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Femtosecond-rate space-to-time conversion
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A real-time spatial–temporal processor based on cascaded nonlinearities converts space-domain images to
time-domain waveforms by the interaction of spectrally decomposed ultrashort pulses and spatially Fourier-
transformed images carried by quasi-monochromatic light waves. We use four-wave mixing, achieved by cas-
caded second-order nonlinearities with type II noncollinear phase matching, for femtosecond-rate processing.
We present a detailed analysis of the nonlinear mixing process with waves containing wide temporal and an-
gular bandwidths. The wide bandwidths give rise to phase-mismatch terms in each process of the cascade.
We define a complex spatial–temporal filter to characterize the effects of the phase-mismatch terms, modeling
the deviations from the ideal system response. New experimental results that support our findings are pre-
sented. © 2000 Optical Society of America [S0740-3224(00)01410-7]
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1. INTRODUCTION
Methods for ultrafast optical waveform synthesis (also re-
ferred to as pulse shaping) have been investigated for di-
verse applications in the natural sciences and engineer-
ing. Reviews of various pulse-shaping techniques can be
found in Refs. 1 and 2. Based on linear-system theory,
filtering the temporal-frequency components of an ul-
trashort optical pulse results in high-resolution waveform
synthesis. The filtering can be achieved by spatially dis-
persing the frequency components in a spectral process-
ing device (SPD), a free-space optical setup consisting of
diffraction gratings and lenses, and inserting a spatial
mask with the encoded amplitude and phase information.
After the spectral decomposition wave3 (SDW) has been
filtered by the spatial mask, the frequency components
are recomposed in the SPD to generate the synthesized
temporal waveform. Early pulse-shaping experiments
used prefabricated masks to filter the SDW,4 which later
were replaced by active-filtering devices such as spatial
light modulators5 and acousto-optic modulators.6 This
approach may not yield an adequate time response for
adaptive control of the synthesized waveform needed for
some applications, as it is limited by computation time,
signal propagation delay, and modulator response time.
Additionally, most modulators operate with either phase
or amplitude modulation, requiring a complicated cascade
of two devices for complete complex-amplitude filtering.7

An alternative approach for generating the spectral filter
uses in situ optical holographic recording of the interfer-
ence of the spatial Fourier transform (FT) of a spatial im-
age and a reference point source.8,9 The recorded spatial-
frequency information serves as a spectral filter for the
SDW of an incident ultrashort reference pulse. The syn-
thesized waveform is correlated to the spatial image used
in the recording, resulting in a space-to-time converted
image. This approach can be interpreted as a four-wave
mixing process between two waves carrying spatial FT in-
formation and two SDW’s with the temporal FT informa-
tion, resulting in the exchange of information between the
0740-3224/2000/101759-15$15.00 ©
spatial and temporal channels. The holographic record-
ing medium’s characteristics determine the performance
of the information exchange between the four interacting
waves. For example, using holographic film will require
a long recording and processing time. Thick holograms
formed in bulk photorefractive crystals yield high diffrac-
tion efficiency but also require a long recording time ow-
ing to slow electron mobility essential in buildup of a
space-charge field9 (from tens of microseconds to several
minutes). Multiple-quantum-well (MQW) semiconductor
photorefractives can perform holographic recording with
a microsecond response time yet result in low diffraction
efficiency owing to the short interaction length.10,11

For compatibility with the requirements of ultrafast
applications such as high-speed optical communication
with ultrashort pulses and quantum control of atomic and
molecular vibrational states, the synthesized waveform
must be updated, or modulated, at high rates with both
amplitude and phase information. Such a femtosecond-
rate response time can be provided only by parametric
processes that involve bound-electron nonlinearities.
Our space-to-time conversion scheme, first reported in
Ref. 12, exchanges the information from a spatial image
to a temporal waveform by a four-wave mixing process in
a x (2) nonlinear crystal. The cascaded second-order non-
linearity (CSN) arrangement we are utilizing consists of a
frequency-sum generation process followed by a
frequency-difference generation process that satisfies the
type II noncollinear phase-matching condition.13 The
nonlinear wave mixing occurs in the Fourier domain of
the temporal and spatial channels (see Fig. 1). The
frequency-sum process mixes the SDW of the input ul-
trashort pulse and the spatial FT of the spatial-image in-
formation illuminated with a quasi-monochromatic plane
wave. The resultant intermediate wave is determined by
the product of the complex amplitudes of the temporal
and spatial FT fields. The cascaded frequency-difference
process mixes the intermediate wave with the spatial FT
of a point source illuminated by the same quasi-
2000 Optical Society of America
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Fig. 1. Femtosecond-rate space-to-time conversion setup based on nonlinear wave mixing with noncollinear type II cascaded second-
order nonlinearities in the Fourier-domain plane of the temporal and spatial channels. A frequency-sum process between waves U1 and
U2 gives rise to the wave U int . A frequency-difference process between the waves U int and U3 generates the desired output wave U4 .
monochromatic plane wave. The second spatial wave
contains no information, in either the space or the time
domain, and its function is to downconvert the carrier fre-
quency of the intermediate wave generated by the first
nonlinear process. The resultant field in the CSN pro-
cess is the filtered SDW, which is recomposed to yield the
synthesized output temporal waveform.

In this paper we describe and analyze in depth the
space-to-time conversion process employing CSN, achiev-
ing a femtosecond response time and high conversion ef-
ficiency. In contrast to our initial analysis in the time
domain,12 a temporal-frequency-domain analysis is pre-
sented in Section 2, in which we develop the expression
for the synthesized temporal waveform under the as-
sumption of an ideal CSN process with perfect phase
matching. In Section 3 we investigate the effects of the
phase-mismatch terms in the cascaded processes and
characterize them with a complex spatial–temporal
transfer function. The derivation of the phase-mismatch
terms’ dependence on the temporal- and spatial-frequency
bandwidths is deferred to the appendix. Experimental
results verifying the findings of our analysis are pre-
sented in Section 4, illustrating the ability to convert both
amplitude and phase information with this technique.
We conclude with a summary and discussion in Section 5.

2. ANALYSIS OF THE SPACE-TO-TIME
CONVERTER
The nonlinear interaction between the SDW of the input
ultrashort pulse and the quasi-monochromatic waves at
the Fourier plane of the optical setup is analyzed in this
section under the following assumptions: (i) The nonlin-
ear wave-mixing process is weak, such that the amplitude
of the generated wave is proportional to the product of the
complex amplitudes of the mixed waves. (ii) The inter-
acting waves are phase matched for all temporal frequen-
cies contained in the bandwidth of the short pulse and
spatial frequencies of the spatial image. We defer the
justification and discussion on the validity of this last as-
sumption to Section 3, in which a complex filtering re-
sponse function is introduced to characterize the effect of
phase mismatch on the conversion process. Since the
space-to-time conversion occurs for one-dimensional spa-
tial signals, the y-axis information is omitted. In the fol-
lowing, we first analyze the input temporal- and spatial-
information channels, followed by an analysis of the CSN
wave-mixing process giving rise to the synthesized tem-
poral waveform.

A. Input Optical Channels
An ultrashort optical pulse, with a temporal envelope
waveform of p(t), is utilized at the input temporal chan-
nel of the SPD. The pulse is propagating in free space
toward a diffraction grating, at an angle u relative to the
grating normal (see Fig. 1). The input ultrashort pulse is
characterized in the propagating pulse’s coordinate sys-
tem (x1 , z1) as

Epulse~x1 , z1 ; t ! 5 w1~x1!pS t 2 t0 2
z1

c D
3 expF jS v0

c
z1 2 v0t D G , (1)

where w1( ) defines the transversal field distribution or
the spatial mode of the pulse, c is the speed of light in
vacuum, v0 is the center optical frequency, and t0 is an
arbitrary time reference. The pulse is propagating in the
z1 direction at a group velocity and a phase velocity of the
speed of light. We assume the spatial mode size of the
pulse is sufficiently large to ignore diffraction effects in
the region of interest near the grating for the representa-
tion of Eq. (1) to be valid.

Since we are assuming that the nonlinear wave mixing
of the space-to-time converter operates in the linear re-
gime, the signal analysis may be performed in the
temporal-frequency domain. We Fourier transform (FT)
Eq. (1) to perform a temporal-frequency decomposition of
the short pulse, yielding

Ẽpulse~x1 , z1 ; v! 5 w1~x1!expS j
v

c
z1D p̃~v 2 v0!

3 exp@ j~v 2 v0!t0#, (2)
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where the tilde overscript denotes a FT, e.g., p̃(v)
5 *p(t)exp( jvt)dt. We perform a rotation of the coordi-
nate system from (x1 , z1) to (x, z) for compatibility with
the coordinate system of the SPD, yielding

Ẽpulse~x, z; v! 5 w1~2z sin u 1 x cos u!

3 expF j
v

c
~2z cos u 2 x sin u!G

3 p̃~v 2 v0!exp@ j~v 2 v0!t0#. (3)

To find the incident field on the input grating of the SPD,
the field of Eq. (3) is evaluated at z 5 0. The effect of the
grating diffraction can be modeled by adding the grating
momentum, kg , in the x direction to the k vector that
characterizes the propagation direction of the wave, re-
sulting in

Ẽ input~x, 0; v! 5 w1~x cos u!expF2jS v

c
sin u 2 kgD xG

3 p̃~v 2 v0!exp@ j~v 2 v0!t0#. (4)

The grating momentum, kg , and the incidence angle, u,
are chosen such that the center frequency v0 will diffract
in the direction of the optical axis of the system. Setting
v0 sin u/c 5 kg and substituting the grating’s k vector, kg
5 2p/L, where L is the grating period, yields sin u
5 l0 /L [ a, where l0 is the center wavelength. To fur-
ther simplify the notation, we define a new spatial-
aperture function such that w(x) 5 w1(x cos u). Without
loss of generality we also shift the input aperture of the
beam from the optical axis of the system by D/2. This is
done to satisfy the noncollinear beam-propagation re-
quirement in the Fourier plane of the SPD for phase
matching in the CSN process. The input temporal-
channel field to the optical processor, utc1 , is therefore
characterized by

ũtc1~x; v! 5 wS x 2
D

2 D expF2j~v 2 v0!
ax

c G
3 p̃~v 2 v0!exp@ j~v 2 v0!t0#. (5)

We may inverse FT Eq. (5) to generate the input signal in
the time domain, yielding

utc1~x; t ! 5 wS x 2
D

2 D pS t 2 t0 1
ax

c D exp~2jv0t !.

(6)

Equation (6) describes the short pulse scanning across the
fixed aperture at a velocity of 2c/a in the x direction.
For convenience we may wish to set the time-delay pa-
rameter such that the traveling pulse is at the center of
the aperture at t 5 0. This is achieved by setting t0
5 aD/2c.

The temporal-channel field of Eq. (5) is spatially Fou-
rier transformed by a lens of focal length f, yielding the
SDW U1 of the short pulse,
U1~x8; v! 5 p̃~v 2 v0!exp@ j~v 2 v0!t0#

3 E
2`

`

wS x 2
D

2 D expF2j~v 2 v0!
ax

c G
3 expS 2j2p

xx8

lf D dx, (7)

where we defer solving this Fourier integral to the non-
linear wave-mixing analysis of Section 3. The two spa-
tial channels, one containing the encoding information
and the second a point source, are modeled next.

A mask containing spatial-domain information is
placed in the input plane of the processor, alongside the
diffraction grating used for the input temporal channel.
The mask is shifted from the optical axis by 2D/2 to sat-
isfy the requirement of noncollinear beam propagation in
the Fourier plane of the SPD. The information mask of
the spatial channel is illuminated with a quasi-
monochromatic light source at center frequency v1 . The
first input spatial channel of the processor, usc1 , can be
expressed as

usc1~x, z 5 0; t ! 5 mS x 1
D

2 D exp~2jv1t !, (8)

where m(x) is the spatial-information mask. The first
input spatial-channel field is spatially Fourier trans-
formed by the lens, yielding the field U2 , which we ex-
press in the temporal-frequency domain by taking the
temporal FT, generating

U2~x8; v! 5 d ~v 2 v1!E
2`

`

mS x 1
D

2 D
3 expS 2j2p

xx8

l1f D dx, (9)

where d ( ) is the Dirac delta function. The spatial wave
contains no temporal-frequency bandwidth owing to our
illumination with a quasi-monochromatic light source.

The second spatial channel consists of a point source at
the input plane that is illuminated by the same quasi-
monochromatic light source as the first spatial channel.
The point source is shifted from the optical axis by 2D/2,
as the first spatial channel has been. A polarization-
selective beam splitter (see PBS in Fig. 1) is used for effi-
cient superposition of the two spatial channels necessary
for the wave-mixing process. The second input spatial-
channel field to the processor, usc2 , can be expressed as

usc2~x; t ! 5 dS x 1
D

2 D exp~2jv1t !. (10)

The second input spatial-channel field is also spatially
Fourier transformed by the lens, yielding the field in the
Fourier plane U3 , expressed in the temporal-frequency
domain as
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U3~x8; v! 5 d ~v 2 v1!E
2`

`

dS x 1
D

2 D
3 expS 2j2p

xx8

l1f D dx. (11)

We next examine the space–time conversion process by
nonlinear wave mixing the three waves defined in Eqs.
(7), (9), and (11).

B. Four-Wave Mixing by the Cascaded Second-Order
Nonlinearity Process
A nonlinear crystal exhibiting a large nonlinear suscepti-
bility x (2) is placed at the Fourier plane of the SPD (see
Fig. 1). The two optical waves, U1 and U2 , from the in-
put temporal channel and the first spatial channel inter-
act within the crystal, giving rise to an intermediate wave
U int in a frequency-sum process. The type II noncol-
linear phase-matching condition is satisfied by (i) adjust-
ing the polarization directions of the temporal and spatial
channels to coincide with the crystal’s ordinary and ex-
traordinary directions, respectively, and (ii) setting the
interacting input waves to propagate noncollinearly.
The second condition is satisfied by the spatial separation
of the input channels, resulting in a propagation-
direction-difference angle of D/f between U1 and U2 .
The complex amplitude of the generated intermediate
wave is proportional to the nonlinear polarization arising
from the two fundamental waves, yielding

U int~x8; v! } xeff
~2 !E

2`

`

U1~x8; v 2 V!U2~x8; V!dV

5 xeff
~2 !U1~x8; v 2 v1!U2~x8; v1!, (12)

where xeff
(2) is the effective nonlinear-susceptibility coeffi-

cient at the propagation directions of the interacting
waves, and we assume it to be independent of v in the
temporal-frequency bandwidth of interest. The convolu-
tion integral describing the nonlinear polarization is
trivial to solve since U2 has no temporal-frequency band-
width. The intermediate wave is therefore shifted up in
frequency by v1 , such that U int is oscillating at a center
frequency of v0 1 v1 and is polarized in the extraordi-
nary direction owing to the type II interaction.

Next, we consider the interaction of the third wave U3
with the other waves in the nonlinear crystal. Since the
crystal exhibits type II phase matching, there is no inter-
action between the wave from the temporal channel U1
and the wave from the second spatial channel U3 , as they
are both polarized in the ordinary-axis direction of the
crystal. The collinear waves from the two spatial chan-
nels produce a second-harmonic wave, but it is of no in-
terest for our study of the spatial–temporal processor.
The signal of interest is generated from the interaction of
the wave from the second spatial channel U3 and the in-
termediate wave U int generated in the frequency-sum
process. These two waves are orthogonally polarized and
satisfy the noncollinear phase-matching condition for a
frequency-difference generation process. The noncol-
linear phase-matching condition is automatically satisfied
because U2 and U3 have the same optical frequency and
copropagate. The interaction of U3 and U int gives rise to
a fourth wave U4 at the output of the nonlinear crystal,
which is our signal of interest, given by

U4~x8; v! } xeff
~2 !E

2`

`

U int~x8; v 1 V!U3* ~x8; V!dV

5 xeff
~2 !U int~x8; v 1 v1!U3* ~x8; v1!

5 ~xeff
~2 !!2U1~x8; v!U2~x8; v1!U3* ~x8; v1!.

(13)

The nonlinear polarization has the form of a correlation
integral in the frequency-difference process. This inte-
gral is again trivial to solve, as the second spatial channel
is also quasimonochromatic. The output wave is equiva-
lent to a four-wave mixing process achieved by cascaded
second-order nonlinearities. The resultant wave, U4 , is
the SDW of the synthesized waveform with center fre-
quency v0 , generated by filtering the input SDW U1 by a
spatially modulated wave. It is copropagating with U1
and polarized in the extraordinary direction (as U int is ex-
traordinary and U3 is ordinary). Polarization optics may
be used to separate the copropagating waves U1 and U4
(see Fig. 1).

The generated field U4 is spatially Fourier transformed
by a lens of focal length f, yielding the optical field on the
output diffraction grating, given by

utc2~x9; v!

5 E
x8

U4~x8; v!expS 2j
x8x9

lf D dx8

} p̃~v 2 v0!exp@ j~v 2 v0!t0#

3 E
x1

wS x1 2
D

2 D expF2j~v 2 v0!
ax1

c G
3 E

x2

mS x2 1
D

2 D E
x3

dS x3 1
D

2 D
3 E

x8
expF2j2px8S x9

lf
1

x1

lf
1

x2

l1 f
2

x3

l1 f D G
3 dx8dx1dx2dx3 . (14)

Integrating over the variables x8, x2 , and x3 yields

utc2~x9; v! 5 p̃~v 2 v0!exp@ j~v 2 v0!t0#

3 E
x1

wS x1 2
D

2 DmF2
l1

l
~x9 1 x1!G

3 expF2j~v 2 v0!
ax1

c Gdx1 . (15)

Assuming Dl ! l0 for typical ultrashort pulses, we can
also eliminate the wavelength dependence in the encod-
ing mask by replacing l with l0 . It is possible to conduct
the analysis without this assumption, resulting in weakly
chirped output signals.14 We next perform a change of
variable by defining a new integration variable, t, such
that x9 1 x1 5 2ct/a. The resultant field on the grat-
ing is given by
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utc2~x9; v! 5 p̃~v 2 v0!exp@ j~v 2 v0!t0#

3 expF j~v 2 v0!
ax9

c G
3 E

t
wS 2

c

a
t 2 x9 2

D

2 DmS l1

l0

c

a
t D

3 exp@ j~v 2 v0!t#dt. (16)

The effect of diffraction from the output grating of the
SPD is introduced into Eq. (16), yielding

uout1~x9; v! 5 p̃~v 2 v0!exp@ j~v 2 v0!t0#

3 expH jF ~v 2 v0!
a

c
1 kgGx9J

3 E
t
wS 2

c

a
t 2 x9 2

D

2 DmS l1

l0

c

a
t D

3 exp@ j~v 2 v0!t#dt. (17)

The momentum of the diffraction grating, kg 5 av0 /c,
cancels the angular-dispersion term of the output field,
such that all the frequency components of the short pulse
copropagate at an angle u relative to the optical axis. To
propagate away from the grating plane, we reintroduce
the longitudinal dependence as appears in Eq. (3) [using
the local z9 coordinate (see Fig. 1) and neglecting a con-
stant phase factor from the shift from z to z9]. We also
replace the aperture function w( ) by the original spatial-
mode function of the input waveform, w1( ) [see Eq. (4)].
Additionally, we eliminate the D/2 shift in the pupil func-
tion, which was introduced to satisfy the phase-matching
condition in the Fourier plane of the processor, yielding

uout1~x9, z9, v! 5 p̃~v 2 v0!exp@ j~v 2 v0!t0#

3 expF j
v

c
~x9 sin u 2 z9 cos u!G

3 E
t
w1S 2x9 cos u 2 z9 sin u

2
c

a
t cos u DmS l1

l0

c

a
t D

3 exp@ j~v 2 v0!t#dt. (18)

We perform a rotation of coordinate systems from the op-
tical system’s (x9, z9) to that of the output pulse (x2 , z2)
(see Fig. 1) and take the inverse temporal FT to get the
output in space–time coordinates,

Eout~x2 , z2 ; t ! 5 expF jS v0

c
z2 2 v0t D G

3 E
t
w1S 2x2 2

c

a
t cos u DmS l1

l0

c

a
t D

3 pS t 2 t0 2
z2

c
2 t D dt. (19)
Equation (19) describes the output temporal pulse as an
integral that mixes the information from the input
temporal-pulse structure, the spatially encoded mask,
and the spatial-aperture function. This type of associa-
tion between the spatial and temporal characteristics has
been shown for other cases of ultrafast-waveform
processing.4,15,16 When the beam size of the input short-
pulse signal is very narrow, the desired functionality will
not be achieved. Therefore in most practical cases of in-
terest we operate the SPD in the high-resolution limit.
In this case, the spatial-mode extent (or, more precisely,
time-of-flight duration) w1(ct cos u/a) is much longer than
the duration of the ultrashort pulse p(t). Thus the inte-
gral can be approximated by simply evaluating the input
pupil at t 5 t 2 t0 2 z2 /c, which is the center coordinate
of the short pulse p(t), and taking it out of the integral,
yielding

Eout~x2 , z2 ; t ! > expF jS v0

c
z2 2 v0t D G

3 w1F2x2 2
c

a
cos uS t 2 t0 2

z2

c D G
3 yS t 2 t0 2

z2

c D , (20)

where y(t) is defined by the convolution of the input pulse
and a time-scaled encoding mask, such that

y~t ! [ E
t
mS l1

l0

c

a
t D p~t 2 t!dt 5 mS l1

l0

c

a
t D ^ p~t !.

(21)

Equation (20) describes an ultrafast waveform propagat-
ing in free space in the z2 direction. The temporal char-
acteristic of the output waveform, y(t), is determined by
the convolution operation of Eq. (21). The spatial mode
of the output waveform is now space–time dependent, as
is characteristic in filtering experiments of spatially dis-
persed temporal-frequency components.17,18 This depen-
dence travels along with the output waveform and repre-
sents a linear skew of the spatial mode relative to the
time position of the output waveform y(t). Thus there
may be variations of the observed waveform at different
spatial locations, a phenomenon that may influence point
processes such as detection, spatial filtering, and coupling
of the output signal into a single-mode fiber.

We next analyze the conversion process in the nonlin-
ear crystal, taking into account the effect of the phase-
mismatch terms of the CSN.

3. CASCADED SPATIAL–TEMPORAL WAVE
MIXING
The real-time spatial–temporal wave mixing is performed
by cascaded femtosecond-rate parametric interactions in
a crystal exhibiting a strong x (2) coefficient. The CSN
process uses a combination of frequency upconversions
and frequency downconversions and has to satisfy the
conditions of energy and momentum conservation for ef-
fective energy transfer. Owing to the broad temporal
bandwidth of ultrashort pulses and the broad angular
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bandwidth of the spatial-information channel, it will be
practically impossible to satisfy the phase-matching re-
quirement necessary to achieve high conversion effi-
ciency. Therefore nonuniform signal conversion across
the temporal and spatial bandwidths will be observed, as
phase matching cannot be supported in every situation.
In this section we focus on the analysis of the nonlinear
conversion process in the crystal.

To simplify the analysis, we assume that the generated
waves in the three-wave mixing processes of the cascade
are operating in the linear-conversion regime (i.e., weak
interaction leading to nondepleting fundamental waves).
The linear interaction allows us to decompose the waves
to their temporal- and spatial-frequency domains, to treat
each frequency component individually, and to integrate
over the temporal and spatial bandwidths to get the out-
put waveform. By decomposing the waves, we may use
the monochromatic plane-wave solution of the wave-
mixing process. The plane-wave solution will be valid as
long as the nonlinear crystal is within the confocal pa-
rameter of the SDW. Since we are interested in high-
resolution processing, which has a short confocal param-
eter, the allowable crystal length will be limited, thereby
reducing the conversion efficiency. In general, there will
be a trade-off between the resolution and the conversion
efficiency, which is not within the scope of this study. We
express the spatially and temporally decomposed input
fields inside the nonlinear crystal, followed by a solution
to the coupled-wave equations under the nondepleting-
pump approximation. We calculate the phase-mismatch
terms in the appendix.

A. Decomposed Temporal and Spatial Fields Inside the
Nonlinear Birefringent Crystal
The spectrally decomposed field from the input temporal
channel is found by evaluating the Fourier integral of Eq.
(7), yielding

U1~x8; v! 5 p̃~v 2 v0!w̃H a

2pc Fvx8

af
1 ~v 2 v0!G J

3 expS 2j
2p

l

D

2 f
x8D

3 expF2j~v 2 v0!
aD

2c G , (22)

where the spatial FT of the input-pupil function, w̃( ),
has mixed space- and temporal-frequency variables, char-
acterizing the spatial dispersion, and we use t0
5 aD/2c. The spatial width of w̃ also defines the confo-
cal parameter, which limits our crystal length. The spa-
tial linear phase term in Eq. (22) determines the propa-
gation direction, owing to the spatial shift of the input
pupil by D/2. We denote the angle between the z axis
and the k vector of the propagating wave as u1
5 2D/2 f, using the paraxial approximation. The SDW
is incident upon the nonlinear crystal in the FT plane of
the lens. At the crystal interface, located at z8 5 0 (see
Fig. 1), the wave is refracted into the crystal in accor-
dance to Snell’s law. The SDW in the crystal, when ne-
glecting the Fresnel reflection at the boundary and ac-
counting for field attenuation in a higher-index material,
can be expressed as

Û1~x8; v! 5
p̃~v 2 v0!

Ano
~v!

w̃H a

2pc Fvx8

af
1 ~v 2 v0!G J

3 expS 2j
2p

l̂

D

2no
~v!f

x8D
3 expF2j~v 2 v0!

aD

2c G , (23)

where no
(v) is the refractive index for ordinary-polarized

light at frequency v, and the hat overscript denotes vari-
ables inside the crystal (e.g., l̂ 5 l/no

(v)). Note that the
linear phase terms of Eqs. (22) and (23) are equal in mag-
nitude, owing to the conservation of momentum in the x8
direction (i.e., kinematic condition). The propagation di-
rection inside the crystal is frequency dependent, owing
to the dispersive nature of the refractive index of the crys-
tal.

The mask containing the spatial-domain information
generates the field U2 in the FT plane, found by evaluat-
ing the Fourier integral of Eq. (9). For the purpose of
this analysis we model the spatial-information channel by
d (x 2 j), a Dirac delta function shifted from the center of
the information mask by the parameter j. The synthe-
sized waveform from an arbitrary mask m(x) is calcu-
lated by multiplying the delta-function response by m(j)
and integrating over the parameter j (yielding the convo-
lution integral). By use of the delta-function model the
first input spatial channel generates an extraordinary-
polarized plane wave with a single spatial frequency,

U2~x8, j; v1! 5 expF j
2p

l1
S D

2 f
2

j

f D x8G . (24)

The angle between the z8 axis and the propagation direc-
tion of this wave is denoted by u2(j) 5 (D/2 2 j)/f. The
refracted field in the crystal, Û2 , preserves the momen-
tum in the x8 direction and attenuates the field by the ex-
traordinary refractive index. Evaluating the propaga-
tion angle and k vector is complicated by the refractive-
index dependence on the propagation direction and is
performed in the appendix.

The second spatial channel, consisting of the delta
function at x 5 2D/2, generates an ordinary-polarized
plane wave in the Fourier plane of the processor. Evalu-
ating Eq. (11) and accounting for the refraction into the
crystal yields

Û3~x8; v1! 5
1

Ano
~v1!

expS j
2p

l̂1

D

2no
~v1!f

x8D , (25)

where no
(v1) is the ordinary refractive index at frequency

v1 . The angle between the z8 axis and the propagation
direction of the field before refraction is denoted by u3
5 D/2 f. The nonlinear interaction of the input fields
Û1 , Û2 , and Û3 is analyzed next.
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B. Solution of Coupled-Wave Equations Characterizing
Cascaded Processes
The general solution to the coupled-mode equations gov-
erning noncollinear three-wave processes can be very
complex.19 When we limit the analysis to weak interac-
tions with nondepleting input waves and slowly varying
functions in space and time (which holds for the SDW), an
analytic solution to the process is possible. Owing to the
nondepleting-wave approximation, only two differential
equations remain, which describe the evolution of the in-
termediate wave, Û int , generated by a frequency-sum
process, and the resultant output wave, Û4 , generated by
a frequency-difference process. Geometrical factors are
introduced to the coupled equations owing to the noncol-
linear arrangement (where we ignore the effect of the
walk-off angle between the k vector and the Poynting vec-
tor in the propagation of extraordinary-polarized fields in
an anisotropic crystal). We denote the angle between the
z axis and the k vector of the intermediate wave as û int
and the angle between the z axis and the k vector of the
output field as û4 (both defined inside the crystal). Both
these angles vary as a function of v and j (the dependence
is evaluated in the appendix). Neglecting absorption in
the crystal, the differential equations governing wave
mixing of monochromatic plane waves are given by20

dÛ int~x8, j, z; v!

dz

5 j
v0 1 v1

2 cos~ ū̂ int!

A m

« int
d

3 $Û1~x8, z; v 2 v1!Û2~x8, j, z; v1!

3 exp@ jDk ~1 !~v, j!z# 1 Û3~x8, z; v1!

3 Û4~x8, j, z; v 2 v1!exp@ jDk ~2 !~v, j!z#%, (26a)

dÛ4~x8, j, z; v!

dz

5 j
v0

2 cos~ ū̂4!

Am

«4
dÛ int~x8, j, z; v 1 v1!

3 Û3* ~x8, z; v1!exp@2jDk ~2 !~v, j!z#, (26b)

where d is the second-order nonlinear optical coefficient.
The right-hand side of the equations have been simplified
by substituting the center-frequency value for the
propagation-direction angles, ū̂ int and ū̂4 , the electric per-
mittivity and magnetic permeability, « and m, and the op-
tical carrier in the term preceding the nonlinear polariza-
tion. The phase-mismatch terms for the frequency-
sum and frequency-difference processes, Dk (1)(v, j) and
Dk (2)(v, j), respectively, are given by

Dk ~1 !~v, j! 5 k̂1~v! 1 k̂2~j! 2 k̂int~v, j!, (27a)

Dk ~2 !~v, j! 5 k̂3 2 k̂int~v, j! 1 k̂4~v, j!. (27b)

Figure 2 illustrates a graphical representation of the
phase-mismatch terms of Eqs. (27a) and (27b). The
equations describing the phase mismatch in the wave-
mixing processes are nonlinear. To simplify the phase-
mismatch representation, we perform a small-signal
analysis about v 5 v0 and j 5 0 and linearize the rela-
tionship. The details of the linearization process and
evaluation of the two phase-mismatch terms are pre-
sented in the appendix.

A simple analytic solution to the coupled differential
equations can be obtained by arguing that since the gen-
erated wave Û4 is weaker than the input waves, we can
neglect the second nonlinear polarization term in Eq.
(26a) (i.e., Û1Û2 @ Û3Û4). This assumption decouples
the differential equations, implying that the rate at which
the intermediate wave is depleted by the second process
of the cascade is much smaller than the rate at which it is
being generated. Therefore Eq. (26a) of the intermediate
field is dependent on the two known input fields and can
be solved directly. This solution is inserted into Eq. (26b)
describing the evolution of the output wave, which can
also be solved directly now, as the driving waves are com-
pletely characterized. The solution yields

Fig. 2. Graphical representation of the phase mismatch in non-
collinear mixing in an anisotropic crystal for (a) the upconversion
process and (b) the downconversion process.



1766 J. Opt. Soc. Am. B/Vol. 17, No. 10 /October 2000 Marom et al.
Û4~x8, j, z; v!

} Û1~x8; v!Û2~x8, j; v1!Û3* ~x8; v1!HNL~v, j, z !, (28)

where the complex transfer function, HNL(v, j, z), char-
acterizes the response of the cascaded wave-mixing pro-
cess and is given by

HNL~v, j, z ! 5
exp$ j@Dk ~1 !~v, j! 2 Dk ~2 !~v, j!#z% 2 1

@Dk ~1 !~v, j! 2 Dk ~2 !~v, j!#Dk ~1 !~v, j!

2
exp@2jDk ~2 !~v, j!z# 2 1

Dk ~1 !~v, j!Dk ~2 !~v, j!
. (29)

The complex transfer function of Eq. (29) depends on the
temporal-frequency component of the input pulse, on the
spatial frequency arising from the amount of shift j of the
delta function in the encoding mask, and on the length of
the nonlinear crystal. Since the complex transfer func-
tion is temporal-frequency dependent, the output wave-
form will not be transform limited. However, any pre-
dominant quadratic-phase term can be eliminated by
longitudinal adjustment of the output grating. Reintro-
ducing the encoding-mask information, the SDW of the
synthesized waveform at the edge of the crystal is defined
by

Û4~x8, Lc ; v! } Û1~x8; v!Û3* ~x8; v1!

3 E
j
m~j!Û2~x8, j; v1!HNL~v, j, Lc!dj,

(30)

where we replaced the interaction distance z by the thick-
ness of the crystal, Lc . To find the output temporal
waveform, Eq. (30) needs to be spatially Fourier trans-
formed to the output plane, diffracted from the output
grating, and inverse temporally Fourier transformed.
Equation (30) cannot be solved analytically except for the
most trivial cases, thus requiring a computation program
to calculate the precise space-to-time converted wave-
form. Such a program could also compute the conversion
efficiency, which will be information dependent.

For practical reasons it is desirable for the space-to-
time processor to operate efficiently. The conversion ef-
ficiency of the wave-mixing process with CSN can be cal-
culated with Parseval’s theorem, as the total power in the
spectral representation is equal to the total power in the
time domain. Since Eq. (30) defines the SDW of the syn-
thesized waveform, the power spectrum is equal to the
spatial intensity distribution at the output face of the
crystal. The power spectrum, or output intensity, can be
evaluated analytically for a simple mask such as m(x)
5 d(x), yielding

I4~x8; v! } P1P2P3up̃~v 2 v0!u2

3 Uw̃H a

2pc Fvx8

af
1 ~v 2 v0!G J U2

3 uHNL~v, 0, Lc!u2, (31)

where we introduce the optical powers P1 , P2 , and P3 of
the input temporal channel, the spatial-information chan-
nel, and the spatial reference channel, respectively, and
uHNL~v, 0, Lc!u2

5 S Lc

Dk ~1 !D 2Xsinc2H @Dk ~1 !~v, 0 ! 2 Dk ~2 !~v, 0 !#
Lc

2 J
1 sinc2FDk ~2 !~v, 0 !

Lc

2 G
2 2 sincH @Dk ~1 !~v, 0 ! 2 Dk ~2 !~v, 0 !#

Lc

2 J
3 sincFDk ~2 !~v, 0 !

Lc

2 GcosFDk ~1 !~v, 0 !Lc

2 GC. (32)

The transfer function will perform spectral filtering, as is
evident from Eq. (31). The conversion efficiency, defined
as the ratio of the powers of the output synthesized wave-
form to the input temporal channel, depends linearly on
the power level of each spatial pump channel. Our find-
ings were experimentally validated and are presented in
the following section.

4. EXPERIMENTAL RESULTS OF SPACE-TO-
TIME CONVERSIONS
The operation of the spatial–temporal processor of Fig. 1
was verified by synthesizing various ultrafast temporal
waveforms. In the experiments we used a commercial la-
ser system consisting of a Ti:sapphire ultrashort pulse os-
cillator and a regenerative amplifier. The system gener-
ates ultrashort laser pulses of 100-fs duration at a center
wavelength of 800 nm with an energy level of 1 mJ per
pulse. For the intense quasi-monochromatic light source
required by the spatial channels we used 90% of the emit-
ted output-pulse power and stretched the pulse to a
several-picosecond duration by a grating pair. The
stretched pulse was split into two beams for implement-
ing the two quasi-monochromatic spatial channels.
Since the CSN process occurs with a femtosecond-scale
time response, the slow temporal-frequency variation in
the stretched pulses does not affect the wave-mixing pro-
cess, as long as the temporal frequencies of the two spa-
tial channels are instantaneously equal. The remaining
10% of the short-pulse laser output power was used as the
reference ultrashort pulse in the input temporal channel.
The SDW U1 is generated by a 600-lines/mm blazed grat-
ing that provides an angular-dispersion parameter of a
5 0.48 and a lens of f 5 375 mm focal length. The
spatial–temporal wave mixing by the x (2) media was per-
formed in a 2-mm-thick type II b-barium borate crystal.
Several experiments were conducted to illustrate this
real-time processing technique, demonstrating its ability
to control amplitude and phase in the output temporal
waveform by a complex-amplitude spatial-information
channel.

All the synthesized waveforms were observed with a
real-time pulse-imaging setup.21 The pulse-imaging
technique generates a spatial signal at the output plane
that is proportional to the temporal convolution of the
synthesized waveform and a reference ultrashort pulse.
The reference-pulse source used in the pulse imager was
the residual input pulse of the spatial–temporal proces-
sor, after separating it from the synthesized output wave-



Marom et al. Vol. 17, No. 10 /October 2000 /J. Opt. Soc. Am. B 1767
form with a polarizing beam splitter. We viewed the out-
put signal’s intensity with a charge-coupled device and
extracted the temporal information from the image.

A. Conversion Efficiency and Spectral Response
For initial characterization of the spatial–temporal wave-
mixing process by CSN, the two monochromatic waves
were focused by cylindrical lenses to form line sources at
the input spatial channels. The resulting spatial plane
waves U2 and U3 interact with the SDW, U1 , of an input
transform-limited short pulse. Since the plane waves
contain no information, in either the space or the time do-
main, their function is to upconvert, then downconvert,
the carrier frequency of the SDW, generating by the CSN
process the new SDW U4 . The downconverted SDW U4
was generated only in the presence of the waves from the
two spatial channels, verifying that the output SDW is
produced by a CSN process.

The dependence of the synthesized waveform’s output
power to the optical power in each of the spatial channels
was characterized by placing variable neutral-density fil-
ters in the spatial channels (see Fig. 3). The linear de-
pendence of the output power to each spatial channel is
verified by the excellent fit to the 10-dB/dec line. When
both spatial channels’ powers are varied simultaneously,
the output power variation fits the 20-dB/dec line. The
linear dependence confirms our assumption of the nonde-
pleting pump approximation in Section 3. However, we
observed that the dependence is sublinear when the spa-
tial channels’ powers were weak. This effect is more pro-
nounced when only one of the spatial channels is attenu-
ated. We believe this is due to depletion of the
attenuated pump wave, as our analysis of Section 3 did
not take into account strong interaction that may lead to
such fundamental-wave depletion. The maximum con-
version efficiency of the space-to-time processor, mea-
sured as the ratio of the input-pulse optical power to the
output-pulse optical power, was 16%, illustrating the ad-

Fig. 3. Output power measurements as a function of spatial
pump-beam powers. Varying one spatial channel while keeping
the second constant illustrates the linear dependence of the out-
put temporal power on each spatial channel. Varying the power
of the spatial channels simultaneously displays a quadratic de-
pendence, as expected.
vantage of the CSN approach as opposed to conventional
x (3) nonlinearity for four-wave mixing.22

The power spectrum of the output pulse was compared
with that of the input pulse (see Fig. 4a). The observed
spectral narrowing is due to an increasing phase mis-
match as the frequencies deviate from the center fre-
quency. A theoretical curve of the expected output-pulse
power spectrum [based on Eq. (31)] shows a close corre-
spondence to the actual observed spectrum. The theoret-
ical curve was generated by evaluating the phase mis-
match for the two processes in the cascade with published
b-barium borate parameters23 for type II noncollinear in-
teraction with a 4° internal angle between the fundamen-
tal waves (assuming both processes are phase matched at
v 5 v0 and j 5 0). We adjusted the center frequency of
the theoretical curve to match the measured data. Ow-
ing to the reduction of the available bandwidth from spec-
tral filtering, we observed an accompanying increase in
the temporal duration of the output pulse (see Fig. 4b).
The measured full width at half-maximum of the detected
image in the time-to-space converter increased from 182
to 288 fs.

Fig. 4. (a) Measured power spectrum of the input pulse (solid
curve) and the generated output pulse (dashed curve) exhibiting
spectral filtering owing to a spectrally dependent phase mis-
match in the processor. Also shown is the theoretical output
power spectrum (dot-dash curve) calculated by applying the spec-
tral filter to the measured input power spectrum. (b) Pulse im-
ages of the input pulse (solid curve) and the generated output
pulse (dashed curve), demonstrating the increased duration of
the output pulse owing to spectral filtering.
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B. Packet of Ultrafast Pulses
Novel uses for bursts of ultrashort pulses, such as
terahertz-rate excitation and optical communication with
ultrashort data packets, have increased the interest in de-
veloping techniques for generation of such ultrashort-
pulse sequences. With the femtosecond-rate space-to-
time converter, such a pulse sequence can be generated
by a one-dimensional mask containing an array of point
sources. The mask information can be expressed by

m~x ! 5 (
n52N/2

N/2

And ~x 2 nDx !, (33)

where Dx is the fixed pitch between adjacent point
sources, and An is a scalar weight term that may be a bi-
nary bit (value of 1 or 0), a real number, or a complex
number. By use of this information mask in Eq. (21), the
temporal output signal takes the form

y~t ! 5 (
n52N/2

N/2

AndS t 2
v1

v0

a

c
nDx D ^ p~t !

5 (
n52N/2

N/2

AnpS t 2
v1

v0

a

c
nDx D . (34)

In the space-to-time mapping, the spatial pitch Dx in the
mask has been converted to a temporal separation of Dt
5 v1aDx/v0c.

Various masks containing narrow slits have been used
in the space-to-time setup to generate ultrafast pulse
packets. Previously, we reported results using a mask
with a 0.8-mm pitch.12 A finer mask with a 0.4-mm pitch
was used to generate a denser ultrafast pulse packet (see
Fig. 5). A cylindrical lenslet array was used to focus the
spatial beam into the mask for increased light through-
put. The spatial beam mode shape resulted in nonuni-
form power on each spatial slit. This power distribution
has been transferred to the ultrafast pulse packet. The
space-to-time mapping coefficient transforms the 0.4-mm
spatial pitch to a time-domain separation of Dt
5 0.64 ps (with v1 5 v0 and a 5 0.48). The

Fig. 5. 1.56-THz-rate ultrashort-pulse packet generated by a
spatial-information mask consisting of a sequence of point
sources separated by 0.4 mm.
measured temporal separation was 0.645 ps with a reso-
lution of 33 fs, resulting in a 1.56-THz-rate pulse packet.

C. Square Pulse
Generation of synthesized square pulses by spectral fil-
tering is not a simple task. The mask should contain am-
plitude information over a wide dynamic range as well as
phase information for implementing negative values.
Space-to-time mapping techniques simplify the task of
complex mask preparation, while the requirement for a
wide dynamic range in the recording medium remains.
In photorefractives, where the recorded space-charge field
is dependent on the modulation function, the recording
process exhibits a nonlinear dependence on the recording
beams. While this enables nonlinear processing,24 for
generation of high-fidelity square pulses a weak informa-
tion beam must be used, giving rise to shallow modulation
depths and low diffraction efficiency.

In our wave-mixing approach with CSN the amplitude
of the synthesized wave is dependent on the amplitudes of
the three input waves (as long as wave depletion and
phase mismatch are negligible). This linear relationship
gives rise to high-fidelity conversion from space to time.
In the case of a square pulse the synthesized signal may
be expressed as

y~t ! 5 rectS t

T D ^ p~t !, (35)

where T 5 v1aX/v0c is the duration of the rect function
and X is the width of the slit.

An adjustable slit was placed in the spatial-information
channel to experiment with several synthesized square-
pulse durations. The generated waveforms (see Fig. 6)
were modified in real time by changing the slit width, and
the square pulses were immediately observed with the
pulse imager on a monitor. At wide slit widths, nonuni-
formity across the top of the square pulse has been ob-
served. We have verified that the reason is due to non-
uniformity in the illumination of the spatial channel. An
image of the spatial-information channel in the space-to-
time processor matched well with the observed image of
the synthesized waveform in the time-to-space converter.
There are two limitations to the maximum slit width that
can be used: the resolution of the SPD [see Eq. (19)], and
the optical power from the tight focus of the spatial chan-
nel in the Fourier plane may exceed the damage thresh-
old of the nonlinear crystal.

D. Spherical Wave Front
To demonstrate the ability to encode phase information, a
point source, generated by focusing the spatial beam with
a cylindrical lens, was used as the spatial-information
channel. Translating the lens longitudinally away from
the input plane formed a spherical wave front with vari-
able quadratic phase on the input plane of the spatial-
information channel. As the translation of the line
source from the input plane is increased (in either the
positive or the negative direction), the output SDW ac-
quires a larger positive or negative quadratic phase and
after recomposing on the output grating, emerges as a



Marom et al. Vol. 17, No. 10 /October 2000 /J. Opt. Soc. Am. B 1769
chirped pulse (either a positive or negative chirp). The
measured synthesized chirped pulses exhibited, as ex-
pected, broader pulses along with a reduction of the peak
intensity.12

The effect of a longitudinal translation of the point
source away from the input plane of the processor is ex-
pressible as a convolution with a quadratic-phase
function25 (free space propagation), resulting in the field
distribution in the spatial-information channel,

m~x ! 5
exp~ jkz!

jl1z
expS jv1

c

x2

2z
D , (36)

where z is the displacement of the focus plane of the cy-
lindrical lens from the input plane of the processor. The
phase information described in Eq. (36) gives rise to the
synthesized waveform

y~t ! 5
exp~ jkz!

jl1z
expF jv1

c

S v0ct

v1a
D 2

2z
G

^ p~t !, (37)

which describes a chirp function (quadratic temporal-
frequency variation) imposed on the input pulse. A
Fourier-domain representation of the output synthesized
signal is easier to interpret in this case, yielding

ỹ~v! } expF2jS v 2 v0

v0
D 2 v1za2

c G p̃~v 2 v0!. (38)

From Eq. (38) it is clear that the amount of chirp is lin-
early dependent on the displacement z.

To measure the amount of chirp that is present in the
synthesized waveform, we utilize a unique property of the
pulse imager. Since the pulse imager generates the
complex-amplitude information of the temporal convolu-
tion operation in spatial coordinates, the resulting spatial
quadratic phase in the image of a chirped pulse can be
used to gauge the amount of chirp. By longitudinally
translating the output plane, a location can be found
where the wave focuses to its tightest spot size, eliminat-
ing the spatial quadratic phase.21 Therefore as the pulse
chirp is increased (either positively or negatively), the lo-

Fig. 6. Superimposed images of square pulses generated by
varying the width of a square aperture in the spatial channel.
cation of the plane at which the wave focuses changes (ei-
ther farther or closer). The spatial output signal of the
pulse imager can be expressed as21

b~x9! 5 pS 2a

c
x9D ^ yS 2

2a

c
x9D

5 pS 2a

c
x9D ^ pS 2

2a

c
x9D

^ expF jv1

c

S v0

v1
2x9D 2

2z
G , (39)

which corresponds to the convolution of the ultrashort
pulses with a quadratic-phase function. Using the ker-
nel of free-space propagation at frequency 2v0 ,
exp@ j(2v0 /c)(x92/2Z)#, where Z is the displacement from
the image plane, we seek the value of Z that will cancel
the quadratic-phase terms in Eq. (39). This value of Z
corresponds to the location where the signal focuses to its
tightest spot size. The value of Z is given by

Z 5 2
v1

v0

z

2
. (40)

This scaling rule is dependent on the ratio of the frequen-
cies used in the spatial and temporal channels of the
space-to-time converter and a factor of 2 owing to the
doubled-frequency output of the pulse imager.

We have verified experimentally the relation in Eq. (40)
by finding the location where the output of the pulse im-
ager focuses, for each translated location used in the spa-
tial channel of the space-to-time converter (see Fig. 7).
In our experiment the scaling rule reduces to 1/2 since
v1 5 v0 . Thus we have a correspondence between the
longitudinal translation of the line source in the input
spatial channel of the spatial–temporal processor and the
longitudinal translation of the focus plane of the pulse im-
ager.

Fig. 7. Linear correspondence between translation of the point
source away from the input plane of space-to-time converter and
translation of the image-formation plane in the pulse imager.
The solid line corresponds to a theoretical curve of slope 1/2.
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5. CONCLUSION AND DISCUSSION
We have introduced and experimentally demonstrated
femtosecond-rate space-to-time conversion of amplitude
and phase information from a quasi-monochromatic
spatial-image channel to an ultrafast temporal waveform.
Relative to other spatial–temporal processing techniques,
the CSN four-wave mixing approach provides
femtosecond-rate processing owing to the fast bound-
electron nonlinearity and high efficiency on account of a
relatively large x (2) coefficient. Such capabilities are re-
quired for quantum control experiments or ultrafast data
modulation in optical communications, where rapid, high-
fidelity waveform manipulations are required.

To model limitations imposed by phase-matching con-
siderations in the nonlinear wave-mixing process, we
have introduced a complex transfer function to character-
ize the system response. The phase mismatch in the
wave-mixing process arises from the broad temporal- and
spatial-frequency content of the input temporal-pulse and
spatial-image information, respectively. The transfer
function can be used to compute the precise space-to-time
converted waveform and assist in optimal selection of a
nonlinear crystal for real-time pulse shaping. The con-
version efficiency from the input reference pulse to the
output synthesized waveform was found to depend on the
power levels of the two spatial channels.

Several experiments were conducted to illustrate the
ability to convert amplitude and phase information from
the space domain to the time domain with high efficiency.
The spectrum reduction in the synthesized waveform ow-
ing to the complex transfer function was observed and
was in good agreement with the predicted spectrum. All
the experiments were conducted on a single-shot basis,
highlighting the benefit of processing with a fast nonlin-
ear effect.

The space-to-time conversion process that we have
demonstrated uses an identical quasi-monochromatic
light source in the two spatial channels. This require-
ment is typical for holographic processing, where the two
waves need to be mutually coherent during the long re-
cording phase. Since our processor is based on a real-
time four-wave mixing process, this requirement can be
alleviated. The necessary condition for a faithful signal
conversion by nonlinear wave mixing is that each of the
spatial channels be implemented with a monochromatic
light source, with no temporal bandwidth. With this con-
dition the nonlinear polarization term can be trivially cal-
culated [as we have done in Eqs. (12) and (13)]. It is
therefore feasible to perform wavelength tuning of the
synthesized temporal waveform by use of different optical
frequencies in the two spatial channels. The center fre-
quency of the synthesized temporal waveform is shifted
by the frequency difference of the two sources used in the
spatial channels. Since quasi-monochromatic light
sources are used in reality, we require that the coherence
time of the light sources be much longer than the time
window of the SPD (which is a very simple requirement to
satisfy). The propagation directions of the fields from the
two spatial channels may require adjustment, such that
the phase-matching condition is satisfied for the two pro-
cesses of the cascade. The hypothesized wavelength-
tuning property of the real-time four-wave mixing proces-
sor is unique to our space-to-time technique and cannot
be accomplished by holographic recording means.

APPENDIX A: EVALUATION OF
PHASE-MISMATCH TERMS
The output signal of the CSN process was shown in Sub-
section 3.B to depend on the phase-mismatch terms in the
coupled-wave equations characterizing the generation of
the new fields. The phase mismatch occurs since the
phase-matching requirement for efficient energy transfer
cannot be supported for the temporal bandwidth of the
SDW and the angular bandwidth of the spatial-
information channel. In this appendix we derive the
phase-mismatch terms for the two processes of the cas-
cade, using the information-channel model of a delta func-
tion shifted by an amount j. The phase-mismatch terms
obtained in this appendix are inserted into Eq. (29), de-
scribing the complex transfer function of the processor.

The first nonlinear interaction of the cascade, the
frequency-sum process, generates the intermediate wave,
Û int . (Note that all properties of the waves inside the
crystal are with the hat overscript.) The phase mismatch
of the first process of the cascade is defined by the vector
equation, Eq. (27a), where the phase mismatch must lie
in the z direction owing to the kinematic condition (con-
servation of momentum in the x8 direction). Since the in-
teracting waves are propagating at very small angles
relative to the z axis, we can use the paraxial approxima-
tion (note that Fig. 2 shows greatly exaggerated angles),
simplifying the phase-mismatch expression to the sum of
the k-vector magnitudes, i.e., Dk (1)(v, j) > k̂1(v)
1 k̂2(j) 2 k̂ int(v, j). We next find these k-vector mag-
nitudes for evaluation of the first phase-mismatch term.

The first input wave, Û1 , from the input temporal
channel, is polarized parallel to the crystal’s ordinary
axis. Therefore the wave-vector magnitude is indepen-
dent of its propagation direction and is given by k̂1(v)
' k(v0) 1 (]k/]v)(v 2 v0). To find the wave-vector
magnitude of the intermediate wave, Û int , and its propa-
gation direction, we apply the kinematic condition using
the paraxial approximation, yielding

k̂ int~v, j!û int~v, j! 5 k̂1~v!û1~v! 1 k̂2~j!û2~j!

5 k1~v!u1 1 k2u2~j!, (A1)

where the second equality results from invoking the kine-
matic condition on the input fields across the crystal in-
terface. (Before refraction into the crystal, u1 is not fre-
quency dependent, as all the components propagate in the
same direction [see Eq. (22)], and the magnitude of k2
does not vary with the shift of in j, as it is a quasi-
monochromatic wave.) To analyze the effect of varying
the parameters Dv 5 v 2 v0 and j, we perform a small-
signal perturbation about v 5 v0 and j 5 0 by defining
the following:

k̂ int~v, j! 5 k̄̂ int 1 Dk̂ int ,

û int~v, j! 5 ū̂ int 1 Dû int ,
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k1~v! 5
v0

c
1

Dv0

c
,

u2~j! 5
D

2 f
2

j

f
, (A2)

where k̄̂ int and ū̂ int are the k-vector magnitude and angle
of propagation, respectively, for the intermediate wave
evaluated at v 5 v0 and j 5 0. Inserting the perturbed
expressions into Eq. (A1), neglecting second-order terms
of the form Dk̂ intDû int , and simplifying the expression by
removing the constant terms that satisfy the equality on
both sides of the equation yields

Dk̂ intū̂ int 1 k̄̂ intDû int 5 2
D

2 f

Dv

c
2

v1

c

j

f
, (A3)

where we used u1 5 2D/2 f and k2 5 v1 /c. We can
further simplify the expression by setting Dk̂ int

5 (]k̂ int /]v)Dv 1 (]k̂ int /]u)Dû int , resulting in

Dû int 5 2

D

2 fc
1 vg –int

21 ū̂ int

]k̂ int

]u
ū̂ int 1 k̄̂ int

Dv 2

v1

cf

]k̂ int

]u
ū̂ int 1 k̄̂ int

j, (A4)

where we used the definition of the group velocity, vg –int

5 (]k̂ int /]v)21. Using this result, we can express the k
vector of the intermediate wave as

k̂ int~v, j! 5 k̄̂ int 1 S vg –int
21 2

]k̂ int

]u

D

2 fc
1 vg –int

21 ū̂ int

]k̂ int

]u
ū̂ int 1 k̄̂ int

D
3 ~v 2 v0! 2

]k̂ int

]u

v1

c

]k̂ int

]u
ū̂ int 1 k̄̂ int

j

f
. (A5)

The term ]k̂ int /]u is evaluated by @(v0 1 v1)/c#

3 (]ne
(v01v1)/]u), where the rate of change of the extraor-

dinary refractive index at angle ū̂ int can be found by dif-
ferentiating the equation governing the refractive-index
dependence on angle u of an anisotropic crystal.26

Next, we find the k-vector properties of the wave from
the spatial-information channel, Û2 , which is also polar-
ized in the direction of the extraordinary axis. Since this
wave is quasimonochromatic, the propagation direction
inside the crystal determines the wave-vector magnitude.
We find the propagation direction by using the kinematic
condition across the crystal interface together with a
small-signal perturbation, yielding
k̂2~ û2!û2 5
v1

c
ne

~v1!
@ û2~j!#û2~j!

>
v1

c
~n2 1 Dn2!~ ū̂2 1 Dû2!

5
v1

c S D

2 f
2

j

f D , (A6)

where ū̂2 is the angle between the propagation direction
and the z axis for no spatial shift of the delta function.
By neglecting second-order terms of the form Dn2Dû2 ,
and expressing the index change as Dn2

5 (dne
(v1)/du)Dû2 , we find

Dû2 5

2
j

f

n2 1 ū̂2

dne
~v1!

du
U

u5ū̂2

, (A7)

where the derivative of the refractive index can again be
calculated.26 The k vector of the field is given by v1(n2
1 Dn2)/c, yielding

k2~j! >
v1

c
ne

~v1!
~ ū̂2! 1

v1

c

dne
~v1!

du
U

u5û
¯

2

3

2
j

f

ne
~v1!

~ ū̂2! 1 ū̂2

dne
~v1!

du
U

u5û
¯

2

. (A8)

Fig. 8. Illustration of phase mismatch owing to broad temporal
bandwidth (spatially dispersed along x8) and angular bandwidth.
The vector sum of the two fundamental waves generates a
k-vector front that is compared with the available k-vector front
of the frequency-sum wave. Exact phase matching is possible at
each temporal frequency with different components of the spatial
angular bandwidth.
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The phase mismatch of the first process of the cascade is
therefore found by combining the expressions for the
wave-vector magnitudes, resulting in

Dk ~1 !~v, j!

5 k̂1~v! 1 k̂2~j! 2 k̂ int~v, j!

5 Fv0

c
no

~v0!
1

v1
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ne

~v1!
~ ū̂2! 2

v0 1 v1

c
ne

~v01v1!
~ ū̂ int!G

1 S ng21
21 2 ng2int

21 1
]k̂ int

]u

D

2 fc
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]u
ū̂ int 1 k̄̂ int

D
3 ~v 2 v0! 1 F 2

v1

c

dne
~v1!

du
U

u5û
¯

2

ne
~v1!

~ ū̂2! 1 ū̂2

dne
~v1!

du
U

u5û
¯

2

1

]k̂ int

]u

v1

c

]k̂ int

]u
ū̂ int 1 k̄̂ int

G j

f

[ Dk ~1 !~v0 , 0 ! 1
]Dk ~1 !

]v
~v 2 v0! 1

]Dk ~1 !

]j
j. (A9)

The constant term of the phase mismatch is set to zero by
proper crystal selection, cut, and orientation set to satisfy
the phase-matching condition for the center frequency v0
and without spatial offset j. Figure 8 graphically illus-
trates the difference between the vector sum of k̂1(v)
(spatially dispersed in the x8 direction) and k̂2(j) (broad
spatial bandwidth at every location) and k̂ int(v, j) (avail-
able wave vectors that the crystal supports).

The calculation of the phase-mismatch term is repeated
for the second interaction of the cascade, the frequency-
difference process, which generates the output wave, Û4 .
By reasoning of the paraxial approximation the phase
mismatch of the second process of the cascade is again an
equation with wave-vector magnitudes, i.e., Dk (2)(v, j)
5 k̂3 1 k̂4(v, j) 2 k̂ int(v, j). The magnitude of the
wave vector from the second spatial channel is v1no

(v1)/c,
as the quasi-monochromatic wave is polarized in the di-
rection of the crystal’s ordinary axis. The wave-vector
properties of the output wave are calculated with the ki-
nematic condition, yielding

k̂4~v, j!û4~v, j! 5 k̂ int~v, j!û int~v, j! 2 k̂3û3

5 k1~v!u1 1 k2u2~j! 2 k3u3 , (A10)

where Eq. (A1) was used to simplify the expression. A
small-signal perturbation about v 5 v0 and j 5 0 is per-
formed on Eq. (A10) to analyze the effect of the temporal
and angular bandwidths. Using Dk̂4 5 (]k̂4 /]v)Dv
1 (]k̂4 /]u)Dû4 , neglecting second-order terms of the form
Dk̂4Dû4 , and simplifying the resulting expression, we ob-
tain

Dû4 5 2

D

2 fc
1 vg24

21 ū̂4

]k̂4

]u
ū̂4 1 k̄̂4

Dv 2

v1

c

]k̂4

]u
ū̂4 1 k̂4

j

f
. (A11)

The similarity between the expressions describing the
perturbation angles Dû int and Dû4 [Eqs. (A4) and (A11)]
arises from the identical dependence on the variational
parameters on the right-hand sides of Eqs. (A1) and
(A10). The wave-vector magnitude of the output field is
expressed by

k̂4~v, j! 5 k̄̂4 1 S vg24
21 2

]k̂4

]u

D

2 fc
1 vg24

21 ū̂4

]k̂4

]u
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D ~v 2 v0!

2

]k̂4

]u

v1

c

]k̂4

]u
ū̂4 1 k̄̂4

j

f
. (A12)

The phase mismatch of the second process of the cascade
is therefore given by

Dk ~2 !~v, j!

5 k̂3 1 k̂4~v, j! 2 k̂ int~v, j!
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(A13)

The constant term of the phase mismatch in the second
process can be shown to be nonzero by use of the phase-
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matching condition from the first process of the cascade.
The resulting constant phase mismatch is given by

Dk ~2 !~v0 , 0 ! 5
v0

c
@ne

~v0!
~ ū̂4! 2 no

~v0!
#

2
v1

c
@ne

~v1!
~ ū̂2! 2 no

~v1!
#. (A14)

The phase mismatch is caused by the crystal’s birefrin-
gence. The two quasi-monochromatic spatial waves,
which copropagate in free space, have different propaga-
tion directions inside the crystal since each wave experi-
ences a different refractive index. Therefore the second
process cannot be phase matched for the center temporal-
and spatial-frequency components. However, the loca-
tion of the point source in the second spatial input chan-
nel [see Eq. (10)] can be slightly shifted in experiment
from 2D/2, such that the second process is also phase
matched and high conversion efficiency is achieved. This
results in a small propagation-angle offset between the
residual wave U1 and the output wave U4 , which is ex-
pected owing to the kinematic condition and was observed
in our experiments.

Evaluation of the various propagation angles inside the
crystal and the crystal properties at these angles are re-
quired for determining Dk (1) and Dk (2), which are used in
conjunction with the nonlinear conversion analysis of Sec-
tion 3.
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