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Abstract 

The expected permittivity and third order nonlinear susceptibility, of a low filling fraction 

composite consisting of semiconductor nanorods dispersed in a polymer host are derived, 

using the Maxwell-Garnett model for anisotropic nonlinear inclusions. The semiconductor 

nanorods are modeled both as prolate spheroids and more realistic capsule shapes. A new 

generalized model is presented for various nanorod axis orientation statistics, achieved by an 

aligning electric field. The angular distribution function of the nanorods is calculated for 

nanorods with a permanent electrical dipole moment, which assists the alignment of the 

nanorods. Using the angular distribution function, the composite macroscopic characteristics 

are found for a composite with random orientation, partially aligned and nematic array 

nanorods. As the alignment field strength increases, the composite optical properties 

asymptotically converge towards the nematic case. Different parameters relate to the 

nanorods geometry are examined, concluding that the main parameter influencing the 

alignment is the single NR volume, while for the nematic array the single nanorod axes 

aspect-ration is the major parameter. Due to the symmetry of the nanorods, the composite 

characteristics depend on the polarization of the optical electrical field, with a symmetry that 

resembles a uniaxial crystal.  

A nonlinear waveguide with a core made of such a composite is simulated, in order to find 

the nonlinear parameter of the waveguide. The model takes into account two electrodes for 

the alignment process, far enough from the waveguide core, in order to avoid losses to the 

optical mode. Significant optical response can be achieved even for randomly oriented 

nanorods composite, with a nonlinear parameter of 68(W×m)-1. The alignment process 

increases the nonlinear parameter significantly even at elevated temperature that are needed 

for polymerization of the polymer host, typically 150oC. Aligning field strength of 107 V/m 

results with very high value for the nonlinear parameter – 120(W×m)-1, much higher than 

ordinary glass based nonlinear optical fibers, that result with nonlinear parameter up to 

50(W×m)-1. 
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  תקציר
מחושבים עבור  ,מסדר שלישי ליניארית-הלא החשמלית תהיענווה המקדם הדיאלקטריהערכים של 

ידי -על, בשבר נפחי נמוך המפוזרים בפולימר, מוטות מחומר מוליך למחצה- תערובת המכילה ננו

מוטות מיוצגים במודל -הננו. ליניאריים-לגופים אנאיזוטרופיים ולא, גרנט-הרחבה של מודל מקסוול

סטטיסטיקות ור מודל מורחב חדש מוצג עב. כספירואיד אובלי ובמודל מציאותי יותר כצורת כמוסה

ההתפלגות  פונקצית. המושגות באמצעות שדה חשמלי מכוון ,מוטות-כיווניות הננושונות של 

אשר מסייע , מוטות עם מומנט דיפול חשמלי קבוע- מחושבת עבור ננומוטות -הזוויתית של הננו

המאפיינים המקרוסקופיים של , ההתפלגות הזוויתית פונקציתידי -על. מוטות-להתכווננות של הננו

כיווניות , תרנדומליכיווניות  –מוטות - של הננו כיווניותהתערובת מחושבים עבור  רמות שונות של 

המאפיינים האופטיים של , ככל שעצמת השדה המכוון גדלה). מערך נמטי(חלקית וכיווניות מלאה 

פרמטרים שונים ביחס . ר הערך של המערך הנמטילעב ,בצורה אסימפטוטית התערובת מתכנסים

קנה היא שהפרמטר העיקרי המשפיע על הכיווניות סכאשר המ, מוטות נבחנים-של הננו לגיאומטריה

בעוד שעבור המערך הנמטי הפרמטר העיקרי הוא יחס הצירים של , מוט הבודד-הוא הנפח של הננו

המאפיינים של התערובת תלויים בקיטוב  ,מוטות- כתוצאה מהסימטריה של הננו. מוט הבודד- הננו

  .צירי- עם סימטריה הדומה לזו של גביש חד, של השדה החשמלי האופטי

- הלא הפרמטרמנת לחשב את -על, ליניארי בעל ליבה העשויה מהתערובת ממודל-מוליך גל לא

מספיק  הרחוקות, המודל לוקח בחשבון שתי אלקטרודות עבור תהליך הכוונון. ליניארי של מוליך הגל

ניתן להשיג תגובה אופטית משמעותית גם . במוד האופטי מהפסדיםכדי להימנע , הגל-מליבת מוליך

-ליניארי מגיע ל- כאשר הפרמטר הלא, מוטות המכוונים באופן אקראי-ננועבור תערובת המכילה 

אפילו עבור , ליניארי בצורה משמעותית-מגדיל את הגורם הלא הכוונוןתהליך . -1)מטר×וואט(68

המתרחש , מוטות-הנדרשות לפלמור של הפולימר המשמש כסביבה של הננו טמפרטורות גבוהות

לא ה הפרמטרהערך של , וולט למטר 107עבור עצמת שדה מכוון של . 150oCבטמפרטורות של 

-הה במיוחד ביחס לסיבים אופטיים לאתוצאה גבו, -1)מטר×וואט(120המתקבל הוא  ליניארי

  .-1)מטר×וואט(50בעלי פרמטר לא ליניארי של עד  , ליניאריים רגילים המבוססים על זכוכית
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1. Introduction  

Nonlinear (NL) optical waveguides (WGs) are an important building block for various 

optical applications, such as optical switching, phase modulation and wave mixing. Finding 

the suitable NL material, for a desired application, has an important role in designing the NL 

WG. Different NL materials are suitable for different needs, when the specific purpose of 

the WG, the optical wavelength in question and other properties can affect the selection of 

the NL material. Of course, not every material that has the suitable NL properties for our 

need has also the suitable properties for being a WG, when considering both fabrication 

processes and optical properties as low loss etc. An elegant way to combine a suitable NL 

material into a WG is to use nano-particles (NP) from a NL material inside a host from a 

material that is proven suitable for optical WGs. The requirements from such a composite of 

materials is that the NPs will be much smaller that the wavelength in question and 

homogeneously dispersed in the host.  

The physical characteristics of the NPs can be significantly manipulated by controlling 

their shape to match specific needs. Rod shaped nanocrystals exhibit enhanced optical 

response along their long axis due to surface polarization [1,2]. Composites consisting of 

such nanorods (NRs) embedded in a dielectric host, can serve as building block for various 

optical applications.  

Former work by Prof. Banin et al. showed an optical WG for wavelength of 1.55µm, 

constructed from sphere NP inclusions, embedded in a PFCB polymer [3,4]. PFCB (Per-

Flourinated Cyclo-Butane) is a good material for use in 1.55µm wavelength, with low losses 

and tunable refractive index, by synthesis control. The PFCB's low polymerization 

temperature and thermal stability make it a good candidate as a host for NPs. They showed 

that for the right capping ligands for the NPs, the optical properties of the NPs are 

maintained. Elsewhere [5], TiO2 NRs inside PMMA were shown to be a good candidate for 

NL optical composite media, hence the combination of PFCB with NRs is a very interesting 

composite to examine for NL WGs. Enhancing the inclusion response by using aligned NRs 

is the next natural step. 

The properties of such a composite will depend on the material and dimensions of the 

NRs on one hand and on the statistical directionality of the NRs in the composite, on the 

other hand. Quantitative models that analyze composites with embedded NRs, are mostly 

based on describing NRs as prolate spheroids in a perfect nematic array (Fig. 1.a), where no 
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statistical measure of the NR alignment spread in the composite is discussed [6,7,8,9]. The 

configuration of a nematic array can be fabricated in planar (2D) arrays by e-beam 

lithography [10] or nanosphere lithography [11]. In a volumetric (3D) array achieving the 

control over the directionality is problematic and thus it is much harder to fabricate perfect 

3D nematic array. The natural phase of a composite with dilute NRs dispersed in it is that of 

randomly oriented NRs. The case of random orientation (Fig. 1.b) was also addressed and 

compared to the nematic case for the linear material properties [7,8,9]. The case of statistical 

orientation (Fig. 1.c) was addressed theoretically for the linear regime with an arbitrary 

distribution function, without analysis and calculations of the origin of the alignment or the 

statistical behavior influence on the resulting macroscopic characteristics [7,9]. For the 

statistical case, qualitative description of composites’ macroscopic characteristics was made, 

in terms of the volume the NRs occupy in the composite, rather than the whole composite 

characteristics [12]. 

In this work, I present a comprehensive quantitative statistical model for calculating the 

macroscopic characteristics of such composites, finding their permittivity and third order NL 

susceptibility. The model takes into account several factors that were ignored previously: the 

geometry of a single NR is described as a capsule, which better matches most NRs TEM 

images, the statistical behavior of the NR alignment in the composite, and cases with and 

without a permanent electrical dipole moment in the NRs. 

 

 

After characterizing the composite, I simulate its properties within a NL WG, with a 

PFCB-NRs composite core and Cytop cladding. The PFCB core – Cytop cladding WG 

structure was already fabricated and tested in the Photonics Devices Laboratory (e.g. 

[13,14]) and the use of the PFCB-NRs mixture is the next step in the lab's research plan. 

Fig 1. An illustration describing different NRs alignment degree: (a) A 

perfect nematic array of NRs. (b) Random distributed NRs. (c) An array 

of partially aligned NRs. 



- 3 - 

 

 I will start from describing the physics of a single particle inclusion and its relevant 

electrostatic and electrodynamic characteristics. I will continue with describing the NRs as 

capsule shapes instead of the usual description of prolate spheroid and examine the influence 

of such a description on the electrostatic and electrodynamic characteristics. I will then 

describe the alignment mechanisms; applied external field and permanent dipole moment in 

the NRs. I will explain how to use the statistical behavior of the orientation of the NRs, to 

calculate the macroscopic characteristics of the composite: the permittivity and third order 

NL susceptibility. I will examine the influence of different parameters on the composite 

characteristics, focusing on the third order NL susceptibility. I will finish with simulations of 

a NL WG with such a composite as the core of the WG. 
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2. Theoretical Background 

Some notations are required before diving into the theoretical background. I will use SI unit 

system and will use the notation 0 rD Eε ε=
r r

 for the displacement field. Because some of the 

authors derived their formulas using the Gaussian unit system and some using the SI unit 

system, there is often a need for converting between the unit systems. In order to clarify 

comparison and integration of different sources, I chose to write explicitly the vacuum 

permittivity 0ε . In places I will use Gaussian unit system I will mention it explicitly and use 

the expression 1 4π without reducing it. At last, in places I will use relative permittivity of 

different materials, I will denote that explicitly as well. Regarding NL WGs, I will introduce 

some important concepts in the opening of the relevant section (section 7), without deeply 

describing all the theoretical background of this subject. 

2.1 Small particles under electric field 

2.1.1 Dipole moment, polarizability and depolarization factor 

When an electric field extE
r

 is applied on a small dielectric particle inside a dielectric 

surrounding with different permittivity, the field near the particle is perturbed by the 

particle. Inside the particle, the applied field induces a dipole moment µ
r

. In the linear 

regime of discussion, the dipole moment is given by the formula extEµ α= ⋅
rtr

, where α  is 

called the polarizability of the inclusion [7]. In the general case, α  is a second rank tensor, 

which can be represented as a [3×3] matrix. In order to find this induced dipole moment in 

the inclusion one must start from the internal field inside it, derive the polarization density 

field and then integrating the polarization density over the volume, find the dipole moment 

[15]: 

 
V

P dVµ = ⋅∫
rr

 (2.1) 

For the polarizability of an ellipsoid, there are two slightly differing solutions, one presented 

by Landau & Lifshitz [15] and the other by Sihvola [7]. In Appendix A, I show the 

differences between the two derivations, and simulation results. As shown in the appendix, 

the formula presented by Sihvola match my simulations, therefore I will use it. According to 

Sihvola, the polarizability of an ellipsoid is: 
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( )

( )0
i hj

Sihvola hj
h i h

V
L

ε ε
α ε ε

ε ε ε

−
=

+ −
 (2.2) 

where ,h iε ε
 
are the permittivities of the host and ellipsoid inclusion, respectively, V is the 

ellipsoid volume and jL is the "depolarization factor" of the ellipsoid in the , ,j x y z=  

directions, which are the major axes of the ellipsoid. The depolarization factor is a geometric 

factor that expresses the different electrostatic response of the ellipsoid under an electric 

field, along the ellipsoid different axes. For the prolate spheroid shape (meaning an ellipsoid 

with two equal short axes (SAs) and one long axis (LA)), I define the ̂z  axis as the LA, such 

that z x ya a a> = .The depolarization factor for a prolate spheroid is given by [7,15]: 

 
2

2

1 1 1 1
ln 1    ,    

2 1 2

LA
z LA x y SAe e L

L L L L L
e e e

−  +  − = = − = = =  −  
 (2.3) 

where 2 21  x ze a a= −  is the eccentricity of the prolate spheroid. I refer the derivation of the 

depolarization factor to Appendix A as well. The three depolarization factors satisfy

1x y zL L L+ + = . The LA depolarization factor varies between 0 (needle) to 1/3 (sphere) and 

consequently, the SA depolarization factor varies between 1/2 to 1/3. Larger depolarization 

factor can be achieved only for an oblate spheroid (two equal LAs and one SA). A prolate 

spheroid with large aspect ratio (AR=LA/SA) between the LA and the SA, will have a 

smaller depolarization factor, in the LA direction. 

The derivations leading to Eq. (2.2) assume an isotropic material, and the anisotropy of the 

polarizability is due to the anisotropy of the prolate spheroid shape alone (in contrast to a 

sphere where the inclusions and the composite remain isotropic). 

 

2.1.2 Rotating moment on a tilted spheroid 

The derivation of the polarizability (section 2.1.1 and Appendix A), assumed a spheroid 

with a major axis parallel to the external electric field. In cases where the spheroid is not 

parallel to the electric field, the dipole moment µ
r

 will not be in any specific known 

direction. In the general case, the direction of the spheroid should be presented with two 

angles: (1) The angle θ  between the LA of the spheroid and the ẑ  axis, is the tilt angle 
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which is defined over the interval  [ ]0,θ π= . (2) The angle ϕ  between the projection of the 

LA of the spheroid on the ̂ ˆx y−  plane and the ̂x  axis, is the azimuthal angle which is 

defined over the interval  [ ]0,2ϕ π= (see Fig. 2.a). 

 

 

In a shape symmetric to rotation (e.g. spheroids), the interaction is defined in plane 

containing the vectors of the aligning field and the axis of symmetry of the shape (the LA in 

our case) [15]. Both the vector of the dipole moment and of the aligning field will be in that 

plane. Without any lost of generality, I will set the direction of the external electric field as 

ẑ and the dipole moment vector is in the ˆ ˆy z−  plane with an angle θ  regarding the ̂z  axis, 

as illustrated in Fig. 2.b.  

The induced dipole moment will have a component in the LA direction – || || cosEµ α θ=  and 

a component in the SA direction – sinEµ α θ⊥ ⊥=  (Fig. 3.a). The interaction between the 

dipole moment and the original external field will cause a rotating moment M
r

 on the 

ellipsoid (Fig. 3.b), which will be [12,15]: 

 extM Eµ= ×
r rr

 (2.4) 

Each dipole moment interacts with the field component in the opposite direction (LA and 

SA direction dipole moments with the SA and LA electric field component, respectively) 

and cause a rotating moment in an opposite direction. However, for dielectric or 

Fig 2. An illustration describing the direction of the prolate spheroid (in blue) in 

the axes of the system. (a) The general case with 3D presentation and two angles 

θ  and ϕ . (b) Reduction of the problem to 2D for analysis of the tilt angle θ . 
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semiconductor NRs, the sum of the two rotating moments is always positive, meaning the 

NR will be align eventually parallel to the external field, as illustrated at Fig(3.c) [12,15].  

 

 

The result for the total rotating moment acting on a prolate spheroid is: 

 
( ) ( ) ( ) ( )

( )
||

2
||

sin cos cos sin

sin cos

M E E E E E

E

µ α θ θ α θ θ

α α θ θ

⊥

⊥

= × = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

= − ⋅ ⋅

r rr

 (2.5) 

The rotating moment is zero at two points: 0θ =  and 2θ π=  but 2θ π=  is an unstable 

point. Further on I will consider thermal fluctuations that enable me to ignore this point. 

 

2.1.3 Hyperpolarizability  

When a material has a NL susceptibility, an inclusion of that material under an electric field 

will response not only linearly (which is manifested by the polarizability) but also 

nonlinearly. The NL response in characterized by the hyperpolarizability. The two first 

orders of the hyperpolarizability β  and γ  evolve from the second and third order NL 

susceptibilities (2)χ  and 
(3)χ , respectively:  

 2 3
ext ext extE E Eµ α β γ= ⋅ + ⋅ + ⋅
r r rr

 (2.6) 

Fig 3. An illustration describing the alignment mechanism of the prolate spheroid, 

by a DC electric field: (a) The aligning field causes induced dipole moments ||,µ µ⊥  

in both spheroid major axes, parallel and normal respectively. (b) The induced 

dipole moments cause a rotating moment that acts on the spheroid. (c) The 

rotating moment align the spheroid parallel to the aligning field. 

extE
r

extE
r

extE
r

M
r

µ⊥

||µ

µ⊥

||µ
||µθ

( )b ( )c

ẑ

ŷ

( )a
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It is important to mention that (2)χ  can appear only in materials that lack a center of 

inversion (noncentrosymmetric lattice)  [16]. I will ignore higher order nonlinearities in all 

further discussions. The NL process can excite a response from different field components, 

resulting in β and γ  being third and forth rank tensors respectively, with a much more 

complicated presentation compared to the linear response, α . In section 6.1.2, I will discuss 

the tensorial behavior of the third order NL susceptibility. 

Sihvola presents the solution for the hyperpolarizability of a sphere inclusion [7]. By 

expanding the polarization density in a power series of the internal field, and using a 

pertubative approach, he uses the linear internal field to describe the internal field in the 

power series. I will present only the result for the second order hyperpolarizability (third 

order nonlinearity). Using the same approach for an ellipsoid, by using the internal field in 

an ellipsoid instead of that of the sphere, the derivation is straightforward: 

 
( )

4

(3)
0

j h
ellipsoid j

h i h

V
L

ε
γ ε χ

ε ε ε

 
=   + −   

(2.7) 

Again the indices j  represent the different direction regarding the ellipsoid major axes, 

ignoring the anisotropy properties of the susceptibility itself. In Appendix B, I present 

Sihvola's derivation for hyperpolarizabilities of a sphere and the generalization for the case 

of ellipsoids. I ignore any influence of the NL response of the inclusions on the rotating 

moment. 
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2.2 From single inclusion to a homogeneous mixture 

My objective is to characterize a composite that has NRs dispersed in it. The main 

characterization I am interested in is the permittivity and third order NL susceptibility of the 

composite. In the linear regime of discussion, the basic model that deals with such a 

composite is the Maxwell-Garnett (MG) model  [17]. The model analyzes a composite of 

spherical metal inclusions embedded in a dielectric material, when the inclusions are much 

smaller than the wavelength of the electric field that propagates through the composite (Fig. 

4). Such a topology ensures that propagation along one wavelength encounters many 

inclusions, and the composite can be treated as a continuum [7]. I will address the details of 

the conditions for the MG model later on (section 3.1). Despite the fact that MG model and 

other models alike, deal with metal inclusions, the derivation for dielectric inclusions is the 

same [18]. 

 

 

 

 

2.2.1 Linear optical response 

There are several methods presented by different authors for the derivation of the MG model 

(see for example [6,7,17,19]), all result with the same formula. In Appendix C, I present the 

derivation given by Sihvola, as an example. The result for the effective permittivity of such 

a composite is: 

Fig. 4 – the composite topology in the MG 

model a b λ<< << . Figure taken from [19]. 

2a

b

λ
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(1 2 ) 2 ( 1)

(2 ) (1 )
i h

eff h
h i

p p

p p

ε ε
ε ε

ε ε
+ − −

=
+ + −

 (2.8) 

 where ,h iε ε  are again the host and inclusion permittivities respectively andp  is the volume 

fraction of the inclusions from the whole composite. The validity limit of the MG model is 

up to 20%p =  (see for example [6]). 

There are several generalizations of the MG model, for cases of nonlinear (NL) inclusions 

and/or host and for the case of anisotropic inclusions. Gehr and Boyd published a review 

about the different models for the different cases [18]. For the case of ellipsoid inclusion, the 

depolarization factor is used, and the effective permittivity of the composite is [6,7]: 

 ( )( )1
j i h

eff h h j
h i h

p
L p

ε ε
ε ε ε

ε ε ε
−

= + ⋅
+ − −

 (2.9) 

In order to understand the influence of the different parameter inside Eq. (2.9), I present 

them graphically in Fig. 5, for the LA direction. For each case, I examine the result changing 

one parameter, when holding the three others constant ( ), ,j
i L pε . The constant values are: 

 ||6.2 , 0.25 , 0.1i L pε = = = . The value of the host permittivity was set on 2.19hε =  for all 

three graphs. 

 

 

As expected, more NRs in the composite, meaning larger volume fraction, will influence the 

composite to have a permittivity which approaches to that of the NRs themselves (Fig. 5.a). 

Regarding the depolarization factor, the smaller the LA depolarization factor is (i.e large 

Fig 5. Influences of the different parameters on the effective permittivity of the 

composite: (a) Volume fraction, from 0 to 20% - the MG model limit. (b) Depolarization 

factor of the LA, from 0 to 1/3. (c) Inclusions permittivity, from hε  to 10. 



- 11 - 

 

axes AR), the larger will be the effective permittivity (Fig. 5.b). We can see from here that 

for shapes like a needle, the permittivity will be larger, in contrast to sphere-like inclusions 

that have smaller effective permittivity. The permittivity of the inclusions increases the 

effective permittivity (Fig. 5.c). 

 

2.2.2 Non-linear optical response 

As mentioned, Gehr and Boyd published a summary for different models dealing with 

composites' macroscopic characteristics, both linear and NL [18]. Later on Sihvola presented 

a model for NL sphere inclusions [7] and Lamarre et al. presented a model for NL ellipsoid, 

for both small and large volume fraction (up to the MG model limit) [6]. The models of 

Sihvola and Lamarre et al. converge in the case of small volume fraction with sphere 

inclusions. In Appendix D, I present the different approaches for the derivation and the basic 

assumptions in each one. I will use the method presented by Sihvola, for derivation of the 

effective third order NL susceptibility for composites with ellipsoid inclusions. I chose to 

use this derivation, which will be convenient for partially aligned nanorods composite latter 

on. The third order NL susceptibility for small volume fraction composite with ellipsoids is: 

 
( )

4

(3), (3)j h
eff ij

h i h

p
L

ε
χ χ

ε ε ε

 
=   + − 

 (2.10) 

where (3)
iχ is the third order NL susceptibility of the ellipsoids and again, the index 

, ,j x y z=  denotes the different major axes of the ellipsoid. Two important things to notice: 

(a) The whole expression can be written as (3),
0

j j
eff nχ γ ε= ⋅  where n  is the number density 

of the ellipsoid inclusions in the composite, which satisfies n V p⋅ =  and 
jγ  is the second 

order hyperpolarizability presented in Eq. (2.7). (b) In the macroscopic equations, Eqs. 

(2.8)- (2.10), the volume of the single NR is of no consequence; rather the important 

parameter is the volume fraction,p .  

The dependencies of the effective third order NL susceptibility of the composite for the LA 

direction are presented in Fig. 6. The results are for the effective third order NL 

susceptibility, normalized by that of the inclusions, for simplicity. The constant values are 

same as in Fig. 5. 
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The first two dependencies on volume fraction and on the depolarization factor, Fig. 6.a and 

6.b, are similar to the dependencies in the effective permittivity (Fig. 5.a and 5.b). For the 

volume fraction it is a perfect linear dependency (Fig. 6.a), as can be seen from Eq. (2.10), 

for the reason that only the inclusions contribute to (3)
effχ . For the depolarization factor, once 

again, the smaller the depolarization factor is the larger will be the effective susceptibility 

(Fig. 6.b). However, the dependency on the inclusion permittivity is opposite to that of the 

effective permittivity (Fig. 6.c).  

  

Fig 6. Influences of the different parameters on the effective third order NL 

susceptibility of the composite normalized by that of the inclusions: (a) Volume 

fraction, from 0 to 20% - the MG model limit. (b) Depolarization factor of the LA, 

from 0 to 1/3. (c) Inclusions permittivity, from hε  to 10. 
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3. Research framework and methodology 

3.1 Basic assumptions 

3.1.1 Electrodynamics and the quasi-static approximation  

As explained in section 2.2.1, the basic assumption of all models based on the MG model is 

small size inclusions relative to the wavelength of the electric field in question. Sipe and 

Boyd set a limit on the wavelength requirement, being much bigger than the distance 

between particles that is much bigger than the particles size (see Fig. 4 from [19]). Sihvola 

used the "quasi-static approximation" for the homogenization in the MG model, which 

means that the internal field inside the inclusions is uniform [7]. As a "rule of thumb" he sets 

the limit 2 aλ π >  , where a  is the typical size of the inclusions. Both limitations express 

the idea that the electric field varies much slower (spatially) than the permittivity differences 

inside the medium it propagates in, hence the medium can be treated as continuum, i.e 

homogenization of the mixture. The ultimate goal of this work, is an optical WG that 

operates in the telecommunication C-band, and I will use 1550nmλ =  as the wavelength for 

my computations. I will use the wavelength in the host material ( 1.479hn = , ignoring the 

composite effective values) –  1050n nmλ = . The limit set by Sipe and Boyd is very 

restrictive and can be referred to as 10.5a nm< , where a  can be treated as the length of the 

NRs. Using Sihvola's limit, the length requirements of the NRs is relaxed and should be 

smaller than~ 160nm . I will adopt the limit introduced by Sihvola, which allows me to avoid 

the quantum confinement region, as will be explained in section 3.1.3 ahead. 

 

3.1.2 Optical interactions  

In the interaction of the optical field or photons with the NPs, for the linear regime of 

discussion, I ignore direct transitions (i.e absorption). This is justified for some 

semiconductors, depending on their bandgap, if it is higher than the energy of a photon in 

the wavelength of 1550nmλ = (see Fig. 8 ahead, circles for bulk material bandgap).  

In the NL regime, I am interested in effects evolving from the Kerr-type nonlinearity, such 

as self phase modulation and self focusing. A competing process to those processes is two-

photon-absorption (TPA), which can be a strong effect for relatively low band gap material 

(e.g Silicon for wavelength of 1550nmλ =  [20,21]). In order to decrease the influence of 
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TPA, the NR material should be with bandgap that exceeds the energy of two photons, but 

does not go far above it, otherwise the Kerr-type nonlinearity effects start to decrease as well 

(see e.g Fig. 7 from  [16] and Ref. [20] for silicon).  

 

 

 

3.1.3 Quantum confinement 

All of the works mentioned in the theoretical background, did not refer to quantum 

confinement effects that appear in NPs. The expression for the band gap for NPs is based on 

the bulk material band gap with supplements that evolves from the quantum confinement, 

which raises the band gap. The lower size limit of NPs, where quantum confinement effects 

start to be significant, is usually referred to as the Bohr radius of the bulk exciton excitona  

[22]. If the NP has at least one dimension which is smaller than the Bohr radius of the bulk 

exciton, it cannot be treated as a classical particle anymore. Following all the authors 

mentioned before (see e.g [19] explicitly), I ignore all such effects in this work and use the 

bulk values for the material properties. In order to do so, I should consider only NRs with 

2 excitonSA a> ⋅ , where excitona  is given by [23]: 

Fig 7. The influence of the bandgap on the efficiencies of TPA and Kerr-type 

nonlinearities (expressed by the intensity dependent refractive index n2). For a 

bandgap approaching twice the photon energy (x=0.5) the TPA approaches zero 

and n2 becomes maximum. For larger bandgaps (x<0.5) the TPA is zero, but n2 

starts to decrease as well. Image taken from  [16]. I added a shaded region (red) 

indicating the recommended operating regime for my purposes. 
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 0 *
e r

exciton

m
a a

ε
µ

=  (3.1) 

where 0 0.053a nm=  is the Bohr radius (derived for hydrogen), em  is the rest mass of the 

electron, rε  is the permittivity of the bulk material which is taken as the low frequency 

value and ( )* * * * *
e h e hm m m mµ = +  is the reduced mass of the electron and hole effective 

masses in the bulk material.  

Using values for CdSe, as an example: * *10.2 , 0.13  , 0.45r e e h em m m mε = = ⋅ = ⋅ , where the 

effective mass of the electron and hole were taken from [27]and [28], respectively. The 

result is 5.7CdSea nm= . Meaning NRs with minimum radius of 6nm or minimum width of 

12nm  are required. 

 

3.2 Simulations method 

Beside the theoretical derivations in this work, I performed simulations and numerical 

calculations. The simulations were executed for electrostatic analysis of single inclusions 

(e.g calculations of internal field, polarization density etc.) and for characterizing optical 

WGs in the linear regime (e.g optical field distribution in the WG core and clad). All these 

simulations were performed by finite element analysis (FEA) with COMSOL Multiphysics 

software.  

 

3.3 Nanorods material selection 

All of the analysis and results presented so far were for CdSe NRs. One of the reasons I 

chose to use the CdSe, is the extensive research done on CdSe NRs, including direct 

measurements of the permanent electrical dipole moment in them, as will be explained in 

section 4.2. As mentioned (section 3.1.2), a major requirement from the NRs materials 

relates to its band gap. In order to avoid TPA and enhance Kerr-type nonlinearities, the 

energy band gap of the NL material needs to be slightly above the resonance of the two 

photons energy. In Fig. 8, taken from [24], the bandgap energies of several semiconductor 

NPs are presented, including bulk value and the affect of quantum confinement. The level of 
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1.55µm photon energy is also presented and I added a line (blue solid line), representing the 

two photons energy for 1.55µm photon wavelength.  

 

 

In addition to bandgap consideration, semiconductors with wurtzite lattice structure, which 

posses a permanent dipole moment (PDM) that can assist the alignment mechanism, are 

preferred as will be explained in section 5.2. Combining these two demands, for the bandgap 

and lattice structure, the choice with CdSe is justified: 

CdSe NRs can be grown in wurtzite lattice structure, and their PDM was investigated 

thoroughly [25,26]. The band gap of CdSe is 1.73 eV, which is above and close to the TPA 

energy limit (1.6 eV). For comparison, CdS and ZnO, that also posses PDM, have bandgap 

energies of 2.42 and 3.37eV, respectively, which is much higher, hence the Kerr-type 

nonlinearities will start to decrease.  

It is important to note that the wurtzite lattice structure is noncentrosymmetric, meaning it 

can present second order nonlinearities. I will ignore such nonlinearities in this work. 

  

Fig 8. Dependence of bandgap energies (calculated) to particle size for a range of 

semiconductors. Bandgap are shown for the bulk forms (circles) and at a dot 

radii of 10 nm (up triangles) and 3 nm (down triangles). The energy levels for 

1.55 and 1.3µm photons are also presented (dashed lines). Image source [24], I 

added the energy levels for two 1.55µm photons (blue line)  
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4. Prolate spheroid versus capsule shape description 

4.1 Geometrical description 

Most authors dealing with NR analytical calculations treat them as prolate spheroid (see 

illustration in Fig. 10.a). Prolate spheroids have a closed form for their depolarization factor 

and analytical solution can be found both for the polarizability and the generalized MG 

model. However, most TEM images published, for colloidal NRs, show a different shape 

(see for example Fig. 10.b from [29] and Ref [30]). The shape is more like a cylinder with 

round capping. I wish to propose a "capsule shape" description for the single NR, meaning a 

cylinder with hemisphere capping, as illusrated in Fig. 10.c.  

 

 

Pecharromán et al. analyzed the geometry of different shapes, mainly cylinder and capped 

cylinders, in order to calculate the extinction spectra of small metal particles of different 

shapes [29]. They showed geometrical structure of different NRs with different capping. 

They also refer to the roughness of the surface of the NRs and claimed that both the exact 

capping geometry and the roughness can affect the surface plasmon peak energy. In order to 

avoid further complication and enable a model that combines numerical and analytical 

calculation, I will ignore the roughness and different capping geometry in my work. I will 

refer to all NRs as cylinder with perfect hemisphere capping, with a radius equal to that of 

the cylinder. In Fig. 11, I present an illustration that demonstrates the dimensions of the 

prolate spheroid compared to that of the capsule shape.  

Fig 10. NR geometry: (a) A prolate spheroid. (b) Outline showing the geometry of the 

cylinder and the capping geometry and high-resolution electron micrograph of a single gold 

rod (taken from [29]). (c) A capsule shape – a cylinder with hemisphere capping. Length 

and width of the capsule are equal to that of the spheroid in (a).   
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In the next sub-sections I will analyze the electrostatic characteristics of the capsule shape 

and compare them to that of a prolate spheroid with the same length and width. 

 

4.2 Polarizability  

I first wish to analyze the polarizability of the proposed capsule shape geometry. I simulate 

different sizes of capsule shapes, both with varying ARs and varying volumes. From the 

simulations, I extract the polarization density, and integrate over the volume (see Eq. (2.1)) 

to find the induced dipole moment in the capsule shape inclusion. Then by using the 

definition of the polarizability extEµ α= ⋅
rtr

, I can calculate the polarizability. As explained, 

the anisotropy of the polarizability is due to the geometry of the inclusion alone. Most 

authors that dealt theoretically with prolate spheroids, presented the polarizability as a 

diagonal [3×3] matrix, with two equal elemnts (for the two equal SAs). My simulations,for 

the prolate spheroids, resulted also with off-diagonal elemnts, but they were six orders of 

magnitude smaller. The off-diagonal elemnt might be real or an artifact of the FEA 

simulation and I will ignore them. For simplicity of the comparison, I present the results for 

an electric field linearly polarized along the inclusion LA, hence only one component of the 

polarizability tensor is presented. The results for polarization along the SA are not presented, 

in order to stay concise. I compared the results of simulation of prolate spheroid and of the 

capsule shape with the same length and width. Table 1 presents examples of the simulation 

results, with the results of the polarizability of the prolate spheroids according to Eq. (2.2), 

Fig 11. Prolate spheroid and capsule shape geometry: (a) A prolate spheroid with semi-axes 

of a  and b . (b) A capsule shape composed of: (1) a cylinder with height ( )2h a b= −  and 

radius r b=  (2) two hemisphere capping with a radius of r b= . The total length and 

width of both shapes are the same: 2  , 2L a W b= = . 

( )a ( )b
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in order to evaluate the simulation results. I added also the results of the polarizability 

normalized by the volume, which can be treated as a measurement for the polarization 

density in the inclusions. 

Table 1. Polarizability of capsule shape. A comparison between the analytical and simulation results of 
the polarizability of different axes length prolate spheroids and the simulation results of equal axes 
length capsule shapes. Results for the polarizability normalized by the inclusion volume are also 
presented, for the simulation results only. The permittivity of the host and inclusions were set on 

2.4 , 10.2h iε ε= =  respectively. Polarizability calculated along the inclusion LA.  

No 
[ ]nm

l

 [ ]nm

d

 

Aspect 

Ratio 

( )
3

0
 

4
nmα

πε
 
 

 
( )04

V
α πε  

Spheroid  

(analytical) 

Spheroid 

(Simulation) 

Capsule 

(Simulation) 

Spheroid 

(Simulation) 

Capsule 

(Simulation) 

1 8 2 4 8 8 11 0.499 0.487 

2 40 10 4 1,044 1,044 1,402 0.499 0.487 

3 40 8 5 704 704 958 0.525 0.511 

4 40 4 10 195 195 274 0.582 0.564 

5 60 6 10 659 659 924 0.582 0.564 

The average error of the simulations for the polarizability of the spheroids regarding to the 

analytical formula (Eq. (2.2)) is 0.02%, which is very good result. The results for the 

polarizability of the capsule shapes are substantially larger than those for the prolate 

spheroid shapes. The average deviation is 37% in favor to the capsule shape. However the 

results for the normalized polarizability of the capsule shapes are slightly smaller than those 

of the prolate spheroid shapes, with an average deviation of 2.8%. The larger polarizability 

of the capsule shape is due to the its larger volume. The volume of the capsule shapes are 

35-50% larger than those of the prolate spheroid shapes, with the same length and width 

(AR dependent). As a result of the large volume the polarizability is larger despite the 

slightly smaller polarization density.  

In addition, it can be seen that equal axes AR shapes have the same normalized 

polarizability, both for the prolate ellipsoids and for the capsule shapes. I highlighted rows 

with equal AR – rows 1 with 2 (blue) and 4 with 6 (red). The reason is that the polarizability 

depends linearly on the volume, dependency that is reduced in the normalized polarizability. 

The normalized polarizability dependency on the geometry, for the same general shape, is 

due to the AR alone.  
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In order to better understand the behavior of the polarizability of the capsule shapes, I will 

assume a similar behavior as in the case of the prolate spheroids – a dependency in the 

different permittivities (which are constants) and the AR, multiplied by the volume. Again 

this is consistent with the equal values of polarizability normalized by the volume, for the 

same AR, as explained. Since I defined the AR as LA/SA, while Eq. (2.3) uses the 

reciprocal term SA/LA, I present the normalized polarizability versus AR-1. The results for 

the capsule shapes and the prolate spheroid shapes are plotted in Fig 12 with the analytical 

curve for the prolate spheroids and a quadratic fit curve for the capsule shapes.  

  

 

The values of the normalized polarizability of the capsule shapes are smaller in compare to 

those of the prolate spheroid shapes, as can be seen in Table 1. The two curves converge, 

both for the value of AR=1, meaning a sphere, and for very high AR values (AR-1→0, see 

inset), which is the value for a needle shape (LA depolarization factor – zero). The R-square 

of the quadratic fit for the capsule is 0.9995, which is an excellent match, meaning for a 

given host and NRs permittivities, I can calculate the NRs normalized polarizability by 

extrapolating or interpolating the quadratic curve for the capsule shape.  

After calculating the normalized polarizability it can be multiply by the volume, to achieve 

the polarizability itself.  

 

Fig. 12: The polarizability normalized by the volume as a function of AR
-1

 for 

prolate spheroid, with the analytical curve, and for capsule shapes, with a 

quadratic fit curves. Inset: zoom in on high AR values. 
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4.3 Depolarization factor 

In order to use the results of the capsule shapes polarizability in the equations for the 

macroscopic characteristics of a composite (the effective permittivity and third order NL 

susceptibility – Eqs. (2.9) and (2.10)), I need to calculate the depolarization factor of the 

capsule shape inclusions. Since there is no analytical formula for that, I will find an 

equivalent prolate spheroid for each capsule shape, regarding its polarization density or 

normalized polarizability. I use the results for the normalized polarizability, presented in 

Table 1, inside Eq. (2.2) in the form: 

 
( )

( )0
i h

hj
h i hV L

ε εα
ε ε

ε ε ε

−
=

+ −
 4.1  

Using the values for the permittivities and the results from the simulation for Vα , I can 

extract the depolarization factor jL .This is not a real analytical value for the depolarization 

factor, rather an effective value. In table 2, I present the results for the effective value of the 

depolarization factors of the capsule shapes presented in table 1. 

Table 2. Effective value for capsule shapes depolarization factor. The values of the AR and 
depolarization factor for different axes prolate spheroid and the effective depolarization factor values 
for the equal axes capsule shape are presented. Results for the same conditions as in Table 1.  

No 
[ ]nm

l

 [ ]nm

d

 

Prolate Spheroid 

 Aspect Ratio 

Depolarization Factor 

Prolate Spheroid –  

analytic 

Capsule Shape – 

effective value 

1 8 2 4 0.0754 0.0838 

2 40 10 4 0.0754 0.0844 

3 40 8 5 0.0558 0.0648 

4 40 4 10 0.0203 0.0307 

5 60 6 10 0.0203 0.0305 

First we can see from Table 2 that the capsule shape depolarization factor cannot be 

determined solely by the AR. Different volume (axes length) capsule shape, with same AR 

do not have exactly the same effective depolarization factor, in contrast to prolate spheroids. 

The reason for that is unknown; however the deviation between the values of the 

depolarization factor (for same AR capsule shape) is small (less than 1%). This means that 

by approximation I can determine the effective depolarization factor of the capsule shape by 
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the AR, as presented by Table 2. In addition, the values of the depolarization factor of the 

capsule shapes are larger than those of the prolate spheroids (again for same AR capsule 

shape).  

After calculating the capsule shape depolarization factor, the macroscopic characteristics of 

a composite can be calculated as well, using Eqs. (2.9) and (2.10). As explained regarding 

Fig. 5 and 6, bigger depolarization factor means smaller effective permittivity and effective 

third order NL susceptibility for composites. This means that the values for effε  and (3)
effχ  

calculated using the model of capsule shapes will be lower, comper to those calculate using 

the model of prolate spheroids, given a certain volume fraction. In addition, since the 

volume of a prolate spheroid is smaller than that of a capsule shape (with the same AR), a 

given volume fraction means the number of spheroids will be bigger than the number of 

capsule shapes. Once again it is important to remember that the volume of the single 

inclusion and the number of inclusions are irrelevant for the effective macroscopic 

characteristics, rather the volume fraction and single inclusion depolarization factor. As long 

as I maintain the depolarization factor (determined by the AR), large number of small 

inclusions or small number of large inclusions will result with the same outcome. 
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5. Alignment and statistical behavior of NRs 

5.1 Rotating moment on capsule shape NRs 

The rotating moment on a prolate spheroid was presented analytically in section 2.1.2. In 

order to calculate the rotating moment on a capsule shaped particle, the only modification 

needed, is to use the capsule shape polarizability, as presented in section 3.2.2, within Eq. 

(2.8) for the rotating moment: extM Eµ= ×
r rr

. I will use the notation ||α  and α⊥  for the 

polarizability in the parallel (LA) and normal (SA) directions respectively. As shown in Fig. 

3, the external electric field is oriented in the ẑ  axis hence the capsule shape dipole moment 

will be in the ˆ ˆy z−  plane when the LA is with an angle θ  regarding the ̂z  axis. The rotating 

moment will be: 

 
( ) ( ) ( ) ( )

( )
||

2
||

sin cos cos sin

sin cos

M E E E E E

E

µ α θ θ α θ θ

α α θ θ

⊥

⊥

= × = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

= − ⋅ ⋅

r rr

 (5.1) 

 

5.2 Permanent dipole moment 

Our intention is to insert NRs into a PFCB polymer in liquid form and align the NRs along a 

preferred direction. The alignment mechanism is an applied DC electric field that will align 

the NRs parallel to its direction, as explained at section 2.1.2. After doing so, the PFCB will 

be thermally polymerized in order to achieve a solid form of the composite, locking the NRs 

in place. The problem with such a process is that the polymerization is made at thermally 

elevated temperatures of 120-350°C [31], which increases the thermal fluctuations in the 

NRs direction [12]. I will refer to the temperature limit under which nanocrystals are stable, 

later on (section 6.2.3); for now, I will assume a temperature of 150°C, applicable for PFCB. 

The alignment process can be significantly enhanced (thus better coping with thermal 

fluctuations) by doping with NRs possessing a permanent dipole moment (PDM). Large 

PDMs were found mainly in wurtzite lattice structure NRs [25,26]. Nann and Schneider 

presented a model which explains the PDM by small deviations of the crystallographic 

structure from the ideal wurtzite lattice structure [26]. Li and Alivisatos investigates CdSe 

NRs with wurtzite lattice structure and measured a large PDM in them – around 100-200 

Debye [25]. The PDM is directed along the c-axis in the hexagonal lattice, which is also the 
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long axis of the NR itself. The presence of such a PDM can help the alignment mechanism, 

since the rotating moment depends linearly on the dipole moment in the NR. 

Li and Alivisatos, estimated the PDM by transient electric birefringence (TEB) experiments. 

TEB experiment examines the rising and falling of the birefringence upon application and 

removal of an external electric field, respectively. The TEB curves rising and falling is fitted 

to the theoretical formula and from the fitting, the polarizability anisotropy is extracted. The 

polarizability anisotropy is defined as: 

 ( )
'2

||

z

BK T

µ
α α⊥

Γ =
−

 (5.2) 

where '2
zµ  is the value of the permanent electric dipole moment (screened by surface effects) 

along the long axis of the rods, ||,α α⊥  are the polarizability parallel and normal to the LA, 

respectively.1 By computing Γ  from the TEB curves and calculating the polarizability in the 

different directions, the PDM '2
zµ  can be calculated. Li and Alivisatos calculated the PDM 

using the analytic polarizability of a prolate spheroid presented by Landau & Lifshitz (see 

section 2.1 and Appendix A) [25]. According to my analysis of NRs geometry as capsule 

shapes, I found that the polarizability is larger. I used the data presented by Li and Alivisatos 

with my analysis for capsule shape polarizability. The permittivity of the surrounding and 

CdSe NRs in both directions are: ||2.02 , 10.2 , 9.33hε ε ε⊥= = =  and the dimensions of the 

NRs are presented in Table 3. I simulated capsule shaped NRs under those condition, 

calculated the polarizability in both direction and from the polarizability anisotropy 

calculated the PDM of the NRs. In Table 3 I present the results for the PDM; the results 

presented in Li and Alivisatos work, results calculated from the polarizability formula given 

by Sihvola  and my calculations according to the capsule shape analysis. 

 

 

 

                                                           

1
 In the article, the polarizability anisotropy is marked as γ . I changed it to Γ  to avoid confusion with the 

second order hyperpolarizability. 
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Table 3. PDM values for different dimensions CdSe NRs. A comparison between the values calculated 
according to the polarizability formula given by Landau and Lifshitz (denoted L&L and presented by Li 
and Alivisatos), those calculated according to the polarizability formula given by Sihvola and those 

calculated for capsule shapes. The induced dipole moment, for an external field of  710E V m= is also 

presented. Values for the permittivities: ||2.02 , 10.2 , 9.33hε ε ε⊥= = =  

 

Using the polarizability formula given by Sihvola, increases the PDM results in a factor of 

hε  (increase by 42%  in the table). Using the capsule shape analysis, increase the original 

result by average of 60%.  From a linear curve of the resulted PDM versus the NRs volume, 

the permanent polarization density can be calculated. The results presented by Li and 

Alivisatos shows a permanent polarization density of 0.19µC/cm2. Calculating by the 

formula given by Sihvola results with permanent polarization density of 0.26µC/cm2, while 

from the capsule shape analysis the value is 0.205 µC/cm2.2 The predicted value by Schmidt 

et al. is 0.6 µC/cm2 (phenomenological rule, proven experimentally for ferroelectric 

materials [32]) and by Nann and Schneider is 0.42 µC/cm2 [26]. 

For the same NRs dimensions, the results for the induced dipole moment are much smaller. 

Looking at the results for the induced dipole moment in the parallel direction, under a DC 

field of 107V/m, the results are 2.5-4 times smaller, as can be seen in the last column of 

Table 3. These high values of PDM will enhance the alignment of the NRs.  

 

 

                                                           

2
 The larger value for the analysis by the formula given by Sihvola evolves from the smaller volume of the 

prolate spheroids. 

L 

[nm] 

W 

[nm] 

PDM –  µ  [Debye] 

[ ]
||
induced

Debye

µ

 

( )710E V m=  

Spheroid 

L&L formula 

Spheroid 

Sihvola formula 

Capsule 

Calculated 

60 3.1 153.4 218.0 249.9 101.6 

30 4.8 209.9 298.3 329.8 104.0 

23 3.8 126.4 179.6 198.3 49.6 

54 3 126.3 179.5 205.4 85.0 

35 3 95.7 136.0 153.7 52.8 
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5.3 Angular distribution function  

To find the statistical distribution of the alignment of the NRs, I will use the method 

presented by Ruda and Shik [12]. They calculated the angular distribution function (ADF) of 

NRs under different kinds of electric fields: DC, AC and DC+AC, where the field is uniform 

over the whole composite. I will use the DC electric field alignment model, which is the 

strongest. They used the rotating moment M
r

acting on a NR with an angle θ  to the aligning 

electric field, calculated in section 2.1.2, which is a function of the angle θ . They calculated 

the potential energy of the single NR, which equals  the work done to bring the NR to this 

angle from the minimum energy position 0θ = :  

 ( ) ( )0

0

ˆ ˆ
NRU W M d

θ

θθ θ θ→= = ⋅∫  (5.3) 

After calculating the single NR potential energy for an arbitrary angle, the ADF can be 

derived by: 

 ( )

( )

( )
0

exp

ˆ
ˆ ˆexp sin

NR

B

NR

B

U

K T
ADF

U
d

K T

π

θ

θ
θ

θ θ

 
−  

 =
 
 − ⋅  
 

∫

 (5.4) 

The integration boundaries in the denominator need careful treatment. As explained (section 

2.1.2), the angle θ  is a tilt angle, between the applied electric field and the direction of the 

NR LA (see Fig. 3.a). This angle is normally defined over the interval [ ]0,θ π= . However 

for the case of a shape that its geometry has symmetry to rotation by π  (like spheroids and 

capsule shapes) the integration boundaries is usually set on [ ]0, 2θ π=  as done by Ruda 

and Shik [12]. The is that the energy is degenerated for the states of a tilt in θ  and a tilt in 

2θ π+ . However, when considering the case of the presence of PDM in the NRs, the two 

ending of the LA of the NR are distinguishable, hence the symmetry reduces. The energy 

degeneration is removed and the integration boundaries are set on [ ]0,θ π= . As explained 

in section 2.1.2, the entire analysis can be done in the plane defined by the electric field and 

the NR LA as shown in Fig. 2.b. The azimuthal angle ϕ  in the ˆ ˆx y−
 
plane (see Fig. 2.a) can 

be ignored for now, due to the degeneracy of the NRs geometry, which has 2 equal SAs. I 

will refer to it later on (see section 6.1.1).  
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 Ruda and Shik used the analytical result for the rotation moment on a prolate spheroid ( Eq. 

(2.5)) using the Landau & Lifshitz formula for the polarizability (see again section 2.1.1 and 

Appendix A). I will use the results for the polarizability of the capsule shapes, as explains in 

section 4.2. In addition to using the capsule shape result, I will add the influence of the PDM 

on the rotating moment and potential energy. Given that the different induced dipole 

moments are || || cos  , sinE Eµ α θ µ α θ⊥ ⊥= ⋅ = ⋅  and the PDM is PDMµ  which is also assumed 

in the parallel (̂z ) direction, Eq. (5.1) becomes: 

 ( ) 2
|| sin cos sintotal PDMM E E Eµ α α θ θ µ θ⊥= × = − ⋅ ⋅ + ⋅

r rr
 (5.5) 

The potential energy of the single NR will be computed according to Eq. (5.3) : 

 ( ) ( ) 2 2
|| sin cosNR PDMU E Eθ α α θ µ θ⊥= − ⋅ − ⋅  (5.6) 

Since the expression ( )||α α⊥− is always positive (semiconductor with elongated shapes) the 

minimum of the energy will be at 0θ = . After calculating the single NR potential energy, I 

calculate the ADF. Fig. 13 shows the ADF of NRs with the dimensions shown at Table 3, 

under different conditions. First, the influence of the aligning electric field strength for NRs 

with just induced dipole moment (Fig. 13.a) and for NRs with both induced and permanent 

dipole moment (Fig. 13.b) is shown. In both of them I compare the results for prolate 

spheroid and for capsule shapes, for different aligning field strengths. Fig. 13.c presents the 

dependency in the temperature again for different aligning electric field strengths. All three 

images (Fig 13.a-c) are for temperature of 150oC and for the largest NR in Table 3 

( )30  , 4.8L nm W nm= = , which has the largest value of PDM. In Fig 13.d I present the 

influence of the volume of the NRs on the ADF.  
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As explained, with the presence of the PDM the ADF symmetry breaks and there is no 

longer symmetric for rotation in π , as can be seen at Fig. 13.b compared to Fig 13.a. In both 

figures, the capsule shapes have larger induced dipole moment (solid line), compared to the 

prolate spheroids (discrete markers), hence the alignment is stronger. Lower temperature 

(Fig. 13.c) results in stronger alignment, due to lower thermal fluctuations, and larger NR 

volume (Fig. 13.d) make the alignment stronger as well. The rotating moment aligning the 

NRs depends on their polarizability and PDM, which depend linearly on their volume. 

Hence, for the alignment mechanism the single NR is a major parameter that influences the 

results, in contrast to the composite characteristics which depend on the inclusions fractional 

volume. The composite characteristics will be controlled by the alignment degree, together 

with the AR influence, which will be investigated in section 6.2.2. 

  

Fig. 13: (a) ADF of CdSe NRs without PDM inside PFCB, capsule shape versus prolate 

spheroid for different aligning electric field strength under temperature of 150 C̊, 

30  , 4.8l nm d nm= =  (b) The same for NRs with PDM. (c) Temperature dependency for 

different aligning field strengths (with PDM). (d) Different NRs with different volume (for 

the NRs presented in Table 3, with PDM). 
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6. Partially aligned composite characteristics 

In this section I present the core of my work. In the former sections, I explained the model 

for nematic array of prolate spheroid. Afterwards I explained the method of using the 

capsule shape model – both for the polarizability and for extracting an effective value for the 

capsule shape depolarization factor. Lastly, I introduced the alignment mechanism and the 

modifications for using it with capsule shapes and the presence of a PDM. The goal of this 

section is to combine the understanding of the statistical behavior of the directionality of the 

NRs, into the model for the nematic array. I will examine the permittivity and third order NL 

susceptibility of a composite, in which the NRs has a certain alignment distribution, with a 

preferred direction. 

 

6.1 Permittivity and NL susceptibility for partially al igned composite 

6.1.1 The linear response – permittivity  

Sihvola presented an integral form of the average polarization density in such a composite, 

without explicit derivation of the effective permittivity [7]. Sihvola and Kong presented an 

explicit formula for the effective permittivity [11]. They gave their formula for an arbitrary 

distribution of the NRs and used a dyadic notation which is not accessible for most 

nowadays readers. I will follow their method but I will use matrix notation, namely rotation 

matrices for the coordinate system, as will be explained immediately. In Eq. (2.9) I 

presented the effective permittivity for a composite of a nematic array of NRs. This equation 

can be presented as a function of the single NR polarizability: 

 
( )

( )

j
hj

eff h j j
h

p V

p L V

ε α
ε ε

ε α

⋅
= +

− ⋅
 (6.1) 

where j Vα  is the single NR polarizability normalized by the volume. For a composite with 

a certain angular distribution function, the polarizability in Eq. (6.1) should be replaced by a 

weighted averaging on the different NRs with their different orientation. A single NR in the 

array will have a certain orientation with tilt angle θ  about the ̂z  axis and azimuthal angle 

ϕ   relative to the ̂x  axis. The averaging is made using both θ  and ϕ  (see section 2.1.2 for 

the definition of the angles). The distribution for ϕ  is a uniform distribution (random 
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orientation) and the distribution for θ  is the ADF presented in section 5.3. I will use the 

notation of triangle brackets for an averaging and a subscript to indicate over which angles 

the averaging is performed. An averaging of a general function ( )ψ Ω  (Ω  is a solid angle) 

over the entire angular space is: 

 ( ) ( )
2

,
0 0

sin ,
2

d
d ADF

π π

θ ϕ

ϕ
ψ θ θ θ ψ θ ϕ

π
= ⋅ ⋅ ⋅∫ ∫  (6.2) 

The single NR polarizability and depolarization factor are second rank tensors, i.e [3×3] 

matrix, which in the local coordinate system of the NR are diagonal: 

 

||

0 0

0 0

0 0
NR

α
α α

α

⊥

⊥

 
 

=  
 
 

t
 (6.3) 

 

||

0 0

0 0

0 0
NR

L

L L

L

⊥

⊥

 
 

=  
 
 

t
 (6.4) 

The subscript "NR" indicates the local coordinate system of the NR. I rotate the global 

coordinate system to the local coordinate system of the NR, apply the relevant  tensors (see 

Eq. (6.1)) and rotate the result back to the global coordinate system. A rotation in ϕ  around 

the ẑ  axis is: 

 ( )
( ) ( )
( ) ( )

cos sin 0
ˆ sin cos 0

0 0 1
zR

ϕ ϕ
ϕ ϕ ϕ

 
 

= − 
 
 

 (6.5) 

and a tilt in θ  around the ŷ  axis is: 

 ( )
( ) ( )

( ) ( )

cos 0 sin
ˆ 0 1 0

sin 0 cos
yR

θ θ
θ

θ θ

 −
 

=  
 
 

 (6.6) 

Treating the polarizability and depolarization factor as operators, the presentation of a 

general operator NRA
t

 in the global coordinate system will be: 
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 ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ,xyz z y NR y zA R R A R Rϕ θ ϕ θ θ ϕ= − −
t t

 (6.7) 

The average effective permittivity will be: 

 ( )
,

,

xyz

eff h h

h xyz

p V
I

I p L V

θ ϕ

θ ϕ

α
ε ε ε

ε α

⋅
= ⋅ +

⋅ − ⋅ ⋅

t
tt

t t t
 (6.8) 

where in places the host permittivity hε , appeared "alone" in Eq. (6.1), it was multiplied by 

unit matrix I
t

, which means I treat the host as an isotropic material. The result is a general 

[3×3] matrix, where no element in it is by definition zero. Nevertheless, after averaging over 

ϕ   the result becomes a diagonal matrix with two identical elements (the elements 

correspond to xxε and yyε ) and one independent element (zzε ). This is because of the 

symmetry of the NRs in the two SAs and the uniform angular distribution over ϕ . The 

results are: 

 

2 2
||,

2 2
|| ||

sin 2 sin 2

cos 2 sin 2
x y
eff h h

h

p V

p L L V
θ

θ

α θ α θ
ε ε ε

ε α θ α θ

⊥

⊥ ⊥

 ⋅ + − 
= +

 − ⋅ + − 
 (6.9a) 

 

2 2
||

2 2
|| ||

cos sin

cos sin
z
eff h h

h

p V

p L L V
θ

θ

α θ α θ
ε ε ε

ε α θ α θ
⊥

⊥ ⊥

⋅ +
= +

− ⋅ +
 (6.9b) 

where we still need to weigh the value by ( )ADF θ . The behavior of the composite is like a 

uniaxial crystal that has one extraordinary refraction index in one direction (LA) and two 

ordinary refraction indices in the two other directions (SAs). All phenomena and application 

related to birefringence can be seen in such a composite.  

If we would use ( ) ( )ADF θ δ θ=  the result would be that of a nematic array (Eq. (2.9)) and 

if we would use ( ) 1 2ADF θ =  the result would be that of random orientation that is 

isotropic: 

 
( )
( )

||,

|| ||

2 3

2 3
x y z
eff eff h h

h

p V

p L L V

α α
ε ε ε ε

ε α α
⊥

⊥ ⊥

⋅ +
= = +

− ⋅ +
 (6.10) 
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The result presented in Eq. (6.10) coincide with the theoretical expression for random 

orientation [7,8,11]. 

 

6.1.2 The nonlinear response – third order nonlinear susceptibility  

(3)χ  is a forth rank tensor ((3)
ijklχ ), which in the general case can be presented as a matrix with 

34=81 elements. It is well known that for all the 32 crystallographic point groups, the 

number of independent elements is much smaller and depends on the specific point group 

symmetry in question (see e.g. [16,33]). Yang and Xie presented a contracted approach to 

rearrange the independent elements of (3)
ijklχ  into [3×10] matrices (3)

,i mχ  for all 32 

crystallographic point groups [33]. When the NL interaction is made with one interacting 

field (e.g third harmonic generation and self phase modulation) in a certain linear 

polarization, oriented to crystallographic axis, the third order NL susceptibility can be 

presented with a scalar value (3)
effχ  [16,33]. In the Kerr effect for example, the effective 

susceptibility is used in the calculations of the second-order nonlinear refractive index2n  

[34]. In all further analysis I will use this scalar effective susceptibility. Given the scalar 

third order susceptibility, the effective third order susceptibility of a nematic array will be a 

second order tensor, on account of the geometry of the NR (as the permittivity). Eq. (2.10) 

that describes the composite effective susceptibility can be written in terms of the second 

order hyperpolarizability (Eq. (2.7)): 

 ( )(3)
0eff p Vχ γ ε=

t t
 (6.11) 

where the second order hyperpolarizability as an operator or a matrix is: 

 
( )

4

(3)
0

h

h i h

V
I L

ε
γ ε χ

ε ε ε

 
=   ⋅ + − 

t
t t  (6.12) 

The same analysis done for the effective permittivity (section 6.1.1) can be made here, by 

addressing γ
t

as an operator in the local coordinate system of the NR, presenting it in the 

global coordinate system and averaging it with the ADF. Again the result is a [3×3] matrix 

that after integrating over ϕ  becomes diagonal. The resulting independent elements, before 

the integration over θ  are: 
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 ( ) ( ) ( )4 4(3), , 2 , 2 (3)0.5 sin 1 0.5 sinx y z x y
eff ip f f

θ
χ θ θ χ= ⋅ ⋅ ⋅ + ⋅ − ⋅  (6.13a) 

 ( ) ( )4 4(3), , 2 2 (3)sin cosz x y z
eff ip f f

θ
χ θ θ χ= ⋅ ⋅ + ⋅  (6.13b) 

where I define 
( )

j h
j

h i h

f
L

ε
ε ε ε

=
+ −

. Again, using ( ) ( )ADF θ δ θ=  will result with Eq. 

(2.10) and using ( ) 1 2ADF θ =  will result with random orientation composite that is 

isotropic: 

 ( ) ( )4 4(3), , (3), , (3)2 3x y z x y z
eff eff ip f fχ χ χ = = ⋅ +  

 (6.14) 

It is important to notice that we assume in all the derivations that the inclusions alone 

contribute to the nonlinearity (the polymer host has negligible NL susceptibility). In 

addition, the assumptions made to use a scalar value for (3)
effχ   were made for simplicity. The 

basic concepts of the model presented here are applicable also for the full tensorial 

susceptibility, given the whole tensor is known. 

 

6.2 Results and analysis 

In this section I will examine the influence of different parameters on the results of the 

composite effective permittivity and third order NL susceptibility. The results are of Eqs. 

(6.9a-b) and (6.13a-b) for the permittivity and third order susceptibility, respectively. I used 

again PFCB as the host and CdSe as the NRs. I will start from examining the influence of 

the capsule shape analysis on the results. I will then examine the influence of the dimension 

of the single NR – volume and AR, and I will finish with the influence of the temperature. 

For the capsule shape analysis, I will present the results for both the composite effective 

permittivity and third order susceptibility. For the other parameters, I will present the result 

for the third order susceptibility alone. The results are analyzed for different alignment 

degree, from random orientation through partially aligned array (with different aligning field 

strengths) to nematic array.  
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6.2.1 Influence of the capsule shape analysis 

I used as an example the first NR dimensions presented in Table 3 (60×3.1nm, see section 

5.2). I used the bulk properties of the NR material despite the small radius, which will cause 

quantum confinement effects. For the calculations of the permittivity and third order 

susceptibility I used the properties for optical frequencies. For the calculation of the 

alignment mechanism and the ADF I used the properties for DC electric fields.  

The values used are: volume fraction – 4%p = , permittivity for DC (or low frequencies) 

electric fields: ,|| ,10.2 , 9.33 , 2.4CdSe CdSe PFCBε ε ε⊥= = = , permittivity for optical frequencies: 

,|| , 6.2 , 2.19CdSe CdSe PFCBε ε ε⊥= = = . 

For the comparison between the prolate spheroids and the capsule shapes, the value of the 

depolarization factor of the capsule shape was taken as the effective value, as explained in 

section 4.3. The values of the PDM of the capsule shapes were taken as explained in section 

5.2. The values for the ellipsoid PDM were calculated from the data of Li and Alivisatos 

[25], treating the NRs as prolate spheroids, but with the formula given by Sihvola for the 

polarizability (see section 2.1 and Appendix A). 

Table 4. Effective permittivity effε  and third order NL susceptibility normalized by the inclusions 

susceptibility (3) (3)
eff CdSeχ χ  in the parallel direction, for NR dimension 60×3.1nm 4%p = .  Comparison 

between prolate spheroid and capsule shape models, with and without PDM. 

 
 

E0  

[V/m] 

effε  (3) (3)
eff CdSeχ χ  

Without PDM With PDM Without PDM With PDM 

Prolate 

spheroids 

Capsule 

shapes 

Prolate 

spheroids 

Capsule 

shapes 

Prolate 

spheroids 

Capsule 

shapes 

Prolate 

spheroids 

Capsule 

shapes 

0 
(random) 

2.3006 2.3002 2.3006 2.3002 1.47% 1.39% 1.47% 1.39% 

106 2.3006 2.3002 2.3007 2.3002 1.47% 1.39% 1.47% 1.39% 

5·106 2.3007 2.3006 2.3019 2.3022 1.47% 1.41% 1.53% 1.48% 

107 2.3009 2.3021 2.3053 2.3076 1.48% 1.48% 1.69% 1.74% 

5·107 2.3084 2.3364 2.3330 2.3401 1.84% 3.08% 3.03% 3.26% 

108 2.3296 2.3440 2.3421 2.3445 2.86% 3.44% 3.47% 3.47% 

∞  
(nematic) 

2.3488 2.3463 2.3488 2.3463 3.80% 3.55% 3.80% 3.55% 
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Effective permittivity: 

The result for a composite with sphere inclusions, with the same volume fraction, is 

2.2915effε = , orientation independent. NR composite presents larger values from that of 

sphere inclusions, even for random orientation (enhancement of 0.4% and 0.38% for 

spheroids and capsule shapes, respectively), which coincide with theoretical prediction (see 

Eq. (6.10)). The reason is that each component of the polarizability (each direction) 

contributes one third of its value to the general polarizability. The sphere polarizability is 

replaced by an average of the three components, which is larger than the result for a sphere 

(see Eq. (6.10) and [7]). Regarding the two orientation extremes (random and nematic), it 

can be seen that the capsule shape values are smaller than those of the prolate spheroid. This 

is due to the larger depolarization factor of the capsule shapes, as explained in section 4.3. 

For a partially aligned composite, without PDM presence, starting from aligning field of 

107V/m the capsule shape larger volume start to affect the alignment (see section 4.2), hence 

the composite values are higher. With the presence of the PDM, the alignment starts to 

affect from aligning field of 5·106 V/m.  

Effective third order NL susceptibility: 

For the Effective third order NL susceptibility, I present the results normalized by the 

inclusions susceptibility (3) (3)
eff CdSeχ χ . The result for sphere inclusion composite is

(3) (3) 0.61%eff CdSeχ χ = . Here the difference between the sphere inclusion and random NR 

composite is much larger (enhancement of 144% and 132% for spheroids and capsule 

shapes, respectively). The reason is that in the expression for the susceptibility of a random 

composite (Eq. (6.14)), the term consisting the depolarization factor (which is the 

geometrical description) is raised to the power of four, which makes the geometry influence 

very strong. The general behavior of the effective susceptibility is the same as with the 

permittivity. Here for aligning field of 5·107V/m, the alignment effect is substantial and 

there is 7.68% enhancement due to the presence of the PDM and more than 130% 

enhancement relative to the random orientation result. 
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6.2.2 Dimension dependency 

In this section, I examine the influence of the shape of the single NR in the composite, on 

the average macroscopic characteristics. I will focus on the third order NL susceptibility and 

will separate this section into two topics:  

(a) The dependency on the volume.  

(b) The dependency on the axes AR.  

As explained (section 5.3) the volume of the single NR affects only the alignment 

mechanism, by enhancing both the induced and permanent dipole moments, which in turn 

makes the alignment stronger. The axes AR, on the other hand, affect both the result for a 

nematic array and the induced dipole moment (by the influence on the single NR 

polarizability). Both of the effects favor larger AR.  

(a) Macroscopic characteristics dependency in the single NR volume: 

In order to examine the influence of the single NR volume on the alignment and hence the 

macroscopic characteristics in interest ((3)
effχ ) I will use equal AR NRs (capsule shapes) with 

different volumes. As explained (section 3.3) the minimum width of the capsule shape, 

determined by two times the Bohr radius of the bulk exciton, is set on 12nm . I will use an 

AR of 10, and use depolarization factor of 0.0305LAL =  (see Table 2 at section 4.3) and 

therefore ( )0.5 1 0.4848SA LAL L= − = , for different volume NRs. For the PDM, I will use a 

permanent polarization density of 0.205 µC/cm2 (see section 5.2). The volume fraction was 

set on 4%p = , and since it was kept constant, the results for the random orientation and 

nematic array composite were not affected by the change of the single NR volume. In Fig. 

14, I present the result for four different NRs (same AR, different volume). I examine the 

change in the effective susceptibility as a function of the aligning field strength. The NRs 

dimensions presented in the figure: 

 [ ]L nm   [ ]W nm  AR 3 [ ]V nm  

180 18 10 44,278 
160 16 10 31,098 
140 14 10 20,833 
120 12 10 13,119 
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In order to compare different NRs, I need to define a "measurement tool" .I define E  as the 

aligning field strength needed, to bring the effective susceptibility half the way between the 

value of a random-orientation composite and a nematic-array composite. A composite which 

requires a small E , can be treated as a "better" composite, because less effort is needed to 

achieve the same resulted susceptibility. From Fig. 14 it can be seen that composite with 

larger volume NRs, needs smaller E .  

 

 

As explained, the single NR volume does not affect the results for the random orientation 

and nematic array composites. All four curves originate and converge at the same points. 

However, increasing the volume of the single NR from  ~13,100 nm3 to  ~44,200 nm3, 

reduces the field strength required,E , from 1×106 V/m to 3×105V/m, about 3 times smaller. 

In Fig. 15.a, 15.b and 15.c, I present the dependency of the required field strength E  on the 

single NR volume for AR=5,10,20, respectively. The LA depolarization factors were 

changed accordingly for each AR:  0.0648, 0.0305, 0.0147, respectively. 

Fig. 14: Dependency of the composite effective third order NL susceptibility (normalized by 

the inclusions' susceptibility) on the single NR volume. Equal AR of 10. Presented also the 

values for the random orientation and nematic array composites and the "half way" value.  
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As can be seen from the figure, the required field strength falls like one over the single NR 

volume. I fitted the data sets to the equation 1A V B−⋅ +  when ,A B  are unknown parameters. 

The resulted equations are:   

10 1 10 1 10 1
5 10 201.29 10 2260 , 1.31 10 7670 , 1.33 10 1850AR AR ARE V E V E V− − −

= = == ⋅ ⋅ + = ⋅ ⋅ + = ⋅ ⋅ +  

It can be seen that changing the AR, does not affect the results substantially – the parameter 

A  changes by 3% when increasing the AR from 5 to 20 (4 times larger). The meaning of the 

similarity of the results is that the AR does not have a significant role in the alignment 

mechanism. In the next section I will examine the dependency in the AR more deeply. 

(b) Macroscopic characteristics dependency in the single NR AR: 

For the dependency in the AR, I set the volume on a constant value and change the AR.   

The NRs dimensions I use:3 

 [ ]L nm   [ ]W nm  AR 3 [ ]V nm  

100 20 5 30,000 
158 15 10 30,000 
206 13 15 30,000 
249 12 20 30,000 

 
Again I present the results of the effective third order NL susceptibility, normalized by that 

of the inclusions (Fig 16).  

                                                           

3
 These are rounded numbers, hence the length divided by the width does not equal the AR exactly. In 

addition, I ignored here the upper limit length mentioned in section 3.1.1 

Fig. 16: Dependency of required aligning field strength E  on the single NR volume with 

the same AR. Data points and fit curves for 
1~E V −

. (a) AR=5. (b) AR=10. (c) AR=20 
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For the case of different AR NR, the values for random orientation and nematic array 

composite differ with the AR. This can be seen from the equations (nematic array – Eq. 

(2.10), random orientation – Eq. (6.14)) and in Fig. 16; each curve originates and converges 

in different points. This is in contrast to Fig. 15 where all the curves start and end at the 

same points. From Fig. 16 I can extract the difference in the values for the random 

orientation and nematic array composites. Increasing the AR from 6 to 30, increases the 

value for random orientation composite, from 1.18% to 1.51%. The value for a nematic 

array composite, increases from 2.73% to 3.75%. 

In order to use the "half way" aligning field strength, to compare between the different 

composites, I normalized the four curves: for each curve I set the random orientation value 

(starting point) to zero and normalized the curve by its nematic array value. 

 

Fig. 16: Dependency of the composite effective third order 

susceptibility (normalized by the inclusions' susceptibility) on 

the single NR AR. Equal volume of 18,500 nm
3
.  
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As can be seen from Fig. 17.a, the influence of the AR on the alignment is very small. The 

different curves are almost indistinguishable. I used discrete markers so the different data 

sets will be visible. In Fig. 17.b I present a zoom in (with solid lines) and the differences 

between the curves are visible. Larger AR NR, has smaller required aligning field E , but 

the differences are negligible. 

 

6.2.3 Temperature dependency 

The last parameter I wish to examine is the temperature. As explained, PFCB 

polymerization temperature is 120-350°C, where higher temperature needs shorter 

polymerization time [31]. Nanocrystals, on the other hand, may become unstable at elevated 

temperature (see e.g. [35] for influence of temperature on nanocrystals). For the calculations 

so far, I assumed a temperature of 150°C and examined also the influence of a decreased 

temperature of 120°C on the ADF (see section 5.3). The choice in 150°C, evolved from the 

conjecture that this is a temperature that the NRs will still be stable in, when further 

investigation is needed to explore the exact temperature limit. In this section I will examine 

the influence of the temperature on the NL susceptibility, in the range of 100-200°C. I will 

compare again the field strength required to bring the effective susceptibility to half the way 

towards the nematic value, E . I simulated a single NR, with the dimensions: 

 [ ]L nm   [ ]W nm  AR 3 [ ]V nm  

120 12 10 13,119 

Fig. 17: (a) Dependency of the composite effective third order susceptibility (normalized by 

the inclusions' susceptibility) on the single NR AR. Results are normalized to the same 

starting point (0) and same ending point (1). (b) Zoom in to observe the differences 

between the different composites 
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Fig. 18.a presents the change in the relative susceptibility, at four different temperatures. 

Here the random orientation (starting point) and nematic array values are the same for all 

four curves, since they represent the same NRs composite. The curves of lower temperatures 

are higher for all aligning field strengths, as expected, since the thermal fluctuations of the 

NRs orientation are smaller. In addition, they cross the line of the half way between the 

random orientation and nematic array values, at lower aligning field strength, as expected. 

Decreasing the temperature from 200oC to 125oC, reduce the aligning field strength 

required,E , from 1.8×106 V/m to 9.7×105V/m, 46% less. Fig. 18.b presents the dependency 

of the aligning field strength required, E , in the temperature, and a linear correlation is 

observed. 

  

Fig. 18: (a) Dependency of the composite effective third order NL susceptibility (normalized 

by the inclusions' susceptibility) on temperature. Inset – zoom in. (b) dependency of the 

required field strength on the temperature, with a linear fit curve. 
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7. Nonlinear waveguides  

All of the former sections dealt with the characterization of the PFCB-CdSe NRs composite 

as a NL material. The macroscopic characteristics of the composite in interest were the 

permittivity and especially the third order NL susceptibility. As explained in the 

introduction, the main goal of the research is to fabricate a NL WG, using the NL composite 

as the core. In this section, I wish to characterize the WG that will be fabricated using the 

composite. The cladding of the WG planned is made of Cytop which is a commercially 

polymer with low losses and low refractive index (1.34) for 1.55µm wavelength.  I will start 

from two basic concepts in NL WGs, without addressing the whole theoretical background 

for WGs and NL WGs. 

 

7.1 Waveguide design 

The basic idea of a WG is to confine the propagating wave in the core of the WG. This is 

done by using higher refractive index material for the core and lower refractive index 

material for the clading (see e.g. [34]). In Fig. 19.a, I illustrate the WG in 3D, where the 

propagation direction is set as the ẑ  axis. The alignment mechanism will be done by two 

electrodes, parallel to the WG core, on both its sides, that will apply the aligning field (Fig. 

19.b and 19.c). The applied field will be along the x̂  axis, hence the NRs LA will be 

directed in the ̂x  axis direction and this will be the notation from now on.  If the electrodes 

will be too close, the optical mode will be truncated by the metal electrodes (Fig. 19.d), 

which will cause significant loss. Our simulations show that a distance of 3.5 µm between 

the WG core and the electrodes will make this loss to be negligible (Fig. 19.e). In the next 

section I will examine also the optimization of the core dimensions. 
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7.2 Effective modal area in waveguides 

The measure for the quality of the confinement of the mode, in NL WGs, is the "effective 

modal area", effA . I present the notation for effA , given by Koos et al. for high index 

contrast WGs [21]: 
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where ze
r

 is a unit vector in the ̂z  direction (see Fig. 19.a for direction notation) 

0 0 0 377Z µ ε= = Ω  is the free-space wave impedance and coren is the refractive index of 

the WG core material, which is a diagonal matrix in my case. The integrations in Eq. (7.1) 

Fig. 19: (a) WG illustration in 3D with the direction notation. (b) WG cross section with the 

electrodes location. (c) The same from top-view. (d) Optical electric field distribution along 

the x̂  axis (through the center of the core) with electrodes distance of 1.5 µm from the 

core. Inset – zoom in for the truncation of the field. (e) Same as (d) for distance of 3.5 µm, 

no truncation. 

(b) WG with electrodes         

– cross section 

(c) WG with electrodes         

– top view 

(d) Ex distribution along x-axis – 

electrodes distance  1.5 mµ
(e) Ex distribution along x-axis 

– electrodes distance  3.5 mµ

Core – PFCB + NRs 

(a) WG direction notation – 

3D 

ẑ
ŷ x̂

WG cladding 

WG  

core 

electrodes 

ŷ

x̂

WG  

core 

electrodes 

Cladding – Cytop 
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are surface integrations on the cross section of the WG. The integration in the numerator is 

on the entire cross section – core and cladding, assuming the cladding is infinite. The 

integration in the denominator is on the cross section of the core only, where the NL 

interaction ocurs.  

I will examine the influence of the dimensions of the core of the WG ion the effective modal 

area. I will start from examining a rectangle core shape WG. Former work done in our lab 

aimed at fabrication of a square WG, with dimensions of 1.5×1.5µm2 [13,14]. I will examine 

different AR rectangle WGs, around this shape, looking for the smallest effective modal 

area. Afterwards, I will examine different dimensions of square WGs. For the simulation of 

the effective modal area, the NL susceptibility is not used (see Eq. (7.1)). 

I use a composite with NRs dimension of 12×120nm (W×L), polymerization temperature of 

T=150oC and volume fraction of 4%p = . For this composite the required aligning field 

strength E (as defined in section 6.2), is 106 V/m, which results with permittivity along the 

LA of ( )2.3210  1.5235LA LA
eff nε = =  and along the SA 2.2881SA

effε =  ( )1.5126SAn = . The 

calculation of effA  was done by simulating the WG with specific refractive indices (a 

diagonal 3×3 matrix) and integrating the expressions in Eq. (7.1), all using COMSOL 

Multiphysics. 

In Fig. 20, I present typical results of the simulation (presenting the normal value of the 

electric field for a 1.5×1.5µm2 core WG). The results are along the x̂  axis (through the core 

center), for an optical field ploarized along the x̂  axis (Fig. 20.a) and along the ŷ axis (Fig. 

20.b). The integration in the numerator of Eq. (7.1) is over the whole cross section plane. In 

my case, I set the integration on a cross section of 20×20µm2. The value of the field in the 

center of the WG core in the simulations is ~3×1010V/m, while the value of the field in the 

ending of the clad is 46V/m for polarization in the x̂  direction and 0.07V/m for polarization 

in the ŷ  direction, which means I can neglect the field outside of the clad region and treat it 

as zero. 
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The differences between polarization of the optical field along the x̂  and ŷ  axes are 

negligible, regarding effA . For the rest of this section I will present results only for the 

electric field polarized along the x̂  axis.  In Fig. 21.a, I present the results for the different 

effective modal area for different rectangle WGs. The results are presented as a function of 

the AR which is defined here as x yAR L L=  where ,x yL L  are the WG core dimensions 

along the ̂x  and ŷ  axes, respectively. The minimal effective area is with AR=1 – meaning a 

square WG. For a square WG the minimum effective area is obtained for 1.3×1.3µm2  core 

dimensions – 2.6 µm2 (Fig. 21.b). As mentioned, former work done in our lab aimed at 

1.5×1.5µm2 core dimensions [13,14], resulting with – 2.7 µm2 effective modal area (3.8% 

larger).  

 

 

Fig. 20: Simulation results of the optical electric field E  in the WG. (a) Along the x̂  axis 

through the center of the core. (b) Along the ŷ  axis through the center of the core.  
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7.3 Nonlinear parameter of nonlinear waveguides 

The characterization of the NL WG quality is the NL parameter, γ  [21]:4  

 
2

(3)0 0
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4 core eff
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ω ε
γ χ

⋅
=  (7.2) 

where ω  is the optical frequency of the propagating wave. This parameter is used in the NL 

Schrӧdinger equation and describes the strength of the NL interaction in the NL WG. The 

two significant parameters in Eq. (7.2), that I am concerened with, are the effective modal 

area effA  and the third order NL susceptibility (3)χ , which in my case will be the effective 

value of the PFCB-NRs composite. The dimension of the NL parameter is( ) 1
W m

−
⋅ . 

Common silica based NL optical fibers usually have NL parameter value of 

( ) 131 3 10 W mγ
−−= − × ⋅  [34]. Silica variant NL optical fibers have demonstrated relatively 

enhanced nonlinearity of ( ) 1
0.1 50 W mγ

−
= − ⋅  [36-39]. 

I will use the same composite parameters as in the former section: NRs dimension of 

12×120nm (W×L), temperature of T=150oC and volume fraction of 4%p = . The resulted 

                                                           

4
 The letter γ  was used also to describe the second order NL hyperpolarizability. In all further analysis I will 

not use the hyperpolarizability and the letter γ  will be used only for the NL parameter of the NL WG. 

Fig. 21: Effective modal area results effA  for: (a) Rectangular WG with different sides AR. 

Polarization along the x̂  axis. (b) Same for square WG with different side lengths. 
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third order susceptibility are (3) (3) 2.25%eff CdSeχ χ =  along the LA and (3) (3) 0.8%eff CdSeχ χ =  

along the SA. CdSe third order susceptibility is 
(3) 17 23 10CdSe m Wχ −= ⋅  [40]. In Fig. 22, I 

present the values of the refractive indices (Fig. 22.a) and NL parameters γ  (Fig. 22.b) for 

two square WGs: 1.3×1.3µm2 and 1.5×1.5µm2. I compare for each one, different aligning 

field strengths, again for optical electric field polarized along the ̂x  (LA) direction. 

Regarding the refractive index, the results are the same for both WG core dimensions, since 

it is not influenced by the effective modal area. Regarding the NL parameter, the 

1.3×1.3µm2 core WG, present higher results. It can be seen from Fig. 22.b that the values for 

the 1.3×1.3µm2 core WG are larger for all aligning field strengths. In contrast to the 

composite characteristics (presented in section 6.2), here the results for the random 

orientation (starting point of the curve) and nematic array (end point) are not the same.  

 

 

For the aligning field strength required to bring the composite NL susceptibility, to half the 

value between random and nematic,E , there is a small difference between the two WG core 

dimensions: ( ) 1
119 W mγ

−
= ⋅  for 1.5×1.5µm2 core WG and ( ) 1

120.5 W mγ
−

= ⋅  for 

1.3×1.3µm2 core WG (1.2% improvement). The difference between the values for the 

Fig. 22: Refractive index and NL parameter as a function of the aligning field strength. 

Optical electric field polarization along the x̂  axis.  

(a) – Refractive index n , for 1.5×1.5µm
2
 and 1.3×1.3µm

2
 core dimensions (same results). 

The values for random orientation, nematic array and "half way" aligning field between 

them also presented.  

(b) – NL parameter γ , for 1.5×1.5µm
2
 (blue) and for 1.3×1.3µm

2
  (red) core dimensions.  
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nematic array is slightly larger: ( ) 1
168 W mγ

−
= ⋅  for 1.5×1.5µm2 core WG and 

( ) 1
175 W mγ

−
= ⋅  for 1.3×1.3µm2 core WG (4.1% improvement). 

It is worth noting, that for the 1.5×1.5µm2 and electrodes distance from the core of 3.5µm 

each (see section 7.1), the total pitch between the two electrodes will be 9.5µm. Taking 

small fabrication errors, I will consider a pitch of 10µm. Applying a DC voltage of 100V 

will result with an aligning field of 107V/m. The issue of the dielectric strength (breakdown 

voltage) of the polymers was not addressed so far. The dielectric strength of the Cytop is 

108V/m (manufacturer data). There is no data available for the PFCB dielectric strength. 

However polymers dielectric strength values are usually at the scale of ~108V/m [41], even 

for the unannealed polymers (the polymer in the liquid form). On the other hand, the fact 

that the aligning field is applied on the PFCB with NRs inside it and at elevated temperature 

has to be taken into account, as well. Experiments regarding the dielectric strength are 

planned in the near future. Nevertheless, aligning fields at the scale of ~107V/m, can be 

considered. For such an aligning field the resulted NL parameter for 1.5×1.5µm2 core WG, 

is ( ) 1
164 W mγ

−
= ⋅ , very close to the nematic array value.   

Another interesting characteristic to examine is the birefringence of the WG, which evolve 

of course from the birefringence of the composite itself. As explained, there is no difference 

between the two core dimensions regarding the refractive index. In Fig. 23 I show the 

birefringence x yn n n∆ = − , again as a function of the aligning field strength. I show also the 

values for the random orientation ( )0n∆ =  and for the nematic array ( )maxn∆ = . The value 

for the required field E  is 0.0108n∆ = . 
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The last analysis I wish to present is a comparison between optical electric field polarization 

along the x̂  and ŷ  axes, and refer also to a statistical analysis. All of the results for the 

composite permittivity and NL susceptibility used so far were the average or mean values 

(see section 6.1). The values of the refractive index and NL parameter, were also the values 

that were calculated from the average values of the composite. Here I wish to refer also to 

standard deviation (STD) of the results. The STD was calculated for the composite 

characteristics, permittivity and NL susceptibility, and from them the STD of the refractive 

index and NL parameter were derived. In Fig 24, I present the results for the refractive index 

(Fig 24.a) and NL parameter (Fig 24.b), for both polarization along the ̂x  direction (LA, 

blue line) and along the ŷ  direction (SA, red line), and the STD values. The results are for 

1.5×1.5µm2 core WG. The shaded areas are the mean values ±1STD. For small aligning 

field strengths there is an overlap between the two shaded areas, meaning there is a chance 

that the WG will behave the same for both polarizations. To avoid this chance, the aligning 

field strength should be above  ~1×106 V/m. 

Fig. 23: Birefringence of the WG. The change in the 

birefringence as a function of the aligning field strength.  
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The results for the NL parameter γ  are very high. As mentioned in the opening of this 

section, glasses based NL optical fibers achieve maximum values of ( ) 1
50 W mγ

−
= ⋅ . My 

results for the random orientation composite are ( ) 1
68 W mγ

−
= ⋅ , higher by 45% and this is 

the lower value. The alignment increases the results much more. Looking even at relatively 

low aligning field of 106V/m results with very high values of ( ) 1
119 W mγ

−
= ⋅ , for the LA 

direction. At that aligning field, the NL parameter for the SA direction is ( ) 1
42 W mγ

−
= ⋅ . 

I will finish with mentioning that more work regarding dispersion engineering of the WG is 

needed in the future.  

 

 

  

Fig. 24: Refractive index (a) and NL parameter (b) as a function of the aligning field strength, 

with the values for ±1 STD deviation. Optical electric field polarization along the x̂  (blue) and 

ŷ  (red) axis are presented, with the values for random orientation and nematic array 

composites. 
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Summary 

I started my work with theoretical background, describing the behavior of a single particle 

under a DC electric field. I described its linear response, i.e the polarizability and rotating 

moment and its NL response i.e the hyperpolarizability. I moved on to describe a composite 

with semiconductor NRs embedded in a dielectric host. The composite characteristics 

described were the permittivity and third order NL susceptibility, for a nematic array of 

NRs, meaning all the NRs are aligned at the same direction. I showed how NRs with large 

axes aspect-ratio result with larger permittivity and NL susceptibility. 

After the relevant background, I explained the basic assumptions needed for my work:  

(1) Electrostatic assumption for treating the composite as a homogeneous material.  

(2) Optical assumption for the NL behavior in interest, i.e Kerr-type nonlinearities. 

(3) Minimum NR size to avoid consideration of quantum-confinement effects.  

After that, I explained why CdSe is the best choice for the NRs material, due to bandgap 

energy considerations. CdSe bandgap is slightly above the two photon energy for 1.55µm 

wavelength, which on one hand decays the two-photon-absorption process and on the other 

it is the optimize region for Kerr-type processes I am interested with.  

I started the analysis of the composite, with the description of the NRs as capsule shapes, 

rather than the prolate spheroid shape usually used in theoretical work. I explained the 

geometry of the capsule shape and its electrostatic characteristics. I showed also how to use 

the simulation results of the capsule shapes, in order to find an equivalent prolate spheroid 

shape, which enables me to use this shape in analytical equations that were derived for 

prolate spheroids. 

I proceeded with explanation of the alignment mechanism, with which the NRs will be 

aligned – a DC electric field, acting during the polymerization of the host PFCB polymer, 

which causes a rotating moment on the NRs. I showed how larger volume NRs and NRs 

with permanent-dipole-moment enhance the alignment process significantly. Finally, I 

calculated the angular-distribution-function of the NRs in the composite, with and without 

the permanent-dipole-moment, under different temperatures and for different aligning field 

strengths. 
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The core of my work was then presented: how to analyze a composite that the NRs inside it 

are partially aligned, according to the angular-distribution-function that was derived. I 

derived the equations for such a composite, both for the permittivity and for the third order 

NL susceptibility. After the derivations, I presented some results that examine first the 

influence of the capsule shape model and then the influence of different parameters on the 

composite macroscopic characteristics: the single NR volume and axes aspect-ratio, and the 

temperature in which the NRs are aligned.  

The last part of my work was to use the results obtained, to characterize a NL waveguide, 

with a core made of the NRs composite. I presented two basic concepts regarding NL 

waveguides – the effective modal area and the NL parameter of the waveguide. I examined 

the dependency of the effective modal area on the waveguide core dimensions, where 

smaller effective modal area means larger NL parameter for the NL waveguide. I examined 

different sizes of WG cores, to optimize the NL parameter of the waveguide. In the end I 

showed the influence of the aligning field strength used, on the refractive indices and NL 

parameters of the waveguide in the two polarizations of the optical electric field. I showed 

also the statistical characteristics of the waveguide, by presenting the standard-deviation of 

the results. 
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Conclusions 

I will divide the conclusions of my work, into three topics: composite characteristics for a 

nematic array, influence of the alignment mechanism on the composite characteristics and 

NL waveguide (WG) characteristics. 

(a) Nematic array composite: 

Before looking at the macroscopic characteristics of a composite with a nematic array of 

NRs inside it, I wish to summarize the conditions for the single NR that my model deals 

with. The minimum dimension of the NR, meaning its short-axis (SA), must be above twice 

the Bohr radius of the bulk exciton of the material in question, to avoid quantum 

confinement effects. For CdSe NRs, the Bohr radius of the bulk exciton is 5.7nm, meaning 

the NR SA must be above 11.4nm. I considered NRs with a SA longer than 12nm. On the 

other hand, the long-axis (LA) of the NR must fulfill the condition for homogenization of 

the composite: ( )2 effLA nλ π< ⋅ , where effnλ  is the optical electric field wavelength in the 

composite. For my case 1550nmλ =
 
resulting with 160LA nm< .  

Regarding the nematic array composite, for a given volume fill fraction, the important 

parameter of the NRs is their axes aspect ratio (AR), when high AR reduces the NRs 

depolarization factor. For high values of third order susceptibility of the composite, NRs 

with high AR (low depolarization factor) are needed, meaning elongated NRs. Increasing 

the AR of the single NR, from 6 to 30, increases the value of the susceptibility (in 

percentage from the NRs susceptibility) for a nematic array composite, from 2.73% to 

3.75%. The single NR volume does not affect the composite, since the volume fraction of 

the NRs in the composite is set as constant (I used 4%). The model for describing the NRs as 

capsule shapes, increased the NRs depolarization factor, thus reducing the composite NL 

susceptibility, for a nematic array.  

(b) The alignment mechanism  

The alignment mechanism depends strongly on the single NR volume and hardly on the 

single NR axes AR. The model of the capsule shape results with stronger alignment, due to 

the larger volume of a capsule shape compared to a prolate spheroid, for a given length and 

width. The temperature of the polymerization can influence the alignment too, where higher 

temperatures cause larger thermal fluctuations which makes the alignment harder. Looking 
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at the results for the third order susceptibility, I defined a measure for the alignment 

strength: the aligning field strength required to bring the susceptibility half the way from the 

value of random orientation to the value of nematic array.  

For the influence of the single NR volume, I showed how the required field strength falls 

like the inverse of the volume. For NRs AR of 10, enlarging the single NR volume from 

13,100nm3  (120×12nm, length×width) to 44,2003 (180×18, length×width. 3.75 times larger) 

resulted with required field strength about 3 times smaller (from 106 V/m to 3×105V/m).  

For the influence of the polymerization temperature, I showed that reducing the temperature 

from 200oC to 125oC, reduces the aligning field strength required, from 1.8×106 V/m to 

9.7×105V/m (46% less). 

The single NR axes AR effect on the alignment, is negligible. However, for no alignment, 

meaning a random orientation composite, I showed that the AR of the single NR is a 

meaningful parameter. Increasing the AR from 6 to 30, increases the value of the 

susceptibility (in percentage from the NRs susceptibility) for random orientation composite, 

from 1.18% to 1.51%. Spherical inclusions will have a third order susceptibility of only 

0.61%. 

(c) NL waveguide characteristics 

The main characteristic of a NL WG is the NL parameter. This parameter depends on the 

NL material – its third order susceptibility, and on the WG effective modal area. The third 

order susceptibility was addressed in the two former sections of the conclusions. The 

effective modal area depends mainly on the WG core dimensions. I examined a composite 

with NRs dimensions of 120×12nm, (length×width) and again volume fraction of 4%. The 

required field for this composite (as described above) is 610 /E V m= . I showed that the 

optimized shape for the NL WG is a square core, and show that the dimensions of 

1.3×1.3µm2 for the core are ideal, resulting with effective modal area of 2.6 µm2. Changing 

the dimensions to 1.5×1.5µm2 (which was successfully fabricated in the past), increases the 

effective modal area to 2.7µm2 – a change of 3.8%. The resulting NL parameter for the NL 

WG is ( ) 1
119 W mγ

−
= ⋅  for 1.5×1.5µm2 core WG and ( ) 1

120.5 W mγ
−

= ⋅  for 1.3×1.3µm2 

core WG – 1.2% enhancement. The difference between the two dimensions is small, 

meaning there is no necessity to pursue 1.3×1.3µm2 core WG, although it is better. These 

values for the NL parameter are very high, comparing to glass based NL optical fibers. The 
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resulted NL parameter for random orientation composite is ( ) 1
68.6 W mγ

−
= ⋅  which is also a 

good result comparing to common NL WGs. 

I showed also the birefringence of the WG, varying between zero (for random orientation) 

and 0.022 (nematic array). The birefringence for the required field strength is 0.0108n∆ = . 

The last thing I showed was the statistical behavior of the result, in both polarization 

directions. I showed the standard deviation of the values of the NL parameters and in order 

to avoide the possibility of same results for both polarization directions, the aligning field 

strength must be above 9.6×105 V/m. For an aligning field of just 106V/m the result for 

polarization along the LA direction was very high: ( ) 1
119 W mγ

−
= ⋅ , and for the SA 

direction ( ) 1
42 W mγ

−
= ⋅ . 

It is important to note, that changing the volume of the single NR or its axes AR will result 

with even higher values for the NL parameter. However the limitation on the maximum NR 

length has to be fulfilled, otherwise diffraction and scattering of the optical signal will 

become significant. 
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Appendix A: Derivation of the polarizability  

I will start the derivation of the polarizability, with the simplest case of an isotropic 

inclusion of a sphere in which, ignoring crystallographic anisotropy,  α  is a scalar. The 

surrounding and inclusion permittivities are ,h iε ε  respectively, and the internal field inside 

the sphere is assumed to be uniform and it is given by [7]:5 
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(A.1) 

For a more complicated shape as an ellipsoid, the internal field depends on the direction of 

the external field regarding the ellipsoid major axes. For a field along such an axis, the 

internal field is given by: 
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where jL is the "depolarization factor" of the ellipsoid in the , ,j x y z=  directions, which are 

the major axes of the ellipsoid. The depolarization factor is derived from solving the electric 

potential of the ellipsoid and is defined as [15]: 

 ( ) ( )( )( )2 2 2 2
02

x y zj

j x y z

a a a ds
L

s a s a s a s a

∞

=
+ + + +

∫  (A.3) 

where s  is a length element in the direction in interest and , ,x y za a a  are the three semi-axes 

of the ellipsoid. The three depolarization factors in the three directions satisfy

1x y zL L L+ + = . For a sphere the depolarization factors are 1 3x y zL L L= = = , hence Eq. 

(A.1) can be derived from Eq. (A.2). For the case of ellipsoid of revolution (ellipsoid with 

two equal semi-axes, which is called a spheroid), there is a closed form for the 

depolarization factors. I will present only the result for a prolate spheroid (two equal SAs 

and one LA). I chose thêz axis as the LA of the spheroid and therefore ˆ ˆ,x y  are the SAs of 

the spheroid. The depolarization factors for a prolate spheroid are: 

                                                           

5
 Sihvola assumes this field and then show that it is satisfying the curl free condition for the electric field and 

boundary condition with the field in the sphere surrounding. See also Appendix B. 
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2

2

1 1 1 1
ln 1    ,    

2 1 2

LA
z LA x y SAe e L

L L L L L
e e e

−  +  − = = − = = =  −  
 (A.4) 

where 2 21  x ze a a= −  is the eccentricity of the prolate spheroid and according to my 

notation z x ya a a> =  [7,15]. 

As explained, the polarization density inside the inclusion, can be derived from the internal 

field. There are two approaches to define the polarization density P
r

 from the internal field. 

The first approach presented by Landau and Lifshitz, presented in Gaussian unit system, is 

[15]: 

According to my notation for the vacuum permittivity, in SI unit system, the polarization 

density will be:    

Stratton [42], followed by Sihvola [7] on the other hand, derived the polarization density at 

SI unit system and defined the polarization density without the normalization by hε : 

Later on I will address the question of which formula suits my work better. According to 

both approaches, after finding the polarization density, the polarizability can be derived. All 

of the mentioned authors assume homogeneous polarization density inside the inclusion, and 

the dipole moment is defined as V Pµ = ⋅
rr

. As explained, α  is a second rank tensor and 

again ignoring crystallographic anisotropy, assumed to have only three diagonal elements. 

The polarizability for an ellipsoid according to Landau and Lifshitz is: 

 
( )

( )& 0
i h

Landau Lifshitz j
h i h

V
L

ε ε
α ε

ε ε ε

−
=

+ −
 (A.7) 

and according to Sihvola:  

 
( )1

4
i h

in
h

P E
ε ε

π ε

−
=

r r
 (A.5) 

 
( )

0
i h

in
h

P E
ε ε

ε
ε

−
=

r r
 (A.5.a)  

 ( )0 i h inP Eε ε ε= −
r r

 (A.6) 
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( )

( )0
i h

Sihvola hj
h i h

V
L

ε ε
α ε ε

ε ε ε

−
=

+ −
 (A.8) 

Ruda and Shik used Landau and Lifshitzs' formula (Eq. (A.7)), in Gaussian unit system, 

with a reduction of the 1 4π  factor [12]. Li and Alivisatos converted this equation into SI 

unit system simply by replacing the factor of 1 4π with 0ε  [25]. 

The two equations converge in two points: (a) In the case the inclusion is in vacuum, 1hε = : 

( )0 1in i inP Eε ε= −
r r

 . (b) In the case the permittivity of the inclusion equals the permittivity of 

the host, h iε ε= : 0inP =
r

. From the second case it is understood that the polarization density 

in question is the polarization density above that of the background (host), hence even in the 

case that 1h iε ε= > , the polarization density inside is considered to be zero. I simulated a 

prolate spheroid under a uniform external field and extracted the polarization density inside 

the spheroid. I subtracted the polarization density of the background (far from the spheroid) 

from the result of the polarization density inside the spheroid. The simulations were 

performed in 3D, but the results are presented in 2D slices, in the y-z plane (Fig, A.1.a). The 

uniform external field was applied with a large capacitor, as shown in Fig. A.1.a as an 

example.  

The parameters used in the simulations – permittivities: 5 , 10h iε ε= = , spheroid semi-axes: 

30  , 6a nm b nm= = , external field: 10V/m. In Fig. A.1.b, I present a zoom in on the 

spheroid and in Fig. A.1.c the results along the ẑ  axis. 
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I simulated the same spheroid with the same permittivity and changed the host permittivity 

from vacuum ( 1hε = ) to the inclusion permittivity ( 10hε = ). I compared the results of the 

polarization density (minus the background polarization density) from the simulations to the 

results of the formulas of Sihvola and of Landau and Lifshitz. The comparison is presented 

in Fig. A.2.  

Fig A.1. Simulation result from COMSOL for the polarization density of a prolate spheroid 

inside a large capacitor. Parameters used: 30  , 6  , 5 , 10 , 10 /h i exta nm b nm E V mε ε= = = = = :   

(a) Presentation of the ˆ ˆy z−  plane. (b) Zoom in on the spheroid. (c) Results along the ẑ  

axis. 
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The results clearly show that the formula given by Sihvola suits the simulations much better 

than that of Landau and Lifshitz. The average deviation of the results of Sihvola from those 

of the simulations (ignoring the two end points 1hε =  and 10h iε ε= = ) is 4.5%. For Landau 

and Lishitz the average deviation is 76%. Given these results I chose to use the formula for 

the polarizability given by Sihvola (Eq. (A.8) which is also Eq. (2.2) in section 2.1.1). 

 

 

 

 

 

 

 

 

 

Fig A.2 Comparison of the results for the polarization density inside the spheroid, 

between Landau and Lifshitz, Sihvola and the simulations. Parameters chosen: 

30  , 6  , 10 ,  10 /i exta nm b nm E V mε= = = = . 
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Appendix B: Hyperpolarizability of a sphere and an ellipsoids 

In this appendix, I present the derivation made by Sihvola for calculating the first and 

second order hyperpolarizability of a sphere [7] and following his leads, the same derivation 

for an ellipsoid. 

I will start from Sihvola's analysis for the internal field iE
r

 inside an inclusion under an 

external electric field extE
r

. The internal field is a sum of the external field and the 

"scattered" field sE
r

, cause by the induced polarization density field P
r

: 

 i ext sE E E= +
r r r

  (B.1) 

Sihvola finds the relation between the scattered field and the polarization density to be: 

 
1

s
h

E L P
ε

= − ⋅
r t r

 (B.2)  

where hε  is the permittivity of the environment and L
t
 is the depolarization factor, which 

like the polarizability is a second order tensor. The internal field is therefore: 

 
1

i ext
h

E E L P
ε

= − ⋅
r r t r

 (B.3)  

For a sphere inclusion the depolarization is a scalar – 1 3L = .  

Hyperpolarizability of a sphere: 

For a NL material, the polarization P
r

is usually presented as a power series in the electric 

field E
r

: 

 ( )(1) (2) 2 (3) 3
0 ...P E E Eε χ χ χ= + + +

r r r r
 (B.4)  

In this presentation, the tensorial characteristics of the susceptibilities are not presented 

explicitly, but it can be addressed by treating each susceptibility as a tensor, and using a 
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tensor multiplication. Assuming the linear susceptibility is a scalar, the internal polarization 

density in a sphere can be presented as: 

 ( ) ( )(2) 2 (3) 3
0 0 ...i i h i i iP E E Eε ε ε ε χ χ= − + + +

r r r r
 (B.5)  

where again the permittivities of the sphere inclusion and environment are ,i hε ε  

respectively. The dipole moment of the sphere is also NL and is a function of the external 

field: 

 2 3 ...ext ext extE E Eµ α β γ= + + +
r r rr

 (B.6)  

According to Eq. (B.3), for a sphere inclusion the internal field will be 3i ext eE E P ε= −
r r r

or 

( )3 e ext iP E Eε= −
r r r

. Using this expression for the polarization density inside Eq. (B.5) and 

isolating the linear term of the internal field, will result with:
 
 

 ( )(2) 2 (3) 303
...

2 2
h

i ext i i
i h i h

E E E E
ε ε

χ χ
ε ε ε ε

= − + +
+ +

r r r r
 (B.7)  

At this point, Sihvola assumes the "linear approximation", and uses the linear term for the 

internal field (as a function of the external field) in the powers inside Eq. (B.7).The linear 

field is: 

 
3

2
h

i ext
i h

E E
ε

ε ε
=

+

r r
 (B.8)  

hence Eq. (B.7) is approximated to: 

 

2 3

(2) 2 (3) 303 3 3
...

2 2 2 2
h h h

i ext ext ext
i h i h i h i h

E E E E
ε ε ε ε

χ χ
ε ε ε ε ε ε ε ε

    
 ≈ − + +   

+ + + +     

r r r r
 (B.9)  

He uses Eq. (B.9) for the internal field inside the expression ( )3 e ext iP E Eε= −
r r r

 from Eq. 

(B.3) for a sphere and remembering that V Pµ = ⋅
rr

 the result is: 
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( )
0

3 4

(2) 2 (3) 3
0 0

3
2

3 3
...

2 2

i h
h ext

i h

h h
ext ext

i h i h

V E

V E V E

ε ε
µ ε ε

ε ε

ε ε
ε χ ε χ

ε ε ε ε

−
= +

+

   
+ + +   

+ +   

rr

r r
 (B.10) 

From this equation, the polarizability and hyperpolarizabilties can be identified easily. 

 

Hyperpolarizability of an ellipsoid: 

The derivation for ellipsoids requires Eq. (B.3) without reducing the depolarization factor by 

1 3L = . The expression ( )3 h ext iP E Eε= −
r r r

 becomes ( )j jh
ext ij

P E E
L

ε
= −  which is direction 

dependant, according to the external field direction ( , ,j x y z= ). Eq. (B.7) becomes: 

 ( ) ( ) ( ) ( )( )2 3(2) (3) ...
j

j j jh
i ext i ij j

i h h i h h

L
E E E E

L L

ε
χ χ

ε ε ε ε ε ε
= − + +

− + − +
 (B.11) 

and Eq. (B.8) becomes: 

 ( )
j h

i extj
i h h

E E
L

ε
ε ε ε

=
− +

 (B.12) 

Following the same derivation as for the case of a sphere, Eq. (B.10) becomes: 

 

( )
( )

( ) ( )

0

3 4

(2) 2 (3) 3
0 0

i hj
h extj

h i h

h h
ext extj j

h i h h i h

V E
L

V E V E
L L

ε ε
µ ε ε

ε ε ε

ε ε
ε χ ε χ

ε ε ε ε ε ε

−
= +

+ −

   
+ +      + − + −   

 (B.13) 

Again, from the last equation, the polarizability and hyperpolarizabilities can be identified 

easily.  
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Appendix C: derivation of the MG model by Sihvola 

There are several ways to derive the MG model for composite with linear sphere inclusions 

[6,7,17,19]. I will present the derivation given by Sihvola which uses average values of the 

macroscopic fields in the composite [7].  

Sihvola starts from the macroscopic displacement field (electric flux density in his notation): 

 eff hD E E Pε ε= = +
r r r r

 (C.1)  

The average polarization density evolves from the dipole moments in the mixture mixµ
r

: 

 mixP n µ= ⋅
r r

 (C.2)  

where n is the number density of the dipoles. It is important to notice that the dipole moment 

in the mixture is different from a single induced dipole moment, because of the influence of 

all the other dipoles on the average electric field. The local field near the inclusion is given 

by the external field and the average polarization density in the mixture: 

 
1

3L
h

E E P
ε

= +
r r r

 (C.3)  

where the factor 1 3 is the depolarization factor of a sphere. The single induced dipole 

moment in the mixture is then: 

 mix LEµ α=
rr

 (C.4)  

 where α is the single inclusion polarizability. Combining Eqs. (C.2) and (C.4) results with: 

 LP n Eα= ⋅ ⋅
r r

 (C.5)  

Then, using Eq. (C.3) for the local field, inside Eq. (C.5) the polarization density can be 

extracted: 
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 1
3 h

n
P E

n
α
α
ε

⋅
= ⋅

⋅
−

⋅

r r
 

(C.6)  

Using this expression inside Eq. (C.1), we can eliminate the expressions of the average field 

and extract the effective permittivity: 

 1
3

eff h

h

n
n
α

ε ε
α
ε

⋅
= +

⋅
−

⋅

 
(C.7)  

There are several methods to present the last equation for the effective permittivity. In the 

form of the polarizability, it can be presented as: 

 
2 3

eff h

eff h h

nε ε α
ε ε ε

− ⋅
=

+ ⋅ ⋅
 (C.8)  

which is the Clausius-Mossoti formula. On the other hand, from Eq. (2.2) (or A.8) for the 

polarizability of an ellipsoid the polarizability of a sphere can be found (by using 1 3L = ): 

 ( ) 3

2
h

sphere i h
i h

V
ε

α ε ε
ε ε

⋅
= −

+ ⋅
 (C.9)  

Then by using the expression for the polarizability inside Eq. (C.8) the effective permittivity 

can be presented in terms of the permittivities and volume fraction, by remembering that 

p n V= ⋅ . The effective permittivity is given by simple algebra:  

 ( )
3

2
i h

eff h h
i h i h

p
p

ε ε
ε ε ε

ε ε ε ε
−

= + ⋅ ⋅
+ ⋅ − − ⋅

 (C.10) 

which is the same as Eq. (2.9) –  Maxwell-Garnett formula. 
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Appendix D: different approaches and assumptions for the NL Maxwell-Garnett 

model  

As explained in section 2.2.2, several approaches were presented for the derivation of the 

generalization of the MG model for NL inclusions. I will present the method, assumption 

and conclusion of three authors, without presentation of the whole derivation. More 

approaches can be found in the review of Gehr and Boyd [18]. 

Ricard et al. were the first to derive a generalization for the MG model, dealing with the 

nonlinearity of metal spheres dispersed in water [43]. They used a presentation of the linear 

MG model as: 

  , 
2 2

eff h i h

eff h i h

p
ε ε ε ε

β β
ε ε ε ε

− −
= ⋅ =

+ ⋅ + ⋅
 (D.1) 

and taking the result for the effective permittivity to the lowest order in the volume fraction 

p , they obtain: 

 ( )1 3eff h pε ε β= + ⋅  (D.2) 

Expanding the result to Taylor series for a small deviation in the inclusions permittivity, 

results with: 

 3eff h i
i

p
β

δε ε δε
ε

∂
=

∂
 (D.3) 

Assuming the change in the inclusions permittivity is due to the third order nonlinearity and 

using the internal field inside the sphere inclusion (Eq. (A.1)) as the local field experienced 

by the inclusion, they found: 

 

2 2

(3) (3)3 3

2 2
h h

eff eff i
i h i h

p
ε ε

χ δε χ
ε ε ε ε

 
= =  

+ + 
 (D.4) 

Sipe and Boyd presented a method to derive the MG model (linear and sphere inclusions) by 

addressing the mesoscopic fields in the composite, meaning the field that a single inclusion 

"feels" [19]. After calculating the MG model, they expanded their derivations for the cases 
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of NL inclusion and/or NL host. Like Ricard et al. their work is also entirely for sphere 

inclusions and I will only present the final result for the NL inclusion case. They use the 

notation of the electric displacement field (in Gaussian unit system): 

 * *( ) ( ) 4 ( ) ( ) ( ) 2 ( ) ( ) ( )D r E r A E r E r E r B E r E r E rε π π   = + ⋅ + ⋅   
r r r r r r r rr r r r r r r r

 (D.5) 

where the coefficients A  and B  are related to the third order NL susceptibility tensor 

components: 11226A χ= and 12216B χ=  (see  [16]). The relation between the composite 

effective coefficients ( , )A B  and the inclusions coefficients ( , )i iA B , is given by [19]: 

 

2 2 2 2
2 2 2 2

 , 
2 2 2 2

eff h eff h eff h eff hi i

i h i h i h i h

A f A B f B
ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

+ + + +   
= =   

+ + + +   
 (D.6) 

where effε  is the effective permittivity, given by the linear MG model. The main difference 

between the result of Sipe and Boyd to that of Ricard et al. is the expression in the 

numerators of ( )2eff hε ε+ instead of ( )3 hε . 

Lamarre et al. followed the method presented by Ricard et al. and derived first an expression 

for ellipsoid inclusions [6]. They used the linear generalization of the MG model for 

ellipsoid inclusions (Eq. (2.10)) that for the first order approximation in the volume fraction 

(assuming 1p << ) is: 

 
( )
( )1

h i hj
eff h j j

i h

p
L L

ε ε ε
ε ε

ε ε

−
≅ +

+ −
 (D.7) 

Following the method presented by Ricard et al. with the same assumptions, they found: 

 
( ) ( )

2 2

(3), (3)3

1 1
j h h

eff ij j j j
i h i h

p
L L L L

ε ε
χ χ

ε ε ε ε

 
 =
 + − + − 

 (D.8) 

Using the same derivation for larger volume fraction they used the full expression of Eq. 

(2.10) for the effective permittivity of a composite with ellipsoid inclusions. Their result is: 
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( ) ( ) ( )

2 2

(3), (3)3

1 1
j h h

eff ij j j j
i h i h i h

p
L L p L L

ε ε
χ χ

ε ε ε ε ε ε

 
 =
 + − − − + − 

 (D.9) 

The difference between the large and small volume fraction (Eqs. (D.8) and (D.9)), is in the 

additional expression of ( )i hp ε ε − −   in the denominator of the first expression on the 

right hand side of Eq. (D.9). 

Sihvoal used the average quantities of the different macroscopic fields: 

 (2) (3)
0 ...h eff eff effD E P E E E E E Eε ε ε χ χ = + = + + + 

r r r r r r r r r
 (D.10) 

where the epxression effε  here, stands for the linear effective permittivty only. For sphere 

inclusions and small volume fraction, Sihvola assumes that the field that excite an inclusion 

is the average field E
r

, hence the effective parameters depends on the polarizability α  and 

hyperpolarizabilities ,β γ . The effective susceptibilities are: 

 

(2)
0

(3)
0

eff

eff

n

n

χ β ε

χ γ ε

=

=
 (D.11) 

For the third order nonlinearity, using the expression for γ  from Eq. (B.10), the result for a 

sphere inclusions is: 

 

4

(3) (3)3

2
h

eff i
i h

p
ε

χ χ
ε ε

 
=  

+ 
 (D.12) 

Deriving the same for ellipsoid inclusions, with the hyperpolarizability of an ellipsoid as 

derived in Appendix B, results with: 

 
( )

4

(3), (3)

1
j h

eff ij j
i h

p
L L

ε
χ χ

ε ε

 
 =
 + − 

 (D.13) 

It is important to mention that Sihvola derived all of his derivations for dielectric inclusions. 

The models presented by by Ricard et al. Lamarre et al. and Sipe and Boyd were derived for 

metal inclusions. Nevertheless, they can be used with dielectric inclusions [18], hence the 



 

result I presented following S

small volume fraction (Eq. (
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It is interesting to examine the difference between the model

fractions (Eqs. (D.8.) and (D

6.2 , 2.19i hε ε= =  as before and 
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20% for the volume fraction (which is the MG model limit). In Fig. 

deviation of the small volume fraction equation, 
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For the value 4%p = that I used in my work, the deviation is 
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Fig. D.1: Comparison between the values of the effective third order NL susceptibility of a 
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composite effective susceptibility normalized by the inclusions susceptibility, for the two 
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result I presented following Sihvola, is the same as the result presentes by 

volume fraction (Eq. (D.8)), for dielectric material (i.e with a real value for the 

is interesting to examine the difference between the models for the large

D.13) compared to Eq. (D.9)). I will use parameters values 

as before and 0.1 , 0.45LA SAL L= = , and examine the influence of the 

on the value of (3), (3)j
eff iχ χ for the two forms. In Fig. 

values of the two equations as a function of the volume fraction, between the values of 0 and 

20% for the volume fraction (which is the MG model limit). In Fig. D.1

volume fraction equation, relative to the equation for 

It can be seen from Fig D.1.b, that the deviation of the values from 

volume fraction equation, grows almost linearly with the volume fraction itself. 

that I used in my work, the deviation is 1.23%, which justifies 

volume fraction equation – Eq. (D.13) throughout my work

Fig. D.1: Comparison between the values of the effective third order NL susceptibility of a 

composite with ellipsoid inclusions as a function of the volume fraction. (a) 

composite effective susceptibility normalized by the inclusions susceptibility, for the two 

deviation of the values of the equation for low volume fraction, relative 

ion for high volume fraction. 

fraction equation 

High volume fraction equation 

is the same as the result presentes by Lamarre et al. for 

.8)), for dielectric material (i.e with a real value for the 

large and small volume 

.9)). I will use parameters values of

, and examine the influence of the 

In Fig. D.1.a, I present the 

values of the two equations as a function of the volume fraction, between the values of 0 and 

D.1.b, I present the 

the equation for large volume 

that the deviation of the values from 

arly with the volume fraction itself. 

1.23%, which justifies in my 

throughout my work. 
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