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Abstract: We simulate and analyze the propagation of truncated temporal 
Airy pulses in a single mode fiber in the presence of self-phase modulation 
and anomalous dispersion as a function of the launched Airy power and 
truncation coefficient. Soliton pulse shedding is observed, where the 
emergent soliton parameters depend on the launched Airy pulse 
characteristics. The Soliton temporal position shifts to earlier times with 
higher launched powers due to an earlier shedding event and with greater 
energy in the Airy tail due to collisions with the accelerating lobes. In spite 
of the Airy energy loss to the shed Soliton, the Airy pulse continues to 
exhibit the unique property of acceleration in time and the main lobe 
recovers from the energy loss (healing property of Airy waveforms). 
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1. Introduction 

Airy pulses [1], whose electric field temporal profile is defined by an Airy function which is a 
one-sided, oscillating function having infinite energy, are a solution to the linear dispersion 
equation 
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and exhibit two interesting features: during propagation the waveform maintains its shape in 
the presence of dispersion and its wavefront accelerates in time (or travels along a ballistic 
trajectory) in a time frame moving at the group velocity. However, true Airy pulses are 
impractical as they contain an infinite amount of energy. By apodizing the Airy pulse, i.e. 
truncating the semi-infinite oscillations, in our case with a decaying exponential envelope, the 
waveform maintains its two unique properties over an extended propagation range despite its 
finite energy (Fig. 1(a)) [2]. Truncated Airy pulses occur naturally if a Gaussian pulse is 
propagated in a fiber at the zero dispersion point, under the influence of cubic dispersion. 

In complete analogy to the Airy pulse solution to the dispersion Eq. (1), spatial Airy 
beams are a solution to the paraxial equation. Spatial Airy beams have been investigated 
extensively in the last few years, and found to be useful for various applications such as 
optical micromanipulation [3], optical switching [4], plasma channel generation [5], and laser 
filamentation [6]. More recently, temporal Airy pulses are being investigated, in the context of 
spatiotemporal light bullets in linear conditions [7] and in nonlinear conditions [8], and in the 
context of one dimensional Airy pulse propagation, under the influence of strong nonlinearity 
giving rise to supercontinuum and solitary wave generation [9]. 

In this study, we analyze temporal Airy pulse propagation in media exhibiting Kerr 
nonlinearity as occurring in single mode silica fibers, leading to the phenomena of self-phase 
modulation (SPM) and anomalous dispersion. The influence of the Kerr nonlinear effect on 
spatial Airy beams was investigated under relatively weak parameters and transient narrowing 
of the Airy main lobe—caused by SPM—was observed [10]; however, we are interested in 
operating under much higher intensities where the nonlinear effect results in soliton shedding 
from the Airy pulse and not just a small perturbation of the Airy beam. Although we analyze 
temporal Airy pulse propagation in fiber, our results are also valid for spatial Airy beams 
diffracting in Kerr media on account of the isomorphism between the dispersion Eq. (1) and 
the paraxial diffraction equation. 

 

Fig. 1. (a) Intensity distribution as a function of time and propagation distance for truncated 
Airy pulse in the linear regime (or low launch power). (b) Launched Airy pulse in time (blue 
solid curve), compared to a soliton pulse (red dashed curve). 

The evolution of light pulses in single-mode dispersive-nonlinear medium is governed by 
the Nonlinear Schrödinger Equation (NLSE), 
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where β2 is the dispersion coefficient, γ is the nonlinear coefficient and A is the wave 
amplitude that depends on local time-T, and distance-z. Due to the addition of the nonlinear 
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potential (or SPM term) in the NLSE, the Airy function is no longer a valid solution and we 
cannot predict analytically the Airy pulse evolution. The Soliton, on the other hand, is a well-
known solution of the NLSE. For the canonical first order case, its profile 

is 2

0 0 2 0
Sech( / ) Exp( / )P t T iz Tβ⋅ , where P0 is peak power and T0 is duration and it is 

obtained only when there is equilibrium between the dispersion and the nonlinear effect, 
leading to the condition 
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The soliton then maintains its form and power level, provided no losses are present. Cases 
of perturbed soliton propagation (i.e. when there are small deviations from the condition set in 
Eq. (3) were extensively investigated [11–15], which help us interpret the emergent soliton 
behavior in our simulations. 

In this paper, we propagate Airy pulses with different intensities and apodization values 
and investigate both the resulting ‘emergent soliton’ parameters, as well as the behavior of the 
residual Airy pulse. All our simulations are based on numerical solutions of the NLSE, using 
the split-step Fourier method (SSFM). This numerical method was chosen due to its efficiency 
in simulating one-dimensional pulse propagation [16]. 

1.1. Normalization terms 

In our simulations we used the normalized NLSE form [16] 
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where |β2| = γ = T0 = 1, and the launched Airy pulse profile is defined as: 

 ( ) ( ) ( ), 0 ( ) Ai ExppA T z R K a T a T= = ⋅ ⋅ ⋅ ⋅   (5) 

where 0‹a«1 is the truncation coefficient, and Kp(a) is a truncation-dependent factor that sets 
the pulse peak intensity to 1 for any a value . This factor was numerically calculated and 
found to be in parabolic dependence with the truncation coefficient. T is the time variable in a 

frame of reference that moves with the wave group velocity, i.e.
g

T t z v= − , and R is a 

dimensionless parameter we vary for scaling the Airy power. At R=1 the Airy main lobe 
intensity profile looks quite similar to the fundamental soliton, as shown in Fig. 1(b). 

We measure the propagation distance in Ld units, defined as 2

0 2d
L T β= , which in our 

normalized coordinates equals 1. 

2. Effects of launched Airy power 

In order to investigate the influence of Airy launched power on its evolution, we varied the 
scaling parameter R in the range 0.1-2 and for every R value we propagated the pulse using 
the SSFM algorithm. Figure 2 shows pulse evolution examples for select R values. At low 
launched power, the Airy pulse performs the acceleration in time and subsequently it 
succumbs to dispersion. However, when R is sufficiently large (above 0.9) a stationary soliton 
pulse is formed out of the centered energy about the Airy main lobe. The soliton exhibits 
periodic oscillations in the soliton amplitude and width as a function of propagation distance. 
In addition, we witness the resilience of the temporal Airy waveform to shedding of a fraction 
of the energy as a soliton; the wavefront continues to propagate along a parabolic trajectory. 
Similar resilience has been shown in main lobe masking for spatial Airy beams [17] and in 
supercontinuum generation for temporal Airy pulses propagation [9]. 
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(a) R=0.8 (b) R=1.2 (c) R=2 

 

Fig. 2. Intensity distributions as a function of time and propagation distance in the nonlinear 
propagation regime for: (a) R = 0.8, (b) R = 1.2, and (c) R = 2. 

2.1. The emergent soliton 

Unsurprisingly, the shed pulse profile well conforms to a hyperbolic-secant function, or that 
of a soliton with background radiation. We fit a sech(·) + background radiation profile at 
every propagation distance and track the emergent soliton peak power, duration and time 
position along the propagation distance. We find that the power × duration

2
 product oscillates 

about the equilibrium condition (= 1) defined in Eq. (2). These oscillations about the stable 
soliton are known to arise as a result of interference between dispersive background radiation 
and the formed soliton [11,12]. 

We examined the relations between the soliton oscillations and the launched Airy peak 
power. In Fig. 3(a) the oscillations of soliton width are shown as a function of propagation 
distance for select R values. The pulse width narrows and the oscillations period decreases 
with higher launch power. The decreasing oscillation period with increasing launch power is 
depicted in Fig. 3(b). Similar behavior was reported in [12], where the amount of excess 
energy that was supplied to the launched soliton was expressed in the evolved soliton 
oscillations period. Another property of the oscillations is the modulation depth that sharply 
decreases with increased initial peak power (Fig. 3(c)). We can relate the low modulation 
depth to the greater stability of the formed soliton and conclude that high launched peak 
power is required for stable soliton formation. 
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Fig. 3. (a) Oscillations of soliton width for different launched peak power, (b) soliton 
oscillations length of period as a function of launched peak power, (c) soliton oscillations 
modulation depth as a function of launched peak power. 

Additional soliton parameters as soliton peak time position and phase also oscillate in 
similar manner as the peak power and width. Figures 4(a, c) show the evolution of time 
position and phase as a function of propagation distance (phase fluctuations are plotted after 
subtracting the soliton’s accumulated linear phase term). These oscillations are the result of 
interaction with the background radiation as explained in [13] and demonstrated in [14] for 
the problem of background radiation that is formed by soliton amplification in optical 
communication. 

From the results in Fig. 4(a) we see that the position of the emergent soliton is also 
dependent on launch power. We plot the mean time position of the emergent soliton in Fig. 
4(b). More intense excitation results in the soliton appearing at an earlier time. This 
phenomena is explained by the fact that for low values of R a relatively long time is required 
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for accumulation of enough energy by SPM for the soliton formation and shedding, and 
during this time the Airy pulse is accelerating and ‘carries’ the accumulating energy with it to 
later times. For larger R values there is enough energy in the Airy main lobe for soliton 
formation and shedding at an early point. 
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Fig. 4. (a) Soliton peak time position along propagation distance, (b) mean soliton peak time 
position as a function of launched power. Note that Airy peak time position at launch is at t = 

−1. (c) soliton peak phase oscillations along propagation distance for select launched powers. 

2.2. The accelerating wavefront 

As seen in Fig. 2, the Airy wavefront continues to exhibit the parabolic acceleration in time, 
even under the influence of Kerr effect and after shedding energy to the soliton. To study 
whether this acceleration continues with the properties of the linear propagation we compared 
the nonlinear propagations to linear, as the intensity is scaled with the R parameter. Note that 
the linear Airy pulse evolution is identical for every intensity value. 

These linear propagation results are compared to the nonlinear ones by tracking the main 
lobe acceleration trajectory for each case and extracting information about its peak power and 
position. Furthermore, we calculate the accelerating energy distribution along propagation 
distance. 

Figure 5 shows the Airy main lobe parabolic trajectory and peak power as a function of 
propagation distance, under linear and nonlinear propagation, for three select launched power 
cases. We see that the wavefront continues to exhibit the parabolic trajectory in time (blue 
curves), which is almost identical in the linear and the nonlinear propagation cases, although 
the nonlinear peak slightly trails the linear peak, on account of a delay associated with the 
energy shedding to the soliton. The intensity evolution of the accelerating wavefront is shown 
in green. We can see that in the nonlinear propagation its peak power performs decaying 
oscillations, as opposed to the monotonic decay in the linear case. The oscillations of the peak 
power in the nonlinear case are known to be a result of the interplay between the SPM and the 
dispersion. Similar influence of SPM on the Airy accelerating main lobe was already observed 
in [10]. However, the peak power oscillations there exhibit faster decay due to a relatively 
large truncation coefficient, 0.1-0.3 vs. 0.0335 in the current simulations. 

 

Fig. 5. – Airy accelerating tail trajectories in time-distance space(blue) and in intensity-distance 
space (green) for (a) R = 1, (b) R = 1.3 and (c) R = 2. 

Next, we investigate the energy distribution of the accelerating wavefront. It is important 
to note that the simulations preserve the launched pulse energy along the propagation 
distance, as well as preservation of 'center of gravity' (first order moment) position according 
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to the finite pulse energy and the uniformity of the media [2]. The power spectrum of the Airy 
pulse is symmetric about the central frequency, and upon propagation in anomalous dispersive 
media the high frequencies components are delayed (low frequency components are 
advanced) with respect to central frequency group delay (in anomalous media), such that the 
pulse total energy is eventually divided to two equal fractions about T = 0- half of the energy 
at each direction. In the presence of Kerr nonlinearity, considerable part of the pulse energy is 
shed to the soliton that propagates at the group velocity, and the remaining energy disperses in 
opposite directions with less than a half of the launched energy dispersing to each side (due to 
soliton shedding). 

The energy that is carried in the accelerating wavefront (delayed components) was found 
by summing the energy over positive time at every distance sample. These calculations were 
performed with both the linear and nonlinear propagations. 

Figure 6(a) shows the delayed energy evolution of the accelerated Airy wavefront along 
the propagation distance for various Airy launched powers. The energy is normalized by the 
launched pulse energy, such that we can see the relative energy portion of the accelerating 
wavefront for linear and nonlinear cases. For all R values, the energy evolution of the linear 
propagations coincides to one curve that asymptotically approaches the value of half launched 
pulse energy, according to its linear nature. For the nonlinear propagations we clearly see that 
as R grows the fractional energy amount that is delayed is decreasing, where the oscillatory 
behavior is due to the soliton oscillations which take place in the boundary of the right half 
propagation plane. Those curves and those of Fig. 6(b), which chart the energy evolution of 
the formed soliton for different R values, show the fact that the formed soliton not only has 
more intensity when R is growing, but also carries a larger energy fraction from the whole 
pulse. This can also be seen in Fig. 6(c), where the mean soliton relative energy was 
calculated for every R value. From Figs. 6(b-c) we also see the energy preservation—the 
normalized delayed energy is missing energy that is about half of the shed soliton energy, 
where the other half originates from the faster propagating energy components. When R = 2, 
for example, the soliton energy fraction is about 0.39 and the missing fractional energy 
amount from the delayed energy is about 0.19, half of 0.39. 
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Fig. 6. (a) Airy tail relative energy for the linear and the nonlinear cases, (b) soliton relative 
energy, (c) soliton relative energy as function of launched power. 

3. Truncation coefficient effect 

The ability of Airy pulses to exhibit their unique features is strongly related to the degree of 
truncation in the apodization function. As the truncation is stronger, the Airy pulse quickly 
loses the unique features of the Airy pulse and disperses. Here we wish to examine how the 
truncation degree influences the soliton shedding and pulse propagation under the Kerr effect. 

We employ the same pulse profile defined in Eq. (4), fixing the intensity scaling parameter 
R to 1.5 while varying the truncation coefficient in the range 0.01-0.1, as shown in Fig. 7(a), 
and propagate the apodized Airy for every truncation value. Figures 7(b-c) show two 
examples of the Airy pulse evolution in time-distance space. We see that when the truncation 
is small the Airy original features as self-similarity and acceleration in time are more 
noticeable. The influence of the truncation degree on emergent soliton properties and on the 
accelerating wavefront was examined in the same manner as in the previous section. 
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Fig. 7. (a) Launched Airy amplitude for several truncation values, (b)-(c) Intensity distributions 
as a function of time and propagation distance for: (b) a = 0.01, (c) a = 0.09. 

3.1. The emergent soliton 

Larger truncation coefficient values make the exponential apodization of the Airy function 
stronger and the Airy tail is shortened; there is a negligible effect on the main Airy lobe, as 
shown in Fig. 7(a). Hence the emergent soliton, which forms from the main lobe, achieves 
stability faster (after a shorter propagation distance) in cases of larger truncation coefficients, 
as the newly formed soliton experiences less collisions with the accelerating Airy tail, as 
shown in the propagation images in Fig. 7. Therefore, the Sech(·) fit process was started from 
a different propagation distance for every truncation value. 

From the soliton fit data we see that the emergent soliton parameters do not experience 
significant variations for different truncation values, as shown in the soliton parameters 
evolution curves in Figs. 8(a-b). However, the soliton mean peak time position does shift 
considerably from the launched Airy peak position, and this shift increases for smaller 
truncation values (see Fig. 8(c)). This behavior is explained by the interaction between the 
formed soliton from the main lobe and the accelerating lobes of the Airy tail, which constitute 
collision perturbations to the soliton and cause temporal shift of the soliton in the direction 
opposed to the accelerating lobes [15]. This temporal shift to earlier times depends on the 
perturbation energy, which increases for small truncation coefficient values. It is important to 
note that even without perturbing lobes (i.e. while propagating Airy with strong truncation), 
the soliton is not necessarily formed at the launched Airy peak position because of the 
acceleration that the original pulse undergoes before the soliton is shed. Also, the launched 
Airy peak time position is not constant with different truncation coefficients (dashed red line 
in Fig. 8(c)), as a result of a shift from the multiplication by the exponential apodization 
function. 
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Fig. 8. Effect of different launched truncation values on oscillations of (a) soliton width and (b) 
soliton peak phase, (c) soliton peak time position as function of truncation coefficient. Note 
that Airy peak time position at launch is truncation value dependent, as evidenced by the 
dashed red line. 

3.2. The accelerating wavefront 

The extent to which the truncated Airy maintains its form and continues to accelerate before 
dispersing strongly depends on the truncation coefficient. As in the previous section, we 
compared the linear and the nonlinear propagations in order to investigate the Airy’s 
accelerating wavefront behavior for different truncation values. In the linear propagation 
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regime, the truncation coefficient determines both the distance at which the accelerating 

wavefront is still distinguishable, and the total Airy energy according to 
1/2

(8 )
Airy

E aπ −
=  [2]. 

In our investigation range for truncation coefficient, the linear Airy varies widely. 
After tracking the accelerating wavefront trajectory for every truncation value, we 

compare the main lobe trajectory and peak power under the linear and the nonlinear 
propagation regimes (Fig. 9). The main finding here is that the intensity of the accelerating 
main lobe in the nonlinear regime (green curves) first experiences SPM and focuses to the 
same peak power (with no dependence on truncation value). This peak is then shed to the 
soliton and the remaining accelerating wavefront immediately after the soliton shedding is at 
lower power compared to the linear propagation case. However, as a consequence of 
chromatic dispersion, the high frequency components travel slower and eventually the leading 
wavefront main lobe re-emerges and matches the main-lobe power of the linear propagation 
case (the Airy self-healing property). In spite of this wavefront matching between the linear 
and nonlinear propagations we see that in the nonlinear propagation the accelerating main 
lobe remains distinguishable for longer distances than in linear propagation for a given 
truncation value. This finding is related to the differences between the radiation energy 
distribution in the nonlinear and in the linear propagations. In the linear propagation (see 
example in Fig. 1(a)) the dispersed Airy intensity roughly converges to a Gaussian 
distribution in time with propagation distance that eventually (after a certain distance) engulfs 
the accelerating main lobe. In the nonlinear propagation the dispersive radiation intensity is no 
longer Gaussian distributed due to the soliton formation and the energy centering about it, 
making the accelerating peak visible for longer propagation distance. 

 

Fig. 9. Airy accelerating wavefront trajectories in time-distance space (blue) and in intensity-
distance space (green) for (a) a = 0.01, (b)a = 0.04 and (c)a = 0.08. 

As the emergent soliton has roughly the same energy for all truncation values, its relative 
energy fraction in the launched pulse energy is larger for increasing truncation values (Fig. 
10(a)), therefore the relative energy fraction in the accelerating Airy wavefront decreases (Fig. 
10(b)) In the linear propagation regime the accelerating Airy energy always asymptotically 
approaches one half of the whole pulse energy, although its energy growth rate is truncation 
factor dependent. In the nonlinear case the delayed Airy energy fraction decreases from this 
value as the truncation is growing, as the nearly constant soliton energy is missing. 
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Fig. 10. Examples of energy evolution along propagation distance of (a) the relative energy of 
the emergent soliton (the soliton energy itself is hardly dependent on truncation coefficient) 
and (b) accelerating wavefront. 
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4. Soliton time position for power and truncation 

In the previous sections we showed that: (1) the emergent soliton time position is at earlier 
times when the launched power increases (at fixed truncation) due to quick build-up of a 
soliton. At lower powers, self-focusing results in the eventual build-up of the soliton, but as 
the conditions materialize the main lobe is undergoing the ballistic trajectory leading to 
soliton shedding at a later time position. And (2) the emergent soliton time position is at 
earlier times when the truncation coefficient decreases (at fixed launched power) due to 
collision perturbations with the accelerating tail lobes. The time shift associated with collision 
perturbations depends on the energy; hence higher truncation coefficients result in lower Airy 
tail energies and reduced soliton time shifts. These two effects are graphically depicted in Fig. 
11(a). 

To verify that these two effects independently and consistently occur, we varied both the 
Airy launched power and the truncation coefficient over our investigation range (Fig, 11(b)). 
Indeed we see this trend continuing; the emergent soliton mean time position shifts to earlier 
(later) times for smaller (larger) truncation coefficients and for higher (lower) launched power 
levels. These results reinforce our finding that soliton is shed at an earlier time when the 
launched power is higher, and that collisions with the accelerating Airy tail lobes shift the 
position in the direction counter to the acceleration, i.e. towards earlier times. 
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Fig. 11. (a) Schematic illustration of the sources of temporal shift of the emergent Soliton. (b) 
Distribution of Soliton mean time position as a function of truncation coefficient and launched 
power in our investigation range. 

5. Summary 

In this paper we investigated the propagation of a truncated temporal Airy pulse in nonlinear 
Kerr media. The phenomena of soliton shedding from the original Airy pulse under 
sufficiently strong excitation was already identified [8,9], but in this work we investigated in 
detail the properties of the soliton and the remaining Airy radiation. We characterized the 
emergent soliton parameters under different truncation and power conditions and identified 
the mechanisms at play, in accordance to processes known from literature. The soliton 
parameters perform oscillations due to the presence of background radiation from the 
dispersed Airy pulse. The temporal position of the emergent soliton depends both on the Airy 
launched power and truncation coefficient, due to the location of the shedding event and the 
interaction with the accelerating Airy tail. We also observed the SPM influence on the 
accelerating Airy main lobe, and we found that the SPM has large effect on the accelerating 
main lobe visibility in comparison the linear truncated Airy propagation. Finally, we found 
that the energy distribution of the Airy pulse along the propagation depends on the launched 
power and the truncation degree. 

In this work we studied the soliton shedding phenomena for relatively intense launched 
Airy pulses. This research avenue can continue to even higher launched pulse powers, 
however eventually the well-understood phenomena explored here starts to break down. 
Figure 12 shows the time-space evolution when launching the Airy pulse with a power factor 
of four (R = 4). We see that for such intense excitation three solitons are shed, the main 
soliton in a consistent manner to that described here, and two additional weaker soliton s at 
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both higher and lower center frequencies. This result was still obtained with the standard 
nonlinear Schrodinger equation (Eq. (4)). However, for proper simulation of intense Airy 
pulse excitation, one should also add additional terms to account for higher-order nonlinear 
effects such as Raman scattering and self-steepening. 
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Fig. 12. Intensity distributions as a function of time and propagation distance for R = 4, 
showing multiple soliton shedding at high launched peak powers. 
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