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Abstract

The expected permittivity and third order nonlineasceptibility, of a low filling fraction
composite consisting of semiconductor nanorodsedsga in a polymer host are derived,
using the Maxwell-Garnett model for anisotropic Imear inclusions. The semiconductor
nanorods are modeled both as prolate spheroidsname realistic capsule shapes. A new
generalized model is presented for various nanaxkiglorientation statistics, achieved by an
aligning electric field. The angular distributiooniction of the nanorods is calculated for
nanorods with a permanent electrical dipole momeshiich assists the alignment of the
nanorods. Using the angular distribution functithe, composite macroscopic characteristics
are found for a composite with random orientatipartially aligned and nematic array
nanorods. As the alignment field strength increashe composite optical properties
asymptotically converge towards the nematic caséferent parameters relate to the
nanorods geometry are examined, concluding thatnthén parameter influencing the
alignment is the single NR volume, while for themaic array the single nanorod axes
aspect-ration is the major parameter. Due to tmensstry of the nanorods, the composite
characteristics depend on the polarization of thtecal electrical field, with a symmetry that
resembles a uniaxial crystal.

A nonlinear waveguide with a core made of suchrapmsite is simulated, in order to find
the nonlinear parameter of the waveguide. The mtadkels into account two electrodes for
the alignment process, far enough from the waveguoate, in order to avoid losses to the
optical mode. Significant optical response can bbiewed even for randomly oriented
nanorods composite, with a nonlinear parameter &f¥\&m)*. The alignment process
increases the nonlinear parameter significantlyneateelevated temperature that are needed
for polymerization of the polymer host, typicallC. Aligning field strength of 10V/m
results with very high value for the nonlinear paeter — 120(Wxmj, much higher than
ordinary glass based nonlinear optical fibers, tesult with nonlinear parameter up to
50(Wxm)™.
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1. Introduction

Nonlinear (NL) optical waveguides (WGs) are an im@ot building block for various
optical applications, such as optical switchingagghmodulation and wave mixing. Finding
the suitable NL material, for a desired applicatioas an important role in designing the NL
WG. Different NL materials are suitable for diffateneeds, when the specific purpose of
the WG, the optical wavelength in question and ogreperties can affect the selection of
the NL material. Of course, not every material thas the suitable NL properties for our
need has also the suitable properties for being& When considering both fabrication
processes and optical properties as low loss atceelégant way to combine a suitable NL
material into a WG is to use nano-particles (NB)rfra NL material inside a host from a
material that is proven suitable for optical WGkeTequirements from such a composite of
materials is that the NPs will be much smaller th@ wavelength in question and

homogeneously dispersed in the host.

The physical characteristics of the NPs can beifgigntly manipulated by controlling
their shape to match specific needs. Rod shapedcngtals exhibit enhanced optical
response along their long axis due to surface paldon [1,2]. Composites consisting of
such nanorods (NRs) embedded in a dielectric lvast,serve as building block for various

optical applications.

Former work by Prof. Baniet al. showed an optical WG for wavelength of uB§
constructed from sphere NP inclusions, embeddeal BRFCB polymer [3,4]. PFCB (Per-
Flourinated Cyclo-Butane) is a good material fog us1.5um wavelength, with low losses
and tunable refractive index, by synthesis contibhe PFCB's low polymerization
temperature and thermal stability make it a goawtlchate as a host for NPs. They showed
that for the right capping ligands for the NPs, thatical properties of the NPs are
maintained. Elsewhere [5], TiO2 NRs inside PMMA &shown to be a good candidate for
NL optical composite media, hence the combinatibRFECB with NRs is a very interesting
composite to examine for NL WGs. Enhancing theusidn response by using aligned NRs

is the next natural step.

The properties of such a composite will dependhenrhaterial and dimensions of the
NRs on one hand and on the statistical directipnali the NRs in the composite, on the
other hand. Quantitative models that analyze coitgmsvith embedded NRs, are mostly

based on describing NRs as prolate spheroids erfagh nematic array (Fig. 1.a), where no
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statistical measure of the NR alignment spreadhéncomposite is discussed [6,7,8,9]. The
configuration of a nematic array can be fabricatedplanar (2D) arrays by e-beam
lithography [10] or nanosphere lithography [11].dnvolumetric (3D) array achieving the
control over the directionality is problematic atidis it is much harder to fabricate perfect
3D nematic array. The natural phase of a compwsitedilute NRs dispersed in it is that of
randomly oriented NRs. The case of random oriesriatiig. 1.b) was also addressed and
compared to the nematic case for the linear matenogperties [7,8,9]. The case of statistical
orientation (Fig. 1.c) was addressed theoreticdlythe linear regime with an arbitrary
distribution function, without analysis and caldidas of the origin of the alignment or the
statistical behavior influence on the resulting roacopic characteristics [7,9]. For the
statistical case, qualitative description of coniigss macroscopic characteristics was made,
in terms of the volume the NRs occupy in the contppsather than the whole composite

characteristics [12].

In this work, | present a comprehensive quantieastatistical model for calculating the
macroscopic characteristics of such compositedirfqitheir permittivity and third order NL
susceptibility. The model takes into account sdvaciors that were ignored previously: the
geometry of a single NR is described as a capsuiegh better matches most NRs TEM
images, the statistical behavior of the NR aligntrierthe composite, and cases with and
without a permanent electrical dipole moment inrs.

REAINN N Z AR
/ /17y /\\// /'//
/¢0/7 ||\ — Il//'/

Fig 1. An illustration describing different NRs alignment degree: (a) A

perfect nematic array of NRs. (b) Random distributed NRs. (c) An array

of partially aligned NRs.

After characterizing the composite, | simulate pteperties within a NL WG, with a
PFCB-NRs composite core and Cytop cladding. The B’EGre — Cytop cladding WG
structure was already fabricated and tested in Rhetonics Devices Laboratory (e.g.
[13,14]) and the use of the PFCB-NRs mixture isrteet step in the lab's research plan.



I will start from describing the physics of a dimgarticle inclusion and its relevant
electrostatic and electrodynamic characteristiasilllcontinue with describing the NRs as
capsule shapes instead of the usual descriptiprotdte spheroid and examine the influence
of such a description on the electrostatic andteldgnamic characteristics. | will then
describe the alignment mechanisms; applied extdigidland permanent dipole moment in
the NRs. | will explain how to use the statistibehavior of the orientation of the NRs, to
calculate the macroscopic characteristics of thapmsite: the permittivity and third order
NL susceptibility. | will examine the influence dlifferent parameters on the composite
characteristics, focusing on the third order NLceysibility. | will finish with simulations of

a NL WG with such a composite as the core of the WG



2. Theoretical Background

Some notations are required before diving intottie®retical background. I will use Sl unit
system and will use the notatidd = . E for the displacement field. Because some of the

authors derived their formulas using the Gaussiahsystem and some using the Sl unit
system, there is often a need for converting batwbe unit systems. In order to clarify
comparison and integration of different sourceghbse to write explicitly the vacuum

permittivity g, . In places | will use Gaussian unit system | wikntion it explicitly and use
the expressiorl/ 4z without reducing it. At last, in places | will uselative permittivity of

different materials, | will denote that expliciths well. Regarding NL WGs, | will introduce
some important concepts in the opening of the exlegection (section 7), without deeply

describing all the theoretical background of thikjsct.

2.1 Small particles under electric field

2.1.1 Dipole moment, polarizability and depolarization factor

When an electric fieIdE@(t is applied on a small dielectric particle insidedialectric

surrounding with different permittivity, the fieldear the particle is perturbed by the

particle. Inside the particle, the applied fieldluces a dipole momeng . In the linear

regime of discussion, the dipole moment is giventh®y formulagii = -E,,, where o is

called the polarizability of the inclusion [7]. the general casey is a second rank tensor,
which can be represented as a [3x3] matrix. Inrotaldéind this induced dipole moment in
the inclusion one must start from the internaldigiside it, derive the polarization density
field and then integrating the polarization densiter the volume, find the dipole moment
[15]:

For the polarizability of an ellipsoid, there aweotslightly differing solutions, one presented
by Landau & Lifshitz [15] and the other by Sihvd@). In Appendix A, | show the

differences between the two derivations, and sitrariaresults. As shown in the appendix,
the formula presented by Sihvola match my simutetidgherefore | will use it. According to

Sihvola, the polarizability of an ellipsoid is:



(=)

g, +L (6 -¢,)

aSjihvola :Vgo gh (22)

where ¢,,&, are the permittivities of the host and ellipsoidlusion, respectivelyy is the

ellipsoid volume andL'is the "depolarization factor" of the ellipsoid the j=x,y,z
directions, which are the major axes of the elligsdhe depolarization factor is a geometric
factor that expresses the different electrostagponse of the ellipsoid under an electric
field, along the ellipsoid different axes. For fr@late spheroid shape (meaning an ellipsoid
with two equal short axes (SAs) and one long &x4g), | define thez axis as the LA, such

thata, > a, =a,.The depolarization factor for a prolate sphersidiven by [7,15]:

2 LA
o1t [iln(—1+ej—1J , LX=LV=LSA=—1|2' (2.3)

e (2 |1-e

wheree=,/1- af/af is the eccentricity of the prolate spheroid. eraghe derivation of the

depolarization factor to Appendix A as well. Thereth depolarization factors satisfy

L*+ LY + L* =1. The LA depolarization factor varies between Ce¢fie) to 1/3 (sphere) and
consequently, the SA depolarization factor variesvieen 1/2 to 1/3. Larger depolarization
factor can be achieved only for an oblate sphefiwvd equal LAs and one SA). A prolate
spheroid with large aspect ratio (AR=LA/SA) betwetie LA and the SA, will have a

smaller depolarization factor, in the LA direction.

The derivations leading to Eg. (2.2) assume amapat material, and the anisotropy of the
polarizability is due to the anisotropy of the @rel spheroid shape alone (in contrast to a

sphere where the inclusions and the composite reisatiropic).

2.1.2 Rotating moment on a tilted spheroid

The derivation of the polarizability (section 2.lahd Appendix A), assumed a spheroid
with a major axis parallel to the external elecfredd. In cases where the spheroid is not
parallel to the electric field, the dipole momeft will not be in any specific known

direction. In the general case, the direction & $pheroid should be presented with two

angles: (1) The angl@ between the LA of the spheroid and theaxis, is the tilt angle



which is defined over the intervaP=[0,7z]. (2) The anglep between the projection of the
LA of the spheroid on the&x—y plane and thex axis, is the azimuthal angle which is

defined over the intervalp = [0, 2z] (see Fig. 2.a).

(b)

oy

H)V

Fig 2. An illustration describing the direction of the prolate spheroid (in blue) in
the axes of the system. (a) The general case with 3D presentation and two angles

€ and @. (b) Reduction of the problem to 2D for analysis of the tilt angle 6.

In a shape symmetric to rotation (e.g. spheroitis¢, interaction is defined in plane
containing the vectors of the aligning field and #xis of symmetry of the shape (the LA in
our case) [15]. Both the vector of the dipole motraard of the aligning field will be in that

plane. Without any lost of generality, | will séietdirection of the external electric field as

Zand the dipole moment vector is in tlye-Z plane with an angl® regarding theZ axis,

as illustrated in Fig. 2.b.

The induced dipole moment will have a componenh&LA direction —z4 = Ecost and
a component in the SA direction # =« Esiné (Fig. 3.a). The interaction between the

dipole moment and the original external field withuse a rotating momend on the
ellipsoid (Fig. 3.b), which will be [12,15]:

M = iixE,, (2.4)

Each dipole moment interacts with the field compadna the opposite direction (LA and
SA direction dipole moments with the SA and LA élecfield component, respectively)

and cause a rotating moment in an opposite directidowever, for dielectric or



semiconductor NRs, the sum of the two rotating mumés always positive, meaning the

NR will be align eventually parallel to the extelrfiald, as illustrated at Fig(3.c) [12,15].

® ©

<]

Fig 3. An illustration describing the alignment mechanism of the prolate spheroid,
by a DC electric field: (a) The aligning field causes induced dipole moments 4, 11,

in both spheroid major axes, parallel and normal respectively. (b) The induced
dipole moments cause a rotating moment that acts on the spheroid. (c) The

rotating moment align the spheroid parallel to the aligning field.

The result for the total rotating moment actingagprolate spheroid is:
M = jixE =(g,-E-sind)-(E- co¥)—(a, -E- co#)-(E- sin)

. (2.5)
=(ey—a,)E?-sing- cow

The rotating moment is zero at two points=0 and 6 = z/2 but 8 =7/2 is an unstable

point. Further on | will consider thermal fluctuais that enable me to ignore this point.

2.1.3 Hyperpolarizability

When a material has a NL susceptibility, an in@asof that material under an electric field
will response not only linearly (which is manifedtdy the polarizability) but also
nonlinearly. The NL response in characterized by tlyperpolarizability. The two first

orders of the hyperpolarizabilityy and y evolve from the second and third order NL

susceptibilitiesy® and y®, respectively:

f=a By +f-Eyt+y-E (2.6)



It is important to mention thag'® canappear only in materials that lack a center of
inversion (noncentrosymmetric lattice) [16]. | lWitinore higher order nonlinearities in all
further discussions. The NL process can excitespaese from different field components,

resulting in fand y being third and forth rank tensors respectiveljthva much more

complicated presentation compared to the linegraese,« . In section 6.1.2, | will discuss
the tensorial behavior of the third order NL susitziity.

Sihvola presents the solution for the hyperpoldnizg of a sphere inclusion [7]. By
expanding the polarization density in a power seoé the internal field, and using a
pertubative approach, he uses the linear intetield fo describe the internal field in the
power series. | will present only the result foe thecond order hyperpolarizability (third
order nonlinearity). Using the same approach foelfipsoid, by using the internal field in

an ellipsoid instead of that of the sphere, thévdéon is straightforward:

4
i &
oo =V —h e x® 2.7
7eII|p30|d (5h+|—](5i_5h)j oX ( )

Again the indicesj represent the different direction regarding thg®bid major axes,
ignoring the anisotropy properties of the suscdpybitself. In Appendix B, | present
Sihvola's derivation for hyperpolarizabilities osphere and the generalization for the case
of ellipsoids. | ignore any influence of the NL pesise of the inclusions on the rotating

moment.



2.2From single inclusion to a homogeneous mixture

My objective is to characterize a composite thas INRs dispersed in it. The main
characterization | am interested in is the permittiand third order NL susceptibility of the
composite. In the linear regime of discussion, Hasic model that deals with such a
composite is the Maxwell-Garnett (MG) model [1The model analyzes a composite of
spherical metal inclusions embedded in a dielectrdterial, when the inclusions are much
smaller than the wavelength of the electric fidldttpropagates through the composite (Fig.
4). Such a topology ensures that propagation alemg wavelength encounters many
inclusions, and the composite can be treated asmtnaum [7]. | will address the details of
the conditions for the MG model later on (sectioh) 3Despite the fact that MG model and
other models alike, deal with metal inclusions, dieeivation for dielectric inclusions is the

same [18].

Fig. 4 — the composite topology in the MG
model a<<b<< 1. Figure taken from [19].

2.2.1 Linear optical response

There are several methods presented by differéhbesifor the derivation of the MG model
(see for example [6,7,17,19]), all result with Hame formula. In Appendix C, | present the
derivation given by Sihvola, as an example. Theltder the effective permittivity of such

a composite is:



&@1+2p)- 25, (p— 1)
&,(2+ p)+¢ (1-p)

(2.8)

df — ©h

whereeg,,&, are again the host and inclusion permittivitiegpoeetively ang is the volume

fraction of the inclusions from the whole compositée validity limit of the MG model is

up to p=20% (see for example [6]).

There are several generalizations of the MG mddelcases of nonlinear (NL) inclusions
and/or host and for the case of anisotropic inohsi Gehr and Boyd published a review
about the different models for the different cd4€3. For the case of ellipsoid inclusion, the

depolarization factor is used, and the effectiverpttivity of the composite is [6,7]:

& —&,
"e,+ L (1-p)(& —&,)

o =Ent P (2.9)

In order to understand the influence of the diffiérparameter inside Eq. (2.9), | present

them graphically in Fig. 5, for the LA directionofFeach case, | examine the result changing

one parameter, when holding the three others cmn@p, L, p). The constant values are:

g =6.2 ,'=0.25 p= 0.. The value of the host permittivity was set gn=2.19 for all

three graphs.

a (b) c
Effective permittivity Effective permittivity Effective permittivity
as a function of volume fraction as a function of depolarization factor as a function of inclusion permittivity
2.7

2.8
El
8,27
2
= 2.6
£
£
525
o
2 24
©
o 2.3f-
w

2.2

. 2425 .
2 10 5 10 15 20 0 0.1 0.2 0.3 2 12 4 6 8 10
Volume Fraction [%] Depolarization Factor [a.u] Inclusion Permittivity [a.u]

Fig 5. Influences of the different parameters on the effective permittivity of the
composite: (a) Volume fraction, from 0 to 20% - the MG model limit. (b) Depolarization

factor of the LA, from 0 to 1/3. (c) Inclusions permittivity, from &, to 10.

As expected, more NRs in the composite, meanimggtarolume fraction, will influence the
composite to have a permittivity which approactethat of the NRs themselves (Fig. 5.a).

Regarding the depolarization factor, the smaller A depolarization factor is (i.e large
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axes AR), the larger will be the effective permity (Fig. 5.b). We can see from here that
for shapes like a needle, the permittivity will laeger, in contrast to sphere-like inclusions
that have smaller effective permittivity. The pettimity of the inclusions increases the
effective permittivity (Fig. 5.c).

2.2.2 Non-linear optical response

As mentioned, Gehr and Boyd published a summaryditierent models dealing with
composites' macroscopic characteristics, both tlinad NL [18]. Later on Sihvola presented
a model for NL sphere inclusions [7] and Lamaatral. presented a model for NL ellipsoid,
for both small and large volume fraction (up to & model limit) [6]. The models of
Sihvola and Lamarret al. converge in the case of small volume fraction wsghhere
inclusions. In Appendix D, | present the differapiproaches for the derivation and the basic
assumptions in each one. | will use the methodemrtes by Sihvola, for derivation of the
effective third order NL susceptibility for comptes with ellipsoid inclusions. | chose to
use this derivation, which will be convenient fargally aligned nanorods composite latter
on. The third order NL susceptibility for small vohe fraction composite with ellipsoids is:

4

@) _ h 3 2.10
Zeff p[&'h'f‘l_l (gi _gh)J /1/| ( )

where y®is the third order NL susceptibility of the ellipds and again, the index

] =X, Y,z denotes the different major axes of the ellips®ido important things to notice:

(a) The whole expression can be written;g8’ = n-y/j/eo wheren is the number density

of the ellipsoid inclusions in the composite, whigdtisfiesn-V = p and »' is the second
order hyperpolarizability presented in Eqg. (2.4) (n the macroscopic equations, Egs.
(2.8)- (2.10), the volume of the single NR is of oonsequence; rather the important

parameter is the volume fractigm,

The dependencies of the effective third order N&csptibility of the composite for the LA
direction are presented in Fig. 6. The results fame the effective third order NL
susceptibility, normalized by that of the inclussprior simplicity. The constant values are

same as in Fig. 5.
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. @ @0 . ® @0 . © @0
Relative NL susceptibility Xesf/ Xi Relative NL susceptibility Xeff/ Xi Relative NL susceptibility Xeff/ Xi
as a function of volume fraction as a function of depolarization factor as a function of inclusion permittivity
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Fig 6. Influences of the different parameters on the effective third order NL
susceptibility of the composite normalized by that of the inclusions: (a) Volume
fraction, from 0 to 20% - the MG model limit. (b) Depolarization factor of the LA,

from 0 to 1/3. (c) Inclusions permittivity, from &, to 10.

The first two dependencies on volume fraction andh@ depolarization factor, Fig. 6.a and
6.b, are similar to the dependencies in the effegbiermittivity (Fig. 5.a and 5.b). For the

volume fraction it is a perfect linear dependeri€lg(6.a), as can be seen from Eq. (2.10),

for the reason that only the inclusions contribiotg’? . For the depolarization factor, once

again, the smaller the depolarization factor isldrger will be the effective susceptibility
(Fig. 6.b). However, the dependency on the inclugiermittivity is opposite to that of the
effective permittivity (Fig. 6.c).
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3. Research framework and methodology

3.1Basic assumptions

3.1.1 Electrodynamics and the quasi-static approximation

As explained in section 2.2.1, the basic assumpifal models based on the MG model is
small size inclusions relative to the wavelengththe electric field in question. Sipe and
Boyd set a limit on the wavelength requirement,ngemuch bigger than the distance
between particles that is much bigger than theighastsize (see Fig. 4 from [19]). Sihvola
used the "quasi-static approximation” for the hoerogation in the MG model, which
means that the internal field inside the inclusisngniform [7]. As a "rule of thumb" he sets
the limit 1/2z > a , wherea is the typical size of the inclusions. Both limitaits express
the idea that the electric field varies much sloggpatially) than the permittivity differences
inside the medium it propagates in, hence the median be treated as continuum, i.e
homogenization of the mixture. The ultimate goaltlos work, is an optical WG that
operates in the telecommunication C-band, andllusig A =1550hm as the wavelength for

my computations. | will use the wavelength in thesthmaterial §, =1.47S, ignoring the

composite effective values) —1/n=1050hm. The limit set by Sipe and Boyd is very

restrictive anctan be referred to as<10.59m, wherea can be treated as the length of the
NRs. Using Sihvola's limit, the length requiremeatsthe NRs is relaxed and should be
smaller thar- 160nhm. | will adopt the limit introduced by Sihvola, whi@ilows me to avoid

the quantum confinement region, as will be expldimesection 3.1.3 ahead.

3.1.2 Optical interactions

In the interaction of the optical field or photongth the NPs, for the linear regime of
discussion, | ignore direct transitions (i.e absiorp. This is justified for some
semiconductors, depending on their bandgap, & ligher than the energy of a photon in

the wavelength ofl =1550hm (see Fig. 8 ahead, circles for bulk material bapglga

In the NL regime, | am interested in effects eviodyfrom the Kerr-type nonlinearity, such
as self phase modulation and self focusing. A cdamg@erocess to those processes is two-
photon-absorption (TPA), which can be a strongotffer relatively low band gap material

(e.g Silicon for wavelength ofi =1550hm [20,21]). In order to decrease the influence of
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TPA, the NR material should be with bandgap thatexls the energy of two photons, but
does not go far above it, otherwise the Kerr-typelimearity effects start to decrease as well
(see e.g Fig. 7 from [16] and Ref. [20] for siigo

0.08
0.04
0t
F, (normalized TPA coefficient)
- G, (normalized n, coefficient) ~
-0.04 . : - — : . .
0 0.5 1.0

xzﬁmeg

Fig 7. The influence of the bandgap on the efficiencies of TPA and Kerr-type
nonlinearities (expressed by the intensity dependent refractive index n,). For a
bandgap approaching twice the photon energy (x=0.5) the TPA approaches zero
and n, becomes maximum. For larger bandgaps (x<0.5) the TPA is zero, but n,
starts to decrease as well. Image taken from [16]. | added a shaded region (red)
indicating the recommended operating regime for my purposes.

3.1.3 Quantum confinement

All of the works mentioned in the theoretical baakghd, did not refer to quantum
confinement effects that appear in NPs. The expmedsr the band gap for NPs is based on
the bulk material band gap with supplements thalves from the quantum confinement,
which raises the band gap. The lower size limiNBf, where quantum confinement effects
start to be significant, is usually referred totle Bohr radius of the bulk excitoa, .,
[22]. If the NP has at least one dimension whicknller than the Bohr radius of the bulk
exciton, it cannot be treated as a classical paramymore. Following all the authors
mentioned before (see e.g [19] explicitly), | igaa@ll such effects in this work and use the
bulk values for the material properties. In ordeidb so, | should consider only NRs with

SA> 2-a .., Wherea,,,,, IS given by [23]:
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ae<citon = a0 rne;fr (31)
M

where a, =0.0531m is the Bohr radius (derived for hydrogemy, is the rest mass of the
electron, ¢, is the permittivity of the bulk material which taken as the low frequency
value andy = memh/(rne +m, ) is the reduced mass of the electron and hole teféec

masses in the bulk material.

Using values for CdSe, as an example=10.2 ,m, = 0.13m, m, = 0.45n,, where the
effective mass of the electron and hole were tdkem [27]and [28], respectively. The
result is a.,e, =5.7/nM. Meaning NRs with minimum radius &nm or minimum width of

12nm are required.

3.2 Simulations method

Beside the theoretical derivations in this workpdrformed simulations and numerical
calculations. The simulations were executed foctebstatic analysis of single inclusions
(e.g calculations of internal field, polarizatioersity etc.) and for characterizing optical
WGs in the linear regime (e.g optical field distriion in the WG core and clad). All these
simulations were performed by finite element analyEA) with COMSOL Multiphysics
software.

3.3Nanorods material selection

All of the analysis and results presented so farewer CdSe NRs. One of the reasons |
chose to use the CdSe, is the extensive reseamé do CdSe NRs, including direct
measurements of the permanent electrical dipole embnm them, as will be explained in
section 4.2. As mentioned (section 3.1.2), a magguirement from the NRs materials
relates to its band gap. In order to avoid TPA antlance Kerr-type nonlinearities, the
energy band gap of the NL material needs to béthyigabove the resonance of the two
photons energy. In Fig. 8, taken from [24], thedgap energies of several semiconductor

NPs are presented, including bulk value and thecafif quantum confinement. The level of
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1.55um photon energy is also presented and | addiee (blue solid line), representing the

two photons energy for 1.55um photon wavelength.

‘ i
34
. I Semiconductor
>
@
2= L]
3 Y T 1.55/2um
3 ¢ )
14 o e o
T 155um
0 T
‘é Semi-metal
T T T T T | T T T T T T T T T T
23228822888 228¢
A 9 @ o oE = & A 0O O N & &
SO O ¢ I -k - o o N N

Fig 8. Dependence of bandgap energies (calculated) to particle size for a range of
semiconductors. Bandgap are shown for the bulk forms (circles) and at a dot
radii of 10 nm (up triangles) and 3 nm (down triangles). The energy levels for
1.55 and 1.3um photons are also presented (dashed lines). Image source [24], |
added the energy levels for two 1.55um photons (blue line)

In addition to bandgap consideration, semicondgctath wurtzite lattice structure, which
posses a permanent dipole moment (PDM) that castdkge alignment mechanism, are

preferred as will be explained in section 5.2. Comnlg these two demands, for the bandgap

and lattice structure, the choice with CdSe isfjest

CdSe NRs can be grown in wurtzite lattice structued their PDM was investigated
thoroughly [25,26]. The band gap of CdSe is 1.73wNich is above and close to the TPA
energy limit (1.6 eV). For comparison, CdS and Zti@at also posses PDM, have bandgap
energies of 2.42 and 3.37eV, respectively, whichmisch higher, hence the Kerr-type

nonlinearities will start to decrease.

It is important to note that the wurtzite lattideusture is noncentrosymmetric, meaning it

can present second order nonlinearities. | wilbignsuch nonlinearities in this work.
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4. Prolate spheroid versus capsule shape description

4.1 Geometrical description

Most authors dealing with NR analytical calculasoimeat them as prolate spheroid (see
illustration in Fig. 10.a). Prolate spheroids havelosed form for their depolarization factor
and analytical solution can be found both for tleéapzability and the generalized MG
model. However, most TEM images published, foraiddl NRs, show a different shape
(see for example Fig. 10.b from [29] and Ref [30he shape is more like a cylinder with
round capping. | wish to propose a "capsule shdpstription for the single NR, meaning a

cylinder with hemisphere capping, as illusrateéim 10.c.

Fig 10. NR geometry: (a) A prolate spheroid. (b) Outline showing the geometry of the
cylinder and the capping geometry and high-resolution electron micrograph of a single gold
rod (taken from [29]). (c) A capsule shape — a cylinder with hemisphere capping. Length
and width of the capsule are equal to that of the spheroid in (a).

Pecharromamt al. analyzed the geometry of different shapes, maiglinder and capped
cylinders, in order to calculate the extinction &pe of small metal particles of different
shapes [29]. They showed geometrical structureiféérdnt NRs with different capping.
They also refer to the roughness of the surfact®MNRs and claimed that both the exact
capping geometry and the roughness can affectuiti@ce plasmon peak energy. In order to
avoid further complication and enable a model tb@amnbines numerical and analytical
calculation, | will ignore the roughness and diffietr capping geometry in my work. | will
refer to all NRs as cylinder with perfect hemisgheapping, with a radius equal to that of
the cylinder. In Fig. 11, | present an illustratidrtat demonstrates the dimensions of the

prolate spheroid compared to that of the capswdpeh
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(b)

Fig 11. Prolate spheroid and capsule shape geometry: (a) A prolate spheroid with semi-axes
of a and b. (b) A capsule shape composed of: (1) a cylinder with height h= 2(a—b) and

radius ' =b (2) two hemisphere capping with a radius of r =b. The total length and
width of both shapes are the same: L=2a ,W= 2.

In the next sub-sections | will analyze the elesttatic characteristics of the capsule shape

and compare them to that of a prolate spheroid thighrsame length and width.

4.2 Polarizability

| first wish to analyze the polarizability of thegposed capsule shape geometry. | simulate
different sizes of capsule shapes, both with varyiiRs and varying volumes. From the
simulations, | extract the polarization densityd antegrate over the volume (see Eq. (2.1))

to find the induced dipole moment in the capsulapghinclusion. Then by using the
definition of the polarizabilityz =& - Eext, | can calculate the polarizability. As explained,

the anisotropy of the polarizability is due to theometry of the inclusion alone. Most

authors that dealt theoretically with prolate spids, presented the polarizability as a
diagonal [3x3] matrix, with two equal elemnts (tbe two equal SAs). My simulations,for

the prolate spheroids, resulted also with off-diejcelemnts, but they were six orders of
magnitude smaller. The off-diagonal elemnt might real or an artifact of the FEA

simulation and | will ignore them. For simplicity the comparison, | present the results for
an electric field linearly polarized along the ungion LA, hence only one component of the
polarizability tensor is presented. The resultspfolarization along the SA are not presented,
in order to stay concise. | compared the resultsimtlation of prolate spheroid and of the
capsule shape with the same length and width. Thipleesents examples of the simulation

results, with the results of the polarizabilitytbe prolate spheroids according to Eq. (2.2),
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in order to evaluate the simulation results. | addéso the results of the polarizability
normalized by the volume, which can be treated aseasurement for the polarization
density in the inclusions.

Table 1. Polarizability of capsule shape. A compasbn between the analytical and simulation resultsfo
the polarizability of different axes length prolate spheroids and the simulation results of equal axes

length capsule shapes. Results for the polarizalii normalized by the inclusion volume are also
presented, for the simulation results only.The permittivity of the host and inclusions were seon
&, =2.4 ,& = 10.Zrespectively. Polarizability calculated along thericlusion LA.

Q af(4re
T T o] el =
[ | [nm] Ratio | Spheroid Spheroid Capsule Spheroid Capsule
(analytical)| (Simulation)| (Simulation) | (Simulation)| (Simulation)

1 8 2 8 8 11 0.499 0.487
2 40 10 1,044 1,044 1,402 0.499 0.487
3 40 704 704 958 0.525 0.511
4 40 10 195 195 274 0.582 0.564
5 60 10 659 659 924 0.582 0.564

The average error of the simulations for the po#dility of the spheroids regarding to the
analytical formula (Eq. (2.2)) is 0.02%, which iery good result. The results for the
polarizability of the capsule shapes are substintlarger than those for the prolate
spheroid shapes. The average deviation is 37%vior fm the capsule shape. However the
results for the normalized polarizability of thepsale shapes are slightly smaller than those
of the prolate spheroid shapes, with an averagati@v of 2.8%. The larger polarizability
of the capsule shape is due to the its larger veluhme volume of the capsule shapes are
35-50% larger than those of the prolate spheroapsb, with the same length and width
(AR dependent). As a result of the large volume pléarizability is larger despite the

slightly smaller polarization density.

In addition, it can be seen that equal axes AR ahapave the same normalized
polarizability, both for the prolate ellipsoids afat the capsule shapes. | highlighted rows
with equal AR — rows 1 with 2 (blue) and 4 withréd). The reason is that the polarizability
depends linearly on the volume, dependency thadsced in the normalized polarizability.

The normalized polarizability dependency on thengety, for the same general shape, is

due to the AR alone.
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In order to better understand the behavior of thiarzability of the capsule shapes, | will
assume a similar behavior as in the case of thiatprepheroids — a dependency in the
different permittivities (which are constants) ahé AR, multiplied by the volume. Again
this is consistent with the equal values of pokility normalized by the volume, for the
same AR, as explained. Since | defined the AR ag¢SKBA while Eqg. (2.3) uses the
reciprocal term SA/LA, | present the normalizedapidability versus AR. The results for
the capsule shapes and the prolate spheroid shapgdotted in Fig 12 with the analytical
curve for the prolate spheroids and a quadraticutive for the capsule shapes.

Polarizability normalized by the volume
prolate spheroid and capsule shapes
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Fig. 12: The polarizability normalized by the volume as a function of AR for
prolate spheroid, with the analytical curve, and for capsule shapes, with a
quadratic fit curves. Inset: zoom in on high AR values.

The values of the normalized polarizability of ttegpsule shapes are smaller in compare to
those of the prolate spheroid shapes, as can loeiséleable 1. The two curves converge,
both for the value of AR=1, meaning a sphere, amdséry high AR values (AR—0, see
inset), which is the value for a needle shape (lefdalarization factor — zero). The R-square
of the quadratic fit for the capsule #9995, which is an excellent match, meaning for a
given host and NRs permittivities, | can calcul#te NRs normalized polarizability by

extrapolating or interpolating the quadratic cuiwethe capsule shape.

After calculating the normalized polarizabilitycan be multiply by the volume, to achieve

the polarizability itself.
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4.3 Depolarization factor

In order to use the results of the capsule shapéaipability in the equations for the
macroscopic characteristics of a composite (thecéffe permittivity and third order NL
susceptibility — Egs. (2.9) and (2.10)), | needcédculate the depolarization factor of the
capsule shape inclusions. Since there is no analyformula for that, | will find an
equivalent prolate spheroid for each capsule shegggrding its polarization density or
normalized polarizability. | use the results foethormalized polarizability, presented in
Table 1, inside Eq. (2.2) in the form:

a (¢ —¢n)

v e+l (g-¢,)

&, 4.1

Using the values for the permittivities and theutssfrom the simulation fow/V, | can

extract the depolarization factar .This is not a real analytical value for the depaktion
factor, rather an effective value. In table 2, ég@nt the results for the effective value of the
depolarization factors of the capsule shapes ptedem table 1.

Table 2. Effective value for capsule shapes depolaation factor. The values of the AR and

depolarization factor for different axes prolate sfheroid and the effective depolarization factor vales
for the equal axes capsule shape are presented. Rés for the same conditions as in Table 1.

| q Prolate Spheroid Depolarization Factor
No [nm] | [nmi Aspect Ratio Prolate Spheroid - Capsule Shape +
analytic effective value
1 8 2 4 0.0754 0.0838
2 40 10 4 0.0754 0.0844
3 | 40 8 5 0.0558 0.0648
4 | 40 4 10 0.0203 0.0307
5| 60 6 10 0.0203 0.0305

First we can see from Table 2 that the capsule esldgpolarization factor cannot be
determined solely by the AR. Different volume (aXesgth) capsule shape, with same AR
do not have exactly the same effective depoladndiictor, in contrast to prolate spheroids.
The reason for that is unknown; however the dewmatbetween the values of the
depolarization factor (for same AR capsule shapemall (less than 1%). This means that
by approximation | can determine the effective deppation factor of the capsule shape by
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the AR, as presented by Table 2. In addition, thleies of the depolarization factor of the
capsule shapes are larger than those of the prepditeroids (again for same AR capsule

shape).

After calculating the capsule shape depolarizataamtor, the macroscopic characteristics of
a composite can be calculated as well, using Exj8) é&nd (2.10). As explained regarding

Fig. 5 and 6, bigger depolarization factor meanallemeffective permittivity and effective

third order NL susceptibility for composites. Thigans that the values far, and y$

calculated using the model of capsule shapes wilblwer, comper to those calculate using
the model of prolate spheroids, given a certainum@ fraction. In addition, since the
volume of a prolate spheroid is smaller than tHa capsule shape (with the same AR), a
given volume fraction means the number of spheraidlsbe bigger than the number of
capsule shapes. Once again it is important to rdmeerthat the volume of the single
inclusion and the number of inclusions are irretevéor the effective macroscopic
characteristics, rather the volume fraction anglsimclusion depolarization factor. As long
as | maintain the depolarization factor (determifgdthe AR), large number of small

inclusions or small number of large inclusions wa§ult with the same outcome.
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5. Alighment and statistical behavior of NRs

5.1Rotating moment on capsule shape NRs

The rotating moment on a prolate spheroid was ptedeanalytically in section 2.1.2. In
order to calculate the rotating moment on a capshéped particle, the only modification

needed, is to use the capsule shape polarizakabtyresented in section 3.2.2, within Eq.
(2.8) for the rotating momentM = /i x Eext. | will use the notationg; and «, for the
polarizability in the parallel (LA) and normal (SA)rections respectively. As shown in Fig.
3, the external electric field is oriented in theaxis hence the capsule shape dipole moment
will be in the Y- Z plane when the LA is with an angieregarding thez axis. The rotating

moment will be:

M = jix E =(ay-E-sind)-(E- co®d)-(a, -E- cod)-(E- sifl)

5.1
=(ey -, )E*sing- co® (5-1)

5.2Permanent dipole moment

Our intention is to insert NRs into a PFCB polynmreliquid form and align the NRs along a
preferred direction. The alignment mechanism isygplied DC electric field that will align

the NRs parallel to its direction, as explainedeadtion 2.1.2. After doing so, the PFCB will
be thermally polymerized in order to achieve adstrm of the composite, locking the NRs
in place. The problem with such a process is thatpolymerization is made at thermally
elevated temperatures of 120-350°C [31], whichaases the thermal fluctuations in the
NRs direction [12]. | will refer to the temperatummit under which nanocrystals are stable,
later on (section 6.2.3); for now, | will assumeemperature of 150°C, applicable for PFCB.
The alignment process can be significantly enhangleds better coping with thermal

fluctuations) by doping with NRs possessing a p@&ena dipole moment (PDM). Large

PDMs were found mainly in wurtzite lattice stru@uNRs [25,26]. Nann and Schneider
presented a model which explains the PDM by smalliadions of the crystallographic

structure from the ideal wurtzite lattice struct{@é]. Li and Alivisatos investigates CdSe
NRs with wurtzite lattice structure and measurddrge PDM in them — around 100-200

Debye [25]. The PDM is directed along the c-axishi@a hexagonal lattice, which is also the
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long axis of the NR itself. The presence of sudtDaM can help the alignment mechanism,

since the rotating moment depends linearly on thele moment in the NR.

Li and Alivisatos, estimated the PDM by transielec#ic birefringence (TEB) experiments.
TEB experiment examines the rising and falling leé birefringence upon application and
removal of an external electric field, respectivélize TEB curves rising and falling is fitted
to the theoretical formula and from the fittinge tholarizability anisotropy is extracted. The
polarizability anisotropy is defined as:

2

— H,
b= KBT(a”—aL) (5-2)

where p” is the value of the permanent electric dipole muoingecreened by surface effects)
along the long axis of the rodg,,«, are the polarizability parallel and normal to th,

respectively: By computingl” from the TEB curves and calculating the polaritighin the
different directions, the PDML can be calculated. Li and Alivisatos calculateel BDM

using the analytic polarizability of a prolate sphid presented by Landau & Lifshitz (see
section 2.1 and Appendix A) [25]. According to myadysis of NRs geometry as capsule
shapes, | found that the polarizability is lardarsed the data presented by Li and Alivisatos
with my analysis for capsule shape polarizabilithe permittivity of the surrounding and

CdSe NRs in both directions arg; =2.02 ,¢,= 10.2 ¢, = 9.3 and the dimensions of the

NRs are presented in Table 3. | simulated capsioépesdi NRs under those condition,
calculated the polarizability in both direction arictbom the polarizability anisotropy

calculated the PDM of the NRs. In Table 3 | pregéet results for the PDM; the results
presented in Li and Alivisatos work, results cadtetl from the polarizability formula given

by Sihvola and my calculations according to thescée shape analysis.

Yn the article, the polarizability anisotropy is marked as » .| changed it to I to avoid confusion with the
second order hyperpolarizability.
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Table 3. PDM values for different dimensions CdSe Rs. A comparison between the values calculated
according to the polarizability formula given by Landau and Lifshitz (denoted L&L and presented by Li
and Alivisatos), those calculated according to th@olarizability formula given by Sihvola and those

calculated for capsule shapes. The induced dipoleament, for an external field of E =10"V/mis also

presented.Values for the permittivities: &, =2.02 ,,=10.2 ¢ = 9.3

PDM — p [Debye] e
L W

Spheroid Spheroid Capsule [ Debye]
[nm] | fnm] L&L formula | Sihvola formula| Calculated (E=107V/m)
60 3.1 153.4 218.0 249.9 101.6
30 | 4.8 209.9 298.3 329.8 104.0
23 3.8 126.4 179.6 198.3 49.6
54 3 126.3 179.5 205.4 85.0
35 3 95.7 136.0 153.7 52.8

Using the polarizability formula given by Sihvoiacreases the PDM results in a factor of
\/?h (increase by 42% in the table). Using the capshégpe analysis, increase the original

result by average of 60%. From a linear curvehefresulted PDM versus the NRs volume,
the permanent polarization density can be calcdlaiéne results presented by Li and
Alivisatos shows a permanent polarization density0d9uC/ci. Calculating by the
formula given by Sihvola results with permanentapiaition density of 0.26uC/émwhile
from the capsule shape analysis the value is QuZD8nf.? The predicted value by Schmidt
et al. is 0.6 uClcrh (phenomenological rule, proven experimentally ferroelectric

materials [32]) and by Nann and Schneider is 0@&pf [26].

For the same NRs dimensions, the results for theced dipole moment are much smaller.
Looking at the results for the induced dipole motriarthe parallel direction, under a DC
field of 10°'V/m, the results are 2.5-4 times smaller, as casdsn in the last column of

Table 3. These high values of PDM will enhancealignment of the NRs.

> The larger value for the analysis by the formula given by Sihvola evolves from the smaller volume of the
prolate spheroids.
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5.3 Anqular distribution function

To find the statistical distribution of the alignmeof the NRs, | will use the method
presented by Ruda and Shik [12]. They calculatechtigular distribution function (ADF) of
NRs under different kinds of electric fields: DCCAnd DC+AC, where the field is uniform
over the whole composite. | will use the DC elecfield alignment model, which is the
strongest. They used the rotating momkhacting on a NR with an angi to the aligning

electric field, calculated in section 2.1.2, whisla function of the anglé. They calculated

the potential energy of the single NR, which equtiie work done to bring the NR to this

angle from the minimum energy positiéh=0:
9 ~ ~
Uy (0)=W,., = [M(6)-d@ (5.3)
0

After calculating the single NR potential energy #n arbitrary angle, the ADF can be
derived by:

exp{_ul,iz(TH)]
]Eexp{UNR@)J sind-dé o4
K

The integration boundaries in the denominator rezedful treatment. As explained (section

2.1.2), the angl® is a tilt angle, between the applied electricdiehd the direction of the

NR LA (see Fig. 3.a). This angle is normally defirever the intervaB:[O,zr]. However

for the case of a shape that its geometry has symreerotation by~ (like spheroids and
capsule shapes) the integration boundaries is lysset on0=[0,7z/2] as done by Ruda
and Shik [12]. The is that the energy is degendrfiethe states of a tilt i@ and a tilt in

6+ /2. However, when considering the case of the presen®DM in the NRs, the two
ending of the LA of the NR are distinguishable, ¢eethe symmetry reduces. The energy
degeneration is removed and the integration boueslare set on9:[0,7r]. As explained

in section 2.1.2, the entire analysis can be dortba plane defined by the electric field and
the NR LA as shown in Fig. 2.b. The azimuthal angla the X— ¥ plane (see Fig. 2.a) can

be ignored for now, due to the degeneracy of the §ometry, which has 2 equal SAs. |

will refer to it later on (see section 6.1.1).
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Ruda and Shik used the analytical result for ttation moment on a prolate spheroid ( Eq.
(2.5)) using the Landau & Lifshitz formula for tpelarizability (see again section 2.1.1 and
Appendix A). | will use the results for the polakzlity of the capsule shapes, as explains in
section 4.2. In addition to using the capsule shiapelt, | will add the influence of the PDM
on the rotating moment and potential energy. Gittest the different induced dipole

moments arey, = a,E-cosf ,u, =a E- sirg and the PDM isy,,, which is also assumed

in the parallel ¢) direction, Eq. (5.1) becomes:

M = fiyn ¥ E = (&~ r, ) E?-SiNG- COD + p1pp, E - Sir0 (5.5)

The potential energy of the single NR will be cortgouaccording to Eqg. (5.3) :

Uy (0)=(e-a, ) E®-Sin? 0 - ttpp, E - cOY (5.6)

Since the expressio@n|| —al)is always positive (semiconductor with elongatedpss) the

minimum of the energy will be a# =0. After calculating the single NR potential energy,
calculate the ADF. Fig. 13 shows the ADF of NRshwilte dimensions shown at Table 3,
under different conditions. First, the influencetioé aligning electric field strength for NRs
with just induced dipole moment (Fig. 13.a) and K&ks with both induced and permanent
dipole moment (Fig. 13.b) is shown. In both of thérnompare the results for prolate
spheroid and for capsule shapes, for differeninaig field strengths. Fig. 13.c presents the
dependency in the temperature again for differéghimg electric field strengths. All three
images (Fig 13.a-c) are for temperature of °5@nd for the largest NR in Table 3

(L=30nm ,W = 4.8m), which has the largest value of PDM. In Fig 13.grésent the

influence of the volume of the NRs on the ADF.
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(a)
ADF for NRs
Without Permanent Dipole Moment

(b)
ADF for NRs
With Permanent Dipole Moment
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Fig. 13: (a) ADF of CdSe NRs without PDM inside PFCB, capsule shape versus prolate
spheroid for different aligning electric field strength under temperature of 150°C,
| =30nm ,d = 4.8 (b) The same for NRs with PDM. (c) Temperature dependency for
different aligning field strengths (with PDM). (d) Different NRs with different volume (for
the NRs presented in Table 3, with PDM).

As explained, with the presence of the PDM the A metry breaks and there is no
longer symmetric for rotation imr, as can be seen at Fig. 13.b compared to Fig h3kath
figures, the capsule shapes have larger inducesedipoment (solid line), compared to the
prolate spheroids (discrete markers), hence tlgnm@knt is stronger. Lower temperature
(Fig. 13.c) results in stronger alignment, duedwdr thermal fluctuations, and larger NR
volume (Fig. 13.d) make the alignment stronger ai. Wwhe rotating moment aligning the
NRs depends on their polarizability and PDM, whibépend linearly on their volume.
Hence, for the alignment mechanism the single N& nsajor parameter that influences the
results, in contrast to the composite charactesstihich depend on the inclusions fractional
volume. The composite characteristics will be coligd by the alignment degree, together

with the AR influence, which will be investigateu section 6.2.2.
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6. Partially aligned composite characteristics

In this section | present the core of my work. lie former sections, | explained the model
for nematic array of prolate spheroid. Afterwardexplained the method of using the
capsule shape model — both for the polarizabilig #or extracting an effective value for the
capsule shape depolarization factor. Lastly, lodticed the alignment mechanism and the
modifications for using it with capsule shapes #ma&l presence of a PDM. The goal of this
section is to combine the understanding of thessizdl behavior of the directionality of the
NRs, into the model for the nematic array. | wkbenine the permittivity and third order NL
susceptibility of a composite, in which the NRs basertain alignment distribution, with a

preferred direction.

6.1 Permittivity and NL susceptibility for partially al igned composite

6.1.1 The linear response — permittivity

Sihvola presented an integral form of the averagarjzation density in such a composite,
without explicit derivation of the effective perinity [7]. Sihvola and Kong presented an
explicit formula for the effective permittivity [11They gave their formula for an arbitrary
distribution of the NRs and used a dyadic notatwmich is not accessible for most
nowadays readers. | will follow their method bwtill use matrix notation, namely rotation

matrices for the coordinate system, as will be @xgld immediately. In Eq. (2.9) |

presented the effective permittivity for a compesit a nematic array of NRs. This equation

can be presented as a function of the single NRrizability:

5hp'(aj/v)

g —p-U (aj/V)

gh =&, + (6.1)
wherea!/V is the single NR polarizability normalized by th@lume. For a composite with

a certain angular distribution function, the pdiabhility in Eq. (6.1) should be replaced by a
weighted averaging on the different NRs with tltkiferent orientation. A single NR in the
array will have a certain orientation with tilt dag? about theZ axis and azimuthal angle

@ relative to thex axis The averaging is made using bathand ¢ (see section 2.1.2 for

the definition of the angles). The distribution fgr is a uniform distribution (random
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orientation) and the distribution fof is the ADF presented in section 5.3. | will use th

notation of triangle brackets for an averaging anglibscript to indicate over which angles

the averaging is performed. An averaging of a garfenction I/I(Q) (Q is a solid angle)

over the entire angular space is:

(v),, :Tde-sine-ADF(e)f%.w(e,(p) (6.2)

The single NR polarizability and depolarizationtéacare second rank tensors, i.e [3x3]

matrix, which in the local coordinate system of Mig are diagonal:

a, 0 O

ar=0 a 0 (6.3)
0 0 ¢
L, 0 O

ENR_ 0 L O (6.4)
0 o

The subscript NR" indicates the local coordinate system of the NIRotate the global
coordinate system to the local coordinate systetm@MNR, apply the relevant tensors (see

Eq. (6.1)) and rotate the result back to the glaoalrdinate system. A rotation im around

the Z axis is:

) coy(p)  sirp)
R (¢)=|sin(-p) cogep) O (6.5)
0 0 1

and a tilt in@ around they axis is:

) cos(d) 0 sir(-0)
R(@)= 0o 1 o0 (6.6)
sin(¢) 0 cogd)

Treating the polarizability and depolarization tacias operators, the presentation of a

general operatoié,NR in the global coordinate system will be:
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A (9.0)=R(-0)R,(-0) AR (0)R () (6.7)

The average effective permittivity will be:

g1 — p.<([.§)xy’z/\/>9’¢ (6.8)

where in places the host permittivity,, appeared "alone" in Eq. (6.1), it was multipltad

unit matrix I, which means | treat the host as an isotropic riztd he result is a general
[3x3] matrix, where no element in it is by defioiti zero. Nevertheless, after averaging over

¢ the result becomes a diagonal matrix with twonit@al elements (the elements
correspond toe,,ands ) and one independent element,(. This is because of the

symmetry of the NRs in the two SAs and the unifangular distribution ovek. The

results are:

p-(eysin* 0+a, [ 2-sito]) |
&n—P-(Leycos 0+ La [ 2 sifo]) | ¥

Xy _
Eqt =& T &,

(6.9a)

— p-<a||00529+0h Siﬁ9>a/v
Seft = En 5 Eh— p'<|-1|05”00§9+ La, sirf(9>9/v

(6.9b)

where we still need to weigh the value AlyF (0) The behavior of the composite is like a

uniaxial crystal that has one extraordinary refoactindex in one direction (LA) and two
ordinary refraction indices in the two other direns (SAs). All phenomena and application
related to birefringence can be seen in such a oeitep

If we would useADF (8)=4(6) the result would be that of a nematic array (E@)j2and

if we would useADF(9)=]/2 the result would be that of random orientationt tisa

isotropic:

p~(2al+a”)/3\/
& — p-(ZLLozL + L”a”)/a/

Xy __ z _
i = &gt = Ep T &,

(6.10)
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The result presented in Eg. (6.10) coincide withttieoretical expression for random
orientation [7,8,11].

6.1.2 The nonlinear response — third order nonlinear suseptibility

(

7 is a forth rank tensor;&fjfd)), which in the general case can be presentedrastrax with

3'=81 elements. It is well known that for all the 88stallographic point groups, the
number of independent elements is much smallerd@pends on the specific point group
symmetry in question (see e.g. [16,33]). Yang amel pfesented a contracted approach to

rearrange the independent elements )gﬁ) into [3x10] matricegy® for all 32

crystallographic point groups [33]. When the NLeirgction is made with one interacting
field (e.g third harmonic generation and self phasedulation) in a certain linear

polarization, oriented to crystallographic axise tthird order NL susceptibility can be

presented with a scalar valtmé? [16,33]. In the Kerr effect for example, the effee

susceptibility is used in the calculations of tleeand-order nonlinear refractive indgx

[34]. In all further analysis | will use this scalaffective susceptibility. Given the scalar
third order susceptibility, the effective third erdsusceptibility of a nematic array will be a
second order tensor, on account of the geometthgeoNR (as the permittivity). Eq. (2.10)
that describes the composite effective susceptibiian be written in terms of the second

order hyperpolarizability (Eq. (2.7)):
Yo = P7[(eV) (6.11)

where the second order hyperpolarizability as aaratpr or a matrix is:

4
7=V|— % _ | g, x® (6.12)
&l +(5i —gh)L

The same analysis done for the effective permitigection 6.1.1) can be made here, by

addressingy as an operator in the local coordinate system ®fNR, presenting it in the

global coordinate system and averaging it withAlid=. Again the result is a [3x3] matrix

that after integrating ovep becomes diagonal. The resulting independent elesnbefore

the integration ovep are:
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2O _ . < (f2)4.sir120+(fx'y)4-(1— 0.5 siﬁ9)> 7@ (6.13a)

;(;?Z:p-<(fx'y) sin?g+(17)" c05249> (6.13b)

4

€h

where | define f! = :
e+l (e-¢)

. Again, using ADF (8)=4(8) will result with Eqg.

(2.10) and usingADF(0)=1/2 will result with random orientation composite thiat

isotropic:
zé;,)xy (3)2_ p- [ (fxy }%(3)/3 (6.14)

It is important to notice that we assume in all ttexivations that the inclusions alone
contribute to the nonlinearity (the polymer hosts haegligible NL susceptibility). In

addition, the assumptions made to use a scalae\fatwgg’ were made for simplicity. The

basic concepts of the model presented here ardcabpld also for the full tensorial

susceptibility, given the whole tensor is known.

6.2 Results and analysis

In this section | will examine the influence of fdifent parameters on the results of the
composite effective permittivity and third order Nusceptibility. The results are of Egs.

(6.9a-b) and (6.13a-b) for the permittivity andrdhorder susceptibility, respectively. | used
again PFCB as the host and CdSe as the NRs. ktaift from examining the influence of

the capsule shape analysis on the results. | el texamine the influence of the dimension
of the single NR — volume and AR, and | will finighth the influence of the temperature.

For the capsule shape analysis, | will presentréselts for both the composite effective
permittivity and third order susceptibility. Forettother parameters, | will present the result
for the third order susceptibility alone. The reésuhre analyzed for different alignment
degree, from random orientation through partialigreed array (with different aligning field

strengths) to nematic array.
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6.2.1 Influence of the capsule shape analysis

| used as an example the first NR dimensions ptedein Table 3 (60x3.1nm, see section
5.2). I used the bulk properties of the NR matai@dpite the small radius, which will cause
guantum confinement effects. For the calculatiofisthe permittivity and third order
susceptibility | used the properties for opticabgquencies. For the calculation of the
alignment mechanism and the ADF | used the praogseftir DC electric fields.

The values used are: volume fractiop= 4%, permittivity for DC (or low frequencies)
electric fields:eqye, =10.2 ,&c4s,, = 933 £pecs = 2., Permittivity for optical frequencies:
Ecase)| = Ecase = 0-2 1 Eppeg = 2.16

For the comparison between the prolate spheroidsttam capsule shapes, the value of the
depolarization factor of the capsule shape wasntasethe effective value, as explained in
section 4.3. The values of the PDM of the capshi#pes were taken as explained in section
5.2. The values for the ellipsoid PDM were calcedafrom the data of Li and Alivisatos
[25], treating the NRs as prolate spheroids, buhwhe formula given by Sihvola for the
polarizability (see section 2.1 and Appendix A).

Table 4. Effective permittivity €gf and third order NL susceptibility normalized by the inclusions

susceptibility 7 / 7&%, in the parallel direction, for NR dimension 60x3.bm p=4%. Comparison

between prolate spheroid and capsule shape modelgth and without PDM.

(3) (3)
Eeff Xeft / XCdse

EO
[V/m]

Without PDM With PDM Without PDM With PDM

Prolate Capsule Prolate Capsule| Prolate Capsule Prolate Capsule

spheroids shapes spheroids shapes| spheroids shapes spheroids shapes

0 2.3006 2.3002 2.3006 2.30(¢
(random)

2 147% 139% 1.47% 1.39%
10° 23006 2.3002 2.3007 2.3002 1.47% 1.39% 1.47% °%.39
5.-10 2.3007 2.3006 2.3019 23042 147% 1.41% 1.53% 9%.48
10’ 23009 23021 2.3053 2.3096 1.48% 1.48% 1.69% °%.[4
5.10 23084 23364 2.3330 2.3401 1.84% 3.08% 3.03% 98.26
5
3

10° 2.3296 2.3440 2.3421 2.344 286% 3.44% 3.47% 98.47

00 2.3488 2.3463 2.3488 2.346
(nematic)

3.80% 3.55% 3.80% 3.%5%
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Effective permittivity

The result for a composite with sphere inclusiowgh the same volume fraction, is

eq = 2.291E, orientation independent. NR composite presentgetavalues from that of

sphere inclusions, even for random orientation #ackbment of 0.4% and 0.38% for
spheroids and capsule shapes, respectively), wduitide with theoretical prediction (see
Eq. (6.10)). The reason is that each componenthef golarizability (each direction)
contributes one third of its value to the genemlbapzability. The sphere polarizability is
replaced by an average of the three componentghwilarger than the result for a sphere
(see Eg. (6.10) and [7]Regarding the two orientation extremes (random ra@matic), it
can be seen that the capsule shape values aresthalh those of the prolate spheroid. This
is due to the larger depolarization factor of ta@sule shapes, as explained in section 4.3.
For a partially aligned composite, without PDM pmese, starting from aligning field of
10'V/m the capsule shape larger volume start to affecalignment (see section 4.2), hence
the composite values are higher. With the presarfche PDM, the alignment starts to
affect from aligning field of 5- Ov/m.

Effective third order NL susceptibility

For the Effective third order NL susceptibility, present the results normalized by the

inclusions  susceptibility$) /&, . The result for sphere inclusion composite is

28 [ 28 =0.61%. Here the difference between the sphere inclusiod random NR

composite is much larger (enhancement of 144% &fPolfor spheroids and capsule
shapes, respectively). The reason is that in tipeession for the susceptibility of a random
composite (Eg. (6.14)), the term consisting the otkjization factor (which is the

geometrical description) is raised to the powefoof, which makes the geometry influence
very strong. The general behavior of the effecsusceptibility is the same as with the
permittivity. Here for aligning field of 5-1®/m, the alignment effect is substantial and
there is 7.68% enhancement due to the presencéeofPDM and more than 130%

enhancement relative to the random orientationltresu
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6.2.2 Dimension dependency

In this section, | examine the influence of thephaf the single NR in the composite, on
the average macroscopic characteristics. | wilufoon the third order NL susceptibility and

will separate this section into two topics:
(a) The dependency on the volume.
(b) The dependency on the axes AR.

As explained (section 5.3) the volume of the sinblR affects only the alignment
mechanism, by enhancing both the induced and pemxmahpole moments, which in turn
makes the alignment stronger. The axes AR, on ther dvand, affect both the result for a
nematic array and the induced dipole moment (by itifilence on the single NR

polarizability). Both of the effects favor largeRA

(a) Macroscopic characteristics dependency in the aiNgt volume:

In order to examine the influence of the single Wdhume on the alignment and hence the
macroscopic characteristics in interegf) | will use equal AR NRs (capsule shapes) with

different volumes. As explained (section 3.3) thsimum width of the capsule shape,

determined by two times the Bohr radius of the berkiton, is set od2nm. | will use an
AR of 10, and use depolarization factor bf* =0.030% (see Table 2 at section 4.3) and
therefore L :0.5(1— LLA): 0.484¢, for different volume NRs. For the PDM, | will use

permanent polarization density of 0.205 pCl/¢see section 5.2). The volume fraction was
set onp=4%, and since it was kept constant, the results ierrandom orientation and
nematic array composite were not affected by thengh of the single NR volume. In Fig.
14, | present the result for four different NRsnfgaAR, different volume). | examine the
change in the effective susceptibility as a funttad the aligning field strength. The NRs

dimensions presented in the figure:

Linm] [W[m | AR |V [nm]
180 18 10 44,278
160 16 10 31,098
140 14 10| 20,833
120 12 10| 13,119

-36-



In order to compare different NRs, | need to defifeneasurement tool" .1 defingé as the

aligning field strength needed, to bring the effexsusceptibility half the way between the
value of a random-orientation composite and a nieraatay composite. A composite which
requires a smalE, can be treated as a "better" composite, becasseeffort is needed to

achieve the same resulted susceptibility. From E#yit can be seen that composite with

larger volume NRs, needs smallgr.

nematic array

==NR1, V=44,278 nm3
=—NR2, V=31,098 nm?
==NR3, V=20,833 nm?
==NR4, V=13,119 nm3

random orientation

1 N
° 10° 10
Aligning Field Strength [V/m]

Fig. 14: Dependency of the composite effective third order NL susceptibility (normalized by
the inclusions' susceptibility) on the single NR volume. Equal AR of 10. Presented also the
values for the random orientation and nematic array composites and the "half way" value.

As explained, the single NR volume does not aftbetresults for the random orientation
and nematic array composites. All four curves oagg and converge at the same points.
However, increasing the volume of the single NRvfro~13,100 nthto ~44,200 nrh
reduces the field strength requiréd, from 1x16 V/m to 3x16V/m, about 3 times smaller.
In Fig. 15.a, 15.b and 15.c, | present the dependehfthe required field strengt& on the
single NR volume for AR=5,10,20, respectively. Th& depolarization factors were
changed accordingly for each AR: 0.0648, 0.030&147, respectively.
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(a) Required field E (b) Required field E (c) Required field E

= = 5 =

<108 for AR=5 NRs % 10° for AR=10 NRs x 10 for AR=20 NRs

2R-------- — fit for E~V"! _10}---%--- —ifitfor -V — fit for E~V"!
£ ¢ data points £ ¢ data points § 5p----b----1 ¢ data points
S S 2
15 o8 w,
o ke) K
2 2 6 &
= 1 = h
B B g°
= S 4 2
g 0.5 4 &2
o o

2
4 a ] 10"
1 2 3 _x10 0 2 4 6 x10° 03 5 10 X

Single NR volume [nm3] Single NR volume [nm3] Single NR volume [nm3]

Fig. 16: Dependency of required aligning field strength E on the single NR volume with
the same AR. Data points and fit curves for E~V (a) AR=5. (b) AR=10. (c) AR=20

As can be seen from the figure, the required fetdngth falls like one over the single NR
volume. | fitted the data sets to the equati®V "+ B when A B are unknown parameters.
The resulted equations are:

Eps=12910°-V '+ 2260E,,,,= 13110V '+ 767E,, ,,= 1:3390 '+ 1

It can be seen that changing the AR, does nottatiecaesults substantially — the parameter
A changes by 3% when increasing the AR from 5 t¢42mes larger). The meaning of the

similarity of the results is that the AR does naté a significant role in the alignment

mechanism. In the next section | will examine tepehdency in the AR more deeply.

(b) Macroscopic characteristics dependency in the siNg® AR:

For the dependency in the AR, | set the volume amrstant value and change the AR.

The NRs dimensions | uge:

L | W([nm | AR |V [nn7]
100 20 5 | 30,000
158 15 10 | 30,000
206 13 15 | 30,000
249 12 20 | 30,000

Again | present the results of the effective thorder NL susceptibility, normalized by that

of the inclusions (Fig 16).

* These are rounded numbers, hence the length divided by the width does not equal the AR exactly. In
addition, lignored here the upper limit length mentioned in section 3.1.1
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==NR1, AR=30
==NR2, AR=20
==NR3, AR=10

10° 10° 10’
Aligning Field Strength [V/m]

Fig. 16: Dependency of the composite effective third order
susceptibility (normalized by the inclusions' susceptibility) on
the single NR AR. Equal volume of 18,500 nm®.

For the case of different AR NR, the values ford@m orientation and nematic array
composite differ with the AR. This can be seen frima equations (nematic array — Eq.
(2.10), random orientation — Eq. (6.14)) and in. Bi§; each curve originates and converges
in different points. This is in contrast to Fig. Where all the curves start and end at the
same points. From Fig. 16 | can extract the diffeesin the values for the random
orientation and nematic array composites. Incregpfii® AR from 6 to 30, increases the
value for random orientation composite, from 1.18%1.51%. The value for a nematic

array composite, increases from 2.73% to 3.75%.

In order to use the "half way" aligning field stgth, to compare between the different
composites, | normalized the four curves: for eagtve | set the random orientation value

(starting point) to zero and normalized the curyét® nematic array value.

-39-



(a) XS# / Xi(3) for different NRs arrays (b) zoom in

| nematic array ’ ’ 0.5p ::E; 22:28
_ ‘.W = 0.5H|—NR3, AR=10
B oog oo 2 B oy S
T & ©
€ * E Ofp---mmmim
S 08t g 5
c * <
= od * D
DL R R R R ERE =30]1 @ _
S . & AR ARa0 OB e S e
= * v NR3, AR=10 .,
SEOY - * - MENNOANI E B i of S iy Sl
s . o NR4, AR=6 3,
¢ ¥ random orientation Sf--S S e -
10 107 45031 45031 _ 45031 45031 45031
Aligning Field Strength [V/m] Aligning Field Strength [V/m] x10°

Fig. 17: (a) Dependency of the composite effective third order susceptibility (normalized by
the inclusions' susceptibility) on the single NR AR. Results are normalized to the same

starting point (0) and same ending point (1). (b) Zoom in to observe the differences
between the different composites

As can be seen from Fig. 17.a, the influence ofAReon the alignment is very small. The
different curves are almost indistinguishable. ¢disliscrete markers so the different data
sets will be visible. In Fig. 17.b | present a zoom(with solid lines) and the differences

between the curves are visible. Larger AR NR, hmaller required aligning fieldE , but
the differences are negligible.

6.2.3 Temperature dependency

The last parameter | wish to examine is the tempera As explained, PFCB
polymerization temperature is 120-350°C, where @ighemperature needs shorter
polymerization time [31]. Nanocrystals, on the othand, may become unstable at elevated
temperature (see e.g. [35] for influence of tempeeaon nanocrystals). For the calculations
so far, | assumed a temperature of 150°C and exarafso the influence of a decreased
temperature of 120°C on the ADF (see section 3.8¢ choice in 150°C, evolved from the
conjecture that this is a temperature that the MRk still be stable in, when further
investigation is needed to explore the exact teatpeg limit. In this section | will examine
the influence of the temperature on the NL susbéipyi, in the range of 100-200°C. | will
compare again the field strength required to btivgeffective susceptibility to half the way

towards the nematic valu€& . | simulated a single NR, with the dimensions:

Linm | W[nm | AR |V [nm]
120 12 10 | 13,119
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3 3 . . = .
(a) X(eﬂ)f / Xi( )for different temperatures (b) Required field E for different temperatures
6
35 . x 10
—T=125°C nematic array 12
—T=150°C
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10 10 10

Aligning Field Strength [V/m] Temperature [*C]

Fig. 18: (a) Dependency of the composite effective third order NL susceptibility (normalized
by the inclusions' susceptibility) on temperature. Inset — zoom in. (b) dependency of the
required field strength on the temperature, with a linear fit curve.

Fig. 18.a presents the change in the relative ptibday, at four different temperatures.

Here the random orientation (starting point) anchatc array values are the same for all
four curves, since they represent the same NRs asitep The curves of lower temperatures
are higher for all aligning field strengths, as ested, since the thermal fluctuations of the
NRs orientation are smaller. In addition, they srdise line of the half way between the
random orientation and nematic array values, attaaligning field strength, as expected.
Decreasing the temperature from 2D0to 125C, reduce the aligning field strength

required E , from 1.8x16 V/m to 9.7x16V/m, 46% less. Fig. 18.b presents the dependency

of the aligning field strength required& , in the temperature, and a linear correlation is
observed.

-41-



7. Nonlinear wavequides

All of the former sections dealt with the charaization of the PFCB-CdSe NRs composite
as a NL material. The macroscopic characteristicthe composite in interest were the
permittivity and especially the third order NL saptbility. As explained in the
introduction, the main goal of the research isaaricate a NL WG, using the NL composite
as the core. In this section, | wish to characeetiee WG that will be fabricated using the
composite. The cladding of the WG planned is mad€ydop which is a commercially
polymer with low losses and low refractive index3@) for 1.5m wavelength. | will start
from two basic concepts in NL WGs, without addnegsihe whole theoretical background
for WGs and NL WGs.

7.1 Wavequide design

The basic idea of a WG is to confine the propagatave in the core of the WG. This is
done by using higher refractive index material fbe core and lower refractive index
material for the clading (see e.g. [34]). In Fi@.d, | illustrate the WG in 3D, where the
propagation direction is set as tizeaxis. The alignment mechanism will be done by two
electrodes, parallel to the WG core, on both idesj that will apply the aligning field (Fig.
19.b and 19.c). The applied field will be along tkeaxis, hence the NRs LA will be
directed in thex axis direction and this will be the notation frarow on. If the electrodes
will be too close, the optical mode will be truretby the metal electrodes (Fig. 19.d),
which will cause significant loss. Our simulatiostsow that a distance of 3.5 um between
the WG core and the electrodes will make this toske negligible (Fig. 19.e). In the next

section | will examine also the optimization of twe dimensions.
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(a) WG direction notation — (b) WG with electrodes (c) WG with electrodes

3D —top view

— cross section

Core — PFCB + NRs

~ X
y
Cladding — Cytop \LV b4
electrodes electrodes

(d) E, distribution along x-axis — (e) E, distribution along x-axis
electrodes distance 1.5/m a " electrodes distance 3.5um

X1

0
2 -1 0 1 2 x10° 2 -1 0 1 2 x10°
X [m] X [m]

Fig. 19: (a) WG illustration in 3D with the direction notation. (b) WG cross section with the
electrodes location. (c) The same from top-view. (d) Optical electric field distribution along
the X axis (through the center of the core) with electrodes distance of 1.5 um from the
core. Inset — zoom in for the truncation of the field. (e) Same as (d) for distance of 3.5 um,

no truncation.

7.2 Effective modal area in waveguides

The measure for the quality of the confinementefinode, in NL WGs, is the "effective

modal area" A, . | present the notation foh,, , given by Koost al. for high index

contrast WGs [21]:

2
. A[Re{l?(x,y)x H*(x,y)}ézd -
=0 .
Abﬁ n(fore J. ‘E(X, y)‘4 dA

A:ore

where & is a unit vector in thez direction (see Fig. 19.a for direction notation)

Z,=4/1,/e,=377Q is the free-space wave impedance amglis the refractive index of

the WG core material, which is a diagonal matrixrig case. The integrations in Eq. (7.1)
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are surface integrations on the cross sectionei¥@. The integration in the numerator is
on the entire cross section — core and claddingymamg the cladding is infinite. The
integration in the denominator is on the crossisecof the core only, where the NL

interaction ocurs.

| will examine the influence of the dimensions lo¢ ttore of the WG ion the effective modal
area. | will start from examining a rectangle cehmpe WG. Former work done in our lab
aimed at fabrication of a square WG, with dimensioh1.5x1.5uM[13,14]. | will examine
different AR rectangle WGs, around this shape, ilogkor the smallest effective modal
area. Afterwards, | will examine different dimenssoof square WGs. For the simulation of

the effective modal area, the NL susceptibilitpag used (see Eq. (7.1)).

| use a composite with NRs dimension of 12x120nnxI(}{ polymerization temperature of
T=150C and volume fraction ofp=4%. For this composite the required aligning field
strengthE (as defined in section 6.2), is®@/m, which results with permittivity along the

LA of g4 =2.3210 (n“*= 1.523f and along the SAsS =2.2881 (n* =1.512§. The

calculation of A,, was done by simulating the WG with specific refrae indices (a

diagonal 3x3 matrix) and integrating the expressiam Eq. (7.1), all using COMSOL
Multiphysics.

In Fig. 20, | present typical results of the sintidla (presenting the normal value of the
electric field for a 1.5x1.5pfrcore WG). The results are along tReaxis (through the core
center), for an optical field ploarized along tkeaxis (Fig. 20.a) and along thgaxis (Fig.
20.b). The integration in the numerator of Eq. Y7slover the whole cross section plane. In
my case, | set the integration on a cross sectid®20uni. The value of the field in the
center of the WG core in the simulations is ~3%¥fm, while the value of the field in the
ending of the clad is 46V/m for polarization in tRedirection and 0.07V/m for polarization

in the y direction, which means | can neglect the fieldsale of the clad region and treat it

as zero.
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(a) Field distribution inside the WG (b) Field distribution inside the WG
along the x axis along the y axis

,x10" ,x10"
- = Electric field - = Electric field
E| IE|

1C] F <] __WGcore 1C] F -] WG core
-g- boundaries -g- boundaries
Y, SRS [ ISR Y, SRR [
I USSRy U Wl

0] 0]

-10 -5 0 5 10 -10 -5 0 5 10

X [um] Y [um]

Fig. 20: Simulation results of the optical electric field |E| in the WG. (a) Along the X axis

through the center of the core. (b) Along the 9 axis through the center of the core.

The differences between polarization of the optiteld along the X and y axes are
negligible, regardingA, . For the rest of this section | will present résubnly for the
electric field polarized along th& axis. In Fig. 21.a, | present the results for difeerent
effective modal area for different rectangle WGke Tesults are presented as a function of
the AR which is defined here AR=L, /L, where L ,L, 6 are the WG core dimensions
along thex and y axes, respectively. The minimal effective areaith AR=1 — meaning a

square WG. For a square WG the minimum effectiea és obtained for 1.3x1.3|fncore
dimensions — 2.6 pfr(Fig. 21.b). As mentioned, former work done in daip aimed at
1.5x1.5uM core dimensions [13,14], resulting with — 2.7 Jueffective modal area (3.8%

larger).
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(a) Effective modal area (b) Effective modal area

polarization along % axis square WG
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Fig. 21: Effective modal area results Ay for: (a) Rectangular WG with different sides AR.

Polarization along the X axis. (b) Same for square WG with different side lengths.

7.3Nonlinear parameter of nonlinear waveguides

The characterization of the NL WG quality is the parametery [21]:*

2
_ 360"9020 (3)

7/_ 4n§0repbﬁ (72)

where @ is the optical frequency of the propagating waMas parameter is used in the NL
Schidinger equation and describes the strength of thenkéraction in the NL WG. The
two significant parameters in Eq. (7.2), that | eamcerened with, are the effective modal

area A, and the third order NL susceptibility®, which in my case will be the effective

value of the PFCB-NRs composite. The dimension hif NL parameter (&W-m)fl.
Common silica based NL optical fibers usually haL parameter value of

y=1-3x10° (W~m)_l [34]. Silica variant NL optical fibers have demtmased relatively

enhanced nonlinearity gf = 0.1- 50W -m) " [36-39].

| will use the same composite parameters as infah@er section: NRs dimension of

12x120nm (WxL), temperature of T=1%Dand volume fraction op =4%. The resulted

* The letter ¥ was used also to describe the second order NL hyperpolarizability. In all further analysis | will
not use the hyperpolarizability and the letter 7 will be used only for the NL parameter of the NL WG.
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third order susceptibility arey$y /7% =2.25% along the LA andz$ /7% =0.8%
along the SA. CdSe third order susceptibility #§). =3-10"" m?W [40]. In Fig. 22, |

present the values of the refractive indices (EBa) and NL parameters (Fig. 22.b) for
two square WGs: 1.3x1.3ifnand 1.5x1.5ufn | compare for each one, different aligning
field strengths, again for optical electric fieldblarized along thex (LA) direction.
Regarding the refractive index, the results aresdrae for both WG core dimensions, since
it is not influenced by the effective modal areaegRrding the NL parameter, the
1.3x1.3pmM core WG, present higher results. It can be se®n ffig. 22.b that the values for
the 1.3x1.3urh core WG are larger for all aligning field strengthn contrast to the
composite characteristics (presented in sectior), h2re the results for the random
orientation (starting point of the curve) and nematray (end point) are not the same.

(a) Refractive index - n

for both WG core dimensions (b) NL parameter ¥

180f ----------F--------ee---
1.53Fnematic array[ =" " "7 L
=)
x,
8 1.525F - --aan e 1 A ALY Bhhhhhil I e
£ €
g s
k3] -
& 152------ R 100 ------4f--F----

% 1.52 core WG
o o —1.3x1.3um?
1.515 core WG
10° 10° 10’ 10° 10° 10’

Aligning Field strength [V/m] Aligning Field strength [V/m]

Fig. 22: Refractive index and NL parameter as a function of the aligning field strength.
Optical electric field polarization along the X axis.

(a) — Refractive index N, for 1.5x1.5um? and 1.3x1.3pum? core dimensions (same results).
The values for random orientation, nematic array and "half way" aligning field between
them also presented.

(b) = NL parameter y, for 1.5x1.5pum? (blue) and for 1.3x1.3um? (red) core dimensions.

For the aligning field strength required to brifg ttompositéNL susceptibility, to half the

value between random and nemdig there is a small difference between the two W co
dimensions: ;/:119(W-m)7l for 1.5x1.5u core WG and 7/:120.5(W-m)71 for
1.3x1.3pumM core WG (1.2% improvement). The difference betwélem values for the
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nematic array is slightly Iarger:7/:168(W-m)71 for 1.5x1.5urA core WG and

y =175W- m)f1 for 1.3x1.3prA core WG (4.1% improvement).

It is worth noting, that for the 1.5x1.5frand electrodes distance from the core of 3.5um
each (see section 7.1), the total pitch betweentwimeelectrodes will be 9.5um. Taking
small fabrication errors, | will consider a pitch TOum. Applying a DC voltage of 100V
will result with an aligning field of 18//m. The issue of the dielectric strength (breakdow
voltage) of the polymers was not addressed soTtae. dielectric strength of the Cytop is
16°v/m (manufacturer data). There is no data availdbiethe PFCB dielectric strength.
However polymers dielectric strength values arealigwat the scale of ~f9/m [41], even

for the unannealed polymers (the polymer in theitigform). On the other hand, the fact
that the aligning field is applied on the PFCB wWiRs inside it and at elevated temperature
has to be taken into account, as well. Experimeatmrding the dielectric strength are
planned in the near future. Nevertheless, aligrfialgls at the scale of ~1@/m, can be
considered. For such an aligning field the resuliédparameter for 1.5x1.5fwore WG,

is y =164(W - m)fl, very close to the nematic array value.

Another interesting characteristic to examine & biirefringence of the WG, which evolve
of course from the birefringence of the compodgelf. As explained, there is no difference
between the two core dimensions regarding the gt index. In Fig. 23 | show the

birefringenceAn=n, —n, , again as a function of the aligning field stréndtshow also the
values for the random orientati¢an = 0) and for the nematic arrgyan=max). The value

for the required fieldE is An=0.010¢.
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Birefringence as a function of the
aligning field strength
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nematic array
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Fig. 23: Birefringence of the WG. The change in the
birefringence as a function of the aligning field strength.

The last analysis | wish to present is a comparisstween optical electric field polarization
along thex and y axes, and refer also to a statistical analysis.oAthe results for the
composite permittivity and NL susceptibility useal far were the average or mean values
(see section 6.1). The values of the refractivexnand NL parameter, were also the values
that were calculated from the average values otctmposite. Here | wish to refer also to
standard deviation (STD) of the results. The STDs vealculated for the composite
characteristics, permittivity and NL susceptibilignd from them the STD of the refractive
index and NL parameter were derived. In Fig 24elspnt the results for the refractive index
(Fig 24.a) and NL parameter (Fig 24.b), for bothapaation along thex direction (LA,
blue line) and along thg direction (SA, red line), and the STD values. Tasults are for
1.5x1.5umM core WG. The shaded areas are the mean valuesDt1S3F small aligning
field strengths there is an overlap between thedhaded areas, meaning there is a chance
that the WG will behave the same for both polarzet. To avoid this chance, the aligning
field strength should be above ~1230m.
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(a) Refractive index - n (b) NL parameter y
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Fig. 24: Refractive index (a) and NL parameter (b) as a function of the aligning field strength,
with the values for +1 STD deviation. Optical electric field polarization along the X (blue) and
Y (red) axis are presented, with the values for random orientation and nematic array

composites.

The results for the NL parameter are very high. As mentioned in the opening of this

section, glasses based NL optical fibers achieveiiman values ofy:SO(W-m)fl. My

results for the random orientation composite ﬁﬁe68(w-m)fl, higher by 45% and this is
the lower value. The alignment increases the resalich more. Looking even at relatively

low aligning field of 16V/m results with very high values cyf=119(W~m)_l, for the LA

direction. At that aligning field, the NL paramefter the SA direction ig = 42(W~m)'1.

I will finish with mentioning that more work regang) dispersion engineering of the WG is
needed in the future.
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Summary

| started my work with theoretical background, disng the behavior of a single particle
under a DC electric field. | described its lineasponse, i.e the polarizability and rotating
moment and its NL response i.e the hyperpolariggbllmoved on to describe a composite
with semiconductor NRs embedded in a dielectrict.hdfie composite characteristics
described were the permittivity and third order Blisceptibility, for a nematic array of
NRs, meaning all the NRs are aligned at the sameetitbn. | showed how NRs with large

axes aspect-ratio result with larger permittivinda\NL susceptibility.
After the relevant background, | explained the basisumptions needed for my work:

(1) Electrostatic assumption for treating the compasit@ homogeneous material.
(2) Optical assumption for the NL behavior in interest Kerr-type nonlinearities.
(3) Minimum NR size to avoid consideration of quantuamtnement effects.

After that, | explained why CdSe is the best chdmethe NRs material, due to bandgap
energy considerations. CdSe bandgap is slightlywelibe two photon energy for 1,656
wavelength, which on one hand decays the two-phabsorption process and on the other

it is the optimize region for Kerr-type processes interested with.

| started the analysis of the composite, with tescdiption of the NRs as capsule shapes,
rather than the prolate spheroid shape usually usdtieoretical work. | explained the
geometry of the capsule shape and its electrosthticacteristics. | showed also how to use
the simulation results of the capsule shapes, dieroto find an equivalent prolate spheroid
shape, which enables me to use this shape in @algquations that were derived for

prolate spheroids.

| proceeded with explanation of the alignment meadra, with which the NRs will be
aligned — a DC electric field, acting during thdypeerization of the host PFCB polymer,
which causes a rotating moment on the NRs. | shdwedlarger volume NRs and NRs
with permanent-dipole-moment enhance the alignmesdess significantly. Finally, |
calculated the angular-distribution-function of tHRs in the composite, with and without
the permanent-dipole-moment, under different temjoees and for different aligning field

strengths.
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The core of my work was then presented: how toyaesh composite that the NRs inside it
are partially aligned, according to the angulatristion-function that was derived. |
derived the equations for such a composite, batkthi® permittivity and for the third order
NL susceptibility. After the derivations, | presedtsome results that examine first the
influence of the capsule shape model and themthesnce of different parameters on the
composite macroscopic characteristics: the singtevblume and axes aspect-ratio, and the

temperature in which the NRs are aligned.

The last part of my work was to use the resultsiolkd, to characterize a NL waveguide,
with a core made of the NRs composite. | presetwedoasic concepts regarding NL
waveguides — the effective modal area and the Narpater of the waveguide. | examined
the dependency of the effective modal area on @ineeguide core dimensions, where
smaller effective modal area means larger NL patarnfer the NL waveguide. | examined
different sizes of WG cores, to optimize the NLgmaeter of the waveguide. In the end |
showed the influence of the aligning field strengled, on the refractive indices and NL
parameters of the waveguide in the two polarizatiointhe optical electric field. | showed
also the statistical characteristics of the waveguby presenting the standard-deviation of
the results.
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Conclusions

| will divide the conclusions of my work, into the¢opics: composite characteristics for a
nematic array, influence of the alignment mecharesnthe composite characteristics and

NL waveguide (WG) characteristics.

(a) Nematic array composite:

Before looking at the macroscopic characteristicad composite with a nematic array of
NRs inside it, | wish to summarize the conditioosthe single NR that my model deals
with. The minimum dimension of the NR, meaningsit®rt-axis (SA), must be above twice
the Bohr radius of the bulk exciton of the mateniadjuestion, to avoid quantum
confinement effects. For CdSe NRs, the Bohr radfuke bulk exciton is 5.7nm, meaning
the NR SA must be above 11.4nm. | considered NRs avBA longer than 12nm. On the
other hand, the long-axis (LA) of the NR must fiilthe condition for homogenization of

the compositeL A< /1/(2;r.ne,ff ) wherei/n, is the optical electric field wavelength in the

composite. For my casé=1550nm resulting with LA <160nm.

Regarding the nematic array composite, for a gixa@ame fill fraction, the important
parameter of the NRs is their axes aspect ratio) (MRen high AR reduces the NRs
depolarization factor. For high values of third @rdusceptibility of the composite, NRs
with high AR (low depolarization factor) are needetkaning elongated NRs. Increasing
the AR of the single NR, from 6 to 30, increaseswhlue of the susceptibility (in
percentage from the NRs susceptibility) for a necretray composite, from 2.73% to
3.75%. The single NR volume does not affect the pasite, since the volume fraction of
the NRs in the composite is set as constant (1 4%&d The model for describing the NRs as
capsule shapes, increased the NRs depolarizattor fshus reducing the composite NL

susceptibility, for a nematic array.

(b) The alignment mechanism

The alignment mechanism depends strongly on thglesiNR volume and hardly on the
single NR axes AR. The model of the capsule shapelts with stronger alignment, due to
the larger volume of a capsule shape comparedotolate spheroid, for a given length and
width. The temperature of the polymerization caifuance the alignment too, where higher
temperatures cause larger thermal fluctuations wmekes the alignment harder. Looking
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at the results for the third order susceptibilitydefined a measure for the alignment
strength: the aligning field strength required tmdg the susceptibility half the way from the

value of random orientation to the value of nematray.

For the influence of the single NR volume, | showexv the required field strength falls
like the inverse of the volume. For NRs AR of 1@Jaeging the single NR volume from
13,100nm (120x12nm, lengthxwidth) to 44,2D@80x18, lengthxwidth. 3.75 times larger)
resulted with required field strength about 3 tireesller (from 10V/m to 3x16V/m).

For the influence of the polymerization temperatlighowed that reducing the temperature
from 200C to 125C, reduces the aligning field strength requirednfr1.8x16 V/im to
9.7x10V/m (46% less).

The single NR axes AR effect on the alignment,agligible. However, for no alignment,
meaning a random orientation composite, | showed the AR of the single NR is a
meaningful parameter. Increasing the AR from 6 @ &creases the value of the
susceptibility (in percentage from the NRs susd&diy) for random orientation composite,
from 1.18% to 1.51%. Spherical inclusions will haaehird order susceptibility of only
0.61%.

(c) NL wavequide characteristics

The main characteristic of a NL WG is the NL partaneThis parameter depends on the
NL material — its third order susceptibility, and the WG effective modal area. The third
order susceptibility was addressed in the two formections of the conclusions. The
effective modal area depends mainly on the WG daorensions. | examined a composite
with NRs dimensions of 120x12nm, (lengthxwidth) awghin volume fraction of 4%. The

required field for this composite (as describedvahds E=10°V /m. | showed that the
optimized shape for the NL WG is a square core, shdw that the dimensions of
1.3x1.3um for the core are ideal, resulting with effectivedal area of 2.6 pfnChanging

the dimensions to 1.5x1.5frfwhich was successfully fabricated in the pasijréases the

effective modal area to 2.7 fm a change of 3.8%. The resulting NL parametetterNL
WG is y =119(W-m) " for 1.5x1.5urfi core WG andy =120.5W-m) " for 1.3x1.3urm

core WG — 1.2% enhancement. The difference betwhentwo dimensions is small,
meaning there is no necessity to pursue 1.3x1?3tore WG, although it is better. These

values for the NL parameter are very high, comgatinglass based NL optical fibers. The
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resulted NL parameter for random orientation contpas y = 68.6(W-m)7l which is also a

good result comparing to common NL WGs.

| showed also the birefringence of the WG, vanylregween zero (for random orientation)
and 0.022 (nematic array). The birefringence fer riquired field strength ian=0.0108&
The last thing | showed was the statistical behawab the result, in both polarization
directions. | showed the standard deviation ofvaeies of the NL parameters and in order
to avoide the possibility of same results for bptiarization directions, the aligning field

strength must be above 9.6%10/m. For an aligning field of just £0/m the result for

polarization along the LA direction was very higbz::119(w-m)7l, and for the SA
directiony = 42(W-m) .

It is important to note, that changing the voluniehe single NR or its axes AR will result
with even higher values for the NL parameter. Hogvethe limitation on the maximum NR

length has to be fulfilled, otherwise diffractiomdascattering of the optical signal will

become significant.
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Appendix A: Derivation of the polarizability

| will start the derivation of the polarizabilityyvith the simplest case of an isotropic
inclusion of a sphere in which, ignoring crystatliaghic anisotropy, « is a scalar. The

surrounding and inclusion permittivities agg,&; respectively, and the internal field inside

the sphere is assumed to be uniform and it is gyefv]:>

E,=—t
" & +2¢,

Eed (A.1)

For a more complicated shape as an ellipsoid,rttezrial field depends on the direction of
the external field regarding the ellipsoid majoresxFor a field along such an axis, the

internal field is given by:

€h
= : E A
Sn e+l (e-¢,) ™ (A-2)

where L' is the "depolarization factor" of the ellipsoidthe j = x, y, z directions, which are

the major axes of the ellipsoid. The depolarizatextor is derived from solving the electric
potential of the ellipsoid and is defined as [15]:

aaa, ¢ ds
2 ofs+ ajz)\/(s+ a’)(s+a})(s+a?)

L= (A3)

where s is a length element in the direction in interesd a,,a,,a, are the three semi-axes
of the ellipsoid. The three depolarization factowrs the three directions satisfy
L*+ LY+ L*=1. For a sphere the depolarization factorsLArel’ =L*=1/3, hence Eq.

(A.1) can be derived from Eg. (A.2). For the caselbpsoid of revolution (ellipsoid with
two equal semi-axes, which is called a spheroitigerd is a closed form for the
depolarization factors. | will present only the ukkdor a prolate spheroid (two equal SAs

and one LA). | chose thgaxis as the LA of the spheroid and therefdrg are the SAs of

the spheroid. The depolarization factors for agtekpheroid are:

> Sihvola assumes this field and then show that it is satisfying the curl free condition for the electric field and
boundary condition with the field in the sphere surrounding. See also Appendix B.
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2 (2e (1-e 2

2 LA
LZ:LLAzlee (iln(l-i-ej—lj , LX:Ly:LSA: L (A4)

where ezwll—af/ag2 is the eccentricity of the prolate spheroid andoading to my

notationa, > a, = a, [7,15].

As explained, the polarization density inside tigusion, can be derived from the internal

field. There are two approaches to define the pration densityP from the internal field.
The first approach presented by Landau and Lifspizsented in Gaussian unit system, is
[15]:

1 (&-¢n)

po L
dr g,

E, (A.5)

According to my notation for the vacuum permittyyiin Sl unit system, the polarization
density will be:

E, (A.5.2)

Stratton [42], followed by Sihvola [7] on the othHeand, derived the polarization density at

Sl unit system and defined the polarization densitjtout the normalization by, :

|3:‘90 (gi _5h)Ein (A.6)
Later on | will address the question of which fotenguits my work better. According to
both approaches, after finding the polarizationsitgnthe polarizability can be derived. All
of the mentioned authors assume homogeneous pailariziiensity inside the inclusion, and
the dipole moment is defined As-V-P. As explained,a is a second rank tensor and

again ignoring crystallographic anisotropy, assunetiave only three diagonal elements.

The polarizability for an ellipsoid according toridau and Lifshitz is:

v (&)

%o e+l (g-¢) (A7)

aLandau& Lifshitz —

and according to Sihvola:
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(gi _‘9h)

e+l (e-¢)

Asivoia =V &g

&y (A.8)

Ruda and Shik used Landau and Lifshitzs' formula. (&.7)), in Gaussian unit system,

with a reduction of the/4x factor [12]. Li and Alivisatos converted this etjoa into Sl

unit system simply by replacing the factorldfiz with &, [25].

The two equations converge in two points: (a) & ¢hse the inclusion is in vacuu,=1:
P =5,(5-1) E.. . (b) In the case the permittivity of the inclusicquels the permittivity of

the host,g, =& : P, =0. From the second case it is understood that theipation density
in question is the polarization density above tifahe background (host), hence even in the
case thats,, = ¢ >1, the polarization density inside is considered¢ozero. | simulated a

prolate spheroid under a uniform external field axttacted the polarization density inside
the spheroid. | subtracted the polarization deritthe background (far from the spheroid)
from the result of the polarization density insittee spheroid. The simulations were
performed in 3D, but the results are presentedisi®es, in the y-z plane (Fig, A.1.a). The
uniform external field was applied with a large aajpor, as shown in Fig. A.l.a as an

example.

The parameters used in the simulations — perntitiszis, =5 , ¢ = 1C, spheroid semi-axes:
a=30nm ,b= @6m, external field: 10V/m. In Fig. A.1.b, | presentzaom in on the

spheroid and in Fig. A.1.c the results along thaxis.
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Fig A.1. Simulation result from COMSOL for the polarization density of a prolate spheroid
inside a large capacitor. Parameters used: a=30nm ,b=6m ., =5 ¢ = 10E,= M m:

(a) Presentation of the 9— Z plane. (b) Zoom in on the spheroid. (c) Results along the Z

axis.

| simulated the same spheroid with the same peawitytiand changed the host permittivity
from vacuum g, =1) to the inclusion permittivity & =10). | compared the results of the

polarization density (minus the background polarradensity) from the simulations to the
results of the formulas of Sihvola and of Landad &iishitz. The comparison is presented
in Fig. A.2.
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Polarization Density Inside a Spheroid
x 10710 versus the host permittivity

NE'G --------- ¢ T v Landau & Lifshitz
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Host Permittivity [a.u]

Fig A.2 Comparison of the results for the polarization density inside the spheroid,
between Landau and Lifshitz, Sihvola and the simulations. Parameters chosen:
a=30nm ,b=6m .5 = 10 E, = 10 .

The results clearly show that the formula givenSilyvola suits the simulations much better

than that of Landau and Lifshitz. The average deneaof the results of Sihvola from those
of the simulations (ignoring the two end poirts=1 and ¢, = & =10) is 4.5%. For Landau

and Lishitz the average deviation is 76%. Givers¢heesults | chose to use the formula for

the polarizability given by Sihvola (Eq. (A.8) whics also Eqg. (2.2) in section 2.1.1).
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Appendix B: Hyperpolarizability of a sphere and anellipsoids

In this appendix, | present the derivation madeSiyvola for calculating the first and
second order hyperpolarizability of a sphere [4 &llowing his leads, the same derivation

for an ellipsoid.

| will start from Sihvola's analysis for the inteirfield E inside an inclusion under an
external electric fieldE,,. The internal field is a sum of the external fieddd the

"scattered"” fieIdEs, cause by the induced polarization density fiEld

E=E.+E (B.1)

Sihvola finds the relation between the scattereld fand the polarization density to be:

1 .
E=——L.P (B.2)
Eh

S

where ¢, is the permittivity of the environment arld is the depolarization factor, which

like the polarizability is a second order tensdreTnternal field is therefore:

E=E,-—L-P (B.3)

For a sphere inclusion the depolarization is asscal =1/3.

Hyperpolarizability of a sphere:

For a NL material, the polarizatioR is usually presented as a power series in theriglect
field E:

P:go(;((l)l_é+;((2)E2+}((3)E3+...) (B.4)

In this presentation, the tensorial characteristitghe susceptibilities are not presented

explicitly, but it can be addressed by treatingheaasceptibility as a tensor, and using a
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tensor multiplication. Assuming the linear susdeipty is a scalar, the internal polarization

density in a sphere can be presented as:

P=¢,(&—¢) E +50(;((2)I§i2+;((3)E3+...) (B.5)

where again the permittivities of the sphere indosand environment areg,é,

respectively. The dipole moment of the sphere ss &L and is a function of the external
field:

p=aE, +pE: +yES +... (B.6)

According to Eq. (B.3), for a sphere inclusion thternal field will be E = E,, — P/3¢, or
'5:3«%(';@« —E) Using this expression for the polarization dgnsiside Eq. (B.5) and
isolating the linear term of the internal field |wesult with:

3, e %
& +2¢, & + 28,

(;((Z)E2+;((3)E3+...) (B.7)

At this point, Sihvola assumes the "linear appration”, and uses the linear term for the
internal field (as a function of the external fieid the powers inside Eq. (B.7).The linear

field is:

- 3g,
5= & +2¢, (B:8)
hence Eq. (B.7) is approximated to:
3¢ %, ) % )
E ~ h g __ %o h @2 h @E3 , B9
I & +2¢, o £i+2£h[(gi+25h];( et (gi_,_zghjl et ] (B.9)

He uses Eq. (B.9) for the internal field inside tif)epressionl5=:-3ge(|§®(t —E) from Eq.

(B.3) for a sphere and remembering tiiatV - P the result is:
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~ (gi gh)
= 3.6 E. +
§+2¢8, he
3 4 (B.10)
+V %G 50;((2) Eezd +V %, 50;((3)&?« +...
& +2¢, &+ 2,

From this equation, the polarizability and hypegpabilties can be identified easily.

Hyperpolarizability of an ellipsoid:

The derivation for ellipsoids requires Eq. (B.3}waiut reducing the depolarization factor by
L=1/3. The expressiorP =3¢, (E,, - Ei) becomesP’ :%(E@(t - Eij) which is direction

dependant, according to the external field direc{ip= X, y,z). Eq. (B.7) becomes:

£ = & E _ L (Z(z)(Eij )2+Z(3)(Eij )3+...) (B.11)

(6-&)lU+e = (&-¢&)L +&,
and Eq. (B.8) becomes:

h
(&—&)L +¢,

El = E. (B.12)

Following the same derivation as for the case gftzere, Eq. (B.10) becomes:

' (gi_gh)
=V . E
H gh+L‘(5i—gh)gogh e T

(B.13)
€h

3 4
Ry . g PEZL +V & g0 ES
(5h+L‘ (gi—gh)] ok e (5h+L‘ (& -¢,) ot e

Again, from the last equation, the polarizabilitydahyperpolarizabilities can be identified

easily.
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Appendix C: derivation of the MG model by Sihvola

There are several ways to derive the MG model donmosite with linear sphere inclusions
[6,7,17,19]. | will present the derivation given Byhvola which uses average values of the

macroscopic fields in the composite [7].

Sihvola starts from the macroscopic displacemetd fielectric flux density in his notation):
(B) = s (E) = 2, (E)+(F) 1)
The average polarization density evolves from tipeld moments in the mixturg,,, :
(P)=n" i, (C.2)

where nis the number density of the dipoles. It is impott® notice that the dipole moment
in the mixture is different from a single induceigale moment, because of the influence of
all the other dipoles on the average electric fidlde local field near the inclusion is given

by the external field and the average polarizatiensity in the mixture:
~ 1 /=
E, =<E>+§<P> (C.3)

wherethe factorl/3 is the depolarization factor of a sphere. The Isingduced dipole

moment in the mixture is then:
Firix = @B, (C.4)
where¢ is the single inclusion polarizability. Combining& (C.2) and (C.4) results with:
(P)=n-a-E, (C.5)

Then, using Eq. (C.3) for the local field, insidg.EC.5) the polarization density can be
extracted:
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_ n- _
<P>= no.la <E> (C.6)

Using this expression inside Eg. (C.1), we can ielate the expressions of the average field

and extract the effective permittivity:

n-a (C.7)

There are several methods to present the lastiequat the effective permittivity. In the

form of the polarizability, it can be presented as:

Egqi — & _ n-ao

Ey +2-6, 3&, (C-8)
which is the Clausius-Mossoti formula. On the othand, from Eq. (2.2) (or A.8) for the
polarizability of an ellipsoid the polarizabilityf @ sphere can be found (by usibg 1/3):

a V(e —gy)——t—

(C.9)

sphere =
Then by using the expression for the polarizabihtside Eq. (C.8) the effective permittivity

can be presented in terms of the permittivities aoldime fraction, by remembering that

p=n-V . The effective permittivity is given by simple elya:

& — &

&+2-6,—(&-¢&,) P

Eqt =&, T3 P&, (C.10)

which is the same as Eq. (2.9) - Maxwell-Garratinula.
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Appendix D: different approaches and assumptions fothe NL Maxwell-Garnett

model

As explained in section 2.2.2, several approache® \presented for the derivation of the
generalization of the MG model for NL inclusionswill present the method, assumption
and conclusion of three authors, without presemtatf the whole derivation. More
approaches can be found in the review of Gehr anal 18].

Ricard et al. were the first to derive a generalization for & model, dealing with the
nonlinearity of metal spheres dispersed in wat8t.[#hey used a presentation of the linear

MG model as:
(D.1)

and taking the result for the effective permittyvib the lowest order in the volume fraction

p, they obtain:

eq =&, (1+3p- B) (D.2)

Expanding the result to Taylor series for a smaWidtion in the inclusions permittivity,

results with:

op
Oy =3¢, P— ¢,
E et hP o5 Ei (D.3)
Assuming the change in the inclusions permittiistylue to the third order nonlinearity and
using the internal field inside the sphere inclasigq. (A.1)) as the local field experienced

by the inclusion, they found:

|2

2
th J| &h 1(3) (D.4)

(3)258 = A
e o p[5i+28h ‘5i+25h‘ '

Sipe and Boyd presented a method to derive the M@ein(linear and sphere inclusions) by
addressing the mesoscopic fields in the compasieaning the field that a single inclusion

"feels" [19]. After calculating the MG model, thexpanded their derivations for the cases
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of NL inclusion and/or NL host. Like Ricaret al. their work is also entirely for sphere
inclusions and | will only present the final restdt the NL inclusion case. They use the

notation of the electric displacement field (in Gsian unit system):
D(F) =gE(r)+4;zA[E(r)- E(r)*] E()+ 27zB[E(r)- E(r)] EFY (D.5)

where the coefficientsA and B are related to the third order NL susceptibiligngor

components:A=6y,,,,and B=6y,,,, (see [16]). The relation between the composite

effective coefficientg A, B) and the inclusions coefficien{s\,B') , is given by [19]:

2 2 2
Eqt T 28, A B- f|gerf +29h| Eqt T 2, 5 (D.6)
& + 2¢, ‘8i+29h‘ &+ 2,

A f|geﬁ +2$h|2

‘ & +2¢, ‘

where ¢, is the effective permittivity, given by the linestG model. The main difference

between the result of Sipe and Boyd to that of Ricat al. is the expression in the

numerators o(geﬂ +23h) instead of(3¢, ).

Lamarreet al. followed the method presented by Ricardl. and derived first an expression
for ellipsoid inclusions [6]. They used the linegeneralization of the MG model for
ellipsoid inclusions (Eg. (2.10)) that for the ficeder approximation in the volume fraction

(assumingp <<1) is:

&h (gi _gh)
Us +(1-L)e,

gl =g +p (D.7)

Following the method presented by Ricatdl. with the same assumptions, they found:

2 2
@ _ &h ‘ 3, ‘ ®)
Za' = p[LJgi+(1—L')gh] ‘ngi+(1—Lj)gh‘ d (D8)

Using the same derivation for larger volume fractibey used the full expression of Eq.

(2.10) for the effective permittivity of a compasivith ellipsoid inclusions. Their result is:
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3z,
Us +(1-U)z,|

@3 €h

2
Ka® =P L'gi+(1—L')gh—p(gi—gh)]

2
‘ (3) (D.9)

The difference between the large and small volumaetibn (Eqgs. (D.8) and (D.9)), is in the

additional expression oﬁ—p(gi —gh)] in the denominator of the first expression on the

right hand side of Eq. (D.9).

Sihvoal used the average quantities of the diffemegcroscopic fields:

(5) = 6 (E)+(P) = (E)+ 2] 22 (E)(E) + 19 (E)(E)(E)+.] (©.10)

where the epxression,, here, stands for the linear effective permittivtyyo For sphere
inclusions and small volume fraction, Sihvola asssirthat the field that excite an inclusion

is the average fiel<1|§> , hence the effective parameters depends on tlaeipatility « and

hyperpolarizabilitiesf, y . The effective susceptibilities are:

Iéf?) = nﬁ/go

(D.11)
Zg) = nV/go

For the third order nonlinearity, using the expi@sgor y from Eqg. (B.10), the result for a

sphere inclusions is:

4
3¢
29 = p[g—j 7 (D.12)
i h

Deriving the same for ellipsoid inclusions, withethyperpolarizability of an ellipsoid as
derived in Appendix B, results with:

4
@) _ &h @) (D.13)
A p[Lig,+(1|_i)th &

It is important to mention that Sihvola derived @llhis derivations for dielectric inclusions.
The models presented by by Ricatal. Lamarreet al. and Sipe and Boyd were derived for

metal inclusions. Nevertheless, they can be usdldl aelectric inclusions [18], hence the
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result | presented followingihvola, is the same as the result presenteLamarreet al. for
small volume fraction (Eq. D.8)), for dielectric material (i.e with a real valdor the

permittivities).

It is interesting to examine the difference betweenniodes for thelarge and small volume
fractions (Egs. (D.8.) andD(13) compared to Eq. (B)). | will use parameters valuof

& =6.2 ,5,= 2.19as before ancL** =0.1,L.% = 0.45 and examine the influence of t

volume fractionp on the value o " / »® for the two formsIn Fig. D.1.a, | present the

values of the two equations as a function of tHame fraction, between the values of O i
20% for the volume fraction (which is the MG modiehit). In Fig. D.1.b, | present the
deviation of the smalolume fraction equatiorrelative tothe equation folarge volume
fraction, in percentagét can be seen from FiD.1.b,that the deviation of the values frc
the smallvolume fraction equation, grows almost arly with the volume fraction itsel

For the valuep =4%that | used in my work, the deviation 1.23%, which justifiesin my

opinion the use of the smaiblume fraction equatio— Eq. (D.13)Xhroughout my wor.

a (b)
Values of XS# / Xi(B} Deviation of the low volume fraction equation
as a function of the volume fraction relative to the high volume fraction equation
p— ; : X
Low volume fraction equation e o T
0.1 = High volume fraction equation "2 a_
=2
o S > k| P
~ 0.0Bf - =
o% o
— O c
= O0.04p----cee g e o P R e Ry
0.02}--- ot 3
%)
0 . . . ° 0
0 5 10 15 20 0 5 10 15 20
Volume Fraction - p [%] Volume Fraction - p [%]

Fig. D.1: Comparison between the values of the effective third order NL susceptibility of a
composite with ellipsoid inclusions as a function of the volume fraction. (a) Values of the
composite effective susceptibility normalized by the inclusions susceptibility, for the two
equations. (b) The deviation of the values of the equation for low volume fraction, relative
to the values of the equation for high volume fraction.
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