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The expected permittivity and third-order nonlinear susceptibility of a composite consisting of semiconductor
nanorods (NRs) dispersed in a polymer host are derived using a generalizedMaxwell Garnett model under various
NR axis orientation statistics, achieved by an aligning electric field. The semiconductor NRs are analyzed as
prolate spheroids and modeled as more realistic capsule shapes. From the angular distribution function of
the NRs, the composite macroscopic characteristics are found for low filling fractions. As the alignment field
strength increases, the composite optical properties asymptotically converge toward the nematic case. Aligning
fields of order 107 V∕m are required for the optical properties to increase to half the value between random
orientation and nematic array composites. © 2013 Optical Society of America
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1. INTRODUCTION
The physical properties of nanoparticles can be significantly
manipulated bycontrolling their shape tomatch specific needs.
Rod-shapednanocrystals exhibit anenhancedoptical response
along their long axis (LA) due to surface polarization [1,2].
Composites consisting of such nanorods (NRs) embedded
in a dielectric host can serve as building blocks for various
optical applications. For example, composites from spherical
nanoparticles embedded in perfluorocyclobutane (PFCB)
polymer were proven to be suitable for optical waveguides
[3,4]. In addition, TiO2 NRs inside poly (methyl methacrylate)
were shown to be good candidates for nonlinear (NL) optical
composite media [5].Choosing the right host material can pro-
vide a composite with optical characteristics fit for optical
applications, such as optical waveguides. Dispersing NRs with
specific characteristics, such as strong nonlinearity and a suit-
able bandgap inside the host can provide tunable composite
properties that depend on the material choice and dimensions
of the NRs on the one hand and on the statistical directionality
of the NRs in the composite on the other hand.

Quantitative models that analyze composites with em-
bedded NRs are mostly based on describing NRs as prolate
spheroids in a perfect nematic array [Fig. 1(a)], where no stat-
istical measure of the NR alignment spread in the composite is
discussed [6–9]. A nematic configuration can be fabricated in
planar (2D) arrays by various techniques, such as electron-
beam lithography [10], nanosphere lithography [11], and col-
loidal self-assembly for both vertically [12] and horizontally
[13] positioned NRs. In a volumetric (3D) array, achieving con-
trol over the directionality is problematic, and thus it is much
harder to fabricate a perfect nematic array. The case of ran-
dom orientation [Fig. 1(b)] was also addressed and compared
to the nematic case for linear material properties [7–9]. The

case of statistical orientation [Fig. 1(c)] was addressed theo-
retically for the linear regime with an arbitrary distribution
function, without analysis or calculations related to the origin
of the alignment or the statistical alignment spread’s influence
on the resulting macroscopic characteristics [7,9]. For the
statistical case, a qualitative description of composites’ mac-
roscopic characteristics was given in terms of the volume
the NRs occupy in the composite, rather than the whole
composite characteristics [14].

We present a comprehensive quantitative statistical model
for calculating themacroscopic characteristics of such compo-
sites and finding their permittivity and third-order NL suscep-
tibility. The model takes into account several factors that were
previously ignored: the geometry of a single NR is described as
a capsule, which better matches most NRs transmission elec-
tron microscopy images and the statistical behavior of the NR
alignment in the composite under an applied electric field for
cases with and without a permanent electrical dipole moment
in the NRs. We consider nonresonant optical excitation of the
NRs, hencemaking the inclusionmaterial properties of permit-
tivity andNL susceptibility real (negligible single- andmultiple-
photon absorption) and wavelength independent. This can be
realized by choosing an inclusion material and size with a suf-
ficiently high bandgap energy relative to the photoexcitation
energy. In addition, we ignore any quantum confinement ef-
fects for simplicity, although they can be taken into account
by using a size-dependent permittivity [15,16].

2. PERMITTIVITY AND NONLINEAR
SUSCEPTIBILITY OF A COMPOSITE WITH
NANORODS
The macroscopic properties of dilute composites are classi-
cally described by the Maxwell Garnett (MG) model, which
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deals with a dilute composite of linear spherical inclusions
embedded in a linear dielectric medium [17]. The limit for the
dilute mixture is usually set as 20% volume fraction [6]. The
dilute limit ensures that there is no interaction between
the NRs and that the composite can be treated as a continuum,
provided the optical wavelength of the electric field is suffi-
ciently large [7,18]. For the linear regime, we use a generali-
zation of the MG model, which deals with ellipsoidal
inclusions [6–8]. The ellipsoidal inclusions are all parallel
(nematic array), and the model describes the macroscopic
characteristics when the composite is examined in a direction
parallel to any major axis of the array of ellipsoids. We use the
presentation of the effective permittivity, εeff , of such a
composite that is given by Sihvola [7]:

ε jeff � εh � pεh
εi − εh

εh � L j�1 − p��εi − εh�
; (1)

where εh, εi are the host and inclusions permittivity, respec-
tively, Lj is the depolarization factor of the ellipsoid in the
j � x; y; z direction, which is a geometrical factor that express
the different electrostatic response of the ellipsoid under an
electric field along the ellipsoid axes, and p is the volume frac-
tion of the inclusions in the composite. For a general ellipsoid
(three different semi-axes), the expression for Lj has an inte-
gral form without a closed form solution [7,19].

In the case of prolate spheroids [an ellipsoid with one LA
and two equal short axes (SAs), see Fig. 2(a)], there is a closed
form for the depolarization factor. Assuming that the three
semi-axes of the prolate spheroid are ax � ay < az (ẑ is the
LA of the prolate spheroid), the depolarization factors are [7]

Lz � 1 − e2

e2

�
1
2e

ln
�
1� e
1 − e

�
− 1

�
; Lx � Ly � 1 − Lz

2
; (2)

where e �
���������������������
1 − a2x∕a2z

p
is the eccentricity of the prolate sphe-

roid. Due to the existence of an analytic solution and the
approximate similarity to the shape of NRs, prolate spheroid
shapes have been used previously to model the properties of
composites with NR inclusions.

It will be instructive to further describe the characteristic of
a single NR, i.e., the polarizability α, which is a measurement
of the internal induced dipole moment. The polarizability is
defined by μ � ¯̄α · Eext, where Eext is an externally applied
electric field and μ is the induced dipole moment within
the inclusion. In the general case for an ellipsoid, ¯̄α is a
second-rank tensor, and when treating the NRs’ constituent
material as isotropic, ¯̄α reduces to a diagonal �3 × 3� matrix.
The diagonal elements differ from one another due to the

geometry of the inclusion. We follow again the derivation
of Sihvola [7], and these three diagonal elements are

αj � V�εi − εh�
εh � Lj�εi − εh�

εh; (3)

where V is the volume of the ellipsoid and again j � x; y; z.
For a prolate spheroid, the elements in the two SA directions
(x̂ and ŷ) are equal. It is worth noting that an alternate form for
Eq. (3), presented by Landau and Lifshitz, does not have the
last multiplication by εh [19]. We follow Sihvola’s notation,
which perfectly matches our simulation results, presented
in Section 3.

For the NL regime, there are several different derivations
for the third-order NL susceptibility of the composite [6,7,18].
We follow again the derivation of Sihvola [7], starting from
describing the single NR contribution. The NL characteristics
of the NR can be found by a perturbative approach that uses
the hyperpolarizability of the ellipsoid, which describes the
NL response of the dipole moment in the ellipsoid caused
by an electric field. Sihvola presents the results for the first-

and second-order hyperpolarizability, ¯̄β and ¯̄γ, respectively.
We shall ignore the first-order hyperpolarizability, which
occurs in noncentrosymmetric crystals with second-order
response ( χ�2�). Sihvola explicitly presents the hyperpolariz-
ability for a sphere inclusion by expanding the internal field
inside the sphere in a power series. Following the same
derivation technique, with the internal field for an ellipsoid,
we calculate the third-order hyperpolarizability for ellipsoid
inclusions as

γj �
�

εh
εh � Lj�εi − εh�

�
4
ε0Vχ

�3�
i ; (4)

where χ�3�i is the third-order NL susceptibility of the inclusion
material. Its tensorial characteristics will be addressed below,
and we assume linear behavior of the host material. For the
whole composite with small volume fraction (typically p ≪ 1),
the effective third-order NL susceptibility is

χ�3�;jeff � nγj

ε0
� p

�
εh

εh � Lj�εi − εh�

�
4
χ�3�i ; (5)

where n is the number density of inclusions, i.e., p � nV . It is
important to note that since we assumed nonresonant excita-
tion, hence ignoring single- or multiple-photon absorption, we
consider only real values for the host and inclusion permittiv-
ities and NL susceptibilities. The derivations for a material
with complex properties can be evaluated by slightly modify-
ing Eq. (5) following Ref. [6]. By doing so, the imaginary parts
of the NL susceptibilities can also be found; hence NL absorp-
tion can be addressed, but this is beyond the scope of this
study. Lamarre et al. derived, in addition to Eq. (5), an equa-
tion for larger volume fraction p (up to the MG model limit),
which includes an additional expression pLj�εi − εh� in the de-
nominator [6], but we will restrict ourselves to small volume
fraction only. It is important to note that the depolarization
factor decreases when the axes aspect ratio (AR) of the
spheroid increases, indicating a stronger polarization inside
the inclusion. Hence, the effective permittivity [Eq. (1)],
the polarizability [Eq. (3)] and the effective third-order NL

Fig. 1. Illustrations describing different NRs alignment degrees:
(a) perfect nematic array of NRs, (b) randomly distributed NRs,
and (c) partially aligned NRs.
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susceptibility [Eq. (5)] increase along the LA direction when
the AR increases.

There are two assumptions made in Eqs. (1) and (5) that we
wish to address:

(1) Most transmission electron microscopy images reveal
that a prolate spheroid shape [Fig. 2(a)] is not an accurate de-
scriptor for colloidal NR (e.g., see images in [20,21]). Their
shape is better described by a capsule shape, a cylinder with
hemisphere capping [Fig. 2(b)]. Pecharromán et al. analyzed
the geometry of NRs meticulously and noted that the structure
is even more complicated [20]; they showed that the capping
is not exactly a hemisphere and also referred to the roughness
of the surface. We shall ignore such factors for simplicity.

(2) These formulas were derived for a perfect nematic ar-
ray of NRs with an electric field parallel to a major axis of the
spheroids and ignore any statistical alignment distribution.

3. PROLATE SPHEROID VERSUS CAPSULE
SHAPE
To better understand the different electrostatic characteristics
of the two shapes, we compared the polarizability of the
capsule shape to that of the prolate spheroid. The induced
dipole moment is found by simulating a nanoinclusion inside
a uniform external field Eext, using electrostatic finite element
analysis with ComsolMultiphysics simulation software, and by
calculating the induced dipole moment as [7]

μ � �εi − εh�
Z

Ein · dV; (6)

whereEin is the electric field inside the inclusion, which is pro-
vided by the finite element analysis simulation. The polarizabil-
ity ¯̄α can now be extracted, since we have the relationship
between the external field and the induced dipole moment.
It is worth mentioning that finite element simulations result
inminute induceddipolemoment components in thedirections
perpendicular to the external field (6 orders of magnitude
smaller). These are considered a numeric artifact (as symmet-
ric shapes in uniform field parallel to a major axis cannot have
polarizability components in orthogonal directions), and we
neglected them.Wecompared the simulation results of the cap-
sule shape to prolate spheroids, with the same length and
width, as shown inFig. 2. The finite element analysis simulation
results are presented in Table 1. We also present in Table 1 the
value of the polarizability normalized by the volume to estimate
the average polarization density inside the inclusions, which
will be important for estimating the depolarization factor. The

simulations and calculations were performed for CdSe NRs
inside PFCB polymer host and use the material properties at
optical frequencies �εi � 6.2; εh � 2.19�.

The simulation results for the prolate spheroid match the
analytical results of Eq. (3) (0.03% error). The polarizability
of identical axis dimensions of capsule shapes is larger by
35%–45% compared to the prolate spheroids, indicating that
the dipole moment created in the nanocrystal will be larger
as well. On the other hand, the normalized polarizability of
the capsule shape is 1.5%–2.5% smaller than that of the prolate
spheroid, leading to a lower average polarization density. The
larger capsule polarizability is attributed to its larger volume
compared to that of the spheroid, with the same length and
width. In addition, we see the normalized polarizability grows
with the AR.

In order to use Eqs. (1) and (3)–(5) with capsule-shaped
inclusions, their depolarization factor must be found. This
is done by finding an equivalent prolate spheroid based on
the polarization density for each capsule shape. Using the re-
sults for the normalized polarizability of the capsule shapes
inside Eq. (3) (which was developed for prolate spheroids),
we extract the depolarization factor. By doing so, we treat the
capsule shape as a prolate spheroid for the purpose of finding
an effective depolarization factor. It is important to note that
the single shape volume is not relevant for the calculation of
the effective permittivity [Eqs. (1)] and effective susceptibility
[Eq. (5)] rather the volume fraction. This means that for a
given volume fraction the important value is the polarization
density or the normalized polarizability of the single inclusion.

4. ALIGNMENT MECHANISM AND
STATISTICAL BEHAVIOR
We next address the alignment mechanism and the statistical
behavior of the NR angular orientation. The common align-
ment mechanism for suspended NRs in a fluid mixture is a
strong external electric field Ealign. We examine a NR tilted
at an angle θ to an external field [Fig. 3(a)]. The aligning field
induces a dipole moment μ in the NR. The interaction between
the induced dipole moment and the original external field will
cause a rotating moment M � μ × Ealign acting on the NR
[Fig. 3(b)], which is angle θ dependent. In a rotationally sym-
metric shape (e.g., spheroids and capsule shapes), the inter-
action is defined in a plane containing the vectors of the
aligning field and the axis of symmetry of the shape (the LA
in our case) [19]. Without loss of generality, we define the ẑ
axis in the direction of the aligning field. The azimuthal angle

Fig. 2. Illustration depicting (a) the prolate spheroid shape and
(b) the capsule shape proposed to describe the geometry of NRs. Both
shapes have the same length (l � 2 · az) and diameter (d � 2 · ax).

Table 1. Polarizability of Prolate Spheroids and

Capsule Shape for Different Dimensions, Axes Aspect

Ratio, and Average Polarization Density

α∕�4πε0� �nm3� �α∕�4πε0��∕V

l �nm� d �nm�
Aspect
Ratio

Prolate
Spheroid Capsule

Prolate
Spheroid Capsule

8 2 4 8.35 11.21 0.499 0.487
40 10 1044 1402
40 8 5 704 958 0.525 0.511
60 12 2377 3234
40 4 10 195 274 0.582 0.564
60 6 659 924
140 14 8367 11,742
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(rotation about the ẑ axis) is irrelevant for the orientation
analysis. The induced dipole moment in the NR has parallel
and transverse components, μjj and μ⊥, respectively:

μ∥ � α∥Ealign cos θ; μ⊥ � α⊥Ealign sin θ; (7)

where α∥, α⊥ are the NR polarizabilities in the parallel and
perpendicular directions, respectively. In dielectric and semi-
conductor NRs, for an elongated objects, such as prolate sphe-
roids and capsules, μjj > μ⊥; hence the rotating moment will
tend to align the NR parallel to the electric field [Fig. 3(c)],
which is a stable point [14,19]. Note that we use a DC electric
field for thealignmentmechanismand focuson thesteady-state
solution; hence the effect of host viscosity is disregarded [14].

Another mechanism that can enhance the NRs’ alignment is
the presence of a permanent dipole moment (PDM), which
occurs, for example, in wurtzite lattice structure NRs [22,23].
The PDM assists the alignment by enhancing the rotating mo-
ment acting on the single NR. This is especially important for
aligning during the thermal polymerization of polymers taking
place at elevated temperature (PFCB thermally polymerizes at
150°C–180°C). Li and Alivisatos estimated the PDM in wurtzite
lattice CdSe NRs to be 100–200 Debye [22]. They showed that
the magnitude of the PDM also grows linearly with the volume
of the NR. For the same NR dimensions with a field of
5 × 106 V∕m, the PDM is 3–6 times larger than the induced
dipole moment. Their calculations are based on transient elec-
tric birefringence curves, where the ratio of PDM to the polar-
izability anisotropy (denoted γ in their work) is found from the
curves. They also treated the NRs as prolate spheroids, for
both volume and polarizability calculations with the Landau
and Lifshitz formula. We applied our results for the capsule
shape polarizability to their data, instead of those of the pro-
late spheroid. We estimate the PDM to be around 1.6 times
larger than their estimations (up to 330 Debye) owing to
the larger polarizability of the capsule shape over the prolate
spheroid shape, due to the larger volume. Results for the PDM
are presented in Table 2.

Combining the induced dipole moments and PDMs, the
rotating moment that acts on the NRs will be

M � jμ × Ealignj �
1
2
�α∥ − α⊥�E2

align sin 2θ� μpEalign sin θ:

(8)

We ignore the influence of the hyperpolarizability on the in-
duced dipole moment and hence on the rotation moment
for simplicity. Based on the rotating moment, we can calculate

the angular distribution function (ADF) of the NRs under such
a field, following the method presented by Ruda and Shik [14]:

ADF�θ� �
exp

h
−

UNR�θ�
KBT

i
R
π
0 exp

h
−

UNR�θ̂�
KBT

i
sin θ̂dθ̂

; (9)

where UNR�θ� �
R
θ
0 M�~θ�d~θ is the potential energy of a single

NR under an electric field Ealign at an angle θ to the LA of the
NR [24]. The potential energy is at minimum when the NR is
parallel to the external electric field, i.e., θ � 0, and hence
would tend to settle there, yet is perturbed by thermal fluctu-
ations. Ruda and Shik’s findings are also based on describing
NRs as prolate spheroids, and they used the polarizability
formula given by Landau and Lifshitz as previously discussed.
It is important to note that the induced dipose moments and
PDMs grow linearly with the NR volume, which causes the
rotation moment to increase as well. Hence, the volume of a
single NR is significant to the alignment mechanism, and
larger NRs will have a greater rotation moment due to their
larger volume.

In Fig. 4 we present the ADFs for a 30 × 4.8 nm NR, which
has the largest PDM value of those presented in Table 2. The
alignment process is by a DC electric field; hence the permit-
tivities for the CdSe NRs and for the host PFCB were taken as
εCdSe;∥ � 10.2 εCdSe;⊥ � 9.33 (data taken from [22]) and
εPFCB � 2.4. We can see the more significant alignment of
the capsule shape (solid curves) compared to the prolate
spheroid shape (discrete markers) for strong aligning fields,
for NRs with and without PDM [Figs. 4(b) and 4(a), respec-
tively], resulting from their larger polarizability (which
evolves from their large volume) and hence larger dipole mo-
ment. We also see the ADF symmetry about θ � π∕2 in the
case of NRs without PDM [Fig. (a)], in contrast to NRs with
PDM [Figs. 4(b)–4(d)]. For an induced dipole moment, the
two LA ends of the NR are indistinguishable because of the
symmetry of the geometry; hence there is a symmetry for a
rotation in θ � π. With the PDM, there is only one alignment
allowed to the external electrical field; hence the symmetry is
broken.

Note the scale range for the NRs with PDM [Fig. 4(b)] is
much larger compared to NRs without it [Fig. 4(a)], due to the
stronger rotating moment and hence alignment, in the pres-
ence of PDM. We can further see that alignment at lower tem-
perature is stronger [Fig. 4(c)] because of the suppressed
thermal motion and for NRs with larger volume [Fig. 4(d)]

Fig. 3. Illustration depicting the alignment mechanism of the NRs
by a DC electric field. (a) The aligning field causes induced dipole
moments μjj, μ⊥ along NR major axes, parallel and normal to the
NR LA, respectively. (b) The induced dipole moments cause a rotating
momentM that acts on the NR. (c) The rotating moment tends to align
the NR parallel to the aligning field.

Table 2. Comparison of Results of the PDM of the

NRs Calculated by Li and Alivisatosa to Those

in Our Analysis

l�nm� d�nm�
μ, Prolate Spheroida

[Debye]
μ, Capsule
[Debye]

30 4.8 209.9 329.8
60 3.1 153.4 249.9
54 3 126.3 205.4
23 3.8 126.4 198.3
35 3 95.7 153.7
aSee [22]; we used the same parameters as presented in [22]: permittivity

for the NRs’ LAs and SAs εjj � 10.2, ε⊥ � 9.33, and permittivity of the
environment εh � 2.02.
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because of the larger induced dipole moments and PDMs,
which enhance the rotating moment.

5. PERMITTIVITY AND NONLINEAR
SUSCEPTIBILITY OF A COMPOSITE WITH
STATISTICAL ALIGNMENT
With the NRs’ ADF, we can now calculate the permittivity
and third-order NL susceptibility of the mixture. For the per-
mittivity of a nematic NR array, it is useful to notice that the
effective permittivity [Eq. (1)] can be presented as a function
of the normalized polarizability [7]:

ε jeff � εh � εh
p�α j∕V�

εh − p�Ljα j∕V� ; (10)

where again p is the volume fraction and the depolarization
factor, Lj , determines the composite anisotropy. The inclusion
permittivity is expressed through the polarizability compo-
nents αj . Sihvola and Kong presented the permittivity in the
case of a general angular distribution and used dyadic nota-
tion [9]. Using the notation of a second-rank tensor, the per-
mittivity is a �3 × 3� matrix. Addressing the whole partially
aligned array, a single NR in the array will have an arbitrary
orientation with angle θ about the ẑ axis and azimuthal angle φ
about the x̂ axis, as illustrated in Fig. 5. The aligning field is set
along the ẑ axis, as before.

To find the contribution of a single NR to the global
composite response, we rotate our coordinate system to the
local coordinate system of the NR, apply the polarizability
tensor, and rotate the result back to the global coordinate

system. In the local NR coordinate system, the polarizability
tensor is

¯̄αNR �

0
BB@
α⊥ 0 0

0 α⊥ 0

0 0 α∥

1
CCA; (11)

and the depolarization factor in a tensorial presentation is

¯̄LNR �

0
BB@
L⊥ 0 0

0 L⊥ 0

0 0 L∥

1
CCA; (12)

where the subscript NR indicates the local coordinate system
of the NR. We can treat ¯̄αNR and ¯̄LNR as operators and denote

Fig. 4. (a) ADF of CdSe NRs without PDM inside PFCB: capsule shape versus prolate spheroid for different aligning electric field strengths under a
temperature of 150°C, l � 30 nm, d � 4.8 nm. (b) The same for NRs with PDM. (c) Temperature dependency for different aligning fields (with
PDM). (d) Different NRs with different volumes (for the NRs presented in Table 2, with PDM).

Fig. 5. Illustration for the coordinate system and the definition of the
angles φ and θ describing the NR orientation. The aligning field is also
presented.
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rotation operators around the ẑ and ŷ axes as R̂z�φ� and R̂y�θ�,
respectively, to set the azimuthal angle and NR tilt. A general
operator A, in the global coordinate system, will therefore be

Axyz�φ; θ� � R̂z�−φ�R̂y�−θ�ANRR̂y�θ�R̂z�φ�; (13)

where the subscript xyz indicates the global coordinate sys-
tem. We then perform a weighted average using the ADF over
the solid angle, spanning all possible angular orientations.
The averaging is performed by integration over the azimuthal
angle φ on the interval �0; 2π� with a normalization of 1∕2π
(uniform distribution) and over the tilt angle θ on the interval
�0; π� with the distribution function—ADF�θ� [25]. The sta-
tistically weighted result is denoted hAxyziθ;φ in the global co-
ordinate system, and the result for the average permittivity is

¯̄εeff � εh
¯̄I� εh

ph ¯̄αxyz∕Viθ;φ
εh
¯̄I − ph� ¯̄L · ¯̄α�xyz∕Viθ;φ

; (14)

where ¯̄I is the unit matrix, and the result is again a second-
rank tensor. Performing the integration over φ eliminates
all off-diagonal terms as a result of the uniform distribution,
and we are left with a diagonal matrix, where the values in the
x and y directions are equal. This enables us to present the
results of the two independent elements in the different
directions separately. The results after integration over φ and
prior to integration over θ are

εzeff � εh� εh
phα∥cos2 θ�α⊥sin

2 θiθ∕V
εh −phL∥α∥cos2 θ�L⊥α⊥sin

2 θiθ∕V
;

εx;yeff � εh� εh
phα∥sin2 θ�α⊥�2− sin2 θ�iθ∕2V

εh −phL∥α∥cos2 θ�L⊥α⊥�2− sin2 θ�iθ∕2V
: (15)

For ADF�θ� � δ�θ� the result is identical to that of a nem-
atic array [Eq. (1)], and for ADF�θ� � 1∕2 the result is that of a
random orientation (isotropic),

εx;yeff � εzeff � εh � εh
p�2α⊥ � α∥�∕3V

εh − p�2L⊥α⊥ � L∥α∥�∕3V
; (16)

which coincides with the theoretical expression for random
orientation [7–9].

For the third-order susceptibility, we use Eq. (5) and per-
form the weighted average on the hyperpolarizability, ¯̄γ, again
normalized by the volume:

¯̄χ�3�eff �
ph ¯̄γ∕Viθ;φ

ε0
: (17)

The expression is simpler, as we assume that only the in-
clusions contribute to the NL response. In the general case,
the fourth-rank tensor of the third-order NL susceptibility
χ�3�ijkl can be presented as a matrix with dimensions of �3 ×
10� for all 32 crystallographic point groups [26]. In that case
the rotation of the fields should be performed over the three
interacting fields. This can be done with much more computa-
tional complication than that of the linear case. In order to
maintain simplicity in the computations and the presentation

of the results, we restrict ourselves to the degenerate case of a
single linearly polarized input field, where the third-order NL
susceptibility can be presented by an effective scalar value
[26,27]. The inclusion susceptibility χ�3�i can then be extracted
from the averaging in Eq. (17), and the effective susceptibility
of the mixture with the averaging on the direction of the NRs
will be

¯̄χ�3�eff � p
��

εh

εh
¯̄I� ¯̄L�εi − εh�

�
4
�
θ;φ

χ�3�i : (18)

The result is a second-rank tensor, because of the NRs’ geo-
metrical anisotropy, which is expressed by the directional
dependency of the depolarization factor. Applying the same
computation as presented for the linear permittivity, we again
obtain a diagonal matrix, with two independent elements in
the different directions. The results before integration over
θ are

χ�3�;zeff � ph�f x;y�4 sin2 θ� �f z�4 cos2 θiθχ�3�i ;

χ�3�;x;yeff � ph0.5�f z�4 sin2 θ� �f x;y�4�1 − 0.5 × sin2 θ�iθχ�3�i ; (19)

and we define f j � εh∕�εh � Lj�εi − εh��. Again, using
ADF�θ� � δ�θ� will result in Eq. (5), and using ADF�θ� � 1∕2
will result in a random orientation composite that is isotropic:

χ�3�;x;yeff � χ�3�;zeff � p�2�f x;y�4 � �f z�4�χ�3�i ∕3: (20)

It is important to note that we assume in all the derivations
that the inclusions alone contribute to the nonlinearity (the
polymer host has negligible NL susceptibility).

6. RESULTS AND DISCUSSION
In Table 3 we present an example of the composite effective
permittivity and third-order NL susceptibility for the case of
PFCB host and CdSe NRs with and without PDM. The results
are computed from Eqs. (15) and (19) for the permittivity and
NL susceptibility, respectively, after performing the integration
over θ using the ADF of a 30 × 4.8 nmNR under different align-
ing field strengths. The results for the NL susceptibility are

normalized by the susceptibility of the inclusions—χ�3�eff∕χ
�3�
CdSe.

The temperature is taken as 150°C (thermal polymerization
temperature), and the volume fraction is p � 4%.

Spherical inclusions with the same volume fraction of p �
4% achieve εeff � 2.2915 and χ�3�eff∕χ

�3�
CdSe � 0.61%, orientation

independent. We can see that a very strong aligning field
(>108 V∕m) is required for the composite to converge toward
the result of the perfect nematic array, as expected. For the
effective permittivity, a NR composite presents larger values
than those of sphere inclusions, even for random orientation,
which coincide with the theoretical prediction [see Eq. (16)].
The reason is that each component of the polarizability (each
direction) contributes one third of its value to the general po-
larizability [7]. The permittivity in the parallel direction grows
with the aligning field strength and moves away from the
host permittivity value �εh � 2.19�. In contrast, in the trans-
verse direction the permittivity decreases toward the host per-
mittivity value. At an aligning field of 107 V∕m, for NRs with
PDM, there is a small birefringence of Δn � 0.0037. For the
relative third-order susceptibility we see four significant
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characteristics of the composite: (1) NR composites present a
much higher susceptibility than that with spherical inclusions
at the same volume fraction, even without any alignment.
The much higher values are because the term that consists
of the depolarization factor (which is the geometrical descrip-
tion) is raised to the power of four [see Eq. (20)]. (2) There
is a strong difference between the NL responses in each
direction. (3) Even if we look at the results for a reasonable
aligning field of 107 V∕m, in the parallel direction there is
an enhancement of the susceptibility, especially for the
NRs with PDM. (4) In a nematic array and in strong
aligning fields (>108 V∕m), the relative NL susceptibility ap-
proaches the value of the volume fraction (p � 4%), implying
a full exploitation of the inclusions’ nonlinearity.

In Fig. 6 we present the average values of the effective per-
mittivity [Fig. 6(a)] and effective third-order NL susceptibility
[Fig. 6(b)], as a function of the aligning field strength, for both
the parallel and the normal directions (60 × 3.1 nm NR with
PDM). The shaded regions represent the average values �1
standard deviation (STD), a measurement for the distribution
around the average values. The STD values were calculated
numerically by finding the distribution variance [28]. For both
the permittivity and NL susceptibility, as the aligning field
increases, the average values converge toward the nematic
array values, and the STD decreases.

We define Eε
HC and Eχ

HC as the aligning field strength re-
quired in order to increase the values of the permittivity and
third-order NL susceptibility, respectively, to half the change
between the random orientation and the nematic array values.
The values of the half-change field are presented in Figs. 6(a)
and 6(b). For the NL susceptibility, as an example, without a
PDM Eχ

HC � 3.37 × 107 V∕m (not shown), and with PDM
Eχ
HC � 2.11 × 107 V∕m. The presence of the PDM reduced the

aligning field by 37%, to reach halfway between the random
and nematic composites.

7. CONCLUSION
We have presented a new geometric model for NRs, as a cap-
sule shape, which affects the electrostatic characteristics of
the NRs, mainly the polarizability and the value of the PDM
that can be derived from it, and hence affects the macroscopic
values of the composite permittivity and third-order NL sus-
ceptibility. We presented a method to use the polarizability
of the capsule shape to find an equivalent prolate spheroid
for each capsule shape, by means of the polarization density
inside it. The equivalent prolate spheroid is used to find an
effective value for the capsule shape depolarization factor,
which enables us to use formulas for the macroscopic permit-
tivity and third-order NL susceptibility developed analytically

Table 3. Comparison between the Permittivity εeff and Relative Third-Order Susceptibility χ �3�eff∕χ
�3�
CdSe in Parallel

and Normal Directions of the Aligning Fielda

εeff , Effective Permittivity χ�3�eff∕χ
�3�
CdSe, Normalized Susceptibility

Without PDM With PDM Without PDM With PDM

Ealign (V/m) Normal Parallel Normal Parallel Normal Parallel Normal Parallel

0 (random) 2.3000 1.38%
106 2.3000 2.3000 2.3000 2.3001 1.38% 1.38% 1.38% 1.38%
5 × 106 2.2998 2.3005 2.2990 2.3020 1.37% 1.40% 1.33% 1.47%
107 2.2990 2.3020 2.2963 2.3074 1.34% 1.47% 1.21% 1.72%
5 × 107 2.2817 2.3361 2.2798 2.3398 0.54% 3.06% 0.45% 3.23%
108 2.2778 2.3437 2.2776 2.3442 0.36% 3.42% 0.35% 3.44%
∞ (nematic) 2.2766 2.3460 2.2766 2.3460 0.32% 3.53% 0.32% 3.53%
aResults for different aligning field strengths and for perfect nematic array, for NRs with and without PDM. Results for 60 × 3.1 nm NR, volume fraction of p � 4%,

temperature of 150°C and PDM as calculated above.

Fig. 6. Results for the average optical properties of the composite: (a) effective permittivity εeff and (b) relative third-order NL susceptibility
χ�3�eff∕χ

�3�
CdSe, as a function of the aligning field strength. Results for both the parallel (blue, upper) and transverse (red, lower) directions. Shaded

areas are the average value �1 STD.
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for prolate spheroids. For the single particle, the capsule
shape exhibits lower polarization density, compared to an
equal-axes prolate spheroid, but higher polarizability due to
its larger volume. The effective permittivity and the third-
order NL susceptibility of the composite increase with the AR
of the single NR for a fixed volume fraction, whether prolate
spheroids or capsule shapes are considered, because of the
decreasing depolarization factor for higher AR shapes. When
comparing the composite properties for prolate spheroids or
capsule-shaped inclusions at the same volume fraction and
AR, the composite properties with prolate spheroid NRs
are more pronounced owing to their lower depolarization fac-
tor. Finally, we showed how to calculate the ADF of the NRs
and with it to calculate the macroscopic characteristics of the
composite for a nematic, partially aligned, and randomly ori-
ented array of NRs.

The NL susceptibility of such a composite depends strongly
on the directionality of the NRs in the composite. The stronger
the alignment is, the larger the permittivity and third-order NL
susceptibility will be, in the direction parallel to the aligning
field. In order to achieve a strong alignment, NRs with PDM
are required, and the larger the volume and the AR of the
single NR are, the larger the induced and PDM will be; hence
the alignment will be stronger. The composite will be polari-
zation dependent, which evolves from the anisotropic geom-
etry of the NRs. The difference between the two relevant
polarizations increases with the strength of the alignment,
both for the permittivity (causing birefringence) and for the
NL susceptibility. An isotropic composite, without any align-
ment applied, will still have much stronger nonlinearity com-
pared to a composite with nanospheres.
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