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Abstract: We investigate and analyze temporal soliton interactions with a 
dispersive truncated Airy pulse traveling in a nonlinear fiber at the same 
center wavelength (or frequency), via split step Fourier numerical 
simulation. Truncated Airy pulses, which remain self-similar during 
propagation and have a ballistic trajectory in the retarded time frame, can 
interact with a nearby soliton by its accelerating wavefront property. We 
find by tracking the fundamental parameters of the emergent soliton—time 
position, amplitude, phase and frequency—that they alter due to the 
primary collision with the Airy main lobe and the continuous co-
propagation with the dispersed Airy background. These interactions are 
found to resemble coherent interactions when the initial time separation is 
small and incoherent at others. This is due to spectral content repositioning 
within the Airy pulse, changing the nature of interaction from coherent to 
incoherent. Following the collision, the soliton intensity oscillates as it 
relaxes. The initial parameters of the Airy pulse such as initial phase, 
amplitude and time position are varied to better understand the nature of the 
interactions. 
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1. Introduction 

Airy wave packets were first introduced in the context of quantum mechanics as a curiosity 
[1], exhibiting a solution to the Schrödinger equation which both maintains its form and 
continuously accelerates, in opposition to conventional wisdom. However, such Airy beams, 
as well as Bessel beams which share the former distortionless property, are not physically 
realizeable as these beams contain infinite energy. Truncation of Bessel beams has long been 
a strategy for utilizing so-called non-diffracting beams [2,3], yet this solution has not been 
applied to Airy beams until recently [4–6]. These truncated Airy beams are experimentally 
easy to create, by applying a cubic phase mask across a Gaussian beam in the Fourier plane, 
and maintain the unique attributes of acceleration and self-similarity over an extended 
propagation range (eventually succumbing to diffraction). These unique attributes and 
experimental ease have sparked much interest as applicable to several fields of study and are 
now the topic of research for many research groups. Spatially truncated Airy beams have 
been applied in creating curved plasma channels [7], particle clearing [8], plasmonic energy 
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routing [9], and are capable of recovering from spatial obscurations due to their energy 
redistribution mechanism [10], making them useful for imaging in scattering media [11]. 

Since the spatial diffraction equation of light and the temporal dispersive equation are 
isomorphic, the attributes of spatial Airy beams can be directly translated to temporal Airy 
pulses. Such truncated Airy pulses are produced by impressing a cubic spectral phase onto an 
incident pulse by either pulse shaping techniques [12] or propagation in cubic dispersive 
media (at the zero dispersion wavelength) [13]. The resulting Airy pulse can propagate further 
without broadening in quadratic dispersive media (normal or anomalous), leading to spatially 
and temporally confined pulses or light bullets [12,14]. Airy pulses can be engineered to 

collide in time and space, resulting in significant peak power enhancements [15]. 
In the presence of optical nonlineaties, such as the intensity dependent Kerr effect, the 

Airy waveform is no longer an analytic solution of the Nonlinear Schrödinger equation 
(NLSE). The main Airy lobe, where the peak power is the highest, experiences greater 
amount of self-phase modulation leading to self-focusing or trapping. At relatively low 
powers, this enables the Airy beam to propagate further [16], and as powers increase the 
formation and shedding of solitons and even multiple-solitons can be observed [17]. Identical 
soliton shedding behavior has been observed for Airy pulses in the time domain [18]. Airy 
beams can also be created and switched by parametric processes in engineered quasi-phase-
matched (QPM) media [19], and fine Airy spatiotemporal control in high-harmonic 
generation can be obtained in QPM structures [20]. While Airy beams/pulses do not maintain 
their shape in the presence of an optical potential created by the Kerr effect, solitons do. 
Solitons are an analytic, stable solution to the nonlinear Schrödinger equation [21–23], and 
consist of a self-similar yet non-accelerating beam (or pulse), balancing self-focusing against 
diffraction (or dispersion). Solitons have been extensively studied in both the spatial [24] and 
temporal domains [25], the latter out of interest for application in optical communications 
[26,27]. These studies have included soliton interactions, both coherent [21,28,29] 
(interactions between successive pulses in a bit stream) and incoherent [27,30] (collisions 
between pulses of different wave division multiplexing (WDM) channels, due to group 
velocity mismatch), and soliton perturbations from the stable solution [31–39]. These 
collision and perturbation effects play a decisive role in establishing the limit of soliton-based 
optical communications [27]. Research of spatial solitons in χ

(3)
 media, with coherent and 

incoherent light, and collisions and interaction between spatial solitons have also been 
investigated [24]. Interestingly, spatial solitons and interactions are also supported in χ

(2)
 

media, by coupled waves via parametric processes [40,41]. 
In this work, we are interested in investigating the interactions between weak Airy pulses, 

which propagate according to the linear medium characteristics as their peak power is low, 
and stable soliton pulses at the same carrier frequency. We place them in proximity to each 
other, yet initially non-overlapping, with the Airy acceleration direction towards the soliton. 
Since the soliton is a stationary pulse, the weak accelerating Airy pulse propagates towards 
the soliton and begins interacting with it. We are interested to study whether the soliton will 
behave as an impenetrable barrier (as an event horizon) [42]—or rather analogously a 
shepherding pulse [43]—or whether the Airy probe can control the soliton propagation 
parameters [34], or as a collision perturbation [32], albeit the Airy can potentially have 
infinite energy (if non-truncated). 

2. Airy-soliton interactions 

The Airy-soliton interactions can be analyzed in either the spatial or temporal domain. We 
choose to perform the analysis in the temporal, due to a reduction of a spatial degree of 
freedom, making the analysis easier and faster to perform. However, any conclusions derived 
in the temporal domain can be applied to the spatial domain. Temporal waveform evolution is 
governed by the NLSE, expressed here in normalized coordinates [23] 
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where ξ and τ are the propagation distance and retarded time coordinates. Before proceeding 
to the interaction study, we review first the fundamental soliton and Airy pulse 
characteristics. 

2.1 Temporal Airy pulse definition 

Truncated temporal Airy pulses can propagate in a dispersive media, such as a single mode 
optical fiber, with a ballistic wavefront trajectory, but with respect to a retarded time frame, 
and remain quite resilient to dispersion effects when propagating in the linear regime (under 
low intensity). In the linear regime (dropping the potential term of Eq. (1), an input Airy pulse 

defined by ( 0, ) Airy( )exp( )
A

u aξ τ τ τ= =  evolves as: 

 ( )
( )2322

12 2
,

2 2
Airy exp expA

aa
u aia i

τ ξξξ ξ
ξ τ τ ξ τ

+        − −                 
= − − +  (2) 

where τ is the normalized retarded time variable, defined as
g

t vτ ξ= −  (t is the lab time, and 

vg is the group velocity at the carrier frequency), ξ is the normalized distance variable and a is 
the truncation coefficient (the signs of the imaginary terms are opposite to those in references 
[4–6] to ensure that for a positive quadratic dispersion coefficient we will have normal 
dispersion due to a sign difference between the paraxial equation found in references [4–6] 
and the dispersion equation found in [23]). In Eq. (2) the Airy function’s argument has 
quadratic dependence on ξ which gives rise to the ballistic trajectory property. Figure 1(a) 
shows an intensity plot for the nonlinear propagation of a truncated Airy pulse in an 
anomalous dispersion fiber with zero loss and low peak intensity to propagate in the quasi-

linear regime. To demonstrate the resilience to dispersion [12], Gaussian pulses travel 3 Ld 

(where Ld is the dispersion length) before the peak intensity is reduced by half, whereas an 
Airy pulse can travel several dispersion lengths; for example, an Airy pulse with a = 0.05 
(0.005) truncation coefficient can propagate 5.5Ld (16.7 Ld) before the peak intensity is 
reduced by half. 

2.2 Temporal soliton pulse definition 

The NLSE (Eq. (1) supports the well known fundamental soliton solution. For an initial 

condition: ( 0, ) sech( )
S

u ξ τ τ= = , the propagated field is described by: 

 ( ) ( ), sech( ) exp / 2
S

u iξ τ τ ξ=  (3) 

which is stationary and self-similar in propagation (Fig. 1b). 
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(a) Airy (b) Soliton 

 

Fig. 1. Intensity plots for nonlinear propagation of (a) a weak truncated Airy pulse (a = 0.005), 
and (b) a normalized Soliton both to 20 Ld. Insets show launched intensity distributions. 

2.3 Airy-soliton interactions 

The unique ballistic propagation feature of the Airy pulse gives it the ability to accelerate or 
decelerate (depending on the tail direction) and allows for interactions (collisions) between 
pulses having the same center frequency. By positioning the Airy pulse at a time separation 
away from the soliton, enables the Airy with the ballistic path to cross and interact with the 
soliton. We demonstrated these interactions through numerical simulations using the Split 
Step Fourier Method (SSFM) with a time window of 1300 time units divided to 32768 
sampling points, and propagated to a distance of 100 soliton periods (157Ld units, where Ld = 
1 in the normalized NLSE) with 1500 output inspection distances (not to be confused with the 
SSFM simulation step size which is less then one thousandth of Ld). Insight from the well 
known soliton-soliton [21,23,28,29] and soliton-continuous wave (CW) [31,34–36] 
interactions is applied to better understand the observed phenomena. From soliton 
perturbation theory, it is known that the perturbing pulse relative phase, amplitude (or total 
energy), initial time separation and frequency offset (difference in group velocities) play a 
role in the outcome of the interaction; thus in our simulations we vary these initial parameters 
of the perturbing Airy pulse to take them into consideration. Moreover, the perturbations 
affect the fundamental soliton parameters, namely the soliton phase, time position, amplitude 
and frequency. Consequently the launched initial conditions are (Fig. 2a): 

 ( ) ( ) ( )0 0
( 0, ) sech Airy( ) exp( )expu r a iξ τ τ τ τ τ τ θ= = + − −  (4) 

The varied parameters in Eq. (4) are the amplitude ratio r between the Airy pulse and the 
soliton (normalized), the initial Airy time position τ0 with respect to the soliton (launched at 
zero), and the relative phase θ of the Airy pulse. We choose r such that at the point of 
collision the peak intensity ratios between the accelerated Airy lobe and the soliton will be 8, 
4, 2, 1 and 0.5 percent (note that the Airy peak intensity at collision is already attenuated with 
respect to launched conditions on account of the truncation and dispersive propagation). 
These low Airy interference values ensure that the Airy will propagate in the quasi-linear 
regime and can be treated as a perturbation of the soliton [32]. The minimal time separation 

of τ0 = −6 is chosen to achieve at least a −30dB dip between the Airy and soliton at our time 
sampling (Fig. 2b), to ensure essenitially no initial overlap and interaction. We also choose a 
small enough truncation coefficient (a = 0.005), which guarantees that the peak collision 

intensity of the Airy launched at our largest separation (τ0 = −10) will not be less then 95% of 

that launched at the smallest separation (τ0 = −6) for every chosen launched amplitude. Hence 
all the Airy pulses have the same energy for a given r value and only a small variation in peak 
intensity at the point of collision. 
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Fig. 2. Exemplary initial launch conditions composed of both the Airy (a = 0.005, 8% intensity 

at collision, τ0 = −6) and the normalized Soliton. (a) linear scale, (b) dB scale (the variation in 
dip values is an artifact of the sampling). 

3. Simulation results 

Exemplary Airy-soliton interactions are shown in Fig. 3, launched at a time separation of 10 

time units (τ0 = −10) and an intensity ratio of 8% for two relative phases (0 and π). The 
propagating Airy decelerates (wavefront moves to later time) to collide with the trailing 
soliton pulse. The collision distance is given by: 

 04( )Soliton peak off setξ τ τ τ= − +   (5) 

where τSoliton is the soliton time position (in our case τSoliton = 0) and τpeak offset is the offset of the 
main Airy peak with respect to the Airy delay time τ0 (τpeak offset is numerically calculated for a 

given truncation, e.g. 1.014
peak offset

τ ≈ for a = 0.005). The interaction can be separated to two 

regimes of interest: the primary collision region between the pulses (occurring at 
approximately 3<ξ<15, for our selected initial time separations), responsible for the main 
variation in the fundamental soliton parameters of phase, amplitude, frequency and time 
position, and a relaxation region accompanied by continuous interaction with the dispersed 
Airy tail (occurring at ξ>15). During the primary collision (3<ξ<15) both pulses lose their 
identities and cannot be distinguished [35] due to interference throughout the collision region 
[37]; however as the Airy wavefront moves towards later times the pulses reform and emerge 
having perturbed parameters. Since the truncated Airy pulse has the same center frequency 
and must maintain its first moment, it never completely crosses over the soliton; however the 
wavefront consisting of the main lobe, which has been designed to maintain its identity within 
the collision range, and subsequent lobes, do cross the soliton. (The Airy with our truncation 
coefficient of a = 0.005 was designed to decay to half peak power at ξ = 16.7, beyond the 
collision zone.) Therefore, the Airy-soliton interactions are classified as incomplete collisions, 
defined as having either an initial temporal overlap or a terminal overlap after the collision 
(the latter occurring in our case), as opposed to complete collisions, (i.e. full crossing of the 
pulses achievable through non overlapping bandwidths and GVD [27,32,35]). These complete 
collisions, as present in WDM collisions, are known to be independent of relative phase and 
do not undergo a permanent frequency change after collision. Consequently, our findings 
show that the soliton undergoes a permanent frequency shift in some cases (Fig. 4 

demonstrates the most extreme case for τ0 = −6), and that the interaction (and frequency shift) 
is strongly dependent on relative phase, as in coherent soliton-soliton [23,27] and soliton-CW 
[31] interactions. 
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Fig. 3. Airy-Soliton interactions with an initial separation of 10 and intensity ratio of 8% at 

collision for two phases. (a) θ = −π, (b) θ = 0 

Time

D
is

ta
n

ce

 

 

-15 -10 -5 0 5 10 15

20

40

60

80

100

120

140 θ=−π/2 

Time

D
is

ta
n

ce

 

 

-15 -10 -5 0 5 10 15

20

40

60

80

100

120

140 θ=π/2 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

Fig. 4. Airy-Soliton interaction with τ0 = −6 and 8% intensity ratio showing a permanent 

frequency change when (a) θ = −π/2, and (b) θ = π/2 over 157 Ld units (100 soliton periods). 

An analysis of soliton-soliton collisions in WDM systems and coherent soliton 
interactions is carried in [27], offering an explanation for the dependence on relative phase or 
the lack of it based on perturbation theory developed by Haus et. al. [32,33]. The derivation 
distinguishes between coherent and non-coherent interaction. For example, soliton-soliton 
collisions in a WDM system are regarded as incoherent interactions. The perturbation term 
taken into account in this case is only the cross phase modulation (XPM); the remaining terms 
originating from the NLSE nonlinear response are neglected due to rapid beating that average 
out to zero [27]. However, in the coherent derivation (i.e. soliton-soliton coherent 
interactions) the beat term between the two waveforms is taken into consideration. 

Our investigative case bears similarity to coherent interactions at times, especially 
pronounced at closer initial separation while at other times the interaction is more incoherent 
in nature, when the initial separation is large and the spectral repositioning by dispersion 
results in interaction between waveforms with a reduced spectral overlap. This distinction can 
be better understood by observing the Airy pulse evolution in time-frequency space as a 
function of propagation distance. Figure 5 shows the spectrogram (time-frequency space) of 
an evolving Airy pulse at different propagation distances (which basically shears the Airy 
spectrogram), demonstrating the spectral repositioning and the amount of spectral overlap of 
the colliding wavefront with the soliton. (The soliton's stationary time-frequency signature is 
denoted by the green ellipse.) A more significant spectral overlap between soliton and Airy at 

point of collision is observed for an initial separation of τ0 = −6 (compare middle column 
spectrograms in Fig. 5). Upon further propagation, the soliton propagates with quasi-CW light 
background from the dispersed Airy, demonstrated by the spectral overlap found in the right 
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column in Fig. 5. As the propagation distance grows this dispersed background radiation 
becomes more monochromatic and approaches the same carrier frequency as the soliton. The 
continuous interaction results in oscillations of the solitons frequency and amplitude and 
therefore both the time position and phase will oscillate and gradually decay [31]. 
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Fig. 5. Spectrogram of the Airy pulse at three selected distances for two initial separations; 

upper row: τ0 = −6, lower row: τ0 = −10. Left column: launch condition, center column: at 
collision distance (5.29 Ld units and 6.63, respectively), right column: at distance where Airy 
wavefront is at a temporal shift of twice the initial time separation (7.49 Ld units and 9.38, 
respectively). Green ellipse denotes the Soliton extent over time and frequency. 

4. Analysis 

To better quantify the simulation results from Figures such as 3 and 4, we track the soliton 
fundamental parameters from the SSFM results. The launched soliton prior to collision (ξ<3) 
and the perturbed emergent soliton (ξ>15) can be identified from the simulation results. 
However, during the collision event we cannot extract any useful information throughout, as 
the soliton is indistinguishable. 

We extract the emergent soliton characteristics from the numerical results and not resort 
to the well-developed perturbation theory analysis, as the Airy-soliton interaction case is 
incomplete. Perturbation theory analysis requires the interaction to be complete and that the 
perturbation spectrum not exceed that of the soliton, neither of which holds for our Airy-
soliton pulse case. 

To derive high resolution emergent soliton parameters devoid of sampling effects, we 
locate the intensity peak at each propagation distance, select a sufficient number of intensity 
samples around the peak value, and then apply a sech(•)

2
 intensity profile fit to the selected 

samples. The fit quality is excellent. The benefit of this procedure is that it allows us to 
construct a continuous soliton intensity profile with respect to time at a given distance, from 
which we extract the intensity, time position, and temporal width at high resolution and with 
no discretization effects. This procedure generates smoothly varying curves for the 
fundamental soliton parameters' evolution. (The soliton phase is directly extracted from the 
field sample with the strongest peak intensity.) 
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Fig. 6. Soliton intensity oscillations. (a) Intensity oscillation (intensity ratio of 8% and τ0 = 

−6). Also shown envelope fit of the form 1 z , (b) Mean intensity of the oscillations with a 

sinusoidal fit, (c) dependence with respect to the Airy's initial phase for all the time separations 
(intensity ratio of 8%), (d) Mean intensity for all separations with at 8% intensity ratio for the θ 
= 0, (with a second order polynomial fit; behavior predominantly linear) . 

Soliton power 

The soliton peak power behavior is analyzed along the propagation range and is charted in 

Fig. 6a for the closest Airy-soliton separation (τ0 = −6), highest Airy power (8%) and for two 
representative relative phases (0, π). The emergent soliton exhibits peak power oscillations 
that are dependent on the colliding Airy pulse phase. We further see that the two curves are 
vertically displaced, indicating a different mean soliton intensity (both oscillate nearly about 
the launched (original) soliton peak power). We next chart the mean peak soliton intensity for 

different initial Airy phases and launched powers at τ0 = −6 (see Fig. 6b). (The mean soliton 
intensity is calculated far from collision, by establishing soliton power and background power 
from the maximum and minimum interference values. These interferences are due to the 
soliton’s natural SPM.) We observe sinusoidal dependence on the initial Airy phase for all 
powers, indicating an energy transfer between the pulses during the primary collision [33]. 

Similar sinusoidal behavior is observed at larger time separations (i.e., τ0 = −8 and τ0 = −10), 
albeit at a lesser magnitude (Fig. 6c shows mean intensity fluctuation only at the 8% collision 
intensity for clarity). Since the overall colliding energy is the same, regardless of initial time 
separation (i.e., all energy contained in the Airy's delayed lower frequency components), the 
less pronounced effect at larger initial separations demonstrates that with greater time 
separation a more incoherent collision between soliton and the Airy occurs due to a larger 
frequency offset at collision event (as previously explained by spectrograms). For the largest 
time separation we find that the mean intensity is nearly unchanged, while for the shortest 
time separation the mean intensity is predominantly linearly dependent on Airy amplitude. 
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This linear relationship between mean soliton energy change and perturbation amplitude is 
another indication of coherent interaction behavior (Fig. 6d). 

We also see the intensity oscillations decay in magnitude along the propagation as the 
soliton relaxes. The functional form of the decay is in agreement with [37–39] that states that 
within the region of the asymptotic solution the non-soliton part decays as ξ 

-1/2
 (Fig. 6a). The 

period between oscillations varies slightly from one oscillation to another (on account of the 
dispersed Airy background center frequency approaching that of the soliton), converging 
towards a constant period of 4π distance units (corresponding to the distance over which a 
soliton accumulates 2π phase), as the soliton propagates away from the collision region. The 
beating comes from the interference between the soliton SPM with the dispersed, now quasi-
CW, Airy background. 

Soliton time position and center frequency 

We next track the soliton change in time position (e.g. Figure 3, θ = −π). Solitons experience 
time position change through local frequency changes during the collision and permanent 
frequency changes which map to time position alterations by group velocity dispersion 
(GVD) [26,33–36]. Figure 7 plots the soliton time shift for several phases at collision with 

8% Airy pulses for each of the three investigated time separations (τ0 = −6, −8, −10). The 
most prominent feature is a soliton permanent frequency change after the main collision, 
which occurs after the collision with the Airy’s wavefront and is much more pronounced at 
closer initial time separations. The frequency change is also strongly dependent on relative 
phase between the Airy and soliton, and can be positive or negative (soliton travels slower or 
faster, respectively). As the propagation progresses, the time shift oscillates about the time 
shift induced solely by the permanent frequency change. These oscillations are attributed 
again to the ongoing propagation through the dispersed Airy and are dependent on its 
amplitude and frequency detuning [31]. All solitons also experience a discrete time shift after 
the primary collision, which appears weakly dependent on the initial time separation and 
phase. 
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Fig. 7. Soliton time shift for all initial separations with an 8% intensity ratio for selected 

phases. (a) τ0 = −6, (b) τ0 = −8, (c) t0 = −10. Note that the scale of the time shift is not identical 
in all three cases. 

We find the permanent frequency change experienced by the soliton by applying a linear 
fit to each trace in Fig. 7 (the fit is performed from about mid propagation distance up the 
end), where the slope represents the frequency change. The frequency change is dramatically 

stronger for closer time separations (Fig. 8a, for θ = −π/2 at which a large positive frequency 
change is observed for all separations), while for larger separations the frequency change 
eventually disappears. This behavior is in line with our previous finding that at small initial 
separations the collision has coherent interaction characteristics, while for larger separations 
the collision is incoherent (exhibiting no permanent frequency change). This conclusion is 
supported by the linear dependence on Airy amplitude for the closest time separation (τ0 = 

−6). The permanent frequency change is also sinusoidally dependent on the Airy phase (Fig. 
8b). 
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Fig. 8. (a) Soliton frequency change with respect to amplitude at θ = π/2, (b) Sinusoidal fit 

with respect to Airy phase for amplitudes with τ0 = −6 of the frequency change. 

We plot the soliton discrete time shifts after the primary collision for all separations at 
different Airy intensities and its weak phase dependence in Fig. 9. The time shifts are all 
negative (towards the Airy wavefront) as in complete collisions [27,32,36], depend 
quadratically on the Airy's initial amplitude with little dependence on initial separation (Fig. 
8a), and are hardly dependent on Airy initial phase (Fig. 8b). This behavior bears the 
signature of complete collisions with the main and subsequent lobes [27,32]. To obtain an 
estimate for the discrete time shift generated by the primary collision (which is within the 
collision zone, hence masked by interference), we use the linear fit lines for the soliton time 
position (previously used to measure the frequency change) calculated at the collision 
distances given by Eq. (5) for each initial time separation case. Hence, the primary collision 
results in a nearly fixed discrete time shift for the soliton and bears the signature of complete 
collision, while the soliton acquires a permanent frequency change during the same collision 
for close Airy launch (coherent collision characteristic, due to the spectral overlap at 
collision). 
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Fig. 9. Estimated time shift form, (a) Time shift with respect to Airy's initial amplitude for all 
initial time separations (θ = 0), Time shift with respect to Airy's initial phase and amplitude 

with τ0 = −10 and a sinusoidal fit profile . 

Soliton phase 

The last emergent soliton parameter we follow is the phase. Solitons continuously acquire 
phase along the propagation distance, and we subtract this constant term in all our results 
(using the launched soliton parameters) so that we only witness the phase difference between 
that of the expected phase of the unperturbed soliton and that of emergent soliton (see Fig. 10 
for 8% Airy intensity for all the separations and select phases). As in the time shift results 
(Fig. 7), we see a discrete phase offset after the primary collision, in all cases equaling about 
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0.2 radians, and divergent and oscillatory phase in the relaxation region. While the oscillatory 
behavior is explained by the continuous interaction with the dispersed Airy background 
radiation (resultant of local intensity and frequency oscillations), the linear component is a 
reflection of the emergent soliton perturbed parameters of mean intensity and center 
frequency. Both terms contribute to the accumulated phase linearly with respect to ξ and 
quadratically on the amplitude and frequency changes of the soliton [27]. For example, in Fig. 

10a we see that for the initial phases of θ = −π and θ = 0 there is a linearly-dependent phase 
difference attributed solely to a change in mean intensity, as the emergent soliton had only a 
mean intensity change (see Fig. 6b) and no permanent frequency change (see Fig. 8b) for 
these launched conditions. (A change of approximately 0.4 radian is accumulated between 
distances of 50 to 150, which translates to mean intensity change of approximately 0.008, 

exactly as found in Fig. 6b). In addition, we find that for the case of θ = −π/2 and θ = π/2 the 

small change in frequency of approximately 4 × 10
−3

 results in a negligible change since the 
phase term is quadratically dependent on frequency change. 
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Fig. 10. Phase difference along the Airy propagation for select Airy initial phases with an 

intensity ratio of 8% (a) τ0 = −6, (b) τ0 = −8, (c) τ0 = −10. 

5. Conclusions 

We have demonstrated the unique attributes of the interaction between a colliding Airy pulse 
and a soliton pulse at the same center frequency through split-step Fourier method 
simulations. The interactions are made possible by the ballistic trajectory property of the Airy 
pulse. 

Our findings show that the interactions are described by two regions of propagation. The 
first region, at which the primary collision occurs with the intense main lobe of the Airy 
wavefront, is responsible for the main change of the soliton fundamental parameters. The 
nature of the interaction at the primary collision is strongly dependent on the initial Airy-
soliton time separation, varying from coherent to incoherent interaction. At closer separations, 
the collision event is accompanied by spectral overlap between the Airy and soliton and the 
resulting coherent interaction perturbs the soliton frequency and amplitude. At larger initial 
time separation, the interaction is incoherent as there is decreasing spectral overlap and the 
rapidly oscillating phase of the interference term does not accumulate to significant frequency 
and amplitude changes. In both cases, however, the soliton does experience a discrete time 
and phase change, due to a complete collision with the Airy main lobe. The second region of 
propagation is beyond the collision event, which is primarily defined by continuous 
interactions with the dispersed Airy tail, resulting in oscillations of the time shift and phase 
through local intensity and amplitude changes respectively. The soliton experience slow 
relaxation throughout this secondary region, as the Airy disperses and the oscillations’ 
magnitude diminishes. 

The nature of the interactions that were simulated are of collisions. In all cases, the Airy 
pulse propagated through the soliton pulse. This is in contrast to an intense soliton acting as 
an event horizon that can block the Airy pulse propagation [42]. An interesting future 
research effort could be to investigate the conditions leading to a soliton barrier, by possibly 
choosing a more intense and shorter duration soliton. In our simulations the Airy bandwidth 
exceeds that of the soliton, emphasizing the effect of dispersion. 
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While we performed all our analysis in one dimensional temporal media, i.e. dispersive 
and nonlinear fiber propagation, all our findings should hold in one and two dimensional 
spatial propagation cases in Kerr media as the underlying equations defining the interactions 
are isomorphic. 
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