel slower and eventually the 
leading wavefront main lobe re-emerges and matches the main-lobe power of the linear propagation 
case (the Airy self-healing property). In spite of this wavefront matching between the linear and 
nonlinear propagations we see that in the nonlinear propagation the accelerating main lobe remains 
distinguishable for longer distances than in linear propagation for a given truncation value. This finding 
is related to the differences between the radiation energy distribution in the nonlinear and in the linear 
propagations. In the linear propagation (see example in Fig. 1(a)) the dispersed Airy intensity roughly 
converges to a Gaussian distribution in time with propagation distance that eventually (after a certain 
distance) engulfs the accelerating main lobe. In the nonlinear propagation the dispersive radiation 
intensity is no longer Gaussian distributed due to the soliton formation and the energy centering about 
it, making the accelerating peak visible for longer propagation distance.    
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Fig. 9 – Airy accelerating wavefront trajectories in time-distance space (blue) and in intensity-distance 
space (green) for (a) a=0.01, (b)a=0.04 and (c)a=0.08. 

As the emergent soliton has roughly the same energy for all truncation values, its relative energy 
fraction in the launched pulse energy is larger for increasing truncation values (Fig 10a), therefore the 
relative energy fraction in the accelerating Airy wavefront decreases (Fig. 10b). In the linear 
propagation regime the accelerating Airy energy always asymptotically approaches one half of the 
whole pulse energy, although its energy growth rate is truncation factor dependent. In the nonlinear 
case the delayed Airy energy fraction decreases from this value as the truncation is growing, as the 
nearly constant soliton energy is missing. 
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Figure 10 – Examples of energy evolution along propagation distance of (a) the relative energy of the 
emergent soliton (the soliton energy itself is hardly dependent on truncation coefficient) and (b) 
accelerating wavefront.  

4. Soliton time position for power and truncation 

In the previous sections we showed that: (1) the emergent soliton time position is at earlier times when 
the launched power increases (at fixed truncation) due to quick build-up of a soliton. At lower powers, 
self-focusing results in the eventual build-up of the soliton, but as the conditions materialize the main 
lobe is undergoing the ballistic trajectory leading to soliton shedding at a later time position. And (2) 
the emergent soliton time position is at earlier times when the truncation coefficient decreases (at fixed 
launched power) due to collision perturbations with the accelerating tail lobes. The time shift 
associated with collision perturbations depends on the energy; hence higher truncation coefficients 
result in lower Airy tail energies and reduced soliton time shifts. These two effects are graphically 
depicted in Fig. 11(a). 

To verify that these two effects independently and consistently occur, we varied both the Airy 
launched power and the truncation coefficient over our investigation range (Fig, 11(b)). Indeed we see 
this trend continuing; the emergent soliton mean time position shifts to earlier (later) times for smaller 
(larger) truncation coefficients and for higher (lower) launched power levels. These results reinforce 
our finding that soliton  is shed at an earlier time when the launched power is higher, and that collisions 
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with the accelerating Airy tail lobes shift the position in the direction counter to the acceleration, i.e. 
towards earlier times. 
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Figure 11 – (a) Schematic illustration of the sources of temporal shift of the emergent Soliton. (b) 
Distribution of Soliton mean time position as a function of truncation coefficient and launched power in 
our investigation range. 

5. Summary 

In this paper we investigated the propagation of a truncated temporal Airy pulse in nonlinear Kerr 
media. The phenomena of soliton shedding from the original Airy pulse under sufficiently strong 
excitation was already identified [8,9], but in this work we investigated in detail the properties of the 
soliton and the remaining Airy radiation. We characterized the emergent soliton parameters under 
different truncation and power conditions and identified the mechanisms at play, in accordance to 
processes known from literature. The soliton parameters perform oscillations due to the presence of 
background radiation from the dispersed Airy pulse. The temporal position of the emergent soliton 
depends both on the Airy launched power and truncation coefficient, due to the location of the 
shedding event and the interaction with the accelerating Airy tail. We also observed the SPM influence 
on the accelerating Airy main lobe, and we found that the SPM has large effect on the accelerating 
main lobe visibility in comparison the linear truncated Airy propagation. Finally, we found that the 
energy distribution of the Airy pulse along the propagation depends on the launched power and the 
truncation degree.  

In this work we studied the soliton shedding phenomena for relatively intense launched Airy 
pulses. This research avenue can continue to even higher launched pulse powers, however eventually 
the well-understood phenomena explored here starts to break down. Fig. 12 shows the time-space 
evolution when launching the Airy pulse with a power factor of four (R=4). We see that for such 
intense excitation three solitons are shed, the main soliton in a consistent manner to that described here, 
and two additional weaker soliton s at both higher and lower center frequencies. This result was still 
obtained with the standard nonlinear Schrodinger equation (Eq. 4). However, for proper simulation of 
intense Airy pulse excitation, one should also add additional terms to account for higher-order 
nonlinear effects such as Raman scattering and self-stepping. 
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Figure 12 – Intensity distributions as a function of time and propagation distance for R=4, showing 
multiple soliton shedding at high launched peak powers. 


