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Abstract 

An Airy pulse, a solution of the dispersion equation, manifests two unique properties 

while propagating in linear media. One is self-similarity, meaning the pulse has the 

same envelope  throughout propagation  in dispersive media and the second is 

acceleration in time- namely moving in parabolic trajectory with respect to a time 

frame that moves with the group velocity of the pulse.  

We simulate and analyze the propagation of truncated temporal Airy pulses in a 

single mode fiber in the presence of self-phase modulation (Kerr effect) and anomalous 

dispersion. Due to the presence of  the nonlinear effect, the Airy is no longer a valid 

solution, such that the pulse evolution is no more predictable.  

By gradually increasing the launched Airy power we examine the nonlinearity 

influence on the Airy pulse evolution. For sufficient large launched intensity we 

observe soliton pulse shedding from the Airy main lobe, with the emergent soliton 

parameters dependent on the launched Airy pulse characteristics. The emergent soliton 

performs "breathing"- periodic oscillations of its parameters along the propagation 

distance due to interaction with background radiation, with the periodicity increasing 

with the launched power. Additionally, the soliton mean temporal position shifts to 

earlier times with higher launched powers due to an earlier shedding event and with 

greater energy in the Airy tail due to collisions with the accelerating lobes. In spite of 

the Airy energy loss to the shed Soliton, the Airy pulse continues to exhibit the unique 

property of acceleration in time and the main lobe recovers from the energy loss 

(healing property of Airy waveforms), but performs decaying oscillations of its peak 

power according to the interplay between the dispersion and the nonlinear effect. 

The influence of the truncation coefficient—required for limiting the Airy pulse to 

finite energy—on the Airy nonlinear propagation is also investigated. Small truncation 

degree increases the Airy tail energy, which has considerable influence on the soliton 

shedding distance, the soliton mean temporal position, and on the residual accelerating 

energy. 



 3 

Table of content: 

Abstract ................................................................................................................... 2 

1 Theoretical background .............................................................................. 4 

1.1 Dispersion phenomena .................................................................................................... 4 

1.2 Nonlinear phenomena in fibers ....................................................................................... 5 

1.3 The pulse propagation equation ..................................................................................... 7 

1.3.1 Dispersion-induced pulse broadening 9 

1.3.2 SPM-Induced Spectral Broadening 11 

1.3.3 Effect of Group-Velocity Dispersion with Self-Phase Modulation 14 

1.4 The Airy pulse ................................................................................................................ 16 

1.5 The soliton pulse ............................................................................................................ 19 

2 Goals ........................................................................................................... 22 

3 Methods- Numerical Simulation for pulse propagation ........................ 23 

3.1 Introduction to the Split Step Fourier method ............................................................... 23 

3.2 The algorithm ................................................................................................................ 24 

3.3 Consideration and limitations ....................................................................................... 25 

4 Airy propagation in nonlinear media- simulations result and analysis 28 

4.1 Effects of launched Airy power ...................................................................................... 28 

4.2 Truncation coefficient effect ......................................................................................... 33 

4.3 Soliton time position for power and truncation ............................................................ 37 

4.4 Preliminary results of higher launched power Airy propagation ................................... 38 

5 Discussion and summary .......................................................................... 41 

6 References .................................................................................................. 42 

7 Appendix .................................................................................................... 44 

7.1 Appendix A- Matlab code .............................................................................................. 44 

7.2 Appendix B- published paper ......................................................................................... 47 



 4 

1    Theoretical background 

In this thesis we deal with pulse propagation in silica fiber, where the dispersion 

phenomena and the nonlinear phenomena dominate and influence the pulse evolution 

during the propagation. In this section we will discuss in detail these two phenomena 

and how they influence the pulse propagation. Then we will introduce two special 

pulses- Airy pulse and soliton pulse, whose propagation is investigated in this thesis. 

Except for the sub-section that deals with the Airy pulse, this section is based on the 

book "Nonlinear Fiber Optics", written by G.P. Agrawal ‎[1]. 

1.1 Dispersion phenomena  

When an electromagnetic wave interacts with the bound electrons of a dielectric, the 

medium response, in general, depends on the optical frequency . This property, 

referred to as chromatic dispersion, manifests through the frequency dependence of the 

refractive index n(). Fiber dispersion plays a critical role in propagation of short 

optical pulses because different spectral components associated with the pulse travel at 

different speeds given by c/n(ω).  

Mathematically, the effects of fiber dispersion are accounted for by expanding the 

mode-propagation constant β in a Taylor series about the frequency ω0 at which the 

pulse spectrum is centered: 
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The parameters 1 and 2 are related to the refractive index n and its derivatives through the 

relations  
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where ng is the group index and vg is the group velocity. Physically speaking, the 

envelope of an optical pulse moves at the group velocity while the parameter β2 

represents the different velocity of every spectral component, namely the dispersion of 

the group velocity and therefore is known as the group-velocity-dispersion (GVD). β2 
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is varying with wavelength λ as shown in Figure ‎1.1 for bulk Silica. One of the most 

important features of this property is its vanishing at specific wavelength- the zero-

dispersion wavelength, denoted as λD. At this wavelength the dispersion moves 

between the two dispersion domains- the normal dispersion regime, in which β2>0, and 

the anomalous dispersion regime in which β2<0. In the normal-dispersion regime, 

high-frequency (blue-shifted) components of an optical pulse travel slower than low-

frequency (red-shifted) components of the same pulse. By contrast, the opposite occurs 

in the anomalous-dispersion regime in which β2<0. However, note that dispersion does 

not vanish at λ=λD because then the third order dispersion (TOD), originating from the 

cubic term in the Taylor series of β(ω),  becomes dominant and cannot be neglected. 

Such higher-order dispersive effects can distort ultrashort optical pulses both in the 

linear and nonlinear regimes. The slope of the dispersion curve- β2(λ)- (called the 

dispersion slope) is related to the ( TOD) parameter β3. 

 

Figure ‎1.1- Variation of β2 with wavelength for fused silica. The dispersion parameter β2=0 near 1.27µm. 

For bulk fused Silica λD=1.27mbut in silica fiber dispersive behavior deviates 

from that due to small amounts of dopants in the core and due to the waveguide 

geometry. The main effect of the waveguide contribution is to shift λD slightly toward 

longer wavelengths; λD~1.31μm for standard fibers and can be shifted further by 

changing the fabrication process in others (dispersion shifted fibers- DSF). 

1.2 Nonlinear phenomena in fibers 

The response of any dielectric to light becomes nonlinear for intense electro-magnetic 

fields, and optical silica fibers are no exception. Nonlinear response means that the 

total polarization P induced by electric dipoles is not linear in the electric field E, but 

satisfies the more general relation: 

 ...)( )3()2()1(
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where ε0 is the vacuum permittivity and χ
( j)

 ( j=1,2…) is the j-th order susceptibility. 

The linear susceptibility χ
(1)

 represents the dominant contribution to P. Its effects 

are included through the refractive index n and the attenuation coefficient α. The 

second-order susceptibility χ
(2)

 is nonzero only for media that lack an inversion 

symmetry at the atomic or molecular level. As SiO2 is an amorphous material- what 

gives it a nature of a symmetric material (from the aspect of the nonlinearity) since it 

has no orientation, χ
(2)

 vanishes for silica glasses and as a result, optical fibers do not 

normally exhibit second-order nonlinear effects. 

The lowest-order nonlinear effects in optical fibers originate from the third order 

susceptibility χ
(3)

, which is responsible for phenomena such as third harmonic 

generation, four-wave mixing, and nonlinear refraction, a phenomenon referring to the 

intensity dependence of the refractive index. In its simplest form, the refractive index 

can be written as: 
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where n(ω) is the linear part of the induced polarization, |E|
2
 is the optical intensity 

inside the fiber, and n2 is the nonlinear-index coefficient related to χ
(3)

 by the relation  
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where Re stands for the real part and the optical field is assumed to be linearly 

polarized so that only one component χ
(3)

xxxx of the fourth-rank tensor contributes to the 

refractive index.  

The intensity dependence of the refractive index leads to a large number of 

interesting nonlinear effects, two of which are self-phase modulation (SPM) and cross-

phase modulation (XPM). Self-phase modulation refers to the self-induced phase shift 

experienced by an optical field during its propagation in optical fibers. Its magnitude 

can be obtained by noting that the phase of an optical field changes by  

 LkEnnLkn 0

2

20 )(~   ‎1.7 

where k0=2π /λ and L is the fiber length. The intensity-dependent nonlinear phase shift 

 
2

2 0NL n E k L   ‎1.8 

is due to SPM. Cross-phase modulation refers to the nonlinear phase shift of an optical 

field induced by another field having a different wavelength, direction, or state of 

polarization. This effect is not relevant in our study because we deal with single pulse 

propagation.  
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Among other nonlinear effects present in optical fibers are stimulated Raman 

scattering effects and stimulated Brillouin scattering effects which related to 

vibrational excitation modes of silica. These effects are encountered when dealing with 

relatively high power optical fields or very short pulses, as will be detailed in chapter 

‎1.3.  

Though the nonlinear coefficient n2 in bulk fuse silica is ~ 10
-20

 [m
2
/W], very small 

relatively to other nonlinear materials, the nonlinear effects in optical fibers can be 

observed at relatively low power levels. This is possible because of two important 

characteristics of single-mode fibers—a small spot size (mode diameter at λ=1.55 μm~ 

10 µm) and extremely low loss (< 1 dB/km) in the wavelength range 1.0–1.6 µm. 

1.3 The pulse propagation equation  

In this section we introduce the basic equation that governs propagation of optical 

pulses in nonlinear dispersive fibers in order to understand the interplay between the 

two phenomena. This equation is useful for the pulse propagation simulations in this 

work, as will be explained in the chapter "methods". 

Starting from the wave equation  
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where the induced polarization P is separated to the linear and nonlinear parts 

according to the development of the fiber susceptibility into series, as shown in Eq. 

2.4, we can derive the pulse propagation equation. Some preliminary assumptions must 

be taken before the derivation: PNL is treated as a small perturbation to PL- this is 

justified because nonlinear changes in the refractive index are < 10
-6

 in practice, and 

the optical field is assumed to maintain its polarization along the fiber length so that a 

scalar approach is valid. 

The full form of the derived pulse propagation equation is  
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Where A is the amplitude of the pulse electrical field,  represent the fiber losses, β1 

represent the group velocity of the pulse according the relation 1
1( )gv   , β2 is the 

dispersion parameter, β3 is the TOD parameter, γ is the nonlinear parameter which 
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related to the intensity dependence of the refractive index as detailed in Eq 2.13 and TR 

is a parameter related to Raman scattering. 

This form includes high orders terms of dispersion and nonlinearity. The equation 

can be reduced to its simplest form by taking in account some limitations, which 

enable us to neglect the higher orders terms. First, the optical field is assumed to be 

quasi-monochromatic, i.e., the pulse spectrum, centered at ω0, is assumed to have a 

spectral width ∆ω such that ∆ω/ω0 1. Since ω010
15

s
-1

, the last assumption is valid 

for pulses as short as 0.1 ps. This assumption is actually slowly varying envelope 

approximation and therefore the optical field can be written as  

 0

1
ˆ( , ) [ ( , )exp( ) . .]

2
r t x E r t i t c c  A  ‎1.11 

where x̂ is the polarization unit vector, and E(r,t) is a slowly varying function of time 

(relative to the optical period). Considerable additional simplification occurs if the 

nonlinear response is assumed to be instantaneous. This simplification amounts to 

neglecting the contribution of molecular vibrations to χ
(3)

 (the Raman effect) but it is 

valid only for pulse widths >1 ps. The fiber losses can also be neglected, by assuming 

the presence of amplifiers along the fiber or by limiting the propagation lengths (before 

the losses become considerable). Additionally, we choose to "move with the pulse" in 

its group velocity 1
1( )gv   , such that the time variable t can be replaced by local time 

variable T which defined as
g

z
v

T t    and then the term of the pulse group velocity can 

be dropped from the pulse propagation equation. 

After all the above simplifications are applied and limitations were taken in 

account, we can neglect the higher orders terms and get the reduced form of the 

nonlinear pulse propagation equation such that it includes only the second order 

dispersion and SPM. The reduced equation is now in the form of the Non-Linear 

Schrödinger Equation (NLSE): 
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the nonlinear coefficient γ is defined as:  

 2 0

eff

n

cA


   ‎1.13 

where n2 is related to the nonlinear response of the fiber and Aeff is the effective area of 

the optical mode in the fiber. 
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Except for special cases, the NLSE does not have analytical solutions and has to be 

solved using numerical methods. 

In the next sub-sections we will explain how the dispersion and the nonlinear 

effects influence on the pulse propagation each of them separately and both of them 

together, according to the NLSE. 

1.3.1 Dispersion-induced pulse broadening  

In linear media, the pulse propagation is governed by the dispersion equation: 
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where ( , )U z T is the normalized amplitude of the pulse such that: 
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U z T
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where P0 is the peak power. 

This equation is obtained by dropping the nonlinear term from the NLSE. The 

dispersion equation is similar to the paraxial diffraction equation that governs the 

diffraction of CW light and becomes identical to it when the diffraction occurs in only 

one transverse direction and β2 is replaced by λ/2π, where λ is the wavelength of light. 

For this reason, the dispersion-induced temporal effects have a close analogy with the 

diffraction-induced spatial effects, except for the fact that the dispersion can be 

negative or positive but diffraction is one sided (unless negative index material is 

considered).  

Using the Fourier-transform method, we get the Fourier transform of the solution of 

the dispersion equation: 
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2
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( , ) (0, )exp( )

2
U z U z    . ‎1.16 

This solution shows that GVD changes the phase of each spectral component of the 

pulse by an amount that depends on both the frequency and the propagated distance. 

Even though such phase changes do not affect the pulse power spectrum, they can 

modify the pulse shape.  

As a simple example, consider the case of a Gaussian pulse for which the incident 

field is of the form 
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   ‎1.17 

where T0 is the half-width (at 1/e-intensity point). After obtaining (0, )U  , substituting it 

in the Fourier solution and converting back to time, we get: 
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22
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 
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Thus, a Gaussian pulse maintains its shape on propagation but its width T1 

increases with z as 2
1 0( ) 1 ( / )dT z T z L  where LD, the characteristic length of the 

dispersion, is defined as: 
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According to this definition, at z=LD, a Gaussian pulse broadens by a factor of 2 . For 

a given fiber length, short pulses broaden more because of a smaller dispersion length. 

The broadening of a Gaussian pulse is shown in Figure ‎1.2 (a). In Figure ‎1.2(b) we can 

see the pulse power spectrum which remains unchanged throughout propagation. 
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Figure ‎1.2- Propagation images of initially unchirped Gaussian pulse under the influence of chromatic 

dispersion (a)in the time domain and (b) in the frequency domain. 

This broadening is caused by induced chirping during the pulse propagation. The 

chirping can be seen clearly by writing U(z,T) in the form ( , ) ( , ) exp( ( , ))U z T U z T i z T  

such that: 
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The time dependence of the phase φ(z,T) implies that the instantaneous frequency 

differs across the pulse from the central frequency ω0. The difference δω is just the 

time derivative ∂/∂T and is given by 

(a) (b) 
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This derivative shows that the frequency changes linearly across the pulse, i.e., a 

fiber imposes linear frequency chirp on the pulse. The chirp δω depends on the sign of 

β2. In the normal-dispersion regime (β2>0), δω is negative at the leading edge (T<0) 

and increases linearly across the pulse; the opposite occurs in the anomalous-dispersion 

regime (β2>0). This relations between the frequency and the time causes different 

frequency components of a pulse to travel at slightly different speeds along the fiber 

and hence to arrive to its end at different times. The pulse can maintain its width only 

if all spectral components arrive together. Any time delay in the arrival of different 

spectral components leads to pulse broadening. 

1.3.2 SPM-Induced Spectral Broadening  

When the pulse width is wide enough while its peak power is high, we can neglect the 

dispersion term from the NLSE and get the equation which governs the pulse 

propagation under the influence of SPM only:  

 UU
L

i

z

U

NL

2
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


 ‎1.21 

where U is the normalized amplitude U(z,T) of the pulse, as defined in Eq. 2.15  and 

LNL is the nonlinear length defined as 

 
1
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The equation can be solved substituting U=Vexp(iϕNL) and equating the real and 

imaginary parts so that 
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The general solution of U(L,T) is  

 )],(exp[),0(),( TLiTUTLU NL  ‎1.24 

where  
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These solutions show that SPM gives rise to an intensity-dependent phase shift but 

the pulse shape remains unaffected, as seen in Figure ‎1.3(a). The nonlinear phase shift 

ϕNL increases with fiber length L but the maximum phase shift φmax occurs at the pulse 

peak center located at T=0. With U normalized such that |U(0,0)|=1, it is given by  
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The physical meaning of the nonlinear length LNL is clear from this expression—it 

is the effective propagation distance at which ϕmax =1. 

The SPM-induced spectral broadening is a consequence of the time dependence of 

ϕNL. This can be understood by noting that a temporally varying phase implies that the 

instantaneous optical frequency differs across the pulse from its central value ω0. The 

difference δω is given by 
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where the minus sign is due to the choice of the factor exp(-iω0t) in the propagated 

field definition. The time dependence of δω is referred to as frequency chirping and the 

chirp induced by SPM increases in magnitude with the propagated distance. In other 

words, new frequency components are generated continuously as the pulse propagates 

down the fiber. These SPM-generated frequency components broaden the spectrum 

over its initial width at z=0, depending on the pulse shape but they don't walk off since 

there is no dispersion. Consider, for example, the case of Gaussian pulse with the 

incident field U(0,T)=exp[-(T/T0)
2
]. The SPM-induced chirp δω(T) for such a pulse is 
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The temporal variation of the induced chirp δω has several interesting features. 

First, δω is negative near the leading edge, when T<0 (red shift) and becomes positive 

near the trailing edge, when T>0 (blue shift) of the pulse. Second, the chirp is linear 

and positive (up-chirp) over a large central region of the Gaussian pulse. Third, the 

chirp is considerably larger for pulses with steeper leading and trailing edges.  

An estimate of the magnitude of SPM-induced spectral broadening can be obtained 

by calculating the peak value of δω(T). By setting its time derivative to zero, the 

maximum value of δω (for Gaussian pulse) is related to ϕmax and given by 

 max0max 0.86=    ‎1.29 

where 1

00

 T is the initial spectral width of the pulse. 

In the case of intense ultrashort pulses, the broadened spectrum can extend over 

100 THz or more, especially when SPM is accompanied by other nonlinear processes 
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such as stimulated Raman scattering and four-wave mixing. Such an extreme spectral 

broadening is referred to as supercontinuum.  

The actual shape of the pulse power spectrum S(ω), as seen in Figure ‎1.3(b),  is 

obtained by taking the Fourier transform of U(L,T), using the relation 

2

),(
~

)(  LUS  . The most notable feature of the pulse spectrum shape is that SPM-

induced spectral broadening have an oscillatory structure covering the entire frequency 

range. In general, the spectrum consists of many peaks, and the outermost peaks are the 

most intense. The number of peaks depends on ϕmax and increases linearly with it. The 

origin of the oscillatory structure can be understood by the time dependence of the 

SPM-induced frequency chirp. In general, the same chirp occurs at two values of T 

showing that the pulse has the same instantaneous frequency at two distinct points. 

Qualitatively speaking, these two points represent two waves of the same frequency 

but different phases that can interfere constructively or destructively depending on 

their relative phase difference. Mathematically, the Fourier integral in S(ω) calculation 

gets dominant contributions at the two values of T at which the chirp is the same. 

These contributions, being complex quantities, may add up in phase or out of phase. 
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Figure ‎1.3- Propagation image of Gaussian pulse under the influence of SPM (a) in the time domain and (b) 

in the frequency domain.  

The number of peaks M in the SPM-broadened spectrum is given approximately by 

the relation ϕmax≈ (M-1/2)π. 

For pulses with steeper leading and trailing edges (such as rectangular pulse) the 

spectral width after SPM broadening is extend over a longer frequency range than 

pulses with moderate edges slope (such as Gaussian) with the same initial width and 

propagation distance, but the tails of the steeper pulses spectrum carry less energy 

because the chirping occurs over a small time duration. 
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1.3.3   Effect of Group-Velocity Dispersion with Self-Phase 

Modulation  

As pulses become shorter and the dispersion length becomes comparable to the 

fiber length, it becomes necessary to consider the combined effects of GVD and SPM. 

‎This section considers the temporal and spectral changes that occur when the effects of 

GVD are included in the description of SPM.  

The starting point in the analyzing of the combined effect is the nonlinear 

Schrodinger (NLS) equation which can be written in a normalized form as 

 UUN
UU
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where ξ and τ represent the normalized distance and time variables defined as 

 

0

;    
d

z T

L T
    ‎1.31 

and the parameter N is defined as: 
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As evident from this relation, N governs the relative importance of the SPM and 

GVD effects on pulse evolution along the fiber. Dispersion dominates for N<1 while 

SPM dominates for N>1. For values of N~1, both SPM and GVD play an equally 

important role during pulse evolution. In the NLSE, sgn(β2)=±1 depending on whether 

GVD is normal (β2>0) or anomalous (β2<0). The physical significance of N will 

become clear in Chapter ‎1.5- The soliton pulse, where the integer values of N are found 

to be related to the soliton order.  

When N=1, the evolution of the shape and the spectrum of an initially unchirped 

Gaussian pulse in the normal-dispersion regime (Figure ‎1.4(a)) of a fiber is quite 

different from that expected when either GVD or SPM dominates. In particular, the 

pulse broadens much more rapidly compared with the N=0 case (no SPM). This can be 

understood by noting that SPM generates new frequency components that are red-

shifted near the leading edge and blue-shifted near the trailing edge of the pulse. As the 

red components travel faster than the blue components in the normal-dispersion 

regime, SPM leads to an enhanced rate of pulse broadening compared with that 

expected from GVD alone. This in turn affects spectral broadening as the SPM-



 15 

induced phase shift ϕNL becomes less than that occurring if the pulse shape were to 

remain unchanged.  
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Figure ‎1.4- Propagation image of initially unchirped Gaussian pulse for N=1 at (a) normal dispersion and (b) 

anomalous dispersion. 

The situation is different for pulses propagating in the anomalous-dispersion regime 

of the fiber, when N is still ~1, but the sign of the GVD parameter has been reversed 

(β2<0). As can be seen in Figure ‎1.4(b), the pulse broadens initially at a rate much 

lower than that expected in the absence of SPM and then appears to reach a steady 

state. At the same time, the spectrum narrows rather than exhibiting broadening 

expected by SPM in the absence of GVD. This behavior can be understood by noting 

that the SPM-induced chirp is positive while the dispersion-induced chirp for 

anomalous dispersion (β2<0) is negative. The two chirp contributions nearly cancel 

each other along the center portion of the Gaussian pulse when LD=LNL (N=1). Pulse 

shape adjusts itself during propagation to make such cancelation as complete as 

possible. Thus, GVD and SPM cooperate with each other to maintain a chirp-free 

pulse. The preceding scenario corresponds to soliton evolution; initial broadening of 

the Gaussian pulse occurs because the Gaussian profile is not the characteristic shape 

associated with a fundamental soliton. Indeed, if the input pulse is chosen to be a 

“sech” pulse both its shape and spectrum remain unchanged during propagation. When 

the input pulse deviates from a ‘sech’ shape, the combination of GVD and SPM affects 

the pulse in such a way that it evolves to become a ‘sech’ pulse. This aspect is 

discussed in detail in Chapter ‎1.5 and along this work. 

When N1 the effects of SPM should dominate over those of GVD for, at least, 

the initial stages of pulse evolution. It is true only for the first stage because when a 

large amount of the SPM-induced frequency chirp imposed on the pulse, even weak 

dispersive effects lead to significant pulse shaping. In the case of normal dispersion 

(β2>0), the pulse becomes nearly rectangular with relatively sharp leading and trailing 
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edges and is accompanied by a linear chirp across its entire width. It is this linear chirp 

that can be used to compress the pulse by passing it through a dispersive delay line. 

1.4 The Airy pulse 

Nondiffracting beams are beams that have special functional form such that they can 

propagate in diffractive medium without reshaping.  A well-known class of 

nondiffracting beams is Bessel beams ‎[2]. The functional form of these beams is 

defined by Bessel functions, which are a solution of the wave equation.  These beams 

have cylindrical symmetry, constructed from one circular spot and infinite rings around 

it.  Practically, Bessel beams cannot have infinite amount of rings because it requires 

infinite amount of energy. Thus, practical implementations introduce apodization, 

causing the Bessel beam to finally diffracted, but it remains unchanged for 

considerable long distance- relative to the regular Gaussian beams. Bessel beams were 

found to be useful and efficient in optical tweezers (controlling on particles and cells 

movement by light) due to their continuous focus caused by the nondifracting feature. 

Similar nondiffracting beam class is the Airy beams. 

The Airy function Ai(s) is one sided, oscillating function also having infinite 

energy. This function was originally ‎[3] proposed in the context of quantum mechanics 

as a nonspreading solution to the Schrödinger equation for free particles. Later, it was 

demonstrated ‎[4] that this function is also solution of the paraxial diffraction equation 
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(where A is normalized optical field amplitude, ξ represent the normalized propagation 

distance and s represents a dimensionless spatial transverse coordinate), 

and therefore it can describe an optical beam. This optical beam found to have two 

unique interesting features: self-similarity where during propagation the wavefront 

maintains its shape in the presence of diffraction—the nondiffracting feature being 

similarly to the Bessel beams—and ballistic dynamics where its wavefront travels 

along a parabolic trajectory without the presence of any external potential. 

The propagation of temporal pulses in linear media is described by the dispersion 

equation 
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where A is normalized optical field amplitude, z represent the propagation distance, T 

represents a time variable in frame of reference that moves in the group velocity and β2 

is the dispersion coefficient. The isomorphism between the dispersion equation and the 

paraxial diffraction equation shows that Airy pulses, whose electric field temporal 

profile is defined by an Airy function, also have the two unique features of self-

similarity along the propagation despite the dispersion and acceleration of the Airy 

wavefront in a time frame moving at the group velocity, as seen at Figure ‎1.5.  
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Figure ‎1.5- Propagation image of ideal Airy pulse. The pulse maintains its intensity distribution and moves 

along parabolic trajectory. 

However, true Airy pulses are impractical as they contain an infinite amount of 

energy, as with the Bessel beams. By apodizing the Airy pulse, i.e. truncating the semi-

infinite oscillations, in our case with a decaying exponential envelope as shown in 

Figure ‎1.6(a), the waveform maintains its two unique properties over an extended 

propagation range despite its finite energy (Figure ‎1.6(b)). 
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Figure ‎1.6- (a) Truncated Airy initial profiles for select truncation values. (b) Propagation image of 

truncated Airy when a=0.05. 

According to the Ehrenfest’s theorem, the center of mass of every wave packet 

must remain unchanged when there is no external force, as in our system. Airy pulses 

and beams appear to violate this rule, but in fact do not as the center of mass of the 

Airy wave packet cannot be defined and therefore do not conflict with Ehrenfest’s 

theorem. In the case of finite energy-Airy-packet, the center of mass is well defined 
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and in fact remains invariant with distance, what forces the intensity of the accelerating 

peak to decrease throughout propagation. 

In the case of linear propagation, the launched field described by 

 ( ,0) Airy( )exp( ),U s s as  ‎1.35 

where the truncation degree is determined by the truncation coefficient 0a<1 in the 

decaying exponential envelope ( )exp as . As a is smaller, the truncation is weaker and the 

Airy pulse maintains its unique properties for longer propagation distances.  

The analytical description of the truncated Airy at any point in its propagation is ‎[4]: 

2 2 3 2
( , ) Airy ( / 2) exp ( / 2) ( /12) ( / 2) ( / 2)U s s ia as a i i a i s                   .‎1.36 

From the argument of the Airy function one can conclude that this beam follows a 

ballistic trajectory in the s–ξ plane that is described by the parabola s=ξ
2
/2. 

In order to move from spatial Airy to temporal Airy we replace the spatial transverse 

coordinate s by T/T0, and the normalized distance variable ξ by z/LD. 

The Fourier spectrum of the initial truncated Airy pulse in the normalized ω-space is 

given by 

 2 3 2 3( ,0) exp( )exp ( 3 ) .
3

i
a a ia    

 
    

 
 ‎1.37 

According to this expression, it is clear that truncated Airy pulses occur naturally if 

a Gaussian pulse is propagated in a fiber at the zero dispersion point, under the 

influence of cubic dispersion, which gives to the Gaussian spectrum a cubic phase and 

then it  translates to Airy distribution in the time domain.  

Spatial Airy beams have been investigated extensively in the last few years, and 

found to be useful for various applications such as: optical micromanipulation when 

the ballistic dynamics is exploited for process of optically mediated particles 

clearing‎[5], optical switching by changing the accelerating direction of the Airy beam 

in the nonlinear crystal in which it generated ‎[6], the first curved plasma channels 

generation in air [7] and in water ‎[8] using femtosecond Airy beams‎[7], what can lead 

to novel applications in remote sensing, terahertz generation and lightning control . 

More recently, temporal Airy pulses are being investigated, in the context of 

spatiotemporal light bullets in linear conditions, where the configuration of Airy-

Bessel temporal beam contributes to the versatility of the bullet ‎[9] and in nonlinear 

conditions- where the three dimensional Airy found to be robust up to the high 

intensity  ‎[10], and in the context of one dimensional Airy pulse propagation, under the 
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influence of strong nonlinearity giving rise to supercontinuum and solitary wave 

generation ‎[11].  

1.5 The soliton pulse  

A fascinating manifestation of the fiber nonlinearity occurs through optical solitons 

‎[12], formed as a result of the interplay between the dispersive and nonlinear effects. 

The word soliton refers to special kinds of wave packets that can propagate undistorted 

over distance. Solitons have been discovered in many branches of physics. In the 

context of optical fibers, not only are solitons of fundamental interest but they have 

also found practical applications in the field of fiber-optic communications. This 

section is devoted to the study of pulse propagation in optical fibers in the regime in 

which both the group-velocity dispersion (GVD) and self-phase modulation (SPM) are 

equally important and must be considered simultaneously. 

The soliton is a solution of the NLSE and is obtained using the inverse scattering 

method. Although the NLSE supports solitons for both normal and anomalous GVD, 

pulse-like solitons- also called bright solitons- are found only in the case of anomalous 

dispersion. In the case of normal dispersion (β2>0), the solutions exhibit a dip in a 

constant-intensity background. Such solutions are referred to as dark solitons.   

Starting from the normalized form of the NLSE when β2<0 
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where ξ and τ represent the normalized distance and time variables defined as 
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and the parameter N, which determine the order of the solution, is introduced by  
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   ‎1.40 

one can get the complex eigenvalues of the problem. The number of the eigenvalues is 

in accordance with the integer N, and they are determining the properties of the 

solution, such as its group velocity- frequency shift from the carrier frequency, its 

amplitude(s), its time position and its initial phase. Due to the ability of choosing the 

axes system and the carrier frequency as we need, in the case of single soliton the most 
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relevant property is the amplitude of the soliton such that the fundamental solitons then 

form a single-parameter family described by 

 
2( , ) sech( )exp( ).

2
U A A iA     ‎1.41 

The parameter A determines not only the soliton amplitude but also its width. In 

real units, the soliton width changes with A as T0/A, i.e., it scales inversely with the 

soliton amplitude. This inverse relationship between the amplitude and the width of a 

soliton is the most crucial property of solitons. 

In the context of optical fibers, the solution indicates that if a hyperbolic-secant 

pulse, whose width T0 and the peak power P0 are chosen such that N=1 is launched 

inside an ideal lossless fiber, the pulse will propagate undistorted without change in 

shape for arbitrarily long distance because the propagation distance affects only the 

accumulated phase, not the pulse intensity, as shown in Figure ‎1.7(a). It is this feature 

of the fundamental solitons that makes them attractive for optical communication 

systems. 
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Figure ‎1.7- Propagation image of (a) first order soliton, (b) second order soliton and (c) third order soliton. It 

is easy to see that the periodicity of the higher order soliton. 

Pulses corresponding to other integer values of N are called higher-order solitons 

and they do not maintain the initial shape but follow a periodic pattern such that the 

input shape is recovered at ξ=mπ/2, where m is an integer. The periodic evolution is a 

result of the imbalance between the dispersion and SPM when N>1. SPM dominates 

initially but GVD soon catches up and leads to pulse contraction and the two effects 

can cooperate in such a way that the pulse follows a periodic evolution pattern with 
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original shape recurring at multiples of fixed distances. This periodicity is shown in 

Figure ‎1.7(b-c), at the propagation image of 2
rd

 and 3
rd

 soliton orders. By noting that 

ξ=z/LD, the soliton period z0, defined as the distance over which higher-order solitons 

recover their original shape, is given by  
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This parameter plays an important role in the theory of optical solitons. 

Soliton stability 

An important property of optical solitons is that they are remarkably stable against 

perturbations. Thus, even though the fundamental soliton requires a specific shape and 

a certain peak power corresponding to N=1, it can be created even when the pulse 

shape and the peak power deviate from the ideal conditions. For example, in the 

evolution of a Gaussian input pulse for which N=1 but u(0,τ)=exp(−τ
2
/2), the pulse 

adjusts its shape and width in an attempt to become a fundamental soliton and attains a 

“sech” profile for ξ1. A similar behavior is observed when N deviates from 1. It 

turns out that the Nth-order soliton can be formed when the input value of N is in the 

range N–1/2 to N+1/2. Due to the fact that the soliton area (normalized by the product 

of peak power and duration) is equal to Nπ, this rule actually stems from to the soliton 

area theorem ‎[13] which claims that first order soliton can be formed when the area of 

the input pulse is in the range π/2-3π/2, as long as its shape is similar to that of soliton. 

A simple way to understand this behavior ‎[12] is to think of optical solitons as the 

temporal modes of a nonlinear waveguide. Higher intensities in the pulse center create 

a temporal waveguide by increasing the refractive index only in the central part of the 

pulse. Such a waveguide supports temporal modes just as the core-cladding index 

difference leads to spatial modes. When an input pulse does not match a temporal 

mode precisely but is close to it, most of the pulse energy can still be coupled into that 

temporal mode. The rest of the energy spreads in the form of dispersive waves, known 

as the continuum radiation. It will be seen later that such dispersive waves affect the 

system performance and should be minimized by matching the input conditions as 

close to the ideal requirements as possible. When solitons adapt to perturbations 

adiabatically, perturbation theory developed specifically for solitons can be used to 

study how the soliton fundamental parameters of amplitude, width, frequency, speed, 

and phase evolve along the fiber. 
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2 Goals 

In this study, we intend to analyze intense temporal Airy pulse propagation in media 

exhibiting Kerr nonlinearity as occurring in single mode silica fibers, leading to the 

phenomena of self-phase modulation (SPM) and anomalous dispersion. The unique 

features of the Airy pulse are determined by the dispersion equation, which refer only 

to linear media ‎[3]‎[4]. When the intensity of the Airy pulse is increased the nonlinear 

response of the media start to influence and must be considered such that the known 

evolution of the Airy pulse is no longer valid. We want to investigate the deviations of 

the Airy pulse nonlinear evolution from its linear evolution as the pulse intensity is 

increased gradually. The influence of the Kerr nonlinear effect on spatial Airy beams 

has been already investigated under relatively weak parameters and transient 

narrowing of the Airy main lobe—caused by self-focusing (this is nonlinear effect 

which is analog to the SPM in temporal pulses)—was observed ‎[14]; however, we are 

interested in operating under much higher intensities where the nonlinear effect results 

in soliton shedding from the Airy pulse, according to soliton theory as was detailed in 

the previous chapter, and not just a small perturbation of the Airy pulse.  

Additional investigated aspect of the nonlinear Airy pulse propagation is the 

truncation degree influence. By comparison to its influence on the propagation in the 

linear regime we shall study the truncation role in the Airy pulse nonlinear evolution. 

Although we analyze temporal Airy pulse propagation in fiber, our results are also 

valid for spatial Airy beams diffracting in Kerr media on account of the isomorphism 

between the dispersion equation and the paraxial diffraction equation. 
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3 Methods- Numerical Simulation for pulse 

propagation 

In this study we simulated the propagation of Airy pulse in nonlinear media. As 

mentioned before, the propagation is governed by the NLSE which cannot be solved 

analytically except for special cases and therefore it must be solved numerically.  

Many numerical methods can be employed in order to simulate the pulse 

propagation ‎[1]. These can be classified into two broad categories known as: (i) the 

finite-difference methods, in which a is solved by approximating the derivatives by 

finite differences that can be calculated numerically; and (ii) pseudospectral methods, 

in which the derivatives in partial differential equation are calculated using orthogonal 

functions, e.g Fourier integrals. In general, pseudospectral methods are faster by up to 

an order of magnitude to achieve the same accuracy due to the use of the finite-Fourier-

transform (FFT) algorithm. 

We use the Split Step Fourier Method (SSFM), which belongs to the last category 

for its simplicity, flexibility and efficiency.  

3.1  Introduction to the Split Step Fourier method 

The NLSE can be written in the operator form  

 AND
z

A
)ˆˆ( 




 ‎3.1 

where A is the optical field amplitude, D̂  is a differential operator that accounts for 

dispersion in a linear medium and N̂  is a nonlinear operator that governs the effect of 

fiber nonlinearities on pulse propagation. These operators are given by 
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2ˆ AiN  . ‎3.3 

In general, dispersion and nonlinearity act together along the length of the fiber. 

The split-step Fourier method obtains an approximate solution by assuming that in 

propagating the optical field over a small distance h, the dispersive and nonlinear 

effects can be assumed to act independently. More specifically, propagation from z to 
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z+h is carried out in two steps. In the first step, the nonlinearity acts alone, and 0ˆ D . 

In the second step, dispersion acts alone, and 0ˆ N . Mathematically: 

 ),()ˆexp()ˆexp(),( TzANhDhThzA   ‎3.4 

The dispersion step has an analytical solution in the frequency domain where D̂ can 

be replaced by 2 2

02
( )

i
  -where ω0 is the carrier frequency, so it is necessary to 

Fourier transform A(z,T) before applying this step, using 

 0( , ) ( , )exp( ( )) ,A z A z T i dT  




   ‎3.5 

and then applying the dispersion operator such that 
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The nonlinear step is done in the time domain so it is required to do inverse Fourier 

transform after applying the dispersion step.  

When the fiber length is divided into a large number of segments in length h, the 

optical pulse is propagated from segment to segment by applying the mentioned above 

dispersion and nonlinear operators and we get good approximation of the pulse 

propagation along the fiber length. All the transitions between the time domain and the 

frequency domain are computed by the FFT algorithm that makes numerical evaluation 

of the propagation equation relatively fast. 

In this work we used an improved form of the basic SSFM by dividing every 

segment to two parts and apply the dispersion operator on the first half of the segment, 

then operate on a full segment with the nonlinear operator and complete the segment 

with applying of the dispersion operator for the remaining half segment. The advantage 

gained through this variation is that the nonlinear contribution is not taken at the 

boundaries but at the middle of the segment, averaging out of the nonlinear property. 

3.2 The algorithm 

Our algorithm is developed based on the last variation (the Matlab simulation code 

is given in appendix A): 

 Step 1: Divide the fiber into segments (Figure ‎3.1).  

 Step 2: Split the segment in two equal parts. 

 Step 3: Operate on the first half with the dispersion operator. 
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 Step 4: Operate on the entire segment with the nonlinear operator. 

 Step 5: Operate on the second half with the dispersion operator. 

 Step 6: Repeat steps two through five for the adjacent segment with the result 

obtained from the previous segments. 

 

       

3.3 Consideration and limitations 

There are some considerations that must be addressed prior to the application of 

SSFM. The prominent one is the step size h (the length of a fiber segment).  

In order to acquire reasonable accuracy we aspire that h be a least two orders of 

magnitude less than the characteristic length of the dominant phenomena governing the 

propagation. However, this length is not necessarily constant, and the optimum choice 

h depends on the complexity of the problem at hand. For example, during propagation 

self-focusing of the Airy main lobe will increase its peak power, resulting in a decrease 

in LNL, and h must be reduced as well, as changes will now occur at a faster pace. 

Therefore, in order to take into account such scenarios, we take h to be at least three 

orders of magnitude smaller than the initial dominate characteristic length. We 

compared the analytical propagation of first order soliton with its numerical 

propagation under such conditions of increment size and we found that they are 

identical up to 10 orders of magnitude. These results demonstrate that the algorithm is 

accurate and reliable for our simulation.     

Additional property that must be considered is range of the transverse coordinate- 

the time window in our case. Due to the circular assumption behind the Fast Fourier 

transform, when pulse energy reaches the ends of the time window it will continue and 

re-imerge from the other end, creating unphysical results. This can be overcome by 

Figure ‎3.1- Segmentation of the fiber into parts at length h and further separation of a single 

segment into two parts in order to improve the accuracy  
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simply making the time window large enough. This solution requires large vectors 

resulting in more processing time and more memory. A more advance solution is to 

multiply the optical field at every step by rectangular-like function- "absorbing edge"- 

and this way to "cut off" the spreading energy and preventing the feedback. The 

rectangular-like function must be chosen such that a gradual cutoff of the edge will be 

carried out because an abrupt cutoff can generate a reflection. The main disadvantage 

of using the absorbing edge is that it does not preserve the pulse energy when the pulse 

reaches the edge.  

In our work (see Figure ‎3.2), we use time vector whose range is more than 

thousand times the width of the Airy main lobe and its resolution is tenth of its width. 

This large time window is required due to the ballistic dynamics of the Airy pulse 

which cause rapid energy spreading, especially for small truncation values, when the 

carried energy is almost infinite. In addition, we used an absorbing edge of the form 

"raised-cosine" function, in which the rectangular-like degree is defined by 0<β<1. We 

fixed this parameter on 0.01, causing its corner to be relatively sharp, in order to 

prevent loss of the pulse energy. Despite the sharpness of the absorbing edge, any 

energy reflection from the window boundaries is not observed thanks to the large time 

window. 
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Figure ‎3.2- Launched Airy pulse (blue) compared to the raised-cosine absorbing edge (green) 

Normalization terms 

In our simulations we used the normalized NLSE form  
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where |β2|=γ=T0=1, and the launched Airy pulse profile is defined as: 

      , 0 ( )pA T z R K a Ai T Exp a T       ‎3.8 

where 0a<1 is the truncation coefficient, and Kp(a) is a truncation-dependent factor 

that sets the pulse peak intensity to 1 for any a value . This factor was numerically 
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calculated and found to be in parabolic dependence with the truncation coefficient. T is 

the time variable in a frame of reference that moves with the wave group velocity, i.e. 

gT t z v  , and R is a dimensionless parameter we vary for scaling the Airy power. At 

R=1 the Airy main lobe intensity profile looks quite similar to the fundamental soliton, 

as shown in Figure ‎3.3. 

 

Figure ‎3.3 – Launched Airy pulse in time (blue solid curve), compared to a soliton pulse (red dashed curve). 

We measure the propagation distance in Ld units, defined as 2
0 2dL T  , which in 

our normalized coordinates equals 1. 

It is important to note that even though we use dimensionless parameters in our 

simulation they are reliable only for propagation of pulses whose width is wider than 5 

ps. When dealing with pulses that are less than 5ps, further terms must be taken into 

account in the pulse propagation equation, as detailed in the extended pulse 

propagation equation, in order to include additional nonlinear phenomena.  
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4 Airy propagation in nonlinear media- simulations 

result and analysis 

4.1  Effects of launched Airy power  

In order to investigate the influence of Airy launched power on its evolution, we varied 

the scaling parameter R from the equation  

 )exp()()(),0( TTAiaKRTzA p   ‎4.1  

in the range 0.1-2 and for every R value we propagate the pulse using the SSFM 

algorithm. Figure ‎4.1 shows pulse evolution examples for select R values. At low 

launched power, the Airy pulse performs the acceleration in time and subsequently it 

succumbs to dispersion. However, when R is sufficiently large (above 0.9) a stationary 

soliton pulse is formed out of the centered energy about the Airy main lobe. The 

soliton exhibits periodic oscillations in the soliton amplitude and width as a function of 

propagation distance. In addition, we witness the resilience of the temporal Airy 

waveform to shedding of a fraction of the energy as a soliton; the wavefront continues 

to propagate along a parabolic trajectory. Similar resilience has been shown in main 

lobe masking for spatial Airy beams ‎[15] and in supercontinuum generation for 

temporal Airy pulses propagation‎[11]. 
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Figure ‎4.1– Propagation Images of truncated Airy pulse in nonlinear media for various launched power 

values. 
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The emergent soliton  

Unsurprisingly, the shed pulse profile well conforms to a hyperbolic-secant function, 

or that of a soliton with background radiation. We fit a sech(·)+background radiation 

profile at every propagation distance and track the emergent soliton  parameters. 

Our fit model is  

  

2

( ) 2 2 2
0 0 0

0 0 0

sech sech 2 cos ( ) sech
p p pi z

T T T T T T
A b e A b A b z

T T T

 
       

              
     

 ‎4.2 

This model is composed of the soliton intensity, the background radiation intensity 

and the interference between them. The parameter Tp describes the temporal position of 

the emergent soliton peak. Under the assumption that the oscillatory behavior of the 

emergent pulse is caused by the term  0
0

2 cos ( ) sech
pT T

A b z
T


 

  
 

 -the interference 

element- we set the magnitude of the soliton peak power to fixed value which 

determined by the mean value of the peak of the breathing pulse. The other parameters 

in the model, which describe the pulse width, the background radiation, the temporal 

position and the intensity of the interference element, are free in the fit process. After 

completing the fit process at every distance sample we got the variation of the pulse 

parameters along the propagation distance, which help us analyze the pulse and 

understand its evolution.  Note that the oscillations of the time position, shown in 

Figure ‎4.4, are not noticeable without carrying out the fit process, due to the limited 

resolution of the numerical simulations.    

The first step in the analysis is to verify that the emergent pulse is in fact a soliton. 

From Soliton theory we know that the formation of soliton requires that the following 

equilibrium condition 

 


22

00  TPLL NLd  ‎4.3 

will be held. 

According to the fit data, we find that the power × duration
2
 product oscillates 

about this equilibrium condition (=1). These oscillations about the stable soliton 

condition verify that the pulse is indeed a soliton and they are known to arise as a result 

of interference between dispersive background radiation and the formed soliton ‎[15] 

‎[16]. In figure 6.2 we can see the oscillations of this product for select R values. An 
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interesting feature of this oscillation which is seen in the figure is that as R is larger, 

the mean value of the product is closer to 1- the ideal value. 
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Figure ‎4.2- Evolution of soliton product along propagation distance for select R values together with their 

mean value. 

We examined the relations between the soliton oscillations and the launched Airy 

peak power. In Figure ‎4.3(a) the oscillations of soliton width are shown as a function 

of propagation distance for select R values. The pulse width narrows and the 

oscillations period decreases with higher launch power. The decreasing oscillation 

period with increasing launch power is depicted in Figure ‎4.3(b). Similar behavior was 

reported in ‎[17], where the amount of excess energy that was supplied to the launched 

soliton was expressed in the evolved soliton oscillations period. Another property of 

the oscillations is the modulation depth that sharply decreases with increased initial 

peak power (Figure ‎4.3(c)). We can relate the low modulation depth to the greater 

stability of the formed soliton and conclude that high launched peak power is required 

for stable soliton formation. 
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Figure ‎4.3 – (a) Oscillations of soliton width for different launched peak power, (b) soliton oscillations 

length of period as a function of launched peak power, (c) soliton oscillations modulation depth as a 

function of launched peak power. 

Additional soliton parameters as soliton peak time position and phase also oscillate 

in similar manner as the peak power and width. Figure ‎4.4(a,c) shows the evolution of 

time position and phase as a function of propagation distance (phase fluctuations are 

plotted after subtracting the soliton’s accumulated linear phase term). These 

oscillations are the result of interaction with the background radiation as explained in 
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‎[18] and demonstrated in ‎[19] for the problem of background radiation that is formed 

by soliton amplification in optical communication. 

From the results in Figure ‎4.4(a) we see that the position of the emergent soliton is 

also dependent on launch power. We plot the mean time position of the emergent 

soliton in Figure ‎4.4(b). More intense excitation results in the soliton appearing at an 

earlier time. This phenomena is explained by the fact that for low values of R a 

relatively long time is required for accumulation of enough energy by SPM for the 

soliton formation and shedding, and during this time the Airy pulse is accelerating and 

'carries' the accumulating energy with it to later times. For larger R values there is 

enough energy in the Airy main lobe for soliton formation and shedding at an early 

point. 
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Figure ‎4.4– (a) Soliton peak time position along propagation distance, (b) mean soliton peak time position as 

a function of launched power. Note that Airy peak time position at launch is at t=-1. (c) soliton peak phase 
oscillations along propagation distance for select launched powers. 

The accelerating wavefront 

As seen in Figure ‎4.1, the Airy wavefront continues to exhibit the parabolic 

acceleration in time, even under the influence of Kerr effect and after shedding energy 

to the soliton. To study whether this acceleration continues with the properties of the 

linear propagation we compared the nonlinear propagations to linear, as the intensity is 

scaled with the R parameter. Note that the linear Airy pulse evolution is identical for 

every intensity value.  

These linear propagation results are compared to the nonlinear ones by tracking the 

main lobe acceleration trajectory for each case and extracting information about its 

peak power and position. Furthermore, we calculate the accelerating energy 

distribution along propagation distance. 

Figure ‎4.5 shows the Airy main lobe parabolic trajectory and peak power as a 

function of propagation distance, under linear and nonlinear propagation, for three 

select launched power cases. We see that the wavefront continues to exhibit the 
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parabolic trajectory in time (blue curves), which is almost identical in the linear and the 

nonlinear propagation cases, although the nonlinear peak slightly trails the linear peak, 

on account of a delay associated with the energy shedding to the soliton. The intensity 

evolution of the accelerating wavefront is shown in green. We can see that in the 

nonlinear propagation its peak power performs decaying oscillations, as opposed to the 

monotonic decay in the linear case. The oscillations of the peak power in the nonlinear 

case are known to be a result of the interplay between the SPM and the dispersion. 

Similar influence of SPM on the Airy accelerating main lobe was already observed in 

‎[14]. However, the peak power oscillations there exhibit faster decay due to a relatively 

large truncation coefficient, 0.1-0.3 vs. 0.0335 in the current simulations.  

 

Figure ‎4.5 – Airy accelerating tail trajectories in time-distance space(blue) and in intensity-distance space 

(green) for (a) R=1, (b) R=1.2 and (c) R=2. 

Next, we investigate the energy distribution of the accelerating wavefront. It is 

important to note that the simulations preserve the launched pulse energy along the 

propagation distance, as well as preservation of  'center of gravity' (first order moment) 

position according to the finite pulse energy and the uniformity of the media ‎[4]. The 

power spectrum of the Airy pulse is symmetric about the central frequency, and upon 

propagation in anomalous dispersive media the high frequencies components are 

delayed (low frequency components are advanced) with respect to central frequency 

group delay (in anomalous media), such that the pulse total energy is eventually 

divided to two equal fractions about T=0- half of the energy at each direction. In the 

presence of Kerr nonlinearity, considerable part of the pulse energy is shed to the 

soliton  that propagates at the group velocity, and the remaining energy disperses in 

opposite directions with less than a half of the launched energy dispersing to each side 

(due to soliton  shedding).  

The energy that is carried in the accelerating wavefront (delayed components) was 

found by summing the energy over positive time at every distance sample. These 

calculations were performed with both the linear and nonlinear propagations. 
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Figure ‎4.6(a) shows the delayed energy evolution of the accelerated Airy wavefront 

along the propagation distance for various Airy launched powers. The energy is 

normalized by the launched pulse energy, such that we can see the relative energy 

portion of the accelerating wavefront for linear and nonlinear cases. For all R values, 

the energy evolution of the linear propagations coincides to one curve that 

asymptotically approaches the value of half launched pulse energy, according to its 

linear nature. For the nonlinear propagations we clearly see that as R grows the 

fractional energy amount that is delayed is decreasing, where the oscillatory behavior 

is due to the soliton oscillations which take place in the boundary of the right half 

propagation plane. Those curves and those of Figure ‎4.6(b), which chart the energy 

evolution of the formed soliton for different R values, show the fact that the formed 

soliton  not only has more intensity when R is growing, but also carries a larger energy 

fraction from the whole pulse. This can also be seen in Figure ‎4.6(c), where the mean 

soliton relative energy was calculated for every R value. From Figure ‎4.6(b-c) we also 

see the energy preservation—the normalized delayed energy is missing energy that is 

about half of the shed soliton energy, where the other half originates from the faster 

propagating energy components. When R=2, for example, the soliton  energy fraction 

is about 0.39 and the missing fractional energy amount from the delayed energy is 

about 0.19, half of 0.39. 
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Figure ‎4.6 – (a) Airy tail relative energy for the linear and the nonlinear cases, (b) soliton relative energy, (c) 

soliton relative energy as function of launched power. 

4.2 Truncation coefficient effect 

The ability of Airy pulses to exhibit their unique features is strongly related to the 

degree of truncation in the apodization function. As the truncation is stronger, the Airy 

pulse quickly loses the unique features of the Airy pulse and disperses. Here we wish 
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to examine how the truncation degree influences the soliton shedding and pulse 

propagation under the Kerr effect.  

We employ the same pulse profile defined in Eq. (5.1), fixing the intensity scaling 

parameter R to 1.5 while varying the truncation coefficient in the range 0.01-0.1, as 

shown in Figure ‎1.6(a), and propagate the apodized Airy for every truncation value. 

Figure ‎4.7 shows examples of the Airy pulse evolution in time-distance space. We see 

that when the truncation is small the Airy original features as self-similarity and 

acceleration in time are more noticeable. The influence of the truncation degree on 

emergent soliton properties and on the accelerating wavefront was examined in the 

same manner as in the previous section. 
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Figure ‎4.7 – propagation images of truncated Airy pulse in the nonlinear regime for various truncation 

values. 

The emergent soliton  

Larger truncation coefficient values make the exponential apodization of the Airy 

function stronger and the Airy tail is shortened; there is a negligible effect on the main 

Airy lobe, as shown in Figure ‎4.7(a). Hence the emergent soliton, which forms from 

the main lobe, achieves stability faster (after a shorter propagation distance) in cases of 

larger truncation coefficients, as the newly formed soliton experiences less collisions 

with the accelerating Airy tail, as shown in the propagation images in Figure ‎4.7. 

Therefore, the Sech(·) fit process was started from a different propagation distance for 

every truncation value.   
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From the soliton fit data we see that the emergent soliton parameters do not 

experience significant variations for different truncation values, as shown in the soliton 

parameters evolution curves in Figure ‎4.8(a-b). However, the soliton mean peak time 

position does shift considerably from the launched Airy peak position, and this shift 

increases for smaller truncation values (see Figure ‎4.8(c)). This behavior is explained 

by the interaction between the formed soliton from the main lobe and the accelerating 

lobes of the Airy tail, which constitute collision perturbations to the soliton and cause 

temporal shift of the soliton in the direction opposed to the accelerating lobes ‎[20]. 

This temporal shift to earlier times depends on the perturbation energy, which 

increases for small truncation coefficient values. It is important to note that even 

without perturbing lobes, i.e. while propagating Airy with strong truncation (see Figure 

‎4.9), the soliton is not necessarily formed at the launched Airy peak position because 

of the acceleration that the original pulse undergoes before the soliton is shed. Also, 

the launched Airy peak time position is not constant with different truncation 

coefficients (dashed red line in Figure ‎4.8(c)), as a result of a shift from the 

multiplication by the exponential apodization function.  
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Figure ‎4.8 – Effect of different launched truncation values on oscillations of (a) soliton width and (b) soliton 

peak phase, (c) soliton peak time position as function of truncation coefficient. Note that Airy peak time 
position at launch is truncation value dependent, as evidenced by the dashed red line. 
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Figure ‎4.9- Propagation image of strongly truncated Airy pulse in the nonlinear regime. The temporal shift 

of the emergent soliton from the initial peak position is noticeable.  
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The accelerating wavefront 

The extent to which the truncated Airy maintains its form and continues to accelerate 

before dispersing strongly depends on the truncation coefficient. As in the previous 

section, we compared the linear and the nonlinear propagations in order to investigate 

the Airy’s accelerating wavefront behavior for different truncation values. In the linear 

propagation regime, the truncation coefficient determines both the distance at which 

the accelerating wavefront is still distinguishable, and the total Airy energy according 

to 1/2(8 )AiryE a   ‎[4]. In our investigation range for truncation coefficient, the linear 

Airy varies widely.  

After tracking the accelerating wavefront trajectory for every truncation value, we 

compare the main lobe trajectory and peak power under the linear and the nonlinear 

propagation regimes (Figure ‎4.10). The main finding here is that the intensity of the 

accelerating main lobe in the nonlinear regime (green curves) first experiences SPM 

and focuses to the same peak power (with no dependence on truncation value). This 

peak is then shed to the soliton and the remaining accelerating wavefront immediately 

after the soliton shedding is at lower power compared to the linear propagation case. 

However, as a consequence of chromatic dispersion, the high frequency components 

travel slower and eventually the leading wavefront main lobe re-emerges and matches 

the main-lobe power of the linear propagation case (the Airy self-healing property). In 

spite of this wavefront matching between the linear and nonlinear propagations we see 

that in the nonlinear propagation the accelerating main lobe remains distinguishable for 

longer distances than in linear propagation for a given truncation value. This finding is 

related to the differences between the radiation energy distribution in the nonlinear and 

in the linear propagations. In the linear propagation (see example in Figure ‎1.6(b)) the 

dispersed Airy intensity roughly converges to a Gaussian distribution in time with 

propagation distance that eventually (after a certain distance) engulfs the accelerating 

main lobe. In the nonlinear propagation the dispersive radiation intensity is no longer 

Gaussian distributed due to the soliton formation and the energy centering about it, 

making the accelerating peak visible for longer propagation distance.    
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Figure ‎4.10 – Airy accelerating wavefront trajectories in time-distance space (blue) and in intensity-distance 

space (green) for (a) a=0.01, (b)a=0.04 and (c)a=0.08. 

As the emergent soliton has roughly the same energy for all truncation values, its 

relative energy fraction in the launched pulse energy is larger for increasing truncation 

values (Figure ‎4.11(a)), therefore the relative energy fraction in the accelerating Airy 

wavefront decreases (Figure ‎4.11(b)). In the linear propagation regime the accelerating 

Airy energy always asymptotically approaches one half of the whole pulse energy, 

although its energy growth rate is truncation factor dependent. In the nonlinear case the 

delayed Airy energy fraction decreases from this value as the truncation is growing, as 

the nearly constant soliton energy is missing. 
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Figure ‎4.11 – Examples of energy evolution along propagation distance of (a) the relative energy of the 

emergent soliton (the soliton energy itself is hardly dependent on truncation coefficient) and (b) accelerating 

wavefront.  

4.3 Soliton time position for power and truncation 

In the previous sections we showed that: (1) the emergent soliton time position is at 

earlier times when the launched power increases (at fixed truncation) due to quicker 

build-up of a soliton. At lower powers, self-focusing results in the eventual build-up of 

the soliton, but as the conditions materialize the main lobe is undergoing the ballistic 

trajectory leading to soliton shedding at a later time position. The emergent soliton 

time position is at earlier times when the truncation coefficient decreases (at fixed 

launched power) due to collision perturbations with the accelerating tail lobes. The 

time shift associated with collision perturbations depends on the energy; hence higher 

(a) 
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truncation coefficients result in lower Airy tail energies and reduced soliton time shifts. 

These two effects are graphically depicted in Figure ‎4.12(a). 

To verify that these two effects independently and consistently occur, we varied 

both the Airy launched power and the truncation coefficient over our investigation 

range (Figure ‎4.12 (b)). Indeed we see this trend continuing; the emergent soliton mean 

time position shifts to earlier (later) times for smaller (larger) truncation coefficients 

and for higher (lower) launched power levels. These results reinforce our finding that 

soliton  is shed at an earlier time when the launched power is higher, and that collisions 

with the accelerating Airy tail lobes shift the position in the direction counter to the 

acceleration, i.e. towards earlier times. 

 Launched power (R)

T
ru

n
ca

ti
o

n
 c

o
ef

fi
ci

en
t

 

 

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.02

0.04

0.06

0.08

0.1

-1.4 (Early)

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7 (Late)

(a) (b) 

 

Figure ‎4.12 – (a) Schematic illustration of the sources of temporal shift of the emergent Soliton. (b) 

Distribution of Soliton mean time position as a function of truncation coefficient and launched power in our 

investigation range. 

4.4 Preliminary results of higher launched power Airy 

propagation 

By increasing the Airy launched power above R=2 and simulating its propagation, 

we examined if there is any trend change in the breathing behavior of the emergent 

soliton. As in the main part of the research, the launched power was gradually 

increased with increments of 0.1 up to R=3. In Figure ‎4.13(a) we can see the soliton 

peak evolution along the propagation distance for various R values. It can be seen 

clearly that the trend of period length decreasing with increased launched power is 

maintained, which is explained by the fact that as the formed soliton peak power is 

higher it accumulates self-phase modulation faster and therefore the oscillations 

beating against the background radiation occur at higher rate- i.e. shortening of the 

oscillations period length. On the other hand, the modulation depth of the oscillations 

gets a minimal value when the launched power is around R=2.7 and then it starts to 
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increase again with the launched power. This finding is very surprising and intriguing, 

since this launched power value does not have any uniqueness apparently. 
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Figure ‎4.13- (a) Emergent soliton peak power oscillations along propagation distance for select R values. (b) 

Modulation depth of soliton oscillation as a function of extended launched power range.  

Similar oscillatory results were shown in ‎[17], where the launched pulse was a 

soliton with small gradually-changed excess energy and therefor it exhibits oscillatory 

behavior during propagation. The period length of the oscillations decreased with the 

launched power, but the minimal modulation depth of the soliton oscillations were 

obtained when the launched conditions of the propagation were the closest to the ideal 

soliton, i.e. when the perturbation was the smallest. 

In our case, despite the fact that the initial conditions are always far from ideal 

soliton, we found the launch condition best matched to an unperturbed emergent 

soliton, exhibiting minimal modulation depth oscillations. We can assume from the 

mentioned research that in this situation the launched energy is divided perfectly to the 

soliton part and to the accelerating part, such that all the residual energy is diverted to 

the continuum, which is orthogonal to the soliton. 

Trying explaining this phenomenon from the energy aspect, we compared the 

energy of the launched Airy pulse main lobe and the energy of the emergent soliton. 

The comparison results are shown in Figure ‎4.14. Despite our expectation to see 

relation between main lobe energy and emergent soliton stability (low modulation 

depth), these results do not explain the minimal modulation depth value at R=2.7, as 

we do not see a special relation between the launched Airy main lobe energy and the 

emergent soliton energy at this launched power value.  An additional intriguing finding 

is that when R=2 the emergent soliton energy is the closest to the emergent soliton 

energy, but it cannot be explained by the known propagation properties of this 

launched power which was investigated and shown along this work. 

(a) (b) 
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Figure ‎4.14 – Comparison between launched Airy main lobe energy and emergent soliton energy.  

Extending of the Airy launched power range further is also expressed in shedding 

of two additional weaker solitary waves at both higher and lower center frequencies, as 

shown in the propagation image for R=4 in Figure ‎4.15.     
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Figure ‎4.15 – Intensity distributions as a function of time and propagation distance for R=4, showing 

multiple soliton shedding at high launched peak powers. 

These results should be investigated further in future work as well as the behavior 

of other parameters of the Airy pulse evolution in the extended power range.  
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5 Discussion and summary 

 

In this research we investigated the propagation of a truncated temporal Airy pulse 

in nonlinear Kerr media. The phenomena of soliton shedding from the original Airy 

pulse under sufficiently strong excitation was already identified ‎[11], but in this work 

we investigated in details the properties of the soliton and the remaining Airy radiation. 

We characterized the emergent soliton parameters under different truncation and power 

conditions and identified the mechanisms at play, in accordance to processes known 

from literature. The soliton parameters perform oscillations due to the presence of 

background radiation from the dispersed Airy pulse. The temporal position of the 

emergent soliton depends both on the Airy launched power and truncation coefficient, 

due to the location of the shedding event and the interaction with the accelerating Airy 

tail. We also observed the SPM influence on the accelerating Airy main lobe, and we 

found that the SPM has large effect on the accelerating main lobe visibility in 

comparison the linear truncated Airy propagation. Finally, we found that the energy 

distribution of the Airy pulse along the propagation depends on the launched power 

and the truncation degree.  

We studied the soliton shedding phenomena for relatively intense launched Airy 

pulses that conform to the nonlinear Schrodinger equation (eq. 2.12) which is accurate 

for pulses of 5ps duration and longer. This research avenue can continue to even higher 

and shorter pulses, however eventually the well-understood phenomena explored here 

starts to break down.  For proper simulation of short Airy pulse excitation, one should 

also add additional terms to account for higher-order nonlinear effects such as Raman 

scattering and self-steepening, and for the effect of third order dispersion. 
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7 Appendix  

7.1 Appendix A- Matlab code 

Note: except for small variations, this Matlab code was written by Amitay Rudnick.  

for R=0.1:0.1:3; 
     

% Pulse  
a=0.0335;  
k_p=0.286895-0.58008*a+ 0.756411*a^2;%Normalization factor for 

peak power according to the truncation coefficient 
PoAiry=R/k_p;%A Different offset is  required for different 

values of the truncation coefficent. 
To_Airy=1; 
AoAiry=sqrt(PoAiry);%Peak Amplitude Airy 
 

%Fiber 
beta2=-1; %Fiber quadratic dispersion coefficent [sec^2/Km]. 
beta3=0; %Third order dispersion coefficent[sec^3/Km]. 
gamma=1; %Fiber nonlinear coefficent [1/Km*W]. 
alpha=0; %fiber loss coefficent,gain=alph<0[1/Km]. 

  
% Length scales definitions. 

  
Ld=(To_Airy^2)/abs(beta2) ;%Dispersion distance [Km]. 
Lnl=1/(gamma*R);%Nonlinear distance [Km]. 
Ld_beta3=To_Airy^3/abs(beta3); % Dispersion distance third order 

[Km]. 

  
if Ld>Ld_beta3; 
    Ld=Ld_beta3; 
end 

  
%Program definitions 
P_D=50*Ld; %Propagation Distance acording Kilomters. 
Samples_D=500;%The number of samples along the distance. 
Increment=P_D/Samples_D; 
sigma=To_Airy/sqrt(2); 
beta_RC=0.01; % Beta factor for the raised cosine window. 
Time_Factor_Dispersion=25; 
%Flags 
Flag_Time_Window='on'; 
Window_Time_Shift=200; 

 
% Chossing time window size. 
%if Ld<=Lnl; 
    

Tstop=round(Time_Factor_Dispersion*(sqrt(1+(P_D*beta2/(sigma^2*2

))^2+(1/2)*(beta3*P_D/(4*sigma^3))^2))*sigma-Window_Time_Shift); 

%Dispersion propagation. 
Tstart= round(-

Time_Factor_Dispersion*(sqrt(1+(P_D*beta2/(sigma^2*2))^2+(1/2)*(

beta3*P_D/(4*sigma^3))^2))*sigma-Window_Time_Shift); 
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clear sigma 
%Program definitions (continued) 
Tres=0.1; 

  
Z=0:Increment:P_D; %Creation of the distance Array. 
T=Tstart:Tres:Tstop-Tres; %Creation of the time array 
Wres=2*pi/(Tstop-Tstart);% Angular frequency resolution 
W=Wres*(-length(T)/2:1:(length(T)/2-1));%Angular frequency 

array. 

  

  
% Choosing propagation constant. 
if min(Ld,Lnl)<=P_D 
    if Increment<=min(Ld,Lnl)/1000 
        h=Increment; 
    else Increment>min(Ld,Lnl)/1000; 
        K=ceil(Increment/(min(Ld,Lnl)/1000)); 
        h=Increment/K; 
    end 
else min(Ld,Lnl)>P_D; 
    h=Increment; 
end 

  
clear K  
 

%  Time window function 
if strcmp(Flag_Time_Window,'on') 

  
      Number_Of_Indices_For_Window=length(T); %Window Size 
      Raised_cosine =zeros(1,length(T)); 

Start_Position_Raised_cosine=(length(T)- 

Number_Of_Indices_For_Window)/2+1; 
          

Stop_Position_Raised_cosine=Number_Of_Indices_For_Window+S

tart_Position_Raised_cosine-1; 
    

Raised_cosine(Start_Position_Raised_cosine:Stop_Position_R

aised_cosine)=tukeywin(Number_Of_Indices_For_Window,beta_R

C)'; 

  
End 

 
U_in=AoAiry*airy(T/To_Airy).*exp((T/To_Airy)*a) 

Aw=Tres*fftshift(fft(fftshift(U_in))); 

  

 
Propagated_Pulse_Time_Domain_Matrix=zeros(length(Z),length(T));% 

saving the pulse data after every increment 
Propagated_Pulse_Frequency_Domain_Matrix=zeros(length(Z),length(

W)); 
Energy_Of_Pulse=zeros(length(Z),1);  
Array_Counter=1; 

 

             
for Dis_Counter=0:Increment:P_D; % Distance in Kilometers,data 

saved at the end of each intervals. 

  
                % Split-Step propagation between intervals. 
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                for Dis_SS_Counter=h:h:Increment 

  
                        case 'off' 

  
                            Aw=Aw.*exp(-

alpha/2*(h/2)+i*(beta2/2)*W.^2*(h/2)-i*(beta3/6)*W.^3*(h/2)); 

%Dispersion propagation effects. 
                            A=ifft(fftshift(Aw))/Tres; 
                            A=fftshift(A); 
                            A=A.*exp(i*gamma*((abs(A)).^2)*(h)); 

%Nonlinear propagation effects. 
                            Aw=Tres*fftshift(fft(fftshift(A))); 
                            Aw=Aw.*exp(-

alpha/2*(h/2)+i*(beta2/2)*W.^2*(h/2)-i*(beta3/6)*W.^3*(h/2)); 

%Dispersion propagation effects. 

  
                        case 'on' 

  
                            Aw=Aw.*exp(-

alpha/2*(h/2)+i*(beta2/2)*W.^2*(h/2)-i*(beta3/6)*W.^3*(h/2)); 

%Dispersion propagation effects. 
                            A=ifft(fftshift(Aw))/Tres; 
                            A=fftshift(A); 
                            A=A.*exp(i*gamma*((abs(A)).^2)*(h)); 

%Nonlinear propagation effects. 
                            A=A.*Raised_cosine; 
                            Aw=Tres*fftshift(fft(fftshift(A))); 
                            Aw=Aw.*exp(-

alpha/2*(h/2)+i*(beta2/2)*W.^2*(h/2)-i*(beta3/6)*W.^3*(h/2)); 

%Dispersion propagation effects. 

  
                    end 

  
                end % End split step increments 

  
A=ifft((fftshift(Aw)))/Tres; % Inverse Fourier transform. 
A=fftshift(A); 

  
Propagated_Pulse_Time_Domain_Matrix(Array_Counter,:)=A; %  

saving of the output pulsein the time domain. 
Propagated_Pulse_Frequency_Domain_Matrix(Array_Counter,:)=Aw;% 

saving on the output pulse in the frequency domain. 
% Energy calculation for each step. 

  
Energy_Increment=trapz((abs(A)).^2)*Tres; 

  
Energy_Of_Pulse(Array_Counter)=Energy_Increment; 

  
Array_Counter=Array_Counter+1; 

  
waitbar(Dis_Counter/P_D); 

  
end %End of propagation to distance (P_D). 

 
end 
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7.2 Appendix B- published paper 

The paper can be find in the URL 

http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-18-17298 

Citation: 

Yiska Fattal, Amitay Rudnick, and Dan M. Marom, "Soliton shedding from Airy 

pulses in Kerr media," Opt. Express 19, 17298-17307 (2011) 
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1. Introduction 

Airy pulses [1], whose electric field temporal profile is defined by an Airy function which is a 
one-sided, oscillating function having infinite energy, are a solution to the linear dispersion 
equation 
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and exhibit two interesting features: during propagation the waveform maintains its shape in 
the presence of dispersion and its wavefront accelerates in time (or travels along a ballistic 
trajectory) in a time frame moving at the group velocity. However, true Airy pulses are 
impractical as they contain an infinite amount of energy. By apodizing the Airy pulse, i.e. 
truncating the semi-infinite oscillations, in our case with a decaying exponential envelope, the 
waveform maintains its two unique properties over an extended propagation range despite its 
finite energy (Fig. 1(a)) [2]. Truncated Airy pulses occur naturally if a Gaussian pulse is 
propagated in a fiber at the zero dispersion point, under the influence of cubic dispersion. 

In complete analogy to the Airy pulse solution to the dispersion Eq. (1), spatial Airy 
beams are a solution to the paraxial equation. Spatial Airy beams have been investigated 
extensively in the last few years, and found to be useful for various applications such as 
optical micromanipulation [3], optical switching [4], plasma channel generation [5], and laser 
filamentation [6]. More recently, temporal Airy pulses are being investigated, in the context of 
spatiotemporal light bullets in linear conditions [7] and in nonlinear conditions [8], and in the 
context of one dimensional Airy pulse propagation, under the influence of strong nonlinearity 
giving rise to supercontinuum and solitary wave generation [9]. 

In this study, we analyze temporal Airy pulse propagation in media exhibiting Kerr 
nonlinearity as occurring in single mode silica fibers, leading to the phenomena of self-phase 
modulation (SPM) and anomalous dispersion. The influence of the Kerr nonlinear effect on 
spatial Airy beams was investigated under relatively weak parameters and transient narrowing 
of the Airy main lobe—caused by SPM—was observed [10]; however, we are interested in 
operating under much higher intensities where the nonlinear effect results in soliton shedding 
from the Airy pulse and not just a small perturbation of the Airy beam. Although we analyze 
temporal Airy pulse propagation in fiber, our results are also valid for spatial Airy beams 
diffracting in Kerr media on account of the isomorphism between the dispersion Eq. (1) and 
the paraxial diffraction equation. 

 

Fig. 1. (a) Intensity distribution as a function of time and propagation distance for truncated 
Airy pulse in the linear regime (or low launch power). (b) Launched Airy pulse in time (blue 
solid curve), compared to a soliton pulse (red dashed curve). 

The evolution of light pulses in single-mode dispersive-nonlinear medium is governed by 
the Nonlinear Schrödinger Equation (NLSE), 
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where β2 is the dispersion coefficient, γ is the nonlinear coefficient and A is the wave 
amplitude that depends on local time-T, and distance-z. Due to the addition of the nonlinear 
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potential (or SPM term) in the NLSE, the Airy function is no longer a valid solution and we 
cannot predict analytically the Airy pulse evolution. The Soliton, on the other hand, is a well-
known solution of the NLSE. For the canonical first order case, its profile 

is 2

0 0 2 0
Sech( / ) Exp( / )P t T iz Tβ⋅ , where P0 is peak power and T0 is duration and it is 

obtained only when there is equilibrium between the dispersion and the nonlinear effect, 
leading to the condition 
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2
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β

γ
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The soliton then maintains its form and power level, provided no losses are present. Cases 
of perturbed soliton propagation (i.e. when there are small deviations from the condition set in 
Eq. (3) were extensively investigated [11–15], which help us interpret the emergent soliton 
behavior in our simulations. 

In this paper, we propagate Airy pulses with different intensities and apodization values 
and investigate both the resulting ‘emergent soliton’ parameters, as well as the behavior of the 
residual Airy pulse. All our simulations are based on numerical solutions of the NLSE, using 
the split-step Fourier method (SSFM). This numerical method was chosen due to its efficiency 
in simulating one-dimensional pulse propagation [16]. 

1.1. Normalization terms 

In our simulations we used the normalized NLSE form [16] 

 2
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z T
β
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  (4) 

where |β2| = γ = T0 = 1, and the launched Airy pulse profile is defined as: 

 ( ) ( ) ( ), 0 ( ) Ai ExppA T z R K a T a T= = ⋅ ⋅ ⋅ ⋅   (5) 

where 0‹a«1 is the truncation coefficient, and Kp(a) is a truncation-dependent factor that sets 
the pulse peak intensity to 1 for any a value . This factor was numerically calculated and 
found to be in parabolic dependence with the truncation coefficient. T is the time variable in a 

frame of reference that moves with the wave group velocity, i.e.
g

T t z v= − , and R is a 

dimensionless parameter we vary for scaling the Airy power. At R=1 the Airy main lobe 
intensity profile looks quite similar to the fundamental soliton, as shown in Fig. 1(b). 

We measure the propagation distance in Ld units, defined as 2

0 2d
L T β= , which in our 

normalized coordinates equals 1. 

2. Effects of launched Airy power 

In order to investigate the influence of Airy launched power on its evolution, we varied the 
scaling parameter R in the range 0.1-2 and for every R value we propagated the pulse using 
the SSFM algorithm. Figure 2 shows pulse evolution examples for select R values. At low 
launched power, the Airy pulse performs the acceleration in time and subsequently it 
succumbs to dispersion. However, when R is sufficiently large (above 0.9) a stationary soliton 
pulse is formed out of the centered energy about the Airy main lobe. The soliton exhibits 
periodic oscillations in the soliton amplitude and width as a function of propagation distance. 
In addition, we witness the resilience of the temporal Airy waveform to shedding of a fraction 
of the energy as a soliton; the wavefront continues to propagate along a parabolic trajectory. 
Similar resilience has been shown in main lobe masking for spatial Airy beams [17] and in 
supercontinuum generation for temporal Airy pulses propagation [9]. 
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Fig. 2. Intensity distributions as a function of time and propagation distance in the nonlinear 
propagation regime for: (a) R = 0.8, (b) R = 1.2, and (c) R = 2. 

2.1. The emergent soliton 

Unsurprisingly, the shed pulse profile well conforms to a hyperbolic-secant function, or that 
of a soliton with background radiation. We fit a sech(·) + background radiation profile at 
every propagation distance and track the emergent soliton peak power, duration and time 
position along the propagation distance. We find that the power × duration

2
 product oscillates 

about the equilibrium condition (= 1) defined in Eq. (2). These oscillations about the stable 
soliton are known to arise as a result of interference between dispersive background radiation 
and the formed soliton [11,12]. 

We examined the relations between the soliton oscillations and the launched Airy peak 
power. In Fig. 3(a) the oscillations of soliton width are shown as a function of propagation 
distance for select R values. The pulse width narrows and the oscillations period decreases 
with higher launch power. The decreasing oscillation period with increasing launch power is 
depicted in Fig. 3(b). Similar behavior was reported in [12], where the amount of excess 
energy that was supplied to the launched soliton was expressed in the evolved soliton 
oscillations period. Another property of the oscillations is the modulation depth that sharply 
decreases with increased initial peak power (Fig. 3(c)). We can relate the low modulation 
depth to the greater stability of the formed soliton and conclude that high launched peak 
power is required for stable soliton formation. 
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Fig. 3. (a) Oscillations of soliton width for different launched peak power, (b) soliton 
oscillations length of period as a function of launched peak power, (c) soliton oscillations 
modulation depth as a function of launched peak power. 

Additional soliton parameters as soliton peak time position and phase also oscillate in 
similar manner as the peak power and width. Figures 4(a, c) show the evolution of time 
position and phase as a function of propagation distance (phase fluctuations are plotted after 
subtracting the soliton’s accumulated linear phase term). These oscillations are the result of 
interaction with the background radiation as explained in [13] and demonstrated in [14] for 
the problem of background radiation that is formed by soliton amplification in optical 
communication. 

From the results in Fig. 4(a) we see that the position of the emergent soliton is also 
dependent on launch power. We plot the mean time position of the emergent soliton in Fig. 
4(b). More intense excitation results in the soliton appearing at an earlier time. This 
phenomena is explained by the fact that for low values of R a relatively long time is required 
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for accumulation of enough energy by SPM for the soliton formation and shedding, and 
during this time the Airy pulse is accelerating and ‘carries’ the accumulating energy with it to 
later times. For larger R values there is enough energy in the Airy main lobe for soliton 
formation and shedding at an early point. 
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Fig. 4. (a) Soliton peak time position along propagation distance, (b) mean soliton peak time 
position as a function of launched power. Note that Airy peak time position at launch is at t = 

−1. (c) soliton peak phase oscillations along propagation distance for select launched powers. 

2.2. The accelerating wavefront 

As seen in Fig. 2, the Airy wavefront continues to exhibit the parabolic acceleration in time, 
even under the influence of Kerr effect and after shedding energy to the soliton. To study 
whether this acceleration continues with the properties of the linear propagation we compared 
the nonlinear propagations to linear, as the intensity is scaled with the R parameter. Note that 
the linear Airy pulse evolution is identical for every intensity value. 

These linear propagation results are compared to the nonlinear ones by tracking the main 
lobe acceleration trajectory for each case and extracting information about its peak power and 
position. Furthermore, we calculate the accelerating energy distribution along propagation 
distance. 

Figure 5 shows the Airy main lobe parabolic trajectory and peak power as a function of 
propagation distance, under linear and nonlinear propagation, for three select launched power 
cases. We see that the wavefront continues to exhibit the parabolic trajectory in time (blue 
curves), which is almost identical in the linear and the nonlinear propagation cases, although 
the nonlinear peak slightly trails the linear peak, on account of a delay associated with the 
energy shedding to the soliton. The intensity evolution of the accelerating wavefront is shown 
in green. We can see that in the nonlinear propagation its peak power performs decaying 
oscillations, as opposed to the monotonic decay in the linear case. The oscillations of the peak 
power in the nonlinear case are known to be a result of the interplay between the SPM and the 
dispersion. Similar influence of SPM on the Airy accelerating main lobe was already observed 
in [10]. However, the peak power oscillations there exhibit faster decay due to a relatively 
large truncation coefficient, 0.1-0.3 vs. 0.0335 in the current simulations. 

 

Fig. 5. – Airy accelerating tail trajectories in time-distance space(blue) and in intensity-distance 
space (green) for (a) R = 1, (b) R = 1.3 and (c) R = 2. 

Next, we investigate the energy distribution of the accelerating wavefront. It is important 
to note that the simulations preserve the launched pulse energy along the propagation 
distance, as well as preservation of 'center of gravity' (first order moment) position according 
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to the finite pulse energy and the uniformity of the media [2]. The power spectrum of the Airy 
pulse is symmetric about the central frequency, and upon propagation in anomalous dispersive 
media the high frequencies components are delayed (low frequency components are 
advanced) with respect to central frequency group delay (in anomalous media), such that the 
pulse total energy is eventually divided to two equal fractions about T = 0- half of the energy 
at each direction. In the presence of Kerr nonlinearity, considerable part of the pulse energy is 
shed to the soliton that propagates at the group velocity, and the remaining energy disperses in 
opposite directions with less than a half of the launched energy dispersing to each side (due to 
soliton shedding). 

The energy that is carried in the accelerating wavefront (delayed components) was found 
by summing the energy over positive time at every distance sample. These calculations were 
performed with both the linear and nonlinear propagations. 

Figure 6(a) shows the delayed energy evolution of the accelerated Airy wavefront along 
the propagation distance for various Airy launched powers. The energy is normalized by the 
launched pulse energy, such that we can see the relative energy portion of the accelerating 
wavefront for linear and nonlinear cases. For all R values, the energy evolution of the linear 
propagations coincides to one curve that asymptotically approaches the value of half launched 
pulse energy, according to its linear nature. For the nonlinear propagations we clearly see that 
as R grows the fractional energy amount that is delayed is decreasing, where the oscillatory 
behavior is due to the soliton oscillations which take place in the boundary of the right half 
propagation plane. Those curves and those of Fig. 6(b), which chart the energy evolution of 
the formed soliton for different R values, show the fact that the formed soliton not only has 
more intensity when R is growing, but also carries a larger energy fraction from the whole 
pulse. This can also be seen in Fig. 6(c), where the mean soliton relative energy was 
calculated for every R value. From Figs. 6(b-c) we also see the energy preservation—the 
normalized delayed energy is missing energy that is about half of the shed soliton energy, 
where the other half originates from the faster propagating energy components. When R = 2, 
for example, the soliton energy fraction is about 0.39 and the missing fractional energy 
amount from the delayed energy is about 0.19, half of 0.39. 
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Fig. 6. (a) Airy tail relative energy for the linear and the nonlinear cases, (b) soliton relative 
energy, (c) soliton relative energy as function of launched power. 

3. Truncation coefficient effect 

The ability of Airy pulses to exhibit their unique features is strongly related to the degree of 
truncation in the apodization function. As the truncation is stronger, the Airy pulse quickly 
loses the unique features of the Airy pulse and disperses. Here we wish to examine how the 
truncation degree influences the soliton shedding and pulse propagation under the Kerr effect. 

We employ the same pulse profile defined in Eq. (4), fixing the intensity scaling parameter 
R to 1.5 while varying the truncation coefficient in the range 0.01-0.1, as shown in Fig. 7(a), 
and propagate the apodized Airy for every truncation value. Figures 7(b-c) show two 
examples of the Airy pulse evolution in time-distance space. We see that when the truncation 
is small the Airy original features as self-similarity and acceleration in time are more 
noticeable. The influence of the truncation degree on emergent soliton properties and on the 
accelerating wavefront was examined in the same manner as in the previous section. 
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Fig. 7. (a) Launched Airy amplitude for several truncation values, (b)-(c) Intensity distributions 
as a function of time and propagation distance for: (b) a = 0.01, (c) a = 0.09. 

3.1. The emergent soliton 

Larger truncation coefficient values make the exponential apodization of the Airy function 
stronger and the Airy tail is shortened; there is a negligible effect on the main Airy lobe, as 
shown in Fig. 7(a). Hence the emergent soliton, which forms from the main lobe, achieves 
stability faster (after a shorter propagation distance) in cases of larger truncation coefficients, 
as the newly formed soliton experiences less collisions with the accelerating Airy tail, as 
shown in the propagation images in Fig. 7. Therefore, the Sech(·) fit process was started from 
a different propagation distance for every truncation value. 

From the soliton fit data we see that the emergent soliton parameters do not experience 
significant variations for different truncation values, as shown in the soliton parameters 
evolution curves in Figs. 8(a-b). However, the soliton mean peak time position does shift 
considerably from the launched Airy peak position, and this shift increases for smaller 
truncation values (see Fig. 8(c)). This behavior is explained by the interaction between the 
formed soliton from the main lobe and the accelerating lobes of the Airy tail, which constitute 
collision perturbations to the soliton and cause temporal shift of the soliton in the direction 
opposed to the accelerating lobes [15]. This temporal shift to earlier times depends on the 
perturbation energy, which increases for small truncation coefficient values. It is important to 
note that even without perturbing lobes (i.e. while propagating Airy with strong truncation), 
the soliton is not necessarily formed at the launched Airy peak position because of the 
acceleration that the original pulse undergoes before the soliton is shed. Also, the launched 
Airy peak time position is not constant with different truncation coefficients (dashed red line 
in Fig. 8(c)), as a result of a shift from the multiplication by the exponential apodization 
function. 
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Fig. 8. Effect of different launched truncation values on oscillations of (a) soliton width and (b) 
soliton peak phase, (c) soliton peak time position as function of truncation coefficient. Note 
that Airy peak time position at launch is truncation value dependent, as evidenced by the 
dashed red line. 

3.2. The accelerating wavefront 

The extent to which the truncated Airy maintains its form and continues to accelerate before 
dispersing strongly depends on the truncation coefficient. As in the previous section, we 
compared the linear and the nonlinear propagations in order to investigate the Airy’s 
accelerating wavefront behavior for different truncation values. In the linear propagation 
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regime, the truncation coefficient determines both the distance at which the accelerating 

wavefront is still distinguishable, and the total Airy energy according to 
1/2

(8 )
Airy

E aπ −
=  [2]. 

In our investigation range for truncation coefficient, the linear Airy varies widely. 
After tracking the accelerating wavefront trajectory for every truncation value, we 

compare the main lobe trajectory and peak power under the linear and the nonlinear 
propagation regimes (Fig. 9). The main finding here is that the intensity of the accelerating 
main lobe in the nonlinear regime (green curves) first experiences SPM and focuses to the 
same peak power (with no dependence on truncation value). This peak is then shed to the 
soliton and the remaining accelerating wavefront immediately after the soliton shedding is at 
lower power compared to the linear propagation case. However, as a consequence of 
chromatic dispersion, the high frequency components travel slower and eventually the leading 
wavefront main lobe re-emerges and matches the main-lobe power of the linear propagation 
case (the Airy self-healing property). In spite of this wavefront matching between the linear 
and nonlinear propagations we see that in the nonlinear propagation the accelerating main 
lobe remains distinguishable for longer distances than in linear propagation for a given 
truncation value. This finding is related to the differences between the radiation energy 
distribution in the nonlinear and in the linear propagations. In the linear propagation (see 
example in Fig. 1(a)) the dispersed Airy intensity roughly converges to a Gaussian 
distribution in time with propagation distance that eventually (after a certain distance) engulfs 
the accelerating main lobe. In the nonlinear propagation the dispersive radiation intensity is no 
longer Gaussian distributed due to the soliton formation and the energy centering about it, 
making the accelerating peak visible for longer propagation distance. 

 

Fig. 9. Airy accelerating wavefront trajectories in time-distance space (blue) and in intensity-
distance space (green) for (a) a = 0.01, (b)a = 0.04 and (c)a = 0.08. 

As the emergent soliton has roughly the same energy for all truncation values, its relative 
energy fraction in the launched pulse energy is larger for increasing truncation values (Fig. 
10(a)), therefore the relative energy fraction in the accelerating Airy wavefront decreases (Fig. 
10(b)) In the linear propagation regime the accelerating Airy energy always asymptotically 
approaches one half of the whole pulse energy, although its energy growth rate is truncation 
factor dependent. In the nonlinear case the delayed Airy energy fraction decreases from this 
value as the truncation is growing, as the nearly constant soliton energy is missing. 
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Fig. 10. Examples of energy evolution along propagation distance of (a) the relative energy of 
the emergent soliton (the soliton energy itself is hardly dependent on truncation coefficient) 
and (b) accelerating wavefront. 
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4. Soliton time position for power and truncation 

In the previous sections we showed that: (1) the emergent soliton time position is at earlier 
times when the launched power increases (at fixed truncation) due to quick build-up of a 
soliton. At lower powers, self-focusing results in the eventual build-up of the soliton, but as 
the conditions materialize the main lobe is undergoing the ballistic trajectory leading to 
soliton shedding at a later time position. And (2) the emergent soliton time position is at 
earlier times when the truncation coefficient decreases (at fixed launched power) due to 
collision perturbations with the accelerating tail lobes. The time shift associated with collision 
perturbations depends on the energy; hence higher truncation coefficients result in lower Airy 
tail energies and reduced soliton time shifts. These two effects are graphically depicted in Fig. 
11(a). 

To verify that these two effects independently and consistently occur, we varied both the 
Airy launched power and the truncation coefficient over our investigation range (Fig, 11(b)). 
Indeed we see this trend continuing; the emergent soliton mean time position shifts to earlier 
(later) times for smaller (larger) truncation coefficients and for higher (lower) launched power 
levels. These results reinforce our finding that soliton is shed at an earlier time when the 
launched power is higher, and that collisions with the accelerating Airy tail lobes shift the 
position in the direction counter to the acceleration, i.e. towards earlier times. 
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Fig. 11. (a) Schematic illustration of the sources of temporal shift of the emergent Soliton. (b) 
Distribution of Soliton mean time position as a function of truncation coefficient and launched 
power in our investigation range. 

5. Summary 

In this paper we investigated the propagation of a truncated temporal Airy pulse in nonlinear 
Kerr media. The phenomena of soliton shedding from the original Airy pulse under 
sufficiently strong excitation was already identified [8,9], but in this work we investigated in 
detail the properties of the soliton and the remaining Airy radiation. We characterized the 
emergent soliton parameters under different truncation and power conditions and identified 
the mechanisms at play, in accordance to processes known from literature. The soliton 
parameters perform oscillations due to the presence of background radiation from the 
dispersed Airy pulse. The temporal position of the emergent soliton depends both on the Airy 
launched power and truncation coefficient, due to the location of the shedding event and the 
interaction with the accelerating Airy tail. We also observed the SPM influence on the 
accelerating Airy main lobe, and we found that the SPM has large effect on the accelerating 
main lobe visibility in comparison the linear truncated Airy propagation. Finally, we found 
that the energy distribution of the Airy pulse along the propagation depends on the launched 
power and the truncation degree. 

In this work we studied the soliton shedding phenomena for relatively intense launched 
Airy pulses. This research avenue can continue to even higher launched pulse powers, 
however eventually the well-understood phenomena explored here starts to break down. 
Figure 12 shows the time-space evolution when launching the Airy pulse with a power factor 
of four (R = 4). We see that for such intense excitation three solitons are shed, the main 
soliton in a consistent manner to that described here, and two additional weaker soliton s at 
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both higher and lower center frequencies. This result was still obtained with the standard 
nonlinear Schrodinger equation (Eq. (4)). However, for proper simulation of intense Airy 
pulse excitation, one should also add additional terms to account for higher-order nonlinear 
effects such as Raman scattering and self-steepening. 
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Fig. 12. Intensity distributions as a function of time and propagation distance for R = 4, 
showing multiple soliton shedding at high launched peak powers. 
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ירת ממצא חשוב בהתפתחות פולס האיירי בתווך לא ליניארי הוא שלמרות אובדן האנרגיה לטובת יצ

סוליטון, האיירי ממשיך להציג את המאפיין הייחודי של ההאצה בזמן של חלק מהאנרגיה ובנוסף אנחנו 

 -רואים כי האונה הראשית של הפולס, שתרמה את מרבית האנרגיה ליצירת הסוליטון, משחזרת את עצמה

 מהתחום ומבצעת את התנועה הבליסטית המוכרת -האיירי"מה שמוכר כ"תכונת הריפוי העצמי של 

מלין בין הדיספרסיה לבין תופעת אפנון והליניארי כאשר עוצמתה מתנודדת עד שדועכת כתוצאה מיחסי ג

 הפאזה העצמי.

ג"כ השפעת רמת הקטימה של  חקרתליניאריות על התפתחות הפולס, נ-בנוסף לבדיקת השפעת האי

צאים כי עבור רמת ואנו מ .יתיחד עם השפעת התופעה הלא ליניאר פולס האיירי המשוגר על התפתחותו

האונות המשניות של פולס האיירי  -כלומר הגדלת האנרגיה שנושא הפולס ב"זנב" שלו -קטימה נמוכה

הופכות להיות יותר דומיננטיות, דבר שיש לו השפעה ניכרת על המרחק המאיץ נב המרכיבות את הז

תוצאה מהתנגשויות עם אונות הזנב כ -שלו שעובר הפולס על לאירוע פליטת הסוליטון, על המיקום הזמני

המאיצות משתנה המיקום הזמני בהתאם לכמות האנרגיה שהן נושאות איתן, ועל כמות האנרגיה המאיצה 

 במערכת לעומת כמות האנרגיה הנעה במהירות קבועה בצורת סוליטון.

 



 תקציר

תכונות  2א פתרון של משוואת הדיספרסיה, מפגין צורה הפונקציונלית שלו היפולס מסוג "איירי", שה

היא  הוהשניישמירה על פרופיל זמני קבוע במהלך ההתקדמות בתווך דיספרסיבי,  -: האחתתייחודיו

יחד עם הפולס כלומר לנוע לאורך מסלול פרבולי בתוך חלון זמן הנע  -היכולת להאיץ )ולהאט( בזמן

 במהירות החבורה המאפיינת אותו.

כמאפיינות תנועת חלקיק חופשי במרחב  בהקשר של מכניקה קוונטיתאלו התגלו לראשונה תכונות 

לאחרונה הוצגו תוצאות ת שרדינגר לחלקיק חופשי. מאחר ופונקציית איירי מהווה פתרון של משווא

יש ביטוי גם בתחום קרני האור לאור הדמיון בין  לתכונות אלוחות כי תיאורטיות וניסיוניות המוכי

משוואת שרדינגר לחלקיק חופשי לבין משוואת הדיפרקציה המתארת התקדמות אלומת אור בתווך ולבין 

 זמני בתווך ליניארי )דיספרסיבי(.משוואת הדיספרסיה המתארת התקדמות של פולס 

אינסופית שהוא נושא עימו אולם קטימת אמנם, פולס איירי "אמיתי" אינו בר מימוש בשל האנרגיה ה

פולס איירי כמעט "אמיתי"  את מימושו של האנרגיה באמצעות הכפלה בפונקציה מעריכית מאפשרת

אך לבסוף סובל  -מסוגים אחריםביחס לפולסים  -ששומר על תכונותיו הייחודיות לאורך מרחק ניכר

 פרקציה/דיספרסיה ודועך. ימהשפעת הד

 -ליניאריות של תווך כדוגמת סיב אופטי-ים את ההשפעה של תכונת האיבעבודה זו אנו חוקר

עבור  פולס איירי קטום.של וההתפתחות על ההתקדמות  -(SPMהמתבטאת ב"אפנון פאזה עצמי" )

עוצמות נמוכות, כאשר התופעות הלא ליניאריות לא באות לידי ביטוי ניתן לנבא בצורה אנליטית את 

מגדילים את העוצמה ההתחלתית מן ובכל מרחק התקדמות, אולם כאשר התפתחות הפולס בכל נקודת ז

 של הפולס התופעה הלא ליניארית מתחילה להשפיע וצורת ההתקדמות המוכרת אינה מתקיימת בהכרח. 

 -ע"י הגברה הדרגתית של עוצמת פולס האיירי המשוגר למערכת אנו בוחנים את השפעת העוצמה

אנו מוצאים כי עבור עוצמת שיגור מספיק על התפתחות הפולס.  -ליניאריות-ובעצם את השפעת האי

גדולה, פולס מסוג סוליטון נפלט מתוך פולס האיירי כאשר הפרמטרים של הסוליטון הנפלט תלויים 

כלומר ישנה  -במאפייני פולס האיירי המשוגר. הסוליטון מבצע "נשימות" במהלך ההתקדמות בסיב

סוליטון כתוצאה מיחסי גומלין עם קרינת הרקע. קרינת הרקע השתנות מחזורית של הפרמטרים של ה

תתפה בתהליך יצירת הסוליטון ובמקום זאת התפתחה כמו איירי נובעת משארית אנרגית האיירי שלא הש

עברה דיספרסיה. המחזוריות של הנשימות גדלה עם הגברת עוצמת האור המשוגרת אך ליניארי ולבסוף 

הגדלה נוספת של עוצמת הפולס  ציה( קטנה כאשר העוצמה גדלה.רמת האפנון שלה )עומק המודול

המשוגר מגלה כי ישנה עוצמת שיגור עבורה רמת האפנון היא מינימלית ומעבר לה היא עוברת למגמת 

 עליה, בעוד מגמת העליה במחזוריות הפולס נותרת בעינה.

זמני הוא המיקום ה מאפיין נוסף של הסוליטון הנפלט המושפע מהעוצמה ההתחלתית של האיירי

)הממוצע( של הסוליטון, הנע לזמן יותר מוקדם ככל שעוצמת השיגור גדלה, עקב צבירת אנרגיה מספקת 

 לפליטת הסוליטון כבר בשלב מוקדם בהתפתחות הפולס בעוצמות היותר גבוהות.
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