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Abstract

An Airy pulse, a solution of the dispersion equation, manifests two unique properties
while propagating in linear media. One is self-similarity, meaning the pulse has the
same envelope throughout propagation in dispersive media and the second is
acceleration in time- namely moving in parabolic trajectory with respect to a time
frame that moves with the group velocity of the pulse.

We simulate and analyze the propagation of truncated temporal Airy pulses in a
single mode fiber in the presence of self-phase modulation (Kerr effect) and anomalous
dispersion. Due to the presence of the nonlinear effect, the Airy is no longer a valid
solution, such that the pulse evolution is no more predictable.

By gradually increasing the launched Airy power we examine the nonlinearity
influence on the Airy pulse evolution. For sufficient large launched intensity we
observe soliton pulse shedding from the Airy main lobe, with the emergent soliton
parameters dependent on the launched Airy pulse characteristics. The emergent soliton
performs "breathing"- periodic oscillations of its parameters along the propagation
distance due to interaction with background radiation, with the periodicity increasing
with the launched power. Additionally, the soliton mean temporal position shifts to
earlier times with higher launched powers due to an earlier shedding event and with
greater energy in the Airy tail due to collisions with the accelerating lobes. In spite of
the Airy energy loss to the shed Soliton, the Airy pulse continues to exhibit the unique
property of acceleration in time and the main lobe recovers from the energy loss
(healing property of Airy waveforms), but performs decaying oscillations of its peak
power according to the interplay between the dispersion and the nonlinear effect.

The influence of the truncation coefficient—required for limiting the Airy pulse to
finite energy—on the Airy nonlinear propagation is also investigated. Small truncation
degree increases the Airy tail energy, which has considerable influence on the soliton
shedding distance, the soliton mean temporal position, and on the residual accelerating

energy.
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1  Theoretical background

In this thesis we deal with pulse propagation in silica fiber, where the dispersion
phenomena and the nonlinear phenomena dominate and influence the pulse evolution
during the propagation. In this section we will discuss in detail these two phenomena
and how they influence the pulse propagation. Then we will introduce two special
pulses- Airy pulse and soliton pulse, whose propagation is investigated in this thesis.
Except for the sub-section that deals with the Airy pulse, this section is based on the

book "Nonlinear Fiber Optics”, written by G.P. Agrawal [1].

1.1 Dispersion phenomena

When an electromagnetic wave interacts with the bound electrons of a dielectric, the
medium response, in general, depends on the optical frequency . This property,
referred to as chromatic dispersion, manifests through the frequency dependence of the
refractive index n(w). Fiber dispersion plays a critical role in propagation of short
optical pulses because different spectral components associated with the pulse travel at
different speeds given by ¢/n(w).

Mathematically, the effects of fiber dispersion are accounted for by expanding the
mode-propagation constant g in a Taylor series about the frequency wg at which the

pulse spectrum is centered:

w
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The parameters S and £, are related to the refractive index n and its derivatives through the

relations
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where ng is the group index and vy is the group velocity. Physically speaking, the
envelope of an optical pulse moves at the group velocity while the parameter 5,
represents the different velocity of every spectral component, namely the dispersion of

the group velocity and therefore is known as the group-velocity-dispersion (GVD). £,



is varying with wavelength A as shown in Figure 1.1 for bulk Silica. One of the most
important features of this property is its vanishing at specific wavelength- the zero-
dispersion wavelength, denoted as 1p. At this wavelength the dispersion moves
between the two dispersion domains- the normal dispersion regime, in which $,>0, and
the anomalous dispersion regime in which $,<0. In the normal-dispersion regime,
high-frequency (blue-shifted) components of an optical pulse travel slower than low-
frequency (red-shifted) components of the same pulse. By contrast, the opposite occurs
in the anomalous-dispersion regime in which £,<0. However, note that dispersion does
not vanish at A=Ap because then the third order dispersion (TOD), originating from the
cubic term in the Taylor series of B(w), becomes dominant and cannot be neglected.
Such higher-order dispersive effects can distort ultrashort optical pulses both in the
linear and nonlinear regimes. The slope of the dispersion curve- 5,(4)- (called the
dispersion slope) is related to the ( TOD) parameter fs.

751

B2 [ps*/Km]
I .

o

o
o

T T T R VR
Wavelength [um]

Figure 1.1- Variation of B, with wavelength for fused silica. The dispersion parameter ,=0 near 1.27um.

For bulk fused Silica Ap=1.27um, but in silica fiber dispersive behavior deviates
from that due to small amounts of dopants in the core and due to the waveguide
geometry. The main effect of the waveguide contribution is to shift Ap slightly toward
longer wavelengths; Ap~1.31um for standard fibers and can be shifted further by

changing the fabrication process in others (dispersion shifted fibers- DSF).

1.2 Nonlinear phenomena in fibers

The response of any dielectric to light becomes nonlinear for intense electro-magnetic
fields, and optical silica fibers are no exception. Nonlinear response means that the
total polarization P induced by electric dipoles is not linear in the electric field E, but

satisfies the more general relation:

P=g,(y" -E+4? -EE+ y® EEE +..) 1.4



where & is the vacuum permittivity and »'¥ (j=1,2...) is the j-th order susceptibility.

The linear susceptibility ¥ represents the dominant contribution to P. Its effects
are included through the refractive index n and the attenuation coefficient a. The
second-order susceptibility x® is nonzero only for media that lack an inversion
symmetry at the atomic or molecular level. As SiO; is an amorphous material- what
gives it a nature of a symmetric material (from the aspect of the nonlinearity) since it
has no orientation, ¥ vanishes for silica glasses and as a result, optical fibers do not
normally exhibit second-order nonlinear effects.

The lowest-order nonlinear effects in optical fibers originate from the third order
susceptibility X(S)' which is responsible for phenomena such as third harmonic
generation, four-wave mixing, and nonlinear refraction, a phenomenon referring to the
intensity dependence of the refractive index. In its simplest form, the refractive index
can be written as:

A(w,|E[*) =n(w) +n,|E 15
where n(w) is the linear part of the induced polarization, |E|? is the optical intensity
inside the fiber, and n; is the nonlinear-index coefficient related to ¥ by the relation
3
8n
where Re stands for the real part and the optical field is assumed to be linearly

3
n2 = Re(lixix) 16

polarized so that only one component x(?’)xxxx of the fourth-rank tensor contributes to the
refractive index.

The intensity dependence of the refractive index leads to a large number of
interesting nonlinear effects, two of which are self-phase modulation (SPM) and cross-
phase modulation (XPM). Self-phase modulation refers to the self-induced phase shift
experienced by an optical field during its propagation in optical fibers. Its magnitude

can be obtained by noting that the phase of an optical field changes by
¢ = Ak,L = (n+n,|E[ )k, L 17
where ko=2z /4 and L is the fiber length. The intensity-dependent nonlinear phase shift
B =, |E[ koL 18
is due to SPM. Cross-phase modulation refers to the nonlinear phase shift of an optical
field induced by another field having a different wavelength, direction, or state of

polarization. This effect is not relevant in our study because we deal with single pulse

propagation.



Among other nonlinear effects present in optical fibers are stimulated Raman
scattering effects and stimulated Brillouin scattering effects which related to
vibrational excitation modes of silica. These effects are encountered when dealing with
relatively high power optical fields or very short pulses, as will be detailed in chapter
1.3.

Though the nonlinear coefficient n in bulk fuse silica is ~ 10%° [m?/W], very small
relatively to other nonlinear materials, the nonlinear effects in optical fibers can be
observed at relatively low power levels. This is possible because of two important
characteristics of single-mode fibers—a small spot size (mode diameter at A1=1.55 um~

10 um) and extremely low loss (< 1 dB/km) in the wavelength range 1.0-1.6 pm.

1.3 The pulse propagation equation

In this section we introduce the basic equation that governs propagation of optical
pulses in nonlinear dispersive fibers in order to understand the interplay between the
two phenomena. This equation is useful for the pulse propagation simulations in this
work, as will be explained in the chapter "methods".

Starting from the wave equation

2 2 2
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where the induced polarization P is separated to the linear and nonlinear parts
according to the development of the fiber susceptibility into series, as shown in Eq.
2.4, we can derive the pulse propagation equation. Some preliminary assumptions must
be taken before the derivation: Py, is treated as a small perturbation to P - this is
justified because nonlinear changes in the refractive index are < 10 in practice, and
the optical field is assumed to maintain its polarization along the fiber length so that a
scalar approach is valid.

The full form of the derived pulse propagation equation is

2 3
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Where A is the amplitude of the pulse electrical field, @ represent the fiber losses, f1

represent the group velocity of the pulse according the relationv, =(8)™, f is the

dispersion parameter, S is the TOD parameter, y is the nonlinear parameter which



related to the intensity dependence of the refractive index as detailed in Eq 2.13 and Tg
is a parameter related to Raman scattering.

This form includes high orders terms of dispersion and nonlinearity. The equation
can be reduced to its simplest form by taking in account some limitations, which
enable us to neglect the higher orders terms. First, the optical field is assumed to be
quasi-monochromatic, i.e., the pulse spectrum, centered at wy, is assumed to have a
spectral width Aw such that Aw/mo << 1. Since wo~10"s™, the last assumption is valid
for pulses as short as 0.1 ps. This assumption is actually slowly varying envelope

approximation and therefore the optical field can be written as
A(r,t) = %)A([E(r,t)exp(—ia)ot)+c.c.] 1.11

where % is the polarization unit vector, and E(r,t) is a slowly varying function of time
(relative to the optical period). Considerable additional simplification occurs if the
nonlinear response is assumed to be instantaneous. This simplification amounts to
neglecting the contribution of molecular vibrations to ¥ (the Raman effect) but it is
valid only for pulse widths >1 ps. The fiber losses can also be neglected, by assuming
the presence of amplifiers along the fiber or by limiting the propagation lengths (before
the losses become considerable). Additionally, we choose to "move with the pulse” in

its group velocity v, =(4,)™, such that the time variable t can be replaced by local time

variable T which defined asT =t—Z and then the term of the pulse group velocity can

be dropped from the pulse propagation equation.

After all the above simplifications are applied and limitations were taken in
account, we can neglect the higher orders terms and get the reduced form of the
nonlinear pulse propagation equation such that it includes only the second order
dispersion and SPM. The reduced equation is now in the form of the Non-Linear
Schrodinger Equation (NLSE):

: 2
6z 2 oT?
the nonlinear coefficient y is defined as:
_ Do 1.13
CAt

where n; is related to the nonlinear response of the fiber and Ae is the effective area of

the optical mode in the fiber.



Except for special cases, the NLSE does not have analytical solutions and has to be
solved using numerical methods.

In the next sub-sections we will explain how the dispersion and the nonlinear
effects influence on the pulse propagation each of them separately and both of them
together, according to the NLSE.

1.3.1 Dispersion-induced pulse broadening

In linear media, the pulse propagation is governed by the dispersion equation:

2
jdv _ A dY 1.14
dz 2 dT1?
where U(z,T)is the normalized amplitude of the pulse such that:
U T)= A2 1.15

&
where Py is the peak power.

This equation is obtained by dropping the nonlinear term from the NLSE. The
dispersion equation is similar to the paraxial diffraction equation that governs the
diffraction of CW light and becomes identical to it when the diffraction occurs in only
one transverse direction and f is replaced by 4/2z, where 4 is the wavelength of light.
For this reason, the dispersion-induced temporal effects have a close analogy with the
diffraction-induced spatial effects, except for the fact that the dispersion can be
negative or positive but diffraction is one sided (unless negative index material is
considered).

Using the Fourier-transform method, we get the Fourier transform of the solution of

the dispersion equation:
U(z,w) =U(0, w)exp(% Bow’7). 1.16

This solution shows that GVD changes the phase of each spectral component of the
pulse by an amount that depends on both the frequency and the propagated distance.
Even though such phase changes do not affect the pulse power spectrum, they can
modify the pulse shape.

As a simple example, consider the case of a Gaussian pulse for which the incident
field is of the form



T2
U(0,T) =exp(-—5 1.17
(0,T) =exp( 2T02)

where Ty is the half-width (at 1/e-intensity point). After obtainingU (0, ), substituting it
in the Fourier solution and converting back to time, we get:
2
U(z,T):T—Oexp{ T—J

Q/ioz—iﬂzz _Zaoz_iﬂzz)

Thus, a Gaussian pulse maintains its shape on propagation but its width T;

increases with z as T,(z) =T0,/1+(z/ Ly)* where Lp, the characteristic length of the

dispersion, is defined as:

Ly = % : 1.18
According to this definition, at z=Lp, a Gaussian pulse broadens by a factor of /2 . For
a given fiber length, short pulses broaden more because of a smaller dispersion length.
The broadening of a Gaussian pulse is shown in Figure 1.2 (a). In Figure 1.2(b) we can

see the pulse power spectrum which remains unchanged throughout propagation.
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Figure 1.2- Propagation images of initially unchirped Gaussian pulse under the influence of chromatic
dispersion (a)in the time domain and (b) in the frequency domain.

This broadening is caused by induced chirping during the pulse propagation. The
chirping can be seen clearly by writing U(z,T) in the form U (z,T) =|U(z,T)|exp(i¢(z, T))

such that:

z

Ty =SB T 1 tanfl(g) 1.19

1+(z/Lp)* TE 2
The time dependence of the phase ¢(z, 7) implies that the instantaneous frequency

differs across the pulse from the central frequency wo. The difference Jw is just the
time derivative 0¢/0T and is given by

10



dg(z,T) _ sgn(5,)(2z/Lp) T 1.20

oM 1+(2/Lp)? T8

This derivative shows that the frequency changes linearly across the pulse, i.e., a
fiber imposes linear frequency chirp on the pulse. The chirp dw depends on the sign of
S. In the normal-dispersion regime (5,>0), dw is negative at the leading edge (T<0)
and increases linearly across the pulse; the opposite occurs in the anomalous-dispersion
regime (5,>0). This relations between the frequency and the time causes different
frequency components of a pulse to travel at slightly different speeds along the fiber
and hence to arrive to its end at different times. The pulse can maintain its width only
if all spectral components arrive together. Any time delay in the arrival of different

spectral components leads to pulse broadening.

1.3.2 SPM-Induced Spectral Broadening

When the pulse width is wide enough while its peak power is high, we can neglect the
dispersion term from the NLSE and get the equation which governs the pulse
propagation under the influence of SPM only:

ouU

= =L|U|2U 1.21
oz Ly

where U is the normalized amplitude U(z,T) of the pulse, as defined in Eq. 2.15 and

Lne IS the nonlinear length defined as

Ly = (7’Po)71- 1.22
The equation can be solved substituting U=Vexp(i¢y.) and equating the real and
imaginary parts so that
N _ 0: 0P =i|V|2

2 _0 1.23
oz oz Ly
The general solution of U(L,T) is
U(L,T)=UO,T)explig, (L T)] 1.24
where
2 L
$u (LT)=[U(OT)| T 1.25

NL
These solutions show that SPM gives rise to an intensity-dependent phase shift but
the pulse shape remains unaffected, as seen in Figure 1.3(a). The nonlinear phase shift
énL increases with fiber length L but the maximum phase shift gmax Occurs at the pulse
peak center located at T=0. With U normalized such that |U(0,0)|=1, it is given by

11



D =|U (01T)|2LL=7F%L- 1.26

NL

The physical meaning of the nonlinear length Ly, is clear from this expression—it
is the effective propagation distance at which ¢nax =1.

The SPM-induced spectral broadening is a consequence of the time dependence of
#nL. This can be understood by noting that a temporally varying phase implies that the
instantaneous optical frequency differs across the pulse from its central value wo. The
difference ow is given by

so(T)=-%u L O
oT Ly aT

u©,T)’ 1.27
where the minus sign is due to the choice of the factor exp(-imot) in the propagated
field definition. The time dependence of dw is referred to as frequency chirping and the
chirp induced by SPM increases in magnitude with the propagated distance. In other
words, new frequency components are generated continuously as the pulse propagates
down the fiber. These SPM-generated frequency components broaden the spectrum
over its initial width at z=0, depending on the pulse shape but they don't walk off since
there is no dispersion. Consider, for example, the case of Gaussian pulse with the

incident field U(0,T)=exp[-(T/To)?]. The SPM-induced chirp dw(T) for such a pulse is

2
oo(T) :Lgexp —2(lj : 1.28
I‘NL TO TO

The temporal variation of the induced chirp dw has several interesting features.
First, dw is negative near the leading edge, when T<O0 (red shift) and becomes positive
near the trailing edge, when T>0 (blue shift) of the pulse. Second, the chirp is linear
and positive (up-chirp) over a large central region of the Gaussian pulse. Third, the
chirp is considerably larger for pulses with steeper leading and trailing edges.

An estimate of the magnitude of SPM-induced spectral broadening can be obtained
by calculating the peak value of dw (7). By setting its time derivative to zero, the
maximum value of do (for Gaussian pulse) is related to ¢max and given by

OW,p = 0.86A W, 1.29
where A, =T, 'is the initial spectral width of the pulse.

In the case of intense ultrashort pulses, the broadened spectrum can extend over

100 THz or more, especially when SPM is accompanied by other nonlinear processes

12



such as stimulated Raman scattering and four-wave mixing. Such an extreme spectral
broadening is referred to as supercontinuum.

The actual shape of the pulse power spectrum S(w), as seen in Figure 1.3(b), is
obtained by taking the Fourier transform of U(L,T), using the relation

S(w) = ‘J(L,a))r . The most notable feature of the pulse spectrum shape is that SPM-

induced spectral broadening have an oscillatory structure covering the entire frequency
range. In general, the spectrum consists of many peaks, and the outermost peaks are the
most intense. The number of peaks depends on ¢nax and increases linearly with it. The
origin of the oscillatory structure can be understood by the time dependence of the
SPM-induced frequency chirp. In general, the same chirp occurs at two values of T
showing that the pulse has the same instantaneous frequency at two distinct points.
Qualitatively speaking, these two points represent two waves of the same frequency
but different phases that can interfere constructively or destructively depending on
their relative phase difference. Mathematically, the Fourier integral in S(w) calculation
gets dominant contributions at the two values of T at which the chirp is the same.
These contributions, being complex quantities, may add up in phase or out of phase.
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Figure 1.3- Propagation image of Gaussian pulse under the influence of SPM (a) in the time domain and (b)
in the frequency domain.

The number of peaks M in the SPM-broadened spectrum is given approximately by
the relation ¢nax= (M-1/2)x.

For pulses with steeper leading and trailing edges (such as rectangular pulse) the
spectral width after SPM broadening is extend over a longer frequency range than
pulses with moderate edges slope (such as Gaussian) with the same initial width and
propagation distance, but the tails of the steeper pulses spectrum carry less energy

because the chirping occurs over a small time duration.

13



1.3.3 Effect of Group-Velocity Dispersion with Self-Phase

Modulation

As pulses become shorter and the dispersion length becomes comparable to the
fiber length, it becomes necessary to consider the combined effects of GVD and SPM.
This section considers the temporal and spectral changes that occur when the effects of
GVD are included in the description of SPM.

The starting point in the analyzing of the combined effect is the nonlinear
Schrodinger (NLS) equation which can be written in a normalized form as

. oU 162U

i =sqn(B,) = —5 - N?U[’U 1.30
PY: an(5;) 2 072 | |
where ¢ and 7 represent the normalized distance and time variables defined as
g=Lt. .- I 1.31
Ld TO
and the parameter N is defined as:
2
2_ba _7RTy 1.32
I‘NL |ﬁ2|

As evident from this relation, N governs the relative importance of the SPM and
GVD effects on pulse evolution along the fiber. Dispersion dominates for N <1 while
SPM dominates for N>1. For values of N~1, both SPM and GVD play an equally
important role during pulse evolution. In the NLSE, sgn(f2)=1 depending on whether
GVD is normal ($,>0) or anomalous (5,<0). The physical significance of N will
become clear in Chapter 1.5- The soliton pulse, where the integer values of N are found
to be related to the soliton order.

When N=1, the evolution of the shape and the spectrum of an initially unchirped
Gaussian pulse in the normal-dispersion regime (Figure 1.4(a)) of a fiber is quite
different from that expected when either GVD or SPM dominates. In particular, the
pulse broadens much more rapidly compared with the N=0 case (no SPM). This can be
understood by noting that SPM generates new frequency components that are red-
shifted near the leading edge and blue-shifted near the trailing edge of the pulse. As the
red components travel faster than the blue components in the normal-dispersion
regime, SPM leads to an enhanced rate of pulse broadening compared with that

expected from GVD alone. This in turn affects spectral broadening as the SPM-

14



induced phase shift ¢y becomes less than that occurring if the pulse shape were to

remain unchanged.
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Figure 1.4- Propagation image of initially unchirped Gaussian pulse for N=1 at (a) normal dispersion and (b)
anomalous dispersion.

The situation is different for pulses propagating in the anomalous-dispersion regime
of the fiber, when N is still ~1, but the sign of the GVD parameter has been reversed
(2<0). As can be seen in Figure 1.4(b), the pulse broadens initially at a rate much
lower than that expected in the absence of SPM and then appears to reach a steady
state. At the same time, the spectrum narrows rather than exhibiting broadening
expected by SPM in the absence of GVD. This behavior can be understood by noting
that the SPM-induced chirp is positive while the dispersion-induced chirp for
anomalous dispersion ($,<0) is negative. The two chirp contributions nearly cancel
each other along the center portion of the Gaussian pulse when Lp=Ly. (N=1). Pulse
shape adjusts itself during propagation to make such cancelation as complete as
possible. Thus, GVD and SPM cooperate with each other to maintain a chirp-free
pulse. The preceding scenario corresponds to soliton evolution; initial broadening of
the Gaussian pulse occurs because the Gaussian profile is not the characteristic shape
associated with a fundamental soliton. Indeed, if the input pulse is chosen to be a
“sech” pulse both its shape and spectrum remain unchanged during propagation. When
the input pulse deviates from a ‘sech’ shape, the combination of GVD and SPM affects
the pulse in such a way that it evolves to become a ‘sech’ pulse. This aspect is
discussed in detail in Chapter 1.5 and along this work.

When N>>1 the effects of SPM should dominate over those of GVD for, at least,
the initial stages of pulse evolution. It is true only for the first stage because when a
large amount of the SPM-induced frequency chirp imposed on the pulse, even weak
dispersive effects lead to significant pulse shaping. In the case of normal dispersion

(62>0), the pulse becomes nearly rectangular with relatively sharp leading and trailing

15



edges and is accompanied by a linear chirp across its entire width. It is this linear chirp

that can be used to compress the pulse by passing it through a dispersive delay line.

1.4 The Airy pulse

Nondiffracting beams are beams that have special functional form such that they can
propagate in diffractive medium without reshaping. A well-known class of
nondiffracting beams is Bessel beams [2]. The functional form of these beams is
defined by Bessel functions, which are a solution of the wave equation. These beams
have cylindrical symmetry, constructed from one circular spot and infinite rings around
it. Practically, Bessel beams cannot have infinite amount of rings because it requires
infinite amount of energy. Thus, practical implementations introduce apodization,
causing the Bessel beam to finally diffracted, but it remains unchanged for
considerable long distance- relative to the regular Gaussian beams. Bessel beams were
found to be useful and efficient in optical tweezers (controlling on particles and cells
movement by light) due to their continuous focus caused by the nondifracting feature.
Similar nondiffracting beam class is the Airy beams.

The Airy function Ai(s) is one sided, oscillating function also having infinite
energy. This function was originally [3] proposed in the context of quantum mechanics
as a nonspreading solution to the Schrodinger equation for free particles. Later, it was

demonstrated [4] that this function is also solution of the paraxial diffraction equation

2
ia—A+£a—A—0 1.33

o8 2 8%

(where A is normalized optical field amplitude, ¢ represent the normalized propagation
distance and s represents a dimensionless spatial transverse coordinate),
and therefore it can describe an optical beam. This optical beam found to have two
unique interesting features: self-similarity where during propagation the wavefront
maintains its shape in the presence of diffraction—the nondiffracting feature being
similarly to the Bessel beams—and ballistic dynamics where its wavefront travels
along a parabolic trajectory without the presence of any external potential.

The propagation of temporal pulses in linear media is described by the dispersion

equation

16
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where A is normalized optical field amplitude, z represent the propagation distance, T
represents a time variable in frame of reference that moves in the group velocity and f,
is the dispersion coefficient. The isomorphism between the dispersion equation and the
paraxial diffraction equation shows that Airy pulses, whose electric field temporal
profile is defined by an Airy function, also have the two unique features of self-
similarity along the propagation despite the dispersion and acceleration of the Airy

wavefront in a time frame moving at the group velocity, as seen at Figure 1.5.
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Figure 1.5- Propagation image of ideal Airy pulse. The pulse maintains its intensity distribution and moves

along parabolic trajectory.

However, true Airy pulses are impractical as they contain an infinite amount of
energy, as with the Bessel beams. By apodizing the Airy pulse, i.e. truncating the semi-
infinite oscillations, in our case with a decaying exponential envelope as shown in
Figure 1.6(a), the waveform maintains its two unique properties over an extended

propagation range despite its finite energy (Figure 1.6(b)).
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Figure 1.6- (a) Truncated Airy initial profiles for select truncation values. (b) Propagation image of
truncated Airy when a=0.05.

According to the Ehrenfest’s theorem, the center of mass of every wave packet
must remain unchanged when there is no external force, as in our system. Airy pulses
and beams appear to violate this rule, but in fact do not as the center of mass of the
Airy wave packet cannot be defined and therefore do not conflict with Ehrenfest’s

theorem. In the case of finite energy-Airy-packet, the center of mass is well defined
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and in fact remains invariant with distance, what forces the intensity of the accelerating
peak to decrease throughout propagation.
In the case of linear propagation, the launched field described by

U (s,0) = Airy(s) exp(as), 1.35
where the truncation degree is determined by the truncation coefficient 0<a<1 in the

decaying exponential envelope exp(as) . As a is smaller, the truncation is weaker and the

Airy pulse maintains its unique properties for longer propagation distances.
The analytical description of the truncated Airy at any point in its propagation is [4]:
U(s, &) = Airy[ s—(£12)* +iag |exp| as—(a&” /2) —i(&° 112) +i(a’E 1 2) +i(£s/ 2) | .1.36

From the argument of the Airy function one can conclude that this beam follows a

ballistic trajectory in the s—¢ plane that is described by the parabola s=¢/2.

In order to move from spatial Airy to temporal Airy we replace the spatial transverse

coordinate s by T/Ty, and the normalized distance variable & by z/Lp.

The Fourier spectrum of the initial truncated Airy pulse in the normalized w-space is

given by
o(®,0) = exp(—aw’) exp (é (&° —3a2a)—ia3)j. 1.37

According to this expression, it is clear that truncated Airy pulses occur naturally if
a Gaussian pulse is propagated in a fiber at the zero dispersion point, under the
influence of cubic dispersion, which gives to the Gaussian spectrum a cubic phase and
then it translates to Airy distribution in the time domain.

Spatial Airy beams have been investigated extensively in the last few years, and
found to be useful for various applications such as: optical micromanipulation when
the ballistic dynamics is exploited for process of optically mediated particles
clearing[5], optical switching by changing the accelerating direction of the Airy beam
in the nonlinear crystal in which it generated [6], the first curved plasma channels
generation in air [7] and in water [8] using femtosecond Airy beams[7], what can lead
to novel applications in remote sensing, terahertz generation and lightning control .
More recently, temporal Airy pulses are being investigated, in the context of
spatiotemporal light bullets in linear conditions, where the configuration of Airy-
Bessel temporal beam contributes to the versatility of the bullet [9] and in nonlinear
conditions- where the three dimensional Airy found to be robust up to the high

intensity [10], and in the context of one dimensional Airy pulse propagation, under the
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influence of strong nonlinearity giving rise to supercontinuum and solitary wave

generation [11].

1.5 The soliton pulse

A fascinating manifestation of the fiber nonlinearity occurs through optical solitons
[12], formed as a result of the interplay between the dispersive and nonlinear effects.
The word soliton refers to special kinds of wave packets that can propagate undistorted
over distance. Solitons have been discovered in many branches of physics. In the
context of optical fibers, not only are solitons of fundamental interest but they have
also found practical applications in the field of fiber-optic communications. This
section is devoted to the study of pulse propagation in optical fibers in the regime in
which both the group-velocity dispersion (GVD) and self-phase modulation (SPM) are
equally important and must be considered simultaneously.

The soliton is a solution of the NLSE and is obtained using the inverse scattering
method. Although the NLSE supports solitons for both normal and anomalous GVD,
pulse-like solitons- also called bright solitons- are found only in the case of anomalous
dispersion. In the case of normal dispersion (5,>0), the solutions exhibit a dip in a
constant-intensity background. Such solutions are referred to as dark solitons.

Starting from the normalized form of the NLSE when $,<0

2
M 1Y ey, 1.38
o0& 20t
where & and 7 represent the normalized distance and time variables defined as
E= 2z = ik 1.39
Ld TO

and the parameter N, which determine the order of the solution, is introduced by

N2 = Lo _ &TOZ, 1.40
Le A
one can get the complex eigenvalues of the problem. The number of the eigenvalues is
in accordance with the integer N, and they are determining the properties of the
solution, such as its group velocity- frequency shift from the carrier frequency, its
amplitude(s), its time position and its initial phase. Due to the ability of choosing the

axes system and the carrier frequency as we need, in the case of single soliton the most
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relevant property is the amplitude of the soliton such that the fundamental solitons then

form a single-parameter family described by

U (&) = Asech(Ar) exp(iA® /5 ). 141

The parameter A determines not only the soliton amplitude but also its width. In
real units, the soliton width changes with A as To/A, i.e., it scales inversely with the
soliton amplitude. This inverse relationship between the amplitude and the width of a
soliton is the most crucial property of solitons.

In the context of optical fibers, the solution indicates that if a hyperbolic-secant
pulse, whose width T, and the peak power Py are chosen such that N=1 is launched
inside an ideal lossless fiber, the pulse will propagate undistorted without change in
shape for arbitrarily long distance because the propagation distance affects only the
accumulated phase, not the pulse intensity, as shown in Figure 1.7(a). It is this feature
of the fundamental solitons that makes them attractive for optical communication
systems.
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Figure 1.7- Propagation image of (a) first order soliton, (b) second order soliton and (c) third order soliton. It
is easy to see that the periodicity of the higher order soliton.

Pulses corresponding to other integer values of N are called higher-order solitons
and they do not maintain the initial shape but follow a periodic pattern such that the
input shape is recovered at &=mn/2, where m is an integer. The periodic evolution is a
result of the imbalance between the dispersion and SPM when N>1. SPM dominates
initially but GVD soon catches up and leads to pulse contraction and the two effects

can cooperate in such a way that the pulse follows a periodic evolution pattern with
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original shape recurring at multiples of fixed distances. This periodicity is shown in
Figure 1.7(b-c), at the propagation image of 2 and 3" soliton orders. By noting that
&=1/Lp, the soliton period z,, defined as the distance over which higher-order solitons
recover their original shape, is given by

2
zoszd :g%o 1.42
2

This parameter plays an important role in the theory of optical solitons.
Soliton stability
An important property of optical solitons is that they are remarkably stable against
perturbations. Thus, even though the fundamental soliton requires a specific shape and
a certain peak power corresponding to N=1, it can be created even when the pulse
shape and the peak power deviate from the ideal conditions. For example, in the
evolution of a Gaussian input pulse for which N=1 but u(0,7)=exp(—7/2), the pulse
adjusts its shape and width in an attempt to become a fundamental soliton and attains a
“sech” profile for £>1. A similar behavior is observed when N deviates from 1. It
turns out that the Nth-order soliton can be formed when the input value of N is in the
range N-1/2 to N+1/2. Due to the fact that the soliton area (normalized by the product
of peak power and duration) is equal to Nz, this rule actually stems from to the soliton
area theorem [13] which claims that first order soliton can be formed when the area of
the input pulse is in the range 7/2-37/2, as long as its shape is similar to that of soliton.

A simple way to understand this behavior [12] is to think of optical solitons as the
temporal modes of a nonlinear waveguide. Higher intensities in the pulse center create
a temporal waveguide by increasing the refractive index only in the central part of the
pulse. Such a waveguide supports temporal modes just as the core-cladding index
difference leads to spatial modes. When an input pulse does not match a temporal
mode precisely but is close to it, most of the pulse energy can still be coupled into that
temporal mode. The rest of the energy spreads in the form of dispersive waves, known
as the continuum radiation. It will be seen later that such dispersive waves affect the
system performance and should be minimized by matching the input conditions as
close to the ideal requirements as possible. When solitons adapt to perturbations
adiabatically, perturbation theory developed specifically for solitons can be used to
study how the soliton fundamental parameters of amplitude, width, frequency, speed,

and phase evolve along the fiber.
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2 Goals

In this study, we intend to analyze intense temporal Airy pulse propagation in media
exhibiting Kerr nonlinearity as occurring in single mode silica fibers, leading to the
phenomena of self-phase modulation (SPM) and anomalous dispersion. The unique
features of the Airy pulse are determined by the dispersion equation, which refer only
to linear media [3][4]. When the intensity of the Airy pulse is increased the nonlinear
response of the media start to influence and must be considered such that the known
evolution of the Airy pulse is no longer valid. We want to investigate the deviations of
the Airy pulse nonlinear evolution from its linear evolution as the pulse intensity is
increased gradually. The influence of the Kerr nonlinear effect on spatial Airy beams
has been already investigated under relatively weak parameters and transient
narrowing of the Airy main lobe—caused by self-focusing (this is nonlinear effect
which is analog to the SPM in temporal pulses)—was observed [14]; however, we are
interested in operating under much higher intensities where the nonlinear effect results
in soliton shedding from the Airy pulse, according to soliton theory as was detailed in
the previous chapter, and not just a small perturbation of the Airy pulse.

Additional investigated aspect of the nonlinear Airy pulse propagation is the
truncation degree influence. By comparison to its influence on the propagation in the
linear regime we shall study the truncation role in the Airy pulse nonlinear evolution.

Although we analyze temporal Airy pulse propagation in fiber, our results are also
valid for spatial Airy beams diffracting in Kerr media on account of the isomorphism

between the dispersion equation and the paraxial diffraction equation.
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3 Methods- Numerical Simulation for pulse
propagation

In this study we simulated the propagation of Airy pulse in nonlinear media. As
mentioned before, the propagation is governed by the NLSE which cannot be solved
analytically except for special cases and therefore it must be solved numerically.

Many numerical methods can be employed in order to simulate the pulse
propagation [1]. These can be classified into two broad categories known as: (i) the
finite-difference methods, in which a is solved by approximating the derivatives by
finite differences that can be calculated numerically; and (ii) pseudospectral methods,
in which the derivatives in partial differential equation are calculated using orthogonal
functions, e.g Fourier integrals. In general, pseudospectral methods are faster by up to
an order of magnitude to achieve the same accuracy due to the use of the finite-Fourier-
transform (FFT) algorithm.

We use the Split Step Fourier Method (SSFM), which belongs to the last category
for its simplicity, flexibility and efficiency.

3.1 Introduction to the Split Step Fourier method

The NLSE can be written in the operator form

?:(Iﬁﬂ\])A 31
Z

where A is the optical field amplitude, D is a differential operator that accounts for

dispersion in a linear medium and N is a nonlinear operator that governs the effect of

fiber nonlinearities on pulse propagation. These operators are given by

: 2

p-_15 O 2.2
2 o1

N =—iy|A”. 33

In general, dispersion and nonlinearity act together along the length of the fiber.
The split-step Fourier method obtains an approximate solution by assuming that in
propagating the optical field over a small distance h, the dispersive and nonlinear

effects can be assumed to act independently. More specifically, propagation from z to
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z+h is carried out in two steps. In the first step, the nonlinearity acts alone, and D=0.
In the second step, dispersion acts alone, and N = 0. Mathematically:
A(z+h,T) ~exp(hD)exp(hN)A(z,T) 3.4
The dispersion step has an analytical solution in the frequency domain where D can
be replaced by i%(a)—a)o)z-where wo IS the carrier frequency, so it is necessary to

Fourier transform A(z,T) before applying this step, using

Az, w) = T Az, T)exp(i(ow—,))dT, 35

—00

and then applying the dispersion operator such that
A(z+h,a)):exp(i%(a}—wo)zh),&(z,w). 36

The nonlinear step is done in the time domain so it is required to do inverse Fourier
transform after applying the dispersion step.

When the fiber length is divided into a large number of segments in length h, the
optical pulse is propagated from segment to segment by applying the mentioned above
dispersion and nonlinear operators and we get good approximation of the pulse
propagation along the fiber length. All the transitions between the time domain and the
frequency domain are computed by the FFT algorithm that makes numerical evaluation
of the propagation equation relatively fast.

In this work we used an improved form of the basic SSFM by dividing every
segment to two parts and apply the dispersion operator on the first half of the segment,
then operate on a full segment with the nonlinear operator and complete the segment
with applying of the dispersion operator for the remaining half segment. The advantage
gained through this variation is that the nonlinear contribution is not taken at the

boundaries but at the middle of the segment, averaging out of the nonlinear property.

3.2 The algorithm

Our algorithm is developed based on the last variation (the Matlab simulation code
is given in appendix A):

e Step 1: Divide the fiber into segments (Figure 3.1).

e Step 2: Split the segment in two equal parts.

e Step 3: Operate on the first half with the dispersion operator.
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e Step 4: Operate on the entire segment with the nonlinear operator.
e Step 5: Operate on the second half with the dispersion operator.
e Step 6: Repeat steps two through five for the adjacent segment with the result

obtained from the previous segments.

Length of fiber

Ap A] A2 A3 Ay Ap-1 Ap

Figure 3.1- Segmentation of the fiber into parts at length h and further separation of a single
segment into two parts in order to improve the accuracy

3.3 Consideration and limitations

There are some considerations that must be addressed prior to the application of
SSFM. The prominent one is the step size h (the length of a fiber segment).

In order to acquire reasonable accuracy we aspire that h be a least two orders of
magnitude less than the characteristic length of the dominant phenomena governing the
propagation. However, this length is not necessarily constant, and the optimum choice
h depends on the complexity of the problem at hand. For example, during propagation
self-focusing of the Airy main lobe will increase its peak power, resulting in a decrease
in Lye, and h must be reduced as well, as changes will now occur at a faster pace.
Therefore, in order to take into account such scenarios, we take h to be at least three
orders of magnitude smaller than the initial dominate characteristic length. We
compared the analytical propagation of first order soliton with its numerical
propagation under such conditions of increment size and we found that they are
identical up to 10 orders of magnitude. These results demonstrate that the algorithm is
accurate and reliable for our simulation.

Additional property that must be considered is range of the transverse coordinate-
the time window in our case. Due to the circular assumption behind the Fast Fourier
transform, when pulse energy reaches the ends of the time window it will continue and

re-imerge from the other end, creating unphysical results. This can be overcome by
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simply making the time window large enough. This solution requires large vectors
resulting in more processing time and more memory. A more advance solution is to
multiply the optical field at every step by rectangular-like function- "absorbing edge"-
and this way to "cut off" the spreading energy and preventing the feedback. The
rectangular-like function must be chosen such that a gradual cutoff of the edge will be
carried out because an abrupt cutoff can generate a reflection. The main disadvantage
of using the absorbing edge is that it does not preserve the pulse energy when the pulse
reaches the edge.

In our work (see Figure 3.2), we use time vector whose range is more than
thousand times the width of the Airy main lobe and its resolution is tenth of its width.
This large time window is required due to the ballistic dynamics of the Airy pulse
which cause rapid energy spreading, especially for small truncation values, when the
carried energy is almost infinite. In addition, we used an absorbing edge of the form
"raised-cosine” function, in which the rectangular-like degree is defined by 0<f<1. We
fixed this parameter on 0.01, causing its corner to be relatively sharp, in order to
prevent loss of the pulse energy. Despite the sharpness of the absorbing edge, any

energy reflection from the window boundaries is not observed thanks to the large time

window.
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Figure 3.2- Launched Airy pulse (blue) compared to the raised-cosine absorbing edge (green)

Normalization terms

In our simulations we used the normalized NLSE form

. OA 1O*A |2
I—=sgn ———|A A 37
o =SS o A
where |$2|=y=To=1, and the launched Airy pulse profile is defined as:
A(T,z=0)= ¢R~Kp(a)-Ai(T)oExp(a«T) 3.8

where 0 <a<1 is the truncation coefficient, and Ky(a) is a truncation-dependent factor

that sets the pulse peak intensity to 1 for any a value . This factor was numerically
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calculated and found to be in parabolic dependence with the truncation coefficient. T is
the time variable in a frame of reference that moves with the wave group velocity, i.e.

T =t-z/v, , and R is a dimensionless parameter we vary for scaling the Airy power. At

R=1 the Airy main lobe intensity profile looks quite similar to the fundamental soliton,

as shown in Figure 3.3.
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Figure 3.3 — Launched Airy pulse in time (blue solid curve), compared to a soliton pulse (red dashed curve).

We measure the propagation distance in L4 units, defined as L, =T,%/4, , which in
our normalized coordinates equals 1.

It is important to note that even though we use dimensionless parameters in our
simulation they are reliable only for propagation of pulses whose width is wider than 5
ps. When dealing with pulses that are less than 5ps, further terms must be taken into
account in the pulse propagation equation, as detailed in the extended pulse

propagation equation, in order to include additional nonlinear phenomena.
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4 Airy propagation in nonlinear media- simulations

result and analysis

4.1 Effects of launched Airy power

In order to investigate the influence of Airy launched power on its evolution, we varied
the scaling parameter R from the equation

A(z=0,T)=R-K (a)-Ai(T)exp(T) 4.1
in the range 0.1-2 and for every R value we propagate the pulse using the SSFM
algorithm. Figure 4.1 shows pulse evolution examples for select R values. At low
launched power, the Airy pulse performs the acceleration in time and subsequently it
succumbs to dispersion. However, when R is sufficiently large (above 0.9) a stationary
soliton pulse is formed out of the centered energy about the Airy main lobe. The
soliton exhibits periodic oscillations in the soliton amplitude and width as a function of
propagation distance. In addition, we witness the resilience of the temporal Airy
waveform to shedding of a fraction of the energy as a soliton; the wavefront continues
to propagate along a parabolic trajectory. Similar resilience has been shown in main
lobe masking for spatial Airy beams [15] and in supercontinuum generation for

temporal Airy pulses propagation[11].
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Figure 4.1- Propagation Images of truncated Airy pulse in nonlinear media for various launched power
values.
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The emergent soliton

Unsurprisingly, the shed pulse profile well conforms to a hyperbolic-secant function,
or that of a soliton with background radiation. We fit a sech(-)+background radiation
profile at every propagation distance and track the emergent soliton parameters.

Our fit model is

2

T-T )
‘Aosech( < pj+b~e"”(z)

0

T-T T-T
= Aj sech? [T—pJ+ b? +2Ab cos(go(z))sech[ - d J 4.2

0 0
This model is composed of the soliton intensity, the background radiation intensity
and the interference between them. The parameter T, describes the temporal position of

the emergent soliton peak. Under the assumption that the oscillatory behavior of the

: T .
emergent pulse is caused by the term 2A0bcos((p(z))sech( T p) -the interference
0

element- we set the magnitude of the soliton peak power to fixed value which
determined by the mean value of the peak of the breathing pulse. The other parameters
in the model, which describe the pulse width, the background radiation, the temporal
position and the intensity of the interference element, are free in the fit process. After
completing the fit process at every distance sample we got the variation of the pulse
parameters along the propagation distance, which help us analyze the pulse and
understand its evolution. Note that the oscillations of the time position, shown in
Figure 4.4, are not noticeable without carrying out the fit process, due to the limited
resolution of the numerical simulations.

The first step in the analysis is to verify that the emergent pulse is in fact a soliton.
From Soliton theory we know that the formation of soliton requires that the following

equilibrium condition

L, =Ly, > P0T02 = & 43
V

will be held.

According to the fit data, we find that the power x duration? product oscillates
about this equilibrium condition (=1). These oscillations about the stable soliton
condition verify that the pulse is indeed a soliton and they are known to arise as a result
of interference between dispersive background radiation and the formed soliton [15]

[16]. In figure 6.2 we can see the oscillations of this product for select R values. An
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interesting feature of this oscillation which is seen in the figure is that as R is larger,
the mean value of the product is closer to 1- the ideal value.
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Figure 4.2- Evolution of soliton product along propagation distance for select R values together with their
mean value.

We examined the relations between the soliton oscillations and the launched Airy
peak power. In Figure 4.3(a) the oscillations of soliton width are shown as a function
of propagation distance for select R values. The pulse width narrows and the
oscillations period decreases with higher launch power. The decreasing oscillation
period with increasing launch power is depicted in Figure 4.3(b). Similar behavior was
reported in [17], where the amount of excess energy that was supplied to the launched
soliton was expressed in the evolved soliton oscillations period. Another property of
the oscillations is the modulation depth that sharply decreases with increased initial
peak power (Figure 4.3(c)). We can relate the low modulation depth to the greater

stability of the formed soliton and conclude that high launched peak power is required
for stable soliton formation.
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Figure 4.3 — (a) Oscillations of soliton width for different launched peak power, (b) soliton oscillations

length of period as a function of launched peak power, (c) soliton oscillations modulation depth as a
function of launched peak power.

Additional soliton parameters as soliton peak time position and phase also oscillate
in similar manner as the peak power and width. Figure 4.4(a,c) shows the evolution of
time position and phase as a function of propagation distance (phase fluctuations are
plotted after subtracting the soliton’s accumulated linear phase term). These

oscillations are the result of interaction with the background radiation as explained in
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[18] and demonstrated in [19] for the problem of background radiation that is formed
by soliton amplification in optical communication.

From the results in Figure 4.4(a) we see that the position of the emergent soliton is
also dependent on launch power. We plot the mean time position of the emergent
soliton in Figure 4.4(b). More intense excitation results in the soliton appearing at an
earlier time. This phenomena is explained by the fact that for low values of R a
relatively long time is required for accumulation of enough energy by SPM for the
soliton formation and shedding, and during this time the Airy pulse is accelerating and
‘carries’ the accumulating energy with it to later times. For larger R values there is

enough energy in the Airy main lobe for soliton formation and shedding at an early

point.

E E -0.9 '\\ —e—Soliton peak time position 015 ™\

=09 —~  —— R=111 Airy peak initial time position @® [\

c S -0.95/ '\ 1 g 0l [\

g M =y = ] S 005 [ Re12

g R=13 o -1k \‘ 1 s ) ’,r"R=i,{5

g L el = S early Q 0\ N N A NN

@ = £ -1.05 = [AVAR VARVARY Ré2\\/

£ R=16 = e % 0.05 | \

[ — R=17 c S g -0. \// \ /

< (a)ﬁ\/ I R=19 g 11 (b) N “ o 0.1 J(C) \_/

3 ~ L S |

o 3 115 ' ' '

10 20 30 40 50 1.2 14 1.6 1.8 2 10 20 30 40 50

Distance[Ld] Launched power (R) Distance[Ld]

Figure 4.4— (a) Soliton peak time position along propagation distance, (b) mean soliton peak time position as
a function of launched power. Note that Airy peak time position at launch is at t=-1. (c) soliton peak phase
oscillations along propagation distance for select launched powers.

The accelerating wavefront

As seen in Figure 4.1, the Airy wavefront continues to exhibit the parabolic
acceleration in time, even under the influence of Kerr effect and after shedding energy
to the soliton. To study whether this acceleration continues with the properties of the
linear propagation we compared the nonlinear propagations to linear, as the intensity is
scaled with the R parameter. Note that the linear Airy pulse evolution is identical for
every intensity value.

These linear propagation results are compared to the nonlinear ones by tracking the
main lobe acceleration trajectory for each case and extracting information about its
peak power and position. Furthermore, we calculate the accelerating energy
distribution along propagation distance.

Figure 4.5 shows the Airy main lobe parabolic trajectory and peak power as a
function of propagation distance, under linear and nonlinear propagation, for three
select launched power cases. We see that the wavefront continues to exhibit the
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parabolic trajectory in time (blue curves), which is almost identical in the linear and the
nonlinear propagation cases, although the nonlinear peak slightly trails the linear peak,
on account of a delay associated with the energy shedding to the soliton. The intensity
evolution of the accelerating wavefront is shown in green. We can see that in the
nonlinear propagation its peak power performs decaying oscillations, as opposed to the
monotonic decay in the linear case. The oscillations of the peak power in the nonlinear
case are known to be a result of the interplay between the SPM and the dispersion.
Similar influence of SPM on the Airy accelerating main lobe was already observed in
[14]. However, the peak power oscillations there exhibit faster decay due to a relatively

large truncation coefficient, 0.1-0.3 vs. 0.0335 in the current simulations.
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Figure 4.5 — Airy accelerating tail trajectories in time-distance space(blue) and in intensity-distance space
(green) for (a) R=1, (b) R=1.2 and (c) R=2.

Next, we investigate the energy distribution of the accelerating wavefront. It is
important to note that the simulations preserve the launched pulse energy along the
propagation distance, as well as preservation of ‘center of gravity' (first order moment)
position according to the finite pulse energy and the uniformity of the media [4]. The
power spectrum of the Airy pulse is symmetric about the central frequency, and upon
propagation in anomalous dispersive media the high frequencies components are
delayed (low frequency components are advanced) with respect to central frequency
group delay (in anomalous media), such that the pulse total energy is eventually
divided to two equal fractions about T=0- half of the energy at each direction. In the
presence of Kerr nonlinearity, considerable part of the pulse energy is shed to the
soliton that propagates at the group velocity, and the remaining energy disperses in
opposite directions with less than a half of the launched energy dispersing to each side
(due to soliton shedding).

The energy that is carried in the accelerating wavefront (delayed components) was
found by summing the energy over positive time at every distance sample. These

calculations were performed with both the linear and nonlinear propagations.
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Figure 4.6(a) shows the delayed energy evolution of the accelerated Airy wavefront
along the propagation distance for various Airy launched powers. The energy is
normalized by the launched pulse energy, such that we can see the relative energy
portion of the accelerating wavefront for linear and nonlinear cases. For all R values,
the energy evolution of the linear propagations coincides to one curve that
asymptotically approaches the value of half launched pulse energy, according to its
linear nature. For the nonlinear propagations we clearly see that as R grows the
fractional energy amount that is delayed is decreasing, where the oscillatory behavior
is due to the soliton oscillations which take place in the boundary of the right half
propagation plane. Those curves and those of Figure 4.6(b), which chart the energy
evolution of the formed soliton for different R values, show the fact that the formed
soliton not only has more intensity when R is growing, but also carries a larger energy
fraction from the whole pulse. This can also be seen in Figure 4.6(c), where the mean
soliton relative energy was calculated for every R value. From Figure 4.6(b-c) we also
see the energy preservation—the normalized delayed energy is missing energy that is
about half of the shed soliton energy, where the other half originates from the faster
propagating energy components. When R=2, for example, the soliton energy fraction
is about 0.39 and the missing fractional energy amount from the delayed energy is
about 0.19, half of 0.39.
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Figure 4.6 — (a) Airy tail relative energy for the linear and the nonlinear cases, (b) soliton relative energy, (c)
soliton relative energy as function of launched power.

4.2 Truncation coefficient effect

The ability of Airy pulses to exhibit their unique features is strongly related to the
degree of truncation in the apodization function. As the truncation is stronger, the Airy

pulse quickly loses the unique features of the Airy pulse and disperses. Here we wish
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to examine how the truncation degree influences the soliton shedding and pulse
propagation under the Kerr effect.

We employ the same pulse profile defined in Eq. (5.1), fixing the intensity scaling
parameter R to 1.5 while varying the truncation coefficient in the range 0.01-0.1, as
shown in Figure 1.6(a), and propagate the apodized Airy for every truncation value.
Figure 4.7 shows examples of the Airy pulse evolution in time-distance space. We see
that when the truncation is small the Airy original features as self-similarity and
acceleration in time are more noticeable. The influence of the truncation degree on
emergent soliton properties and on the accelerating wavefront was examined in the

same manner as in the previous section.
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Figure 4.7 — propagation images of truncated Airy pulse in the nonlinear regime for various truncation
values.

The emergent soliton

Larger truncation coefficient values make the exponential apodization of the Airy
function stronger and the Airy tail is shortened; there is a negligible effect on the main
Airy lobe, as shown in Figure 4.7(a). Hence the emergent soliton, which forms from
the main lobe, achieves stability faster (after a shorter propagation distance) in cases of
larger truncation coefficients, as the newly formed soliton experiences less collisions
with the accelerating Airy tail, as shown in the propagation images in Figure 4.7.
Therefore, the Sech(-) fit process was started from a different propagation distance for
every truncation value.
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From the soliton fit data we see that the emergent soliton parameters do not

experience significant variations for different truncation values, as shown in the soliton

parameters evolution curves in Figure 4.8(a-b). However, the soliton mean peak time

position does shift considerably from the launched Airy peak position, and this shift

increases for smaller truncation values (see Figure 4.8(c)). This behavior is explained

by the interaction between the formed soliton from the main lobe and the accelerating

lobes of the Airy tail, which constitute collision perturbations to the soliton and cause

temporal shift of the soliton in the direction opposed to the accelerating lobes [20].

This temporal shift to earlier times depends on the perturbation energy, which

increases for small truncation coefficient values. It is important to note that even

without perturbing lobes, i.e. while propagating Airy with strong truncation (see Figure

4.9), the soliton is not necessarily formed at the launched Airy peak position because

of the acceleration that the original pulse undergoes before the soliton is shed. Also,

the launched Airy peak time position is not constant with different truncation

coefficients (dashed red line in Figure 4.8(c)), as a result of a shift from the

multiplication by the exponential apodization function.
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The accelerating wavefront

The extent to which the truncated Airy maintains its form and continues to accelerate
before dispersing strongly depends on the truncation coefficient. As in the previous
section, we compared the linear and the nonlinear propagations in order to investigate
the Airy’s accelerating wavefront behavior for different truncation values. In the linear
propagation regime, the truncation coefficient determines both the distance at which
the accelerating wavefront is still distinguishable, and the total Airy energy according

to Euy =(87a)™* [4]. In our investigation range for truncation coefficient, the linear

Airy varies widely.

After tracking the accelerating wavefront trajectory for every truncation value, we
compare the main lobe trajectory and peak power under the linear and the nonlinear
propagation regimes (Figure 4.10). The main finding here is that the intensity of the
accelerating main lobe in the nonlinear regime (green curves) first experiences SPM
and focuses to the same peak power (with no dependence on truncation value). This
peak is then shed to the soliton and the remaining accelerating wavefront immediately
after the soliton shedding is at lower power compared to the linear propagation case.
However, as a consequence of chromatic dispersion, the high frequency components
travel slower and eventually the leading wavefront main lobe re-emerges and matches
the main-lobe power of the linear propagation case (the Airy self-healing property). In
spite of this wavefront matching between the linear and nonlinear propagations we see
that in the nonlinear propagation the accelerating main lobe remains distinguishable for
longer distances than in linear propagation for a given truncation value. This finding is
related to the differences between the radiation energy distribution in the nonlinear and
in the linear propagations. In the linear propagation (see example in Figure 1.6(b)) the
dispersed Airy intensity roughly converges to a Gaussian distribution in time with
propagation distance that eventually (after a certain distance) engulfs the accelerating
main lobe. In the nonlinear propagation the dispersive radiation intensity is no longer
Gaussian distributed due to the soliton formation and the energy centering about it,

making the accelerating peak visible for longer propagation distance.
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As the emergent soliton has roughly the same energy for all truncation values, its
relative energy fraction in the launched pulse energy is larger for increasing truncation
values (Figure 4.11(a)), therefore the relative energy fraction in the accelerating Airy
wavefront decreases (Figure 4.11(b)). In the linear propagation regime the accelerating
Airy energy always asymptotically approaches one half of the whole pulse energy,
although its energy growth rate is truncation factor dependent. In the nonlinear case the
delayed Airy energy fraction decreases from this value as the truncation is growing, as
the nearly constant soliton energy is missing.

>
06 2=0.09 g 0.5
o' w007 | B ol N o]
g ’ ~
S 05 ) o 2003
E a=0.08 = P~~~ =005
£ e g /ﬁ\i/\\/l<\A\%:%¢&t
8 o4 3 i N T %00
= a=0.03 2 d
Soss < 020l 1
2 [} Al
o o3 S ] _
0.1y — Nonlinear propagation|
o (a) a=0.01 8 | (b) — Linear propagation
0.2 - . . L :
5 10 15 20 25 30 3 40 45 50 0o 10 20 30 20 50
Distance [Ld] Distance [Ld]

Figure 4.11 — Examples of energy evolution along propagation distance of (a) the relative energy of the
emergent soliton (the soliton energy itself is hardly dependent on truncation coefficient) and (b) accelerating
wavefront.

4.3 Soliton time position for power and truncation

In the previous sections we showed that: (1) the emergent soliton time position is at
earlier times when the launched power increases (at fixed truncation) due to quicker
build-up of a soliton. At lower powers, self-focusing results in the eventual build-up of
the soliton, but as the conditions materialize the main lobe is undergoing the ballistic
trajectory leading to soliton shedding at a later time position. The emergent soliton
time position is at earlier times when the truncation coefficient decreases (at fixed
launched power) due to collision perturbations with the accelerating tail lobes. The

time shift associated with collision perturbations depends on the energy; hence higher
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truncation coefficients result in lower Airy tail energies and reduced soliton time shifts.
These two effects are graphically depicted in Figure 4.12(a).

To verify that these two effects independently and consistently occur, we varied
both the Airy launched power and the truncation coefficient over our investigation
range (Figure 4.12 (b)). Indeed we see this trend continuing; the emergent soliton mean
time position shifts to earlier (later) times for smaller (larger) truncation coefficients
and for higher (lower) launched power levels. These results reinforce our finding that
soliton is shed at an earlier time when the launched power is higher, and that collisions
with the accelerating Airy tail lobes shift the position in the direction counter to the

acceleration, i.e. towards earlier times.
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Figure 4.12 — (a) Schematic illustration of the sources of temporal shift of the emergent Soliton. (b)
Distribution of Soliton mean time position as a function of truncation coefficient and launched power in our
investigation range.

4.4 Preliminary results of higher launched power Airy

propagation

By increasing the Airy launched power above R=2 and simulating its propagation,
we examined if there is any trend change in the breathing behavior of the emergent
soliton. As in the main part of the research, the launched power was gradually
increased with increments of 0.1 up to R=3. In Figure 4.13(a) we can see the soliton
peak evolution along the propagation distance for various R values. It can be seen
clearly that the trend of period length decreasing with increased launched power is
maintained, which is explained by the fact that as the formed soliton peak power is
higher it accumulates self-phase modulation faster and therefore the oscillations
beating against the background radiation occur at higher rate- i.e. shortening of the
oscillations period length. On the other hand, the modulation depth of the oscillations

gets a minimal value when the launched power is around R=2.7 and then it starts to
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increase again with the launched power. This finding is very surprising and intriguing,

since this launched power value does not have any uniqueness apparently.
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Figure 4.13- (a) Emergent soliton peak power oscillations along propagation distance for select R values. (b)
Modulation depth of soliton oscillation as a function of extended launched power range.

Similar oscillatory results were shown in [17], where the launched pulse was a
soliton with small gradually-changed excess energy and therefor it exhibits oscillatory
behavior during propagation. The period length of the oscillations decreased with the
launched power, but the minimal modulation depth of the soliton oscillations were
obtained when the launched conditions of the propagation were the closest to the ideal
soliton, i.e. when the perturbation was the smallest.

In our case, despite the fact that the initial conditions are always far from ideal
soliton, we found the launch condition best matched to an unperturbed emergent
soliton, exhibiting minimal modulation depth oscillations. We can assume from the
mentioned research that in this situation the launched energy is divided perfectly to the
soliton part and to the accelerating part, such that all the residual energy is diverted to
the continuum, which is orthogonal to the soliton.

Trying explaining this phenomenon from the energy aspect, we compared the
energy of the launched Airy pulse main lobe and the energy of the emergent soliton.
The comparison results are shown in Figure 4.14. Despite our expectation to see
relation between main lobe energy and emergent soliton stability (low modulation
depth), these results do not explain the minimal modulation depth value at R=2.7, as
we do not see a special relation between the launched Airy main lobe energy and the
emergent soliton energy at this launched power value. An additional intriguing finding
is that when R=2 the emergent soliton energy is the closest to the emergent soliton
energy, but it cannot be explained by the known propagation properties of this

launched power which was investigated and shown along this work.
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Figure 4.14 — Comparison between launched Airy main lobe energy and emergent soliton energy.

Extending of the Airy launched power range further is also expressed in shedding
of two additional weaker solitary waves at both higher and lower center frequencies, as

shown in the propagation image for R=4 in Figure 4.15.
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Figure 4.15 — Intensity distributions as a function of time and propagation distance for R=4, showing
multiple soliton shedding at high launched peak powers.

These results should be investigated further in future work as well as the behavior

of other parameters of the Airy pulse evolution in the extended power range.
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5 Discussion and summary

In this research we investigated the propagation of a truncated temporal Airy pulse
in nonlinear Kerr media. The phenomena of soliton shedding from the original Airy
pulse under sufficiently strong excitation was already identified [11], but in this work
we investigated in details the properties of the soliton and the remaining Airy radiation.
We characterized the emergent soliton parameters under different truncation and power
conditions and identified the mechanisms at play, in accordance to processes known
from literature. The soliton parameters perform oscillations due to the presence of
background radiation from the dispersed Airy pulse. The temporal position of the
emergent soliton depends both on the Airy launched power and truncation coefficient,
due to the location of the shedding event and the interaction with the accelerating Airy
tail. We also observed the SPM influence on the accelerating Airy main lobe, and we
found that the SPM has large effect on the accelerating main lobe visibility in
comparison the linear truncated Airy propagation. Finally, we found that the energy
distribution of the Airy pulse along the propagation depends on the launched power
and the truncation degree.

We studied the soliton shedding phenomena for relatively intense launched Airy
pulses that conform to the nonlinear Schrodinger equation (eq. 2.12) which is accurate
for pulses of 5ps duration and longer. This research avenue can continue to even higher
and shorter pulses, however eventually the well-understood phenomena explored here
starts to break down. For proper simulation of short Airy pulse excitation, one should
also add additional terms to account for higher-order nonlinear effects such as Raman

scattering and self-steepening, and for the effect of third order dispersion.
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7 Appendix

7.1 Appendix A- Matlab code

Note: except for small variations, this Matlab code was written by Amitay Rudnick.

for R=0.1:0.1:3;

% Pulse

a=0.0335;

k p=0.286895-0.58008*a+ 0.756411*a"2;%Normalization factor for
peak power according to the truncation coefficient

PoAiry=R/k p;%A Different offset is required for different
values of the truncation coefficent.

To Airy=1;

AoAiry=sqgrt (PoAiry);%Peak Amplitude Airy

$Fiber

beta2=-1; $%$Fiber quadratic dispersion coefficent [sec”2/Km].
beta3=0; %Third order dispersion coefficent[sec”3/Km].
gamma=1; %$Fiber nonlinear coefficent [1/Km*W].

alpha=0; %$fiber loss coefficent,gain=alph<0[1/Km].

% Length scales definitions.

Ld=(To Airy"2)/abs (beta2) ;%Dispersion distance [Km].
Lnl=1/(gamma*R) ; $Nonlinear distance [Km].

Ld beta3=To Airy~3/abs(beta3); % Dispersion distance third order
[Km] .

if Ld>Ld beta3;
Ld=Ld _beta3;
end

$Program definitions

P D=50*Ld; %Propagation Distance acording Kilomters.
Samples D=500;%The number of samples along the distance.
Increment=P_D/Samples D;

sigma=To Airy/sqrt(2);

beta RC=0.01; % Beta factor for the raised cosine window.
Time Factor Dispersion=25;

sFlags

Flag Time Window='on';

Window Time Shift=200;

% Chossing time window size.
$if Ld<=Lnl;

Tstop=round(Time Factor Dispersion* (sqrt (l1+ (P D*betal2/ (sigma”2*2
)) "2+ (1/2)* (beta3*P D/ (4*sigma”3))"2)) *sigma-Window Time Shift);
$Dispersion propagation.

Tstart= round (-

Time Factor Dispersion* (sqrt (1+(P_D*betal2/ (sigma”2*2)) 2+ (1/2)*(
beta3*P D/ (4*sigma”3))"2)) *sigma-Window Time Shift);
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clear sigma
$Program definitions (continued)
Tres=0.1;

Zz=0:Increment:P D; %Creation of the distance Array.
T=Tstart:Tres:Tstop-Tres; %Creation of the time array
Wres=2*pi/ (Tstop-Tstart) ;% Angular frequency resolution
W=Wres* (-length(T)/2:1: (length(T)/2-1));%Angular frequency
array.

% Choosing propagation constant.
if min(Ld,Lnl)<=P D
if Increment<=min (Ld,Lnl) /1000
h=Increment;
else Increment>min (Ld,Lnl)/1000;
K=ceil (Increment/ (min (Ld, Lnl) /1000)) ;
h=Increment/K;
end
else min(Ld,Lnl)>P D;
h=Increment;
end

clear K

% Time window function
if strcmp(Flag Time Window, 'on')

Number Of Indices For Window=length(T); S$Window Size
Raised cosine =zeros(1l,length(T));

Start Position Raised cosine=(length(T)-

Number Of Indices For Window)/2+1;

Stop Position Raised cosine=Number Of Indices For Window+S
tart Position Raised cosine-1;

Raised cosine(Start Position Raised cosine:Stop Position R
aised cosine)=tukeywin (Number Of Indices For Window,beta R
Cc)';

End

U _in=AoAiry*airy(T/To Airy) .*exp ((T/To_Airy) *a)
Aw=Tres*fftshift (Fft (Fftshift (U in)));

[

Propagated Pulse Time Domain Matrix=zeros (length(Z),length(T));%
saving the pulse data after every increment

Propagated Pulse Frequency Domain Matrix=zeros (length(Z), length (
W));

Energy Of Pulse=zeros(length(z),1);

Array Counter=1l;

for Dis Counter=0:Increment:P_D; % Distance in Kilometers,data
saved at the end of each intervals.

% Split-Step propagation between intervals.
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end

for Dis_SS Counter=h:h:Increment
case 'off'

Aw=Aw. *exp (-
alpha/2* (h/2)+i* (beta2/2)*W."2* (h/2)-1* (beta3/6)*W."3* (h/2));
%Dispersion propagation effects.
A=ifft (fftshift (Aw))/Tres;
A=fftshift (A);
A=A.*exp (i*gamma* ( (abs (A)) ."2) * (h));
%$Nonlinear propagation effects.
Aw=Tres*fftshift (fft (fftshift(A)));
Aw=Aw. *exp (-
alpha/2* (h/2)+i* (beta2/2)*W."2* (h/2)-i* (beta3/6)*W."3* (h/2));
$Dispersion propagation effects.

case 'on'

Aw=Aw. *exp (-
alpha/2* (h/2)+i* (beta2/2) *W."2* (h/2)-i* (beta3/6)*W."3* (h/2));
$Dispersion propagation effects.
A=ifft (fftshift (Aw))/Tres;
A=fftshift (A);
A=A.*exp (i*gamma* ( (abs (A)) ."2)* (h));
$Nonlinear propagation effects.
A=A.*Raised cosine;
Aw=Tres*fftshift (fft (fftshift(a)));
Aw=Aw.*exp (-
alpha/2* (h/2)+i* (beta2/2) *W."2* (h/2)-i* (beta3/6)*W."3* (h/2));
$Dispersion propagation effects.

end

Q

end % End split step increments

A=ifft ((fftshift (Aw)))/Tres; % Inverse Fourier transform.
A=fftshift (A);

Propagated Pulse Time Domain Matrix (Array Counter,:)=A; %
saving of the output pulsein the time domain.
Propagated Pulse Frequency Domain Matrix (Array Counter, :)=Aw;%

saving on the output pulse in the frequency domain.

[

% Energy calculation for each step.

Energy Increment=trapz((abs(d))."2)*Tres;

Energy Of Pulse(Array Counter)=Energy Increment;
Array Counter=Array Counter+l;

waitbar (Dis_Counter/P_D);

end %End of propagation to distance (P D).
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7.2 Appendix B- published paper

The paper can be find in the URL
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-18-17298

Citation:
Yiska Fattal, Amitay Rudnick, and Dan M. Marom, "Soliton shedding from Airy
pulses in Kerr media,” Opt. Express 19, 17298-17307 (2011)
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Abstract: We simulate and analyze the propagation of truncated temporal
Airy pulses in a single mode fiber in the presence of self-phase modulation
and anomalous dispersion as a function of the launched Airy power and
truncation coefficient. Soliton pulse shedding is observed, where the
emergent soliton parameters depend on the launched Airy pulse
characteristics. The Soliton temporal position shifts to earlier times with
higher launched powers due to an earlier shedding event and with greater
energy in the Airy tail due to collisions with the accelerating lobes. In spite
of the Airy energy loss to the shed Soliton, the Airy pulse continues to
exhibit the unique property of acceleration in time and the main lobe
recovers from the energy loss (healing property of Airy waveforms).

©2011 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.3270) Kerr effect; (060.5530) Pulse
propagation and temporal solitons.
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1. Introduction

Airy pulses [1], whose electric field temporal profile is defined by an Airy function which is a
one-sided, oscillating function having infinite energy, are a solution to the linear dispersion
equation

0A B, 0°A

1—

oz 2 oT*’

1)

and exhibit two interesting features: during propagation the waveform maintains its shape in
the presence of dispersion and its wavefront accelerates in time (or travels along a ballistic
trajectory) in a time frame moving at the group velocity. However, true Airy pulses are
impractical as they contain an infinite amount of energy. By apodizing the Airy pulse, i.e.
truncating the semi-infinite oscillations, in our case with a decaying exponential envelope, the
waveform maintains its two unique properties over an extended propagation range despite its
finite energy (Fig. 1(a)) [2]. Truncated Airy pulses occur naturally if a Gaussian pulse is
propagated in a fiber at the zero dispersion point, under the influence of cubic dispersion.

In complete analogy to the Airy pulse solution to the dispersion Eq. (1), spatial Airy
beams are a solution to the paraxial equation. Spatial Airy beams have been investigated
extensively in the last few years, and found to be useful for various applications such as
optical micromanipulation [3], optical switching [4], plasma channel generation [5], and laser
filamentation [6]. More recently, temporal Airy pulses are being investigated, in the context of
spatiotemporal light bullets in linear conditions [7] and in nonlinear conditions [8], and in the
context of one dimensional Airy pulse propagation, under the influence of strong nonlinearity
giving rise to supercontinuum and solitary wave generation [9].

In this study, we analyze temporal Airy pulse propagation in media exhibiting Kerr
nonlinearity as occurring in single mode silica fibers, leading to the phenomena of self-phase
modulation (SPM) and anomalous dispersion. The influence of the Kerr nonlinear effect on
spatial Airy beams was investigated under relatively weak parameters and transient narrowing
of the Airy main lobe—caused by SPM—was observed [10]; however, we are interested in
operating under much higher intensities where the nonlinear effect results in soliton shedding
from the Airy pulse and not just a small perturbation of the Airy beam. Although we analyze
temporal Airy pulse propagation in fiber, our results are also valid for spatial Airy beams
diffracting in Kerr media on account of the isomorphism between the dispersion Eq. (1) and
the paraxial diffraction equation.
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Fig. 1. (a) Intensity distribution as a function of time and propagation distance for truncated
Airy pulse in the linear regime (or low launch power). (b) Launched Airy pulse in time (blue
solid curve), compared to a soliton pulse (red dashed curve).

The evolution of light pulses in single-mode dispersive-nonlinear medium is governed by
the Nonlinear Schrédinger Equation (NLSE),

0A B, A 2
LR

where f, is the dispersion coefficient, y is the nonlinear coefficient and A is the wave
amplitude that depends on local time-7, and distance-z. Due to the addition of the nonlinear
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potential (or SPM term) in the NLSE, the Airy function is no longer a valid solution and we
cannot predict analytically the Airy pulse evolution. The Soliton, on the other hand, is a well-
known solution of the NLSE. For the canonical first order case, its profile

is \/FO Sech(t /T,)-Exp(izf3, / T,”) , where P, is peak power and T, is duration and it is

obtained only when there is equilibrium between the dispersion and the nonlinear effect,
leading to the condition

P,-T)} =@. 3)

2

I

The soliton then maintains its form and power level, provided no losses are present. Cases

of perturbed soliton propagation (i.e. when there are small deviations from the condition set in

Eq. (3) were extensively investigated [11-15], which help us interpret the emergent soliton
behavior in our simulations.

In this paper, we propagate Airy pulses with different intensities and apodization values
and investigate both the resulting ‘emergent soliton’ parameters, as well as the behavior of the
residual Airy pulse. All our simulations are based on numerical solutions of the NLSE, using
the split-step Fourier method (SSFM). This numerical method was chosen due to its efficiency
in simulating one-dimensional pulse propagation [16].

1.1. Normalization terms

In our simulations we used the normalized NLSE form [16]

2
.0A 10°A 2
lafz = Sgn(ﬂZ)EaTiz_M' A, 4)

where |5,| =y =Ty =1, and the launched Airy pulse profile is defined as:

A(T,z=0)= R K ,(a)-Ai(T)-Exp(a-T) 5)

where O<a«l is the truncation coefficient, and K,(a) is a truncation-dependent factor that sets
the pulse peak intensity to 1 for any a value . This factor was numerically calculated and
found to be in parabolic dependence with the truncation coefficient. T is the time variable in a
frame of reference that moves with the wave group velocity, i.e.T :t—z/vg ,and R is a

dimensionless parameter we vary for scaling the Airy power. At R=1 the Airy main lobe
intensity profile looks quite similar to the fundamental soliton, as shown in Fig. 1(b).

We measure the propagation distance in L, units, defined as L, =T}’ / f, , which in our
normalized coordinates equals 1.

2. Effects of launched Airy power

In order to investigate the influence of Airy launched power on its evolution, we varied the
scaling parameter R in the range 0.1-2 and for every R value we propagated the pulse using
the SSFM algorithm. Figure 2 shows pulse evolution examples for select R values. At low
launched power, the Airy pulse performs the acceleration in time and subsequently it
succumbs to dispersion. However, when R is sufficiently large (above 0.9) a stationary soliton
pulse is formed out of the centered energy about the Airy main lobe. The soliton exhibits
periodic oscillations in the soliton amplitude and width as a function of propagation distance.
In addition, we witness the resilience of the temporal Airy waveform to shedding of a fraction
of the energy as a soliton; the wavefront continues to propagate along a parabolic trajectory.
Similar resilience has been shown in main lobe masking for spatial Airy beams [17] and in
supercontinuum generation for temporal Airy pulses propagation [9].
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Fig. 2. Intensity distributions as a function of time and propagation distance in the nonlinear

propagation regime for: (a) R =0.8, (b)) R=1.2, and (c) R =2.

2.1. The emergent soliton

Unsurprisingly, the shed pulse profile well conforms to a hyperbolic-secant function, or that
of a soliton with background radiation. We fit a sech(-) + background radiation profile at
every propagation distance and track the emergent soliton peak power, duration and time
position along the propagation distance. We find that the power x duration® product oscillates
about the equilibrium condition (= 1) defined in Eq. (2). These oscillations about the stable
soliton are known to arise as a result of interference between dispersive background radiation
and the formed soliton [11,12].

We examined the relations between the soliton oscillations and the launched Airy peak
power. In Fig. 3(a) the oscillations of soliton width are shown as a function of propagation
distance for select R values. The pulse width narrows and the oscillations period decreases
with higher launch power. The decreasing oscillation period with increasing launch power is
depicted in Fig. 3(b). Similar behavior was reported in [12], where the amount of excess
energy that was supplied to the launched soliton was expressed in the evolved soliton
oscillations period. Another property of the oscillations is the modulation depth that sharply
decreases with increased initial peak power (Fig. 3(c)). We can relate the low modulation
depth to the greater stability of the formed soliton and conclude that high launched peak
power is required for stable soliton formation.
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Fig. 3. (a) Oscillations of soliton width for different launched peak power, (b) soliton
oscillations length of period as a function of launched peak power, (c) soliton oscillations
modulation depth as a function of launched peak power.

Additional soliton parameters as soliton peak time position and phase also oscillate in
similar manner as the peak power and width. Figures 4(a, c) show the evolution of time
position and phase as a function of propagation distance (phase fluctuations are plotted after
subtracting the soliton’s accumulated linear phase term). These oscillations are the result of
interaction with the background radiation as explained in [13] and demonstrated in [14] for
the problem of background radiation that is formed by soliton amplification in optical
communication.

From the results in Fig. 4(a) we see that the position of the emergent soliton is also
dependent on launch power. We plot the mean time position of the emergent soliton in Fig.
4(b). More intense excitation results in the soliton appearing at an earlier time. This
phenomena is explained by the fact that for low values of R a relatively long time is required
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for accumulation of enough energy by SPM for the soliton formation and shedding, and
during this time the Airy pulse is accelerating and ‘carries’ the accumulating energy with it to
later times. For larger R values there is enough energy in the Airy main lobe for soliton
formation and shedding at an early point.
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Fig. 4. (a) Soliton peak time position along propagation distance, (b) mean soliton peak time
position as a function of launched power. Note that Airy peak time position at launch is at t =
—1. (c) soliton peak phase oscillations along propagation distance for select launched powers.

2.2. The accelerating wavefront

As seen in Fig. 2, the Airy wavefront continues to exhibit the parabolic acceleration in time,
even under the influence of Kerr effect and after shedding energy to the soliton. To study
whether this acceleration continues with the properties of the linear propagation we compared
the nonlinear propagations to linear, as the intensity is scaled with the R parameter. Note that
the linear Airy pulse evolution is identical for every intensity value.

These linear propagation results are compared to the nonlinear ones by tracking the main
lobe acceleration trajectory for each case and extracting information about its peak power and
position. Furthermore, we calculate the accelerating energy distribution along propagation
distance.

Figure 5 shows the Airy main lobe parabolic trajectory and peak power as a function of
propagation distance, under linear and nonlinear propagation, for three select launched power
cases. We see that the wavefront continues to exhibit the parabolic trajectory in time (blue
curves), which is almost identical in the linear and the nonlinear propagation cases, although
the nonlinear peak slightly trails the linear peak, on account of a delay associated with the
energy shedding to the soliton. The intensity evolution of the accelerating wavefront is shown
in green. We can see that in the nonlinear propagation its peak power performs decaying
oscillations, as opposed to the monotonic decay in the linear case. The oscillations of the peak
power in the nonlinear case are known to be a result of the interplay between the SPM and the
dispersion. Similar influence of SPM on the Airy accelerating main lobe was already observed
in [10]. However, the peak power oscillations there exhibit faster decay due to a relatively
large truncation coefficient, 0.1-0.3 vs. 0.0335 in the current simulations.
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Fig. 5. — Airy accelerating tail trajectories in time-distance space(blue) and in intensity-distance
space (green) for (a) R=1,(b) R=1.3 and (c) R =2.

Next, we investigate the energy distribution of the accelerating wavefront. It is important
to note that the simulations preserve the launched pulse energy along the propagation
distance, as well as preservation of 'center of gravity' (first order moment) position according
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to the finite pulse energy and the uniformity of the media [2]. The power spectrum of the Airy
pulse is symmetric about the central frequency, and upon propagation in anomalous dispersive
media the high frequencies components are delayed (low frequency components are
advanced) with respect to central frequency group delay (in anomalous media), such that the
pulse total energy is eventually divided to two equal fractions about T = 0- half of the energy
at each direction. In the presence of Kerr nonlinearity, considerable part of the pulse energy is
shed to the soliton that propagates at the group velocity, and the remaining energy disperses in
opposite directions with less than a half of the launched energy dispersing to each side (due to
soliton shedding).

The energy that is carried in the accelerating wavefront (delayed components) was found
by summing the energy over positive time at every distance sample. These calculations were
performed with both the linear and nonlinear propagations.

Figure 6(a) shows the delayed energy evolution of the accelerated Airy wavefront along
the propagation distance for various Airy launched powers. The energy is normalized by the
launched pulse energy, such that we can see the relative energy portion of the accelerating
wavefront for linear and nonlinear cases. For all R values, the energy evolution of the linear
propagations coincides to one curve that asymptotically approaches the value of half launched
pulse energy, according to its linear nature. For the nonlinear propagations we clearly see that
as R grows the fractional energy amount that is delayed is decreasing, where the oscillatory
behavior is due to the soliton oscillations which take place in the boundary of the right half
propagation plane. Those curves and those of Fig. 6(b), which chart the energy evolution of
the formed soliton for different R values, show the fact that the formed soliton not only has
more intensity when R is growing, but also carries a larger energy fraction from the whole
pulse. This can also be seen in Fig. 6(c), where the mean soliton relative energy was
calculated for every R value. From Figs. 6(b-c) we also see the energy preservation—the
normalized delayed energy is missing energy that is about half of the shed soliton energy,
where the other half originates from the faster propagating energy components. When R = 2,
for example, the soliton energy fraction is about 0.39 and the missing fractional energy
amount from the delayed energy is about 0.19, half of 0.39.
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Fig. 6. (a) Airy tail relative energy for the linear and the nonlinear cases, (b) soliton relative
energy, (c) soliton relative energy as function of launched power.

3. Truncation coefficient effect

The ability of Airy pulses to exhibit their unique features is strongly related to the degree of
truncation in the apodization function. As the truncation is stronger, the Airy pulse quickly
loses the unique features of the Airy pulse and disperses. Here we wish to examine how the
truncation degree influences the soliton shedding and pulse propagation under the Kerr effect.
We employ the same pulse profile defined in Eq. (4), fixing the intensity scaling parameter
R to 1.5 while varying the truncation coefficient in the range 0.01-0.1, as shown in Fig. 7(a),
and propagate the apodized Airy for every truncation value. Figures 7(b-c) show two
examples of the Airy pulse evolution in time-distance space. We see that when the truncation
is small the Airy original features as self-similarity and acceleration in time are more
noticeable. The influence of the truncation degree on emergent soliton properties and on the
accelerating wavefront was examined in the same manner as in the previous section.
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Fig. 7. (a) Launched Airy amplitude for several truncation values, (b)-(c) Intensity distributions
as a function of time and propagation distance for: (b) a =0.01, (c) a =0.09.

3.1. The emergent soliton

Larger truncation coefficient values make the exponential apodization of the Airy function
stronger and the Airy tail is shortened; there is a negligible effect on the main Airy lobe, as
shown in Fig. 7(a). Hence the emergent soliton, which forms from the main lobe, achieves
stability faster (after a shorter propagation distance) in cases of larger truncation coefficients,
as the newly formed soliton experiences less collisions with the accelerating Airy tail, as
shown in the propagation images in Fig. 7. Therefore, the Sech(-) fit process was started from
a different propagation distance for every truncation value.

From the soliton fit data we see that the emergent soliton parameters do not experience
significant variations for different truncation values, as shown in the soliton parameters
evolution curves in Figs. 8(a-b). However, the soliton mean peak time position does shift
considerably from the launched Airy peak position, and this shift increases for smaller
truncation values (see Fig. 8(c)). This behavior is explained by the interaction between the
formed soliton from the main lobe and the accelerating lobes of the Airy tail, which constitute
collision perturbations to the soliton and cause temporal shift of the soliton in the direction
opposed to the accelerating lobes [15]. This temporal shift to earlier times depends on the
perturbation energy, which increases for small truncation coefficient values. It is important to
note that even without perturbing lobes (i.e. while propagating Airy with strong truncation),
the soliton is not necessarily formed at the launched Airy peak position because of the
acceleration that the original pulse undergoes before the soliton is shed. Also, the launched
Airy peak time position is not constant with different truncation coefficients (dashed red line
in Fig. 8(c)), as a result of a shift from the multiplication by the exponential apodization
function.
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Fig. 8. Effect of different launched truncation values on oscillations of (a) soliton width and (b)
soliton peak phase, (c) soliton peak time position as function of truncation coefficient. Note
that Airy peak time position at launch is truncation value dependent, as evidenced by the
dashed red line.

3.2. The accelerating wavefront

The extent to which the truncated Airy maintains its form and continues to accelerate before
dispersing strongly depends on the truncation coefficient. As in the previous section, we
compared the linear and the nonlinear propagations in order to investigate the Airy’s
accelerating wavefront behavior for different truncation values. In the linear propagation

#148647 - $15.00 USD Received 2 Jun 2011; revised 5 Aug 2011; accepted 12 Aug 2011; published 18 Aug 2011
(C) 2011 OSA 29 August 2011/ Vol. 19, No. 18 / OPTICS EXPRESS 17304



regime, the truncation coefficient determines both the distance at which the accelerating
=(8za)"? [2].

In our investigation range for truncation coefficient, the linear Airy varies widely.

After tracking the accelerating wavefront trajectory for every truncation value, we
compare the main lobe trajectory and peak power under the linear and the nonlinear
propagation regimes (Fig. 9). The main finding here is that the intensity of the accelerating
main lobe in the nonlinear regime (green curves) first experiences SPM and focuses to the
same peak power (with no dependence on truncation value). This peak is then shed to the
soliton and the remaining accelerating wavefront immediately after the soliton shedding is at
lower power compared to the linear propagation case. However, as a consequence of
chromatic dispersion, the high frequency components travel slower and eventually the leading
wavefront main lobe re-emerges and matches the main-lobe power of the linear propagation
case (the Airy self-healing property). In spite of this wavefront matching between the linear
and nonlinear propagations we see that in the nonlinear propagation the accelerating main
lobe remains distinguishable for longer distances than in linear propagation for a given
truncation value. This finding is related to the differences between the radiation energy
distribution in the nonlinear and in the linear propagations. In the linear propagation (see
example in Fig. 1(a)) the dispersed Airy intensity roughly converges to a Gaussian
distribution in time with propagation distance that eventually (after a certain distance) engulfs
the accelerating main lobe. In the nonlinear propagation the dispersive radiation intensity is no
longer Gaussian distributed due to the soliton formation and the energy centering about it,
making the accelerating peak visible for longer propagation distance.

wavefront is still distinguishable, and the total Airy energy according to E,

iry
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Fig. 9. Airy accelerating wavefront trajectories in time-distance space (blue) and in intensity-
distance space (green) for (a) a=0.01, (b)a = 0.04 and (c)a = 0.08.

As the emergent soliton has roughly the same energy for all truncation values, its relative
energy fraction in the launched pulse energy is larger for increasing truncation values (Fig.
10(a)), therefore the relative energy fraction in the accelerating Airy wavefront decreases (Fig.
10(b)) In the linear propagation regime the accelerating Airy energy always asymptotically
approaches one half of the whole pulse energy, although its energy growth rate is truncation
factor dependent. In the nonlinear case the delayed Airy energy fraction decreases from this
value as the truncation is growing, as the nearly constant soliton energy is missing.
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Fig. 10. Examples of energy evolution along propagation distance of (a) the relative energy of
the emergent soliton (the soliton energy itself is hardly dependent on truncation coefficient)
and (b) accelerating wavefront.
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4. Soliton time position for power and truncation

In the previous sections we showed that: (1) the emergent soliton time position is at earlier
times when the launched power increases (at fixed truncation) due to quick build-up of a
soliton. At lower powers, self-focusing results in the eventual build-up of the soliton, but as
the conditions materialize the main lobe is undergoing the ballistic trajectory leading to
soliton shedding at a later time position. And (2) the emergent soliton time position is at
earlier times when the truncation coefficient decreases (at fixed launched power) due to
collision perturbations with the accelerating tail lobes. The time shift associated with collision
perturbations depends on the energy; hence higher truncation coefficients result in lower Airy
tail energies and reduced soliton time shifts. These two effects are graphically depicted in Fig.
11(a).

To verify that these two effects independently and consistently occur, we varied both the
Airy launched power and the truncation coefficient over our investigation range (Fig, 11(b)).
Indeed we see this trend continuing; the emergent soliton mean time position shifts to earlier
(later) times for smaller (larger) truncation coefficients and for higher (lower) launched power
levels. These results reinforce our finding that soliton is shed at an earlier time when the
launched power is higher, and that collisions with the accelerating Airy tail lobes shift the
position in the direction counter to the acceleration, i.e. towards earlier times.
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Fig. 11. (a) Schematic illustration of the sources of temporal shift of the emergent Soliton. (b)
Distribution of Soliton mean time position as a function of truncation coefficient and launched
power in our investigation range.

5. Summary

In this paper we investigated the propagation of a truncated temporal Airy pulse in nonlinear
Kerr media. The phenomena of soliton shedding from the original Airy pulse under
sufficiently strong excitation was already identified [8,9], but in this work we investigated in
detail the properties of the soliton and the remaining Airy radiation. We characterized the
emergent soliton parameters under different truncation and power conditions and identified
the mechanisms at play, in accordance to processes known from literature. The soliton
parameters perform oscillations due to the presence of background radiation from the
dispersed Airy pulse. The temporal position of the emergent soliton depends both on the Airy
launched power and truncation coefficient, due to the location of the shedding event and the
interaction with the accelerating Airy tail. We also observed the SPM influence on the
accelerating Airy main lobe, and we found that the SPM has large effect on the accelerating
main lobe visibility in comparison the linear truncated Airy propagation. Finally, we found
that the energy distribution of the Airy pulse along the propagation depends on the launched
power and the truncation degree.

In this work we studied the soliton shedding phenomena for relatively intense launched
Airy pulses. This research avenue can continue to even higher launched pulse powers,
however eventually the well-understood phenomena explored here starts to break down.
Figure 12 shows the time-space evolution when launching the Airy pulse with a power factor
of four (R = 4). We see that for such intense excitation three solitons are shed, the main
soliton in a consistent manner to that described here, and two additional weaker soliton s at
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both higher and lower center frequencies. This result was still obtained with the standard
nonlinear Schrodinger equation (Eq. (4)). However, for proper simulation of intense Airy
pulse excitation, one should also add additional terms to account for higher-order nonlinear
effects such as Raman scattering and self-steepening.
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Fig. 12. Intensity distributions as a function of time and propagation distance for R = 4,
showing multiple soliton shedding at high launched peak powers.
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