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Abstract

Optical communications has experienced a rapid development during the last decade. More
bandwidth can be acquired by decreasing the spacing of the optical channels or by increasing
the data rate. Characterization of the optical components and active monitoring of the network
calls for accurate measurement methods. The transfer function of optical components impacts
the performance of communication systems. Analysis and accurate measurement of the transfer

function is therefore essential in optimization of the performance of such systems.

Chromatic dispersion of optical fibers and frequency chirp of the laser transmitters set limits
for the data rate and transmission distance. Measurements of dispersion have traditionally
been performed using a Modulation Phase-Shift (MPS) method. When high RF modulation
frequencies are applied to achieve high resolution an alias error could be introduced. In this
thesis we introduce an apparatus for full complex-amplitude spectral characterization of optical
components and fibers. Based on a modification of the MPS method, we introduce a frequency
dither to the RF modulation drive, allowing us to detect small phase changes thus overcoming the
limitations imposed by the conventional MPS method. Its salient feature is high sensitivity phase
detection enabling the use of a low RF driving frequency as necessary for precise measurement

of components exhibiting fine spectral features such as microresonators and slow light devices.

We analyze the modified MPS technique using the traditional small signal approximation and
compare the results to a full analytic response of the MPS technique. The full analytic response
is useful for optimization of the proposed technique. The characterization apparatus has been
realized in our lab using commercially available optical and electrical components. We have
characterized experimentally the signals passing in the apparatus. Care was taken to prevent
higher RF tones (i.e. above 1lst order) in the Mach-Zehnder Modulator (MZM) output field,
which could interfere with the desired measurement. Moreover, care was taken to prevent RF
leakages in the electronic circuitry, which could interfere with the measurement of weak signals.
We demonstrate the operation of the modified MPS at two operating points, demodulating with
either the same RF carrier or with a doubled one. We measured several component categories
and fibers to demonstrate the measurement technique. Finally, we conclude with the advantages

and disadvantages of the modified technique.

Keywords: Chromatic dispersion, group delay (GD) ripple, modulation phase-shift (MPS) method,

optical variables measurement.
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1 Dispersion of optical components

As of today optical communication systems are already deployed all over the world and are used
to transmit digital data (meaning bits of ’0’ or '1’). Currently these systems are build up from
many different building blocks (optical and electrical), while each building block may distort
the transmitted signal. During transmission in the optical fibers for tens of kilometers the data
may have losses which can be overcome by optical amplification. However the data might be
distorted during transmission due to chromatic dispersion which might cause Inter Symbol In-
terference (ISI). In case of ISI the transmitted data bits broaden and overlap and upon detection
the data will be lost. The current networks are built of transmitter and receiver stations, at
each receiver station the data is being detected and transmitted till it reaches its destination. As
the demand for higher bandwidth increases, the transmitted data is being modulated in higher
frequencies and the allowed chromatic dispersion values decreases significantly. There are dif-
ferent approaches how to deal with chromatic dispersion. The simplest approach is to manage
the chromatic dispersion across the transmitting path while maintaining a small dispersion in
order to avoid accumulation of nonlinear phenomena, in the the optical fibers. Another approach
is to compensate the dispersion in the transmitter station using electronic predistortion and
complex-value modulation. Another approach is to compensate the dispersion at the receiver
station. In order to anticipate these distortions we need to know the complete behavior of each

optical component used in the lightwave transmission system.

The linear characteristics of the optical component can be completely defined by using a complex
transfer function, which can be written as H(w) = B(w) - ¢/*(“) here w is the optical angular
frequency, B(w) is the amplitude response and ¢(w) is the phase response. The complex function

can be calculated analytically or numerically.

Under the assumption of Linear Time-Invariant (LTI) system, group delay is a measure of the
transit time of a signal through a Device Under Test (DUT). Group delay is calculated by
differentiating the phase response of the DUT versus frequency. Another way to say this is
that group delay is a measure of the slope of the phase response. The linear portion of the
phase response is converted to a constant value (representing the average signal-transit time)
and deviations from linear phase are transformed into deviations from constant group delay.
The variations in group delay cause signal distortion. The group delay, 7,4, of the component
is defined as a derivative of the phase response with respect to the angular frequency, w, (the
minus sign is due to the choice of the pulse propagating direction exp{—jwot})

The 1st distortion to the signal is defined as the dispersion parameter, D, it is the derivative of
the group delay with respect to wavelength



The 2nd distortion to the signal is defined as the dispersion slope parameter with respect to
wavelength, S, it is the defined as S = %D. Usually the chromatic dispersion is sufficient in
the case where we are far away from the zero dispersion wavelength. In close regime of the
zero dispersion wavelength, the higher order dispersion term induces signal distortions which is

defined as the dispersion slope. The dispersion slope effects short pulses such as Solitons.

The phase velocity of light is constant and independent of the wavelength in vacuum, while
in materials it may vary with the wavelength. This phenomenon is commonly referred to as
dispersion, in order to emphasize its wavelength-dependent nature it is sometimes referred as
chromatic dispersion. In a prism, dispersion causes the angular separation of white light into
spectral components of different wavelengths. The optical source in a high speed communication
system is typically a single-line diode laser with very fine spectral width. Modulation, which is
needed to transmit information along the laser light, increases the spectral width. Each wave-
length (spectral) component of the signal travels at a slightly different speed due to dispersion,

resulting in pulse broadening.

Chromatic dispersion in fiber results from the interplay of two effects - material dispersion and
geometrical dispersion (a.k.a waveguide dispersion which can be found in a typical waveguide -
single mode fibers). Material dispersion arises from changes in the refractive index as a func-
tion of wavelength, and the corresponding group velocity. Geometrical dispersion arises from
reflections and interference effects inside the component. Waveguide dispersion arises from the
wavelength dependent relationships of the group velocity to the core diameter and the difference
in index between the core and the cladding. In single-mode fibers there is another component
called second order Polarization Mode Dispersion (PMD) or differential group delay dispersion,
which produces an effect which is identical to chromatic dispersion. The phenomenon arises from
fiber PMD behavior details, second order PMD sets the ultimate limit to which a transmission

path can be compensated for chromatic dispersion.

1.1 Example: Pulse propagation

In order to study pulse propagation in dispersive medium we need to consider the complex
amplitude of the field envelope at a distance z inside the fiber A(z,t), since each frequency
component of the optical field travels at slightly different propagation constant. For this reason,
it is useful to work in the spectral domain. The basic propagation equation governing pulse
evolution inside a single-mode fiber known as the Nonlinear Schrédinger Equation (NLSE).
Since the constant delay experienced by the optical signal does not affect the signal quality. It
is often useful to work in a reference frame moving with the pulse [1]. The moving frame NLSE

is:

0A B2 0°A  P39PA 2 o
90 T o o ATA=S ()

where v takes into account non linear effects occurring within the fiber due to Kerr effect,
|A\2 is the optical power, « represents the fiber loss (or possible gain whenever o« < 0) and

Bm = g:,{f ‘ are the derivatives of the propagation constant 5 developed with a Taylor series

around the of)tical frequency €.



The propagation constant Taylor series development up to a third order
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In order to see how group velocity dispersion (GVD) effects lightwave transmission systems , we
can simplify the NLSE g3 ~ 0 if the pulses are not shorter then 5psec, without nonlinear effects
~v = 0 and assuming the losses are compensated periodically o = 0. Dispersive effects are then

governed by a simple linear equation:

OA B 0PA DA OA | P 0PA
o T gm =0 g thg tig e =0 (8)

This linear equation is similar to the paraxial wave equation governing diffraction of optical
beams in free space in one transverse dimension [2]. The only difference is that the group
velocity dispersion parameter 3, can be positive or negative depending on whether the optical

signal experiences normal (2 > 0) or anomalous (32 < 0) dispersion.

The incident pulse A(0,¢) and the transmitted pulse A(z,t) may be regarded as the input
and output of LTI system when neglecting . The signal can be propagated according to
A(z,w) = A(0,w) - €17«)* where A(0,w) and A(z,w) are the Fourier transform of A(0,t) and
/Nl(z,t) respectively and after propagating the signal is transformed back to the time domain.
Suppose first that the complex envelope A(0,t) is an unchirped Gaussian pulse with a pulse

width 27 at Full Width Half Maximum (FWHM)

2
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The Gaussian pulse width at the fiber output is broadened, after taking the intensity of the

2
output field |A(z,t)|2, the pulse width is 274/1 + (%) . We can see that the pulse broadens

no matter the sign of (s.

Now we will examine the phase of the Gaussian broadened pulse

(t - i)2 /622
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(13)

the time dependence of the phase ¢(z,t) implies that the instantaneous frequency differs across

the pulse from the central frequency wg. The difference dw is just the time derivative % (a

minus sign may appear due a different choice of the pulse propagating direction exp{—jwot})

and is given by
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from this last result we can see that the chirp of the signal depends linearly on the quadratic
dispersion coefficient (35, and the propagation distance z. The term inside the brackets ¢ — i is
actually the time shift (which can be eliminated in the moving time frame representation). This
equation shows that the frequency changes linearly across the pulse, i.e., a fiber imposes linear
frequency chirp on the pulse. The chirp dw depends on the sign of (5. In the normal-dispersion
regime (B2 > 0), dw is negative at the leading edge (¢ < 0) and increases linearly across the

pulse; the opposite occurs in the anomalous-dispersion regime (2 < 0).

Dispersion induced pulse broadening can be understood by recalling that different frequency
components of a pulse travel at slightly different speeds along the fiber because of group velocity
dispersion. More specifically, red components travel faster than the blue components in the
normal-dispersion regime (3 > 0), while the opposite occurs in the anomalous-dispersion regime
(B2 < 0). The pulse can maintain its width only if all spectral components arrive together. Any

time delay in the arrival of different spectral components leads to pulse broadening.

We have now seen that quadratic changes in the phase correspond to linear frequency variations,
for this reason such pulses are said to be linearly chirped. The spectrum of a chirped pulse and

of an unchirped pulse are the same width. However, there is a spectral phase difference. This



can be seen for chirped Gaussian pulses with a pulse width 27 at Full Width Half Maximum
(FWHM) by substituting the incident pulse with the form

A(0,t) = f(t)el¥o!t = exp {—(1 —|—jC’)2t7_2} exp {jwot} (15)

where C is a chirp parameter governs the frequency chirp imposed on the pulse. By using the
same LTI assumptions one finds that the instantaneous frequency increases linearly from the
leading to the trailing edge (up-chirp) for C > 0 while the opposite occurs (down-chirp) for
C < 0. It is common to refer to the chirp as positive or negative depending on whether C is

positive or negative.

after preforming Fourier transform to the chirped pulse

~ | 2n7? 72(w + wp)?
o= =\ T {550 ) "

the spectral FWHM is given by Aw = /(1 + C2)/7 in the absence of frequency chirp (C=0)
the spectral width is transform limited and satisfies the relation Awr = 1. Such a pulse has
the narrowest spectrum and is called transform-limited. The spectral width is enhanced by a
factor of /1 4+ C? in the presence of linear chirp. One can find the analytical expression for the
transmitted field using the inverse Fourier transform.

10



2 Measurements methods for chromatic dispersion

The dispersion of optical components has a significant effect on the performance of various op-
tical systems. Analysis and accurate measurement of the dispersion is therefore essential in
optimization of the performance of such systems. Measurements of chromatic dispersion can be
performed by applying various techniques. They include applications low-coherence interferom-
etry, various pulse delay measurements and phase-shift techniques. Traditionally the dispersion
of an optical fiber has been an important characteristics to be measured. In the recent years
when more components such as optical filters have been introduced it was necessary to accu-
rately characterize them, especially the dispersion coefficient [3]. In particular, the development
of the filters based on Fiber Bragg Gratings (FBG) permit for compensation of the dispersion
of an optical fiber [4]. By applying FBG, the dispersion effects can be dramatically decreased
in long-transmission systems. Accurate characterization of the dispersion of these filters has
led to re-evaluation of the conventional methods to obtain reliable measurement results. There
are three principal methods recognized by the International Telecommunications Union (ITU)
for measuring chromatic dispersion: interferometric, phase-shift and time of flight [5]. The first
two techniques are now commonly utilized for component characterization as well. All of the
recognized methods are in fact indirect detection of the chromatic dispersion since the pulse
broadening usually cannot be detected due to oscilloscope and detector rise time which can be

hundred of picoseconds [6].

2.1 Measuring dispersion using interferometric methods

To obtain the group delay and the dispersion of the components, interferometric methods are
applied to the components. The measurement setups are typically based on Michelson or Mach-
Zehnder interferometers. Light from a broadband or wavelength tunable source is split in two
paths. One path is coupled into the Device Under Test (DUT) and the other is a reference path.
The light transversing the component is combined with light from the reference path and the
resulting interferogram is detected see Fig. 1. From this interferogram it is possible to calculate
both the amplitude and the phase response of the component by means of a Fourier transform.
The main advantage is its very accurate resolution. The main disadvantage is group delay and
dispersion of the component are differentiated from the phase of the interferogram which increases
the noise. Another disadvantage is that interferometric methods are limited to the coherence
length of the source usually a Diode Feedback Laser (DFB) has 100KHz-1MHz linewidth and
the coherence length is approximately 300m-30m respectively. Meaning interferometric methods

are applicable only for measurement of short length fibers.

11
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Figure 1: Schematic of Mach-Zehnder interferometer
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Recently there have been a few reports of implementing interferometric methods in extracting the
chromatic dispersion, while the results were with good agreement with the Phase Shift Method
(which will be described in details in section 2.3) [7, 8, 9]. There is a commercial product made
by Luna Technologies namely Optical Vector Analyzer based on the interferometer technique
[10].

2.2 Measuring dispersion using Time Of Flight (TOF) method

The Time Of Flight (TOF) method was developed for long optical fiber samples. In this method
the relative temporal delays is measured for pulses at different wavelengths. Due to its simplicity
the TOF measurement method is an interesting application for the measurement of dispersion in
already deployed fiber links. In optical fibers this method can be used to measure the variation
of the group delay directly. “This can be done by determining the group delay in the fiber as
a function of wavelength and taking the slope of the resulting curve. In order to avoid errors
arising from the fact that the delay difference are small compared with the total delay, a pulse of
fixed wavelength and delay can be injected together with a pulse or pulses of varying wavelength,
to act as a reference time marker. Then the variation of delay with wavelength can be measured
relative to this pulse avoiding the need to accurately measure the total transit time” [11]. Thus

the relative group delay can be measured according to:

v
tTOF(A)\) = fg = TgDp = tTOF(A)\l) — tTOF(A/\Q) (18)

where L is fiber length and v, is the group velocity.

There are two approaches used to implement such a measurement . The first approach uses a fiber

Raman laser source which utilize the nonlinear process of stimulated Raman scattering in a fiber

12



to generate additional wavelengths. Individual wavelengths which are injected to the tested fiber
are selected by a monochromator. The second approach uses an array of semiconductor lasers
which can be optically coupled into a test fiber and provide sufficient wavelengths to determine
a five term Sellmeier equations which fit experimental delay measurements [12]. This method
has a clear advantage the lack of a reference channel as long as the optical source has a stable
wavelength and intensity for a time windows which will allow to complete the measurement.
Furthermore this method allows for direct measurement of the group delay. Disadvantages of
this method include enough fiber length in order that consecutive pulses must be distinguishable,
a simple criteria in order to achieve this separation must be at least twice the FWHM of the
input pulse width. Another disadvantage arises in case of amplitude and phase variation (when
the phase distortion are more complex then quadratic) which will cause severe pulse distortion
and the measurement meaningless. This method is limited to measurement of fibers only.

2.3 Measuring dispersion using Modulated Phase Shift (MPS) method

A basic measurement setup for the phase-shift method is outlined in Fig. 2. The light from a
tunable laser source is intensity modulated with a sinusoidal signal. The modulation generates
sidebands on both sides of the optical carrier. Each spectral component samples the DUT’s
different frequency components about the carrier frequency, and the interference or beating
signal at a photodetector, due to the different response sampled by the sidebands can be used to
extract the spectral phase [13]. The basic setup and variations of it using different light sources
have been utilized for years. MPS was first used for measuring of narrow-band optical elements by
Ryu and his colleagues [14]. Several commercially available dispersion measurement systems rely
on this measurement principle from leading companies (like Agilent 86038B Photonics Dispersion

and Loss Analyzer).

As seen in Fig. 2 an oscilloscope compares the phase of the 1y modulated signal passing in
the DUT to a reference modulated signal [15]. Sometimes instead of an oscilloscope there is a
network analyzer or a vector voltmeter which are used to compare phases between signals. Phase

resolution is 0.1 or 0.01 degrees at best in the state of the art network analyzer.

) +v
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125 MHz-1 L

Figure 2: Experimental setup for group delay measurement using the MPS technique

Another simpler approach can be seen with an appropriate RF frequency mixer which will down
convert the signal of interest to a DC term, instead of using RF measurement equipment see

Fig. 3. We will treat it more rigorously in the following section.
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Figure 3: Schematic of MPS - down convert to DC
Optical path noted by the green dotted line, electrical path is noted by black arrows. DC output signal
is proportional to the phase difference A¢ of the RF signal arriving from the detector and the reference
RF signal. The group delay difference A7 is proportional to the phase difference.

Conventional Modulated Phase Shift signal (MPS) analysis Signal processing analysis
can help understand where the information is carried in the conventional MPS system. We
utilize a continuous wave (CW) laser, v/Pye’%t, where € is the optical carrier frequency (o
multi-THz range) and P, is the laser power. The laser is amplitude modulated by a RF signal
(GHz range) applied to an external Mach-Zehnder Modulator (MZM). In this section we develop
the RF amplitude modulation (AM) using small angle approximation. A full analytic expansion
appears in the Appendix, employing Jacobi-Anger expansion to the harmonic phase. A MZM
can be usually described as a 3-dB coupler that splits into 2 arms in which an induced Electro-
Optic effect change the refraction index in order to make a phase change each arm independently

see Fig. 4.

Contacts
S

W Input Ourput
= —
e

| o MAZI

Figure 4: Schematic of LiNbOs modulator adopted from [16]

Using a transfer matrix of a 3-dB coupler there could be obtained the bar and cross arms of the

interferometer output

Ay N\ 11 4 e 0 Lj Ain
()00 )00 e

where A;,, is the input amplitude and ¢; = w% is the phase shift in the j** arm when a voltage
V; is applied across it (j=1,2) [16].
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If we will take a simple MZM with one electrode arm, case in which ¢o = 0, then a phase shift

will be induced only to the upper arm and the ports output will be as follows:

edP1 — 1 eI 41

bar port : Ay = 5 cross port : A, = j 5 (20)

With the assumption of Linear Time Invariant (LTT) system we can propagate the signal in the

system. Using the convention (Engineering form) of the Fourier transform:

oo

U(w) = /U(t)~e_j“’tdt (21)
U(t) = % / U(w) - e“tdw (22)

In our model we use the most common MZM modulator commercially available, which is a
single-arm-drive MZM (has only one arm under electric modulation field); or use one arm of a
dual-drive modulator. This MZM has a combination of amplitude and phase modulation at its
output [18]. We drive the MZM with a voltage signal which has DC and AC terms (the DC
term could also be a constant phase delay between the ports), such that

Vo + Vsin(2nvot + 6)
T

RF =
|Z

=a+ - sin(vgt + 0) (23)

where V}, is the bias voltage, V is the modulation voltage, V; is the voltage applied to achieve a
7 phase shift and vy is the RF driving frequency (we omit the 27 constant in the harmonic on

the right side of Eq. 23 for brevity). The signal is more conveniently parametrized by « and .

First we look at the optical field arriving to the DUT after passing the MZM in the bar port

VP . o VP . _
Ult) = —- 0 ikt . (ejaem'sm(”"t) - 1) ~ eI Wt (eI [1 4 i3 - sin(wt)] — 1)

= @eﬂnot . (eja . |:1 + g : (ejwt - e_jVOt):| - 1) (24)

under the approximation that the modulation depth is small 3 < 1 (i.e. €/ &~ 1+ jz + O (2?))

D

Ut) = @emotem . ((1 —e )+ 2 (ej”ot - e_j”ot)) (25)
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(We can also derive an exact development for the MZM amplitude modulation of the optical

carrier with the use of the identity of Jacobi-Anger:

6j.A-sin(wmt) _ Z Jn(A) . ej-n'wmt , ne N (26)

n=—oo

where J,(A) is the n-th j-Bessel function at A value. This demonstrates that there is an en-
tire comb spectrum generated with power distribution dependent on A. The precise expression

appears in the appendix to this chapter.)

After performing Fourier transform to the optical signal at the MZM output

oo

U(w) :/U(t)e*j“tdt:

— 00

@2%67@ (1 —e79§(Q —w) + gd(ﬂo +ry—w)— §5(Qo - —w)

(27)
This last expression shows three harmonics: the optical carrier g, and the modulation sidetones
Qo + v see Fig. 5.

The DUT transfer function in the Fourier domain Hppr(w) = B(w)-¢/*«) where B(w) represents

the amplitude response and ¢(w) represents the phase response as a function of frequency.

Y(w) = U(w) - Hpur(w) (28)
Y(t) = % / U(w) - B(w)el®®) . 7t dy (29)

VP B

Y(t) = - eIt pja B(Qo)ej¢(90) + 5 [B(QO + Uo)ej¢(90+va)+jvot — B(Qo — ,Uo)ej¢(90*v0)*jvot}
(30)

Since vy < g, we shall make the following approximations:
1. the typical assumption is that the attenuation experienced by the three tones is identical.

= B(QO + 1/0) ~ B(Qo)

16



2. the phase is developed using Taylor series for the DUT response, assumption being that the

phase can be expressed as a Taylor expansion about carrier frequency

Bt =o)L+ b F+ ..
Qo

19%¢
‘o + 2 0w?
Qo

= (b(Q() + V()) = (ZS(Q()) + g%

Y(t) _ \/;0 B(Qo)ej¢(ﬂo)ej§20t6ja |:(1 _ e*ja) + g |:6j(zi)-vo+§"¢-y(2)) +jvot _ ej(*¢.>-v0+%.¢-yg) jvot:|:|

(31)
Y(t) _ \/QPTB(Q(])Eij(QO)BjQOteja |:(1 _ e—ja) + gej(dvoJr%&Wg) +jvot
_gej(—é'vo-‘r%aﬁﬂg) —Jjvot (32)
The optical output of the MZM AM modulator can be seen in Fig. 5.
62
P(t)=Y () - Y*(t) = L2 B(Q0)? - |2(1 — cos(a)) + =+
dc
response
e (51/3 @ . .
+4 sin (7) cos | — + = | -sin | vp(p+1¢t) | —
2 2 2 7
amplitude of first phase shift
harmonics vy of first
harmonics
Vo
3? ;
- > - oS (21/0(¢) + t)) (33)
~~
amplitude phase shift
of second
of second
harmonics .
harmonics
2
Vo
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Figure 5: Schematic of MPS optical frequency domain signals
(a) optical output of laser: optical carrier Q. (b) optical output of optical modulator: optical carrier Qo
with two RF sidetones (2o +19. Each sidetone is separated from the optical carrier by the RF modulating
frequency vyp.
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Figure 6: Schematic of MPS electrical frequency domain signals
(a) electrical output of detector beat term (DC, vy and 2vp). (b) RF mixer output vo signal shifted to
DC and 2w, DC signal shifted to vo and 2vy signal shifted to v and 3vp. (¢) Low pass filter output
filters all the harmonics above DC.

The generated photocurrent at the detector will have a DC beat term, an harmonic beat term
between the sideband and the carrier and an harmonic beat term between the sidebands pro-
portional to ¢ see Fig. 6. Usually the case of small modulation is considered 3 < 1, then the
corresponding AC term with the 21y harmonics can be neglected and our desired signal remains
hidden in the v harmonics - sin((v(¢ + t) [14]. The term being measured is the phase shift of
the first harmonics vy. This term can be demodulated by a RF mixer. The demodulated signal
is passed through a low-pass filter, resulting in the signal proportional to: Sin(Vo(Z.S). By sweeping
the laser across the entire spectrum of interest, the first phase differential can be extracted for

every central frequency 2. The chromatic dispersion term is a derivative of this function.

We should be aware of a possible fading of the modulated frequency current vy due to the
cosine term involving the dispersion ¢, moreover there is also another term which can cause
signal fading, «, it is another degree of freedom which is related to the MZM bias voltage
setting. However, we are interested in the measurement of the electrical phase shift and since
this dispersion related term only introduces amplitude fading of the desired signal, so usually it
is omitted when deriving the operation principle of the MPS technique. We need to emphasize
that this amplitude fading is the basic principle behind the Baseband AM response which will
be described later on.

The measurement itself is the electrical phase shift § = 27TV0¢5 = 2mvy7y which can be recovered
from any electrical phase detector instrument. The minimum limit is the phase resolution limit of
the instrument itself. Usually vector network analyzer and vector voltmeter have a resolution of

0.1 degrees, state of the art vector network analyzer can achieve a resolution of 0.01 degrees. The
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maximum allowable measurable phase without ambiguity is § = +7. In case of a measurement
beyond this limit there will be an alias error, and therefore a wrong measurement of the group
delay. In practice, the wavelength is stepped or swept over a small wavelength interval and the
corresponding change in the group delay Ar, [18] is calculated from the measured change in

phase according to

A6 1

Ar, = =2 2
797 360 1

(34)

where A6 is the phase change in degrees produced by a small wavelength step and 1 is the
modulating frequency in Hz. We need to remember that the attribute called dispersion is defined
by

AT,
AX

where A7, is the change in group delay in seconds corresponding to a change in wavelength A\

D= (35)

in meters. We can combine this last two equations and find that

AO =360-D -1y AX (36)

this shows that the amount of phase change measured in response to a wavelength step is the

product of device dispersion, modulation frequency and wavelength step.

From this result we can deduce the benefits and limitations of the MPS method. When the
amount of spectral change is small, large RF frequencies are necessary in order to get meaningful
signals. However, the approximation that the phase experienced by the sidebands varies linearly
across a small bandwidth of 2vq loses its validity. Also, the necessary RF components necessary
for measurement become more challenging as the frequency 1y increases. At large spectral

variations small RF frequencies are used, but at the expense of sensitivity [19].

For the technique to function properly, the sidetones must have the same amplitude, and the
change in delay (or phase) must be accurately measured to obtain the dispersion. The measure-
ment accuracy of the MPS method depends on the spacing of the modulation sidebands with
respect to the actual group delay variations see Fig. 7. This is due to the fact that the measured
group delay is essentially an average of the group delay at two wavelengths separated by twice
the modulation frequency.

o)
Modulation
sidebands
Vo i Vo
e Group delay
- V4 N\~ ripple, ‘actual’

/ \-.-

Test wavelengths

Figure 7: Modulation frequency selection for the measurement of group delay ripple (adopted from

[18])
To achieve a high-resolution measurement of group delay ripple, the modulation frequency should be
low enough that the modulation sidebands ride up and down the group delay ripple as a pair.
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For components such as microresonators and fiber Bragg grating in which the group delay
fluctuation is large in the bandwidth of the optical signal, higher spectral resolution is required
[19]. Resolution of fine group delay ripple is improved by reducing the modulation frequency,
but at the expense of sensitivity. In devices which have relatively small change in group delay
sensitivity improvement will be reached by increasing the modulation frequency. Ultimately, the

device under test features will determine the desired modulation frequency.

There have suggested several improvements to the MPS method all of which will be described in
details later. One technique is based on the amplitude fading due to dispersion - length product
which causes the two intensity sidebands to be in counter phase thereby producing a zero in
the amplitude of the vq signal [20]. Another technique utilized complex modulation to excite
only a single sideband (SSB) and used the beat term at the fundamental frequency vg [21].
Another technique utilized two measurements at different frequencies v; and vo, using the MPS
method [22]. Scaling the two measurements by weighting functions improved the MPS group
delay measurement beyond the limit normally imposed by the phase noise of the measurement
system. Another technique which uses a fixed sideband and a moving sideband to measure
the group delay (phase change) due to the moving sideband [23]. Another technique using two
single-sideband tones [24].

2.4 Measuring dispersion using Baseband AM response method

Chromatic dispersion changes the relative phase of sidebands of modulated signals. In case of
a simple intensity modulation chromatic dispersion can convert amplitude modulation (AM) to
frequency modulation (FM). The term being measured is the amplitude of the first harmonics
vp which can be used in order to measure the chromatic dispersion coefficient at the operating
wavelength with high resolution. The high resolution is achieved due to a characteristic shape of
the Baseband AM response. The concept of these measurement is rather simple: a tunable laser
with narrow spectral width is tuned to the wavelength at which dispersion is to be measured.
The light is intensity modulated by a lithium niobate MZM modulator. As the RF modulated
frequency is swept, the Baseband AM response exhibits a series of nulls [20]. This measurement
is done in the frequency domain using a standard lightwave component analyzer.

The nulls occurs whenever the dispersion - length product causes the two intensity sidebands to
be in counter phase thereby producing a zero in the amplitude of the signal from the photodiode

at the RF modulated frequency (see Fig. 8). The null frequencies v in GHz are predicted by

/500 c- (1+2N)
”0\/ D LA\ (37)

where N = 0,1, 2... is the index of the null, ¢ is the speed of light in vacuum in m/sec, D is the
chromatic dispersion coefficient in psec/nm-km, L is the fiber length in km, A\ is the wavelength
in nm. This method is most applicable to measurement of relatively large values of dispersion,

that is, well away from the zero dispersion wavelength [13].
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Figure 8: Frequency transfer function of 95.814km SMF (Results adopted from [20])
line measured transfer function, dotted line calculated transfer function.

This phenomena has crucial impact on optical millimeter-wave systems in which the mm-wave
signal suffers from power severe power degradation. Therefore it was stated that simple intensity
modulation format is not suited for transmitting a mm-wave signal modulating an optical carrier
in the 1550nm wavelength [25]. Furthermore this measurement technique can also be used to
check effects of linear chirped fiber Bragg gratings and their dispersion compensation properties
[26].

2.5 Modulation Phase Shift improvement on the accuracy

There is a filtering limitation inherent in the standard MPS method. The filtering limitation
occurs because the optical phase is effectively sampled at two points separated by twice the
modulation frequency. This distortion can be described by taking the Fourier transform 7'(s) of

the measured group delay 7¢p(29) where € is the optical frequency.

T(s) = Flrep(©)] (38)

The Fourier transform T'(s) describes the magnitude of the group delay ripple components as a
function of s, the inverse of the ripple period in optical frequency [22]. The MPS method filters
the ripple components in the Fourier domain according to the ”sinc” transfer function, MPS
instrument function, given by [19]

Hi(s) = sinc <“S> (39)

1
where the parameter s is related to the ripple period p by the relationship s = —, the parameter
p

s1 is related to the RF modulation frequency vy by the relationship s; = % The filtering
function H;(s) . for large group delay ripple (s < s1), attenuation by filtering is minimal,
but as the ripple period decreases and approaches 1/2v,(s ~ s1) these ripple components are
completely suppressed. For a ripple periods less than 1/214(s > s1) there can be a 180° phase

reversal. This inverting effect can increase the distortion in the group delay measurement since
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these components are subtracted when they should be added. Using standard signal processing
concepts, this filtering distortion can be removed using deconvolution by dividing the measured

data with the known filtering transfer function in the Fourier domain

Tap(Q) = F ! [211((2))} (40)

this simple solution diverges in the cases where the denominator goes to zero. In order to avoid
post processing which have been described by Genty and his colleagues [15] this problem can
be resolved by performing two measurements using two different frequencies of RF modulation
(v1,12), so that there exists no ripple period for which both transfer functions become zero at
the same time see Fig. 9. By an averaged weighting of the two measured responses, the effect

of the filtering can be eliminated

Hl(S)
HE(s) + H3 (s)

HQ(S)

ren () =1 ) + )

Ti(s) + T5(s) (41)

The resulting summation would yield the original pre-filtered signal while avoiding zeroes in the
denominator.

Transfer Function

s =1/(ripple period) GHz -1

Figure 9: Transfer functions showing the filtering process inherent to the MPS method of two different
RF modulation frequencies adopted from [22]

2.6 Chromatic dispersion measurement with Single Sideband method
(SSB)

The SSB technique avoids amplitude fading of the desired signal as can be seen in the Baseband
AM response method. It has been previously demonstrated that in intensity modulation schemes,
used for fiber-radio systems, dispersion effects can be reduced by the elimination of one sideband
to produce an optical single sideband (SSB). Using a dual electrode MZM modulator to produce
optical SSB, while carefully selecting the working points of the electrodes and applying small
modulation depth [27]. It was also demonstrated that optical filtering can achieve Optical SSB

transmission [28]. A demonstration of this complex modulation applied to characterize fiber
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gratings with high resolution, where it was also suggested that this technique can be applicable

to any optical device [29].

The basic principle of the SSB technique is outlined in Fig. 10. An optical signal of frequency
Qg is SSB modulated at RF frequency vy. Assuming only a SSB is generated, the time domain

electric field, e ;(t) at the device input, can be written as

sp(t) = Aw)e! ™ 4 C(ug)el (42)

where A(vg) and C(vy) represent the complex amplitude of the optical carrier at £y and the
upper sideband at 2o + vy, representing suppression of the lower sideband (29 — ). Likewise in
the lower sideband at Q¢ — v, representing suppression of the upper sideband (Qy + ). Notice

that A and C depend on the RF response of the modulator and are thus function of vg.

RF
Source
. S5B :
Owptical . OE | | RF
Source Optical DUT Conversion Detector
Modulator
Mg opt) o0t cpt) IRF®)

Figure 10: Schematic of chromatic dispersion measurement using SSB optical modulator

The time domain electric field, e%4;(t), at the device output can be written as

€24 (t) = A(vo)B(Qp)e? 0t 0) 4 C(1y) B(Qq + 1) e? (Potro)tei®(otro) (43)

The beat note of the photodetector current o [e%dy (t)]Q, where ’+’ sign represents upper side-

band and ’-’ sign represents lower sideband, is given by

IRF(t) = kB(Q())B(QO + Vo) . COS[:lZI/()t + (I)(QO + Vo) - @(Qo)] (44)

where k is a constant. Thus if the frequency vy of the RF source is swept while the optical
frequency Qg is kept fixed, the photo-current will map both the optical amplitude B(£2g % 1)
and the optical phase ®(Q + 1) responses of the device. The suppressed sideband could be
chosen by means of changing the quadrature point of the MZM. In Roman at el. publication
from 1998 they have achieved a 13dB optical sideband suppression in between the RF frequencies
of 2-18GHz.

Another SSB technique was suggested by Madsen which measures chromatic and polarization
mode dispersion using phase-sensitive sideband detection for each sideband individually [21].

It is based on decomposing the fiber or DUT phase response into the sum of an even and
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odd function, as any mathematical function can be described. The sidebands are not required
to have the same amplitude as they are required in the MPS method. A single modulation
frequency yields relative delay and quadratic dispersion. It is also claimed that doing the same
measurement on orthogonal polarizations Polarization Mode Dispersion (PMD) information is

obtained.

2.7 Chromatic dispersion measurement using Fixed Sideband Tech-

nique

A variation of the standard MPS method that requires no hardware change of the conventional
MPS instead it is a new concept of the measurement itself. The basic principle behind this
method is to adjust the modulation frequency and the optical carrier wavelength simultaneously
so that one of the two sidebands remains at the same fixed wavelength while the other sideband

scans part of the measurement wavelength range see Fig. 11 [23].

1550.00nm 1550.04nm
0 10 20 30 40
| \
| \

’ t !

Figure 11: Schematic of chromatic dispersion measurement using fixed sideband technique

Since the measured phase is dependent on the position of the two sidebands and one of the
sidebands remains fixed, the measured change in phase is due to the moving sideband. It is
suggested that in this approach the modulation frequency remains at high frequencies in the
GHz range while wavelength resolution is determined by the moving sideband. The limitation
of this technique lies in the accuracy of the placement of the carrier. So theoretically given an
optical source with sub-picometer wavelength resolution this technique has a potential of yielding
sub picosecond and sub picometer resolution simultaneously. The sub picosecond is due to inherit
limitation in the MPS method in which the measured phase, ¢ = 277y = 360 - T - 1y, With given
a typical phase resolution accuracy of 0.05 degrees yields a resolution of 2.8psec @ vy = 50M H z
compared to 0.07psec Q@ vy = 2GH z.

There is also a limitation on the RF frequency which controls the moving sideband, as we have
seen in the Baseband AM technique there is a series of nulls depending on the dispersion-length
product. So there need to be caution with the modulation frequency and dispersion combination

which will cause fading of the amplitude intensity and make the measurement meaningless.
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2.8 Appendix: Jacobi-Anger expansion of amplitude modulation (AM)

We will examine the LTI signal analysis of the MPS in the most general case. In case we drive
the upper arm with a voltage signal which has a DC component and an AC term (there could
also be a constant phase delay between the ports) we have omitted 27 factor in the right side of

Eq. 45 for brevity, we can return it in the end of the analysis

Vo + Vsin(2mvgt) 4

RF = v = a+ 8- sin(yt) (45)

where V}, is the bias voltage, V is the modulation voltage, V. is the voltage applied to achieve a
7 phase shift and vy is the RF driving frequency. The signal is more conveniently parametrized
by o and f.

First we look at the optical field arriving to the DUT after passing the MZM in the bar port
with the use of Jacobi-Anger identity. This demonstrates that there is an entire comb spectrum
generated with distributed powers dependent on J,(/3), n-th order Bessel function of the first
kind evaluated at (.

vV P . . o v P, . B = .
U(t) = TO LISt (em - eIBrsin(vot) _ 1) = TO -t (e]a : Z Jn(B) - el ot — 1) ,neN

n=-—oo

(46)

Using standard assumptions about constant spectral amplitude and spectral phase expansion by

a Taylor series.

oo .
n2 ngb

v P, . . : . : .
Y(t) _ 5 0 B(Qo) . 6]¢(Q0)6]90t . [eja . Z Jn(ﬁ) . e](nvo¢+ ) . einvot _ 1] (47)

n=-—oo

i.e., each harmonic term is scaled and acquires spectral phase.

The expression of the photocurrent

n2

eja . i Jn(ﬁ) . ej(nvod.ﬂr

n=-—oo

P(t)=Y(t) Y*(t) = 5 - B(Q0)*-

V3 )
20 ) . e]nVOt _ 1]

| |f3ja : i I (B) - e—i(muod+ mQ':g(;) -emdmvol 1]

m=—oo

> > . b(n2—m2)u2 )
=1 B(Q)? { N ST Ja(B) I (B) - At T L ggnmmivet

n=-—o0om=-—oo

—eJo. i In(B) - ed(nvod+ ") - eJnvot

n=-—oo
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) > . . m2u28 )
e 3 g s it 1) (19

m=—oo

in order to emphasize the harmonics we define an index change k=n—m=m=n—k
n2—m?=m-m)(n+m)=k-(2n—k)
also for the stand alone harmonics we can substitute n,m =k

= p : L k(2n—k)vd
Pt) =% B(Q)?- { Z Z T (B) Jp—is(B) - e3kro(d+) . oi ——3—"

n=—ocok=—o0

_eda. i Je(B) - e3kro(+D) . ¢i —
k=—oc0
oo . 12,25
—e I Z Jp(B) - e~ Ikro(o+t) eI 4 1} (49)
k=—o0

We can split each infinite sum into two equal weight terms, in the second term we change the
index from positive to negative sign, i.e. ¥ — —k. Due to the symmetric and anti-symmetric

characteristic of the Bessel J-th functions the photocurrent can be represented in the equivalent

form
> = cos (kvo(d +1)) cos %k‘(2n — k)
P(t)=5-B(Q0)?-¢ > Y B Tui(B)- | ( : ) _ ( ; 2
== —sin (k:l/o(qb + t)) sin (5145(271 - k’)uo)
i cos (kvo(p+1)) cos (a + ék2ug
23" Ju(B) - ( . ) ( 2@322) +1 (50)
s —sin (kl/g(d) + t)) sin (a + 5k VO)

where | formalizm formalism is introduced to denote that top element is chosen if k is

S
even and bottom if k is odd.

Lets look at DC response (k=0):

Py = % - B(Q)? - l i Jn(B)? = 2Jo(B) - cos(a) + 1

n=-—oo

dc response

Response at first harmonic (k = £1):

P =1 . B(Q)?- {4J1(ﬁ)sin {uo((/.) + t)} sin [%ug + a}

~2 3 Ju(B)Ju-1(B)sin {VO(G} + t)] sin [g(zn _ Wg} }

n=-—oo

Response at first harmonic (k = £2):
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P, = Lo B(Q)?- {2 i Jn(B)Jn_2(8)cos {21/0((;.54— t)} cos [¢>(2n - 2)1/8]

n=-—oo

—4J3(8)cos |:21/0((1.5 + t)] cos [rﬁ?ug + a} }

Now we will gather all the contributions to dc response, first and second harmonics vy while

considering the lower index cases contributions n € [—4,4] k € [-1,1]

P(t) = {2 B(Qy)? - [Jo(ﬂ)z +2J1(B)% + 2J2(8)* — 2Jo(B)cos(a) + 1

dc response

+[4J1(6) {sin @ + a| — Jo(B)sin ll/(z(ﬁ] } —4J,(8)J2(B)sin [31/23(1)] — 4J5(08)J3(B)sin [3’/23?1)“ .
amplitude of first harmonics v
-sinfvg (¢ + )]
—_——
phase shift of first
harmonics v
+(4J2(8) {Jo(ﬂ) cos [41/28@5] — cos llhjf(b +a } —2J1(8)% + 4J1(B) J3(53) cos l8l/2§¢] +
amplitude of second harmonics vg
o
+4J2(8)J4(0) cos [12;0(;5] ] - cos|2vg ((;b + t)}] (51)

phase shift of second

amplitude of second h .
armonics

harmonics v

We should note that increasing (3, arises a broader spectrum of vy harmonics which need to be
taken into account in this summation. Thus effecting the amplitude of first vy harmonic terms
and effect the dc response contributions i.e. 23 J,(3)2.

n=3

Now we can return the 27 constant to the analysis of the photocurrent (vg — 27vy).

Each of the amplitude responses needs to be carefully estimated depending on the RF modulating
frequency vy. In order to see whether they could be neglected or needed to be taken into account.
If we will consider the case that the RF modulating frequency is far away from the RF fading dip
typically found in the AM Baseband method. Then we could estimate the following expressions
as following sin [%‘?ﬂ ~ 0 and cos [%‘w] ~ 1.

We can rewrite this last expression according to the following identity of cosine and sine functions
cos|a £ (] = [cos acos B F sin asin ]

sinfa £ ] = [sin «wcos 5 £ cos asin [
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Finally, under the assumption about the driving RF frequency is far from RF fading dip

P(t) = 22B(Q)* - | Jo(B8)” +2J1(8)? +2J5(8)” — 2Jo(B)cos(a) + 1
dc response
+ 4.J1(5) sin [o] -sinfvo(é + t)]
—— ——

amplitude of first harmonics vy phase shift of first

harmonics v

+[472(8) {Jo(B) — cos [a]} — 2J1(8)? + 4J1(8) J3(B) + +4J2(8) Ja(B)] - cos[2vo(d + 1))

amplitude of second harmonics 1 phase shift of second

harmonics 1
(52)

In order to examine the validation of the small signal approximation, we need to check the J.A.
expansion under the approximation that the RF modulation index is small, i.e. 3 <« 1. The

Bessel function approximation for small values of x is J, () ~ zz—z". Up to the 4th order the

z—0

Bessel functions approximations are Jo(z) ~ 1, Ji(z) ~ 5, Jo(z) ~ %7 J3(x) ~ %, Jy(z) ~

271
at
384"
Therefore we can rewrite the photocurrent

1+2~(§>2+2 (52) —2-cos(a) +1

dc response

P(t) = 2B()*-

+ 4. g - sin [o] -sinfvo (¢ + t)]
—_———
~ .
amplitude of first harmonics v phase shift of first
harmonics v

BB p* B

a1 eosfo ]}_2.(5> e BBy ] cos2re(@+ 0] (33)
—_—

2 2 48 8 334

phase shift of second

amplitude of second harmonics v h .
armonics vy

we will keep all the 3 power up to the 2nd order, hence

2 .
P(t) = L B(Q)?- [2[1 —cos(a)] + % + 2- 3 -sin[a] -sinfv (¢ + t)]
——— —_———
dc response amplitude of first harmonics vy phase shift of first
harmonics v
52 ;
- — - cos [a] -cos[2vg (¢ + 1)) (54)
\—v—’ —_——

amplitude of second harmonics v phase shift of second

harmonics v
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Now we will rearrange the photocurrent expression of the small signal approximation (this is

Eq. 33 again), in order to notice the difference in between these expressions.

62
P(t) = 2 B(Qg)? - |2(1 — cos(a)) +

o g
o) + 43 sin (%) cos <¢VO +

2

2) - sin (uo((? + t))

dc

response

62

2
-~

amplitude
of second
harmonics

Vo

standard assumption the driving RF frequency is far from RF fading dip (

amplitude of first

harmonics v

- cos <2u0(q5 + t))

phase shift
of second
harmonics

Yo

phase shift

of first
harmonics
1)
(55)
%o 1). We can
g .

rewrite the photocurrent of the small signal approximation after trigonometric manipulation

32
P(t) = £2B(Q0)% - |2(1 — cos(a)) + -+

dc

response

ﬁZ

2
~~

amplitude
of second
harmonics

Vo

amplitude of first

20 sin (a)
——

harmonics v

- oS8 (2u0(</3 + t))

phase shift
of second
harmonics

Yo

- sin <1/0 (¢ + t))
T

—_———

phase shift
of first
harmonics

o

From comparison of the J.A expansion and the small signal expansion there is a small correction

in the amplitude of the 2nd harmonics 2vy depending on the chosen working point of the MZM

modulator, i.e. factor of cos(«).
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3 Modulated Phase Shift method revisited

Our apparatus expands on the well known Modulation Phase Shift (MPS) measurement tech-
nique by introducing an additional slow frequency component whose variations are tracked with
a Lock-In Amplifier (LIA). The apparatus combinesoptical frequencies Qo (THz) to be mea-
sured, with RF frequencies vy (MHz-GHz) for differential optical phase accumulation, and audio
frequencies fy (KHz) for feedback tracking and data extraction with the use of the LIA. The
apparatus is depicted in Fig. 12.

In our approach we directly measure the Group Delay (GD) as in the standard MPS technique,
as a function of optical wavelength by laser stepping over a desired wavelength range. In contrast
to the MPS technique, we measure the RF phase accumulation with an harmonic term oscillatory
at an audio frequency, instead of comparing phases of either RF frequency or down converting to
DC. The measured phase term still depends on the phase delay experienced by the RF tones. The
introduction of a lock-in amplifier to the apparatus enables us to extract the audio frequency with
high resolution in comparison with RF phase comparator; in comparison with DC measurements
we avoid 1/f noise. Furthermore, we avoid the 27 phase ambiguity while measuring phase by
a feedback loop. Its simplicity should make it a viable alternative to competing commercial

products, while improving on their performance by the use of clever signal processing techniques.

As we can see in the apparatus shown in Fig. 12 there are two possibilities for the RF demodula-
tion signal vy or 21 (the 21y demodulation option is marked in purple) . The RF demodulation
signal frequency depending on the presence of a RF x2 frequency doubler in the processing

circuit.

optional Y
ow| DC L | Phase (2v, optional) v [deg]
' bias Modulator
% LA AdocAT
»| Tunable B={ Device [ | LowPass Lock In .
CW Laser || Modulator 132 Under Test [ Detector > Fler || Amplifier | Compute
N 7y T
+1 + i :
Q{]_}U_IO E :
S
feedback

Figure 12: Schematic of revised MPS method, introducing audio dither to the RF drive, RF x2 frequency
doubler (optional) and Lock In Amplifier. Inset: measured audio signal component as function of DC
bias phase.

The RF signal driving the optical modulator is first phase modulated by the low frequency signal
see Fig. 13. Signal analysis of the system (see section 3.1 small signal analysis; see appendix
for full analysis) demonstrates that this phase information is preserved in the E/O/E conversion

(through the optical modulator see Fig. 14), in transport (through the DUT), and upon detection
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of the beat term see Fig. 15(a). The E/O conversion actually multiplies the optical field which
have sampled the DUT with its complex conjugate. The contribution to the DC beat term
arises from each optical tone multiplied by its complex conjugate tone. The contribution to the
vy beat term arises from beating in between the optical carrier and each of the RF sidetones,
this actually combines two different phasors and averages them. While the contribution to the
21y beat term arises from the beating in between the two RF sidetones. Therefore the beat
term contains a few arguments: DC and harmonic terms (v, 2vy, etc). Since the information is
preserved in each of the harmonic terms we can choose to demodulate it with either vy harmonic
or 2vy harmonic. From here the case of vy harmonics demodulation will be referred as MPS with
Audio see Fig. 15(b), and the case of 2vy harmonics demodulation will be referred as 2nd order
MPS with Audio see Fig. 15(d).

Electrical

Frequency
Domain: T T
voel 100MHz,1GHz] £y 4f
foel 0K Hz. 100K Hz] 0o

Electrical phase modulator output

Figure 13: Schematic of electrical phase modulator output
RF carrier frequency vy surrounded with a slow harmonic frequency component =+ fo.

Optical
Frequency
Domain: b | ot
Qp~THz ?“T%“ T“Tf“
Vo€l 100MHz,1GHz] 9 o Q, Yo
foe[ 10KHZ,100KHZ] () Quputof laser (b Output of optical modulator

Figure 14: Schematic of 2nd order MPS with Audio optical signal
(a) laser optical output (b) optical modulator output: each of the RF sidetones £uy is surrounded with
the audio frequency component =+ fo.

As in conventional MPS in MPS with Audio, we choose to extract the measured phase from
the vy frequency which carries the slow phase information. Beat term now proportional to
cos[vo(t + @) + ] - sin([f(¢ + t)], where  + 1 - sin(fot) is the slow phase modulation, ) is
the modulation depth, 7 is our controllable phase bias (shown in Fig. 12), and f; is the low
frequency signal. This beat term is subsequently demodulated and fed to the LIA together
with the reference fj signal. The LIA then tracks the oscillatory signal component fy, which is
given by: sin[vod + ] - sin([f(¢ + t)]. The introduction of a LIA allows us to obtain very high
accuracy in measuring the amplitude and phase of the signal. The sine function, is ambiguous
for extracting its argument; hence we continuously null the amplitude by a feedback loop on
the DC bias v (see inset in Fig. 12 showing amplitude as function of v, with amplitude null
at unique bias angle). Control circuits operate best when locking onto a null point, and the
oscillatory signal provides a remainder signal for identification. This also prevents the ambiguity
due to phase wrap. In practice, the laser wavelength is stepped a small wavelength interval,
and the DC bias is swept to null the audio tone component, from which GD is extracted. The

GD is recorded at every optical carrier frequency, and can be used to find the distortions by
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Figure 15: Schematic of modified MPS electrical signal processing
(a) optical detector electrical output (b) MPS with Audio RF mixer output (down converting with v
demodulation) (¢) MPS with Audio low pass filter output (d) 2nd order MPS with Audio RF mixer
output (down converting with 219 demodulation) (e) 2nd order MPS with Audio low pass filter output.

differentiation of the sampled function.

In contrast to conventional MPS, in 2nd order MPS with Audio, we choose to extract the mea-
sured phase from the 21y frequency (avoiding RF fading problems) which carries the slow phase
information, which has been doubled in magnitude, not frequency. Beat term now proportional
to sin[2uo(t + ¢) + 27] - sin([f(¢ + t)], where v + ¢ - sin(fot) is the slow phase modulation, 1
is the the modulation depth, v is our controllable phase bias (shown in Fig. 12), and fy is the
low frequency signal. This beat term is subsequently demodulated and fed to the LIA together
with the reference fj signal. The LIA then tracks the oscillatory signal component fy, which
is given by: cos[2vo¢ + 27] - sin([f(¢ + t)], while the amplitude dependence in between MPS
with Audio and 2nd order MPS with Audio has been doubled in magnitude, not frequency. The
cosine function, is also ambiguous for extracting its argument; hence we continuously null the
amplitude by a feedback loop on the DC bias v (see inset in 12 showing amplitude as function
of v, with amplitude null at unique bias angle). This again prevents the ambiguity due to phase

wrap.

Several parameters can be optimized for each measurement: The frequency offset vy, which
should be fine for accurate measurements of rapidly varying devices [30], the RF phase offset
to set either the sine or cosine function at an appropriate bias point (in order to avoid the phase
measurement ambiguity problem), the modulation depth ¢, and the bias point of the MZM
modulator, to control power transfer to tones. The phase modulation slow oscillator signal
can also include a DC term ¢ (not shown in figure) together with the oscillatory component
0=1- sin(fot+49), as a less sensitive measurement to the GD, due to the slow varying frequency
fo which is several scales beneath the RF driving frequency, which can be used to eliminate the

phase wrap.

32



Our MPS measurement technique (see 12) can measure phase (and directly GD) unambigu-
ously within (0,7) (and analogously, within (0,1/[4vp]) GD for 2nd order MPS with Audio or
(0,1/[21p]) in the case of MPS with Audio), and not within(—, 7) as we demodulate with an in-
band mixer (losing the quadrature information). Phase measurement ambiguity is avoided, pro-
vided AX small enough, when the condition AX < 1/(4vyD) is satisfied (AX < 1/(2v9D)) in the
case of MPS with Audio). Satisfying the condition ensures that two consecutive measurements
will fall in the range of (0,7), which avoids phase wrap errors in between two measurements.
Furthermore, in case of a measurement near the ambiguity region (i.e. phase measurement near
0 or 7), the measured phase can be shifted using an appropriate phase offset 7. By continu-
ously tracking the GD as the laser is stepped, the uncertainty due to the cosinoidal (sinusoidal)

mapping of the output interference is also eliminated.

The LIA will lock to the oscillatory component sin(fot + ) and extract its amplitude, while
sweeping the fixed phase bias v (through a feedback loop) in order to locate the fixed phase bias
minima point Y,,;n,. We have chosen to work around a minima point rather then maxima point
from a few reasons. The maxima point location is harder to find, then a minima point location,
through a control circuit approach. Furthermore the maxima environment is relatively slowly
changing while the minima point changes rapidly. Moreover next to the minima environment we
will have higher dynamic range due to the introduction of the LIA which can detect very weak
signals (from 1 Volt down to 1 nVolt). The difference in between the two demodulation options
is the amplitude dependence of the oscillatory component sin([f(t + ¢) + ). We will now regard
these two optional demodulation signals noting the differences in between them. The amplitude
dependence in between MPS with Audio and 2nd order MPS with Audio has been doubled in
magnitude, not frequency. While the sine term in MPS with Audio has changed from a sine

term to a cosine term in the 2nd order MPS with Audio.

MPS with Audio: sin(yoqﬁ +7)

. - sin[fo(t+ @) + 6 57
2nd order MPS with Audio: cos(2vp¢ + 27) } sinlfo(t + ) + 9] (57)

LIA will lock to this term

In the following simplified signal analysis subsections we will present the calculations and ap-

proximations supporting this simple and most meaningful result.

3.1 Simplified signal analysis

In this section we will present the signal analysis that demonstrates this phase information is
preserved in the E/O conversion (through the optical modulator), in transport (through the
DUT), and upon detection of the beat term. The MPS with Audio and 2nd order MPS with
Audio signal analysis is the same up to the E/O conversion. However the RF demodulation
signal analysis varies in between them, so we will present subsections supporting each separate

signal processing scheme.

Our technique involves the use of a modulated subcarrier signal added to the optical carrier
frequency at the phase modulator. When this signal is propagated through dispersive media,

or Device Under Test (DUT), the dispersion induces a relative optical phase delay between the
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subcarrier sidebands. This effect is well known and is responsible for the fading experienced in
double sideband subcarrier signals when direct detection is employed. Signal processing analysis

can help us understand where the information is carried in our system.

We utilize a continuous wave (CW) laser, v/Ppe’%t, where Qg is the optical carrier frequency
(multi-THz range) and Py is the laser power. The laser is amplitude modulated by a RF signal
(GHz range) applied to an external MZM, where the driving voltage signal is further phase
modulated by a low frequency signal (KHz range). In this section we develop the RF amplitude
modulation (AM) and audio phase modulation (PM) using small angle approximations. A full
analytic expansion appears in the Appendix, employing Jacobi-Anger expansions to the harmonic

phases.

In our model we use the most common MZM modulator commercially available, which is a
single-arm-drive MZM (has only one arm under electric modulation field); or use one arm of a
dual-drive modulator. This MZM has a combination of amplitude and phase modulation at its
output [17]. We drive the MZM with a voltage signal which has DC and AC terms (the DC

term could also be a constant phase delay between the ports), such that

7TVb + Vsin(2nvpt + 6)

RF =
Vr

=a+ - sin(vgt + 0) (58)

where V}, is the bias voltage, V is the modulation voltage, V; is the voltage applied to achieve a
7 phase shift and vy is the RF driving frequency (we omit the 27 constant in the harmonic on
the right side of Eq. 58 for brevity). The signal is more conveniently parametrized by « and .

The RF signal driving the optical modulator is phase modulated by the low frequency signal

0 =+ sin(fot + 0) (59)

where 7 is the DC bias phase at RF frequency, v is the audio modulation depth, fy is the low
(audio) frequency signal and § is the DC phase offset at low (audio) frequency.

First we look at the optical field arriving to the DUT after passing the MZM in the bar port
under the approximation that the RF modulation depth is small 8 < 1 (i.e. /% ~ 1+ jz)

Ut) = @emot -+ (erlotBrsin(ot40)] _ 1) ~ @emot (7™ [1 4 jB - sin(vot + 6)] — 1)

P A _ , , ,
_ QGJQ‘”' <6J0t . [1 + g ) (ejuotJrJO _ ejuotJO)] — 1) (60)

substituting 6 of Eq. (59)

O

(L= i) 5 (etatsmvnianss) _ costtsrvomintson)) (o
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under the approximation that the PM modulation depth is also small ¢ < 1, we will simplify
the expressions of e+il+¥sin(2m fot+9)]

edl v sin(@rfot+4)] — ej’v[l + %(ej(ZﬂfotvL‘s) _ e*j(QﬂfotJr‘s))]
e~ v+ sin(@r fot+6)] — efﬂ[l _ %(ej(%ffoﬂrfs) _ e*j(QWfotJrfs))]

U(t) = YL it eia ((1 — e7io) 4 Beivoted1[1 4 L (eI @rfot+d) _ =i C2mot+0))]
B —jvot,=iv[1 Y J(27 fot+0) =3 (27 fot+9) 62
¢ e 71— 5(6 —€ )] (62)
This last expression defines seven harmonics: optical carrier 25 and six modulation sidetones at

0o £ vy £+ fo (see Fig. 14(b)).

the optical field at the DUT output
Y(t) = @em (1 — e %) B(Qy)el () 70t 4 gej’YB(QO + 1 )ed ¢ (o tv0) i (Qotro)t

_|_€Twej(’v+5)B(QO +uy+ fo)ej¢(90+vo+fo)ej(Qo+Vo+fo)t — %/’63'(7—5)3(90 + 15— fo)

eI (Q0+rvo—fo) o (Qo+ro—fo)t _ ge*ij(Q )ed¢(Co—v0) 05 (20—vo)t

0 — Yo

_i_%l’e—jw—(S)B(Qo — v+ fo)€j¢(90—l/o+fo)ej(Qo—Vo-‘rfo)t
_%e—j(’Y‘i‘é)B(Qo o — fo)ed¥(0=r0=fo) i (@o-10Fo)t (63)

The typical assumption is that the attenuation experienced by the seven tones is identical. The
phase is developed using Taylor series for the DUT response, assumption being that the phase

can be expressed as a Taylor expansion about carrier frequency

vg e ;
Y(t) = @B(Qo)ejaejqxﬂﬂ)ejgot (]_ — efja) + gejvej%(be.]yo((i)"rt)

B2 39 7 G i o ) G4 B i (1-0) 3 LG o o) (9)

fgefj'vej (v be—ivo(d+t) 4 %e*j(‘k‘s)ej%d"efj(”“*f")(éﬂ)
7% o (7 +8) i TTI G (ot fo) (1) (64)

For simplicity we may represent the optical field with harmonics functions

v2 . .
Y (t) = Y22 B(Q)ei®ei#(@0)ei%t | (1 — e=i%) 4 Bei =0 . 25 - sinfuy(d + t) + 1]
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(V0+f0)2 %

¢.2j. szn[(u0+fo)(</)+ t)+ v+ 9]

(vg—
€

oSG (25) - sinl(vo — fo) (b + )+ — 4]

= @B(Qo)ememm‘))emot (1—e79) —I—jﬁej%d;sin[uo((b +1)+ 7]

ﬂi/}

L il + o)+ + +0] = 55

¢Sin[(1/0 — fo)(+t)+v— 5]}
(65)

Before finding the photocurrent we utilize the following identity
sina-sin 3 = 1 [cos(a — B) — cos(a + )]
The photocurrent expression

P(t)=Y(t) Y*(t) = B(Q)* - |(1—e9)(1 - &) +jﬁ€jé“58iN[Vo(¢3 +1)+1]

('0+fo)

e T dsinl(vy — fo)(@+1) + — g

Psin[(vo+ fo) (6 +1) + + 0] — j e

(Vo f)?

—jfe % %m[ww +1)+q] — jBLed bsin[(vo + fo)(¢ + 1)+ + 4]

v fa)2 . . V2 - .
+j B e T T O sin|(vy — fo)( +t) + 7y — 8] — GBI Dsinfun( + ) + 1]

(vo— fo)

Jﬂwexa#”“”‘” Dsin[(vo+ fo)(+1) +7+ 0]+ jLeilot D sinl(vo — fo)(d+1)+~ — ]

(= Vo f0)?

+iBe I B D sinfug( + 1) 4] + jELe It D sinl(vo + fo)(d+1) + 7 + 0]
B —j(a raii gy j

—j5e 2 sin[(vo = fo)(¢ +t) +v — ]

+2 ﬂ:cos[QV (p+1t)+2
2 2 0 7]

20 o SR feosl fo(é 4 1) — 8] — cosl(2u + fo)(@+ 1) + 2y + 4]

ﬁf;/’e g2 2oforii) g [cos[fo(qb + 1) + 6] — cos[(2vg — fo)(¢ +1)+ 2y — (5]}

| B g ol  [coslfold + ) + 8] = cosl(2uo + fo) (6 + ) + 27 + ]

+@ - L Y- cos[(2vn + 2f0) (¢ + t) + +27 + 26]

— L2 5 [cos[2fo(6 -+ ) + 20] — cos[2u0( + 1) + 2]

B ( 2V0fo+fo)

226 S [cos[— fo(b 4+ 1) — 6] = cosl(2v0 — fo) (b + 1) + 29— ]

_%ej Lofo g [Cos[—2fo(¢5 +1) — 26] — cos[21p(d + 1) + 27]}

36



e

< o cosl(2ro —2 fo)(é +t) + +2y — 2] (66)

+

remembering that cosine is an even function cos(—z) = cos(x)

P(t) = LB(Q9)? - |2 — 2cos(a) + jB - j sin[ 4 d|sinfvo(d + 1) + 7

+jﬁ7¢~2j-sin[w¢]sm[(uo + fo)(p+1t)+~+0) —|—j’87w . (—2j)-sin[%é]sin[(w) —fo)(o+
t)+v—9]

+jB - (=24) - sinfa + L lsin[vo( + 1) + 1]

+582 - (~2j) -sinfa+ L Fsin[ (v + fo)(d+t) +y+ 6]+ 522 25 -sinfa+ LGV Gsin](vo —
fo)(@+1)+7— 4]

+ﬁzw . (2 COS[%&] — 2COS[%¢]> COS[]EO(QZ'5 + t) + 5]

— 5 2cos[ 258 6 cos[2/o(6 + 1) + 20]

_ﬂzf . Cos[(2V0 - 2f0)(¢ + t) + 42y — 25]

+ 029 cos| 20dot TS 6] cos[ (200 — fo)( + 1) + 2y — O]

2 2,2 . .
+ {—% + 8 gb . 2cos[—4”gf° gb]} cos2vg (P + t) + 27]

— 8% 9 o[ 20018 ] cos|(2vg + fo) (¢ + t) + 27 + d]

B2y
8

- cos(2v0 + 2fo) (¢ + t) + +27 + 26] (67)

now we can use the following trigonometric identities to simplify somewhat the photocurrent
s 3= vin [ 28 ) qin [ 2=8
cosa — cos 3 = —2sin (T) sin (T)

sina — sin 3 = 2 cos (#) sin (O‘T*B)
P(t) = £ B(Q0)* - [2 (1 - cos(a) + 5 + 5

—21 cos[ + Mqﬁ] sin[¢]sin[(vo — fo) (¢ +t) +~ — 6]
+43 cos[§ + %gqﬁ] sin[%]sin[uo(fﬁ +1t) + 7]
420 cos[§ + W(ﬁ] sin[§]sin[(vo + fo)(é +t)+v+ )

— 32 sin[ L2 6] sin[ 292 3] cos[fo (¢ + t) + O]
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— 25 cos[ 2340 3] cos[2 o (6 + 1) + 20]
— 45 cos|(2v0 — 2fo)( + £) + 27 — 20]
+5sz cos[%ﬁfgé] cos[(2vy — fo)(dp+t) + 2y — 4]

+{ £ cos[224] — £} cosl2wp(9+ 1) + 21

—52711’ (:05[72”‘”03'”02 P] cos|(2vo + fo)(d+t) + 2y + 4]

B2 ;
—— cos[(2vg + 2f0) (¢ + t) + 27y + 20] (68)

It is worth recalling that ¢ is linked to CD by the relationship ¢ = —DA?/(27c) where D
is the chromatic dispersion (typically expressed in psec/nm), A is the wavelength in nm and
c is the vacuum speed of light in m/sec. We can simplify the photocurrent expression since
fo < Vo, when the RF frequency is far away from RF dip, e.g. cos[%é] ~ 1,sin[%ézﬂ ~
0, cos[f 04 ~ 1 sm[f 0] ~ 0. Also by examining the amplitude dependencies according to the

following identities of cosine and sine functions
cos|a £ ] = [cos acos B F sin asin ]
sin[a &+ 3] = [sin v cos B £ cos asin J]

. 2 . 2 . 2 . 2 .
cos[§ + LR ] = cos[§ + 4] cos[ 2L G) — sin[g + 1] sin[Z2fot i ] —

= cos[§ + %gqﬂ cos[%mé]cos[%gé] — sin[%oﬂ)(ﬂsin[%gé]

1 1 -0 0

+92 . 2 +9 2

—sinfg + 4] | sl =L Gleos(20.6] — cosf 2 Gl £2.3] | =

0 1 1 0
= cos[§ + 2 9]
cos[%gﬂ = cos[%gﬁ] cos[f(’ ¢] sin[%(;ﬂ sm[fO gb] = cos[:l:uofoé] COS[%(?Q%] ~

\W_/
0 far from RF fading

1
Therefore

P(t) = 2 B(2)? - |2(1 — cos(a)) + & + 2

—204 cos[$ + 4] sin[2] sin[(vo — fo) (b + 1) +7 — 4]

+40cos[§ + %g(b] sin[¢]sin[vo (¢ + t) + 7]
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+26¢ cos[$ + g sin[] sinl(vo + fo) ($ + )+ + 6]
— B2 cos[2 (b + t) + 26]

— " cos|(2u — 2o) (9 + ) + 27 — 2]

+ 23 cos[(20 — fo) (& + ) + 2y — 3]

+{ 28— 5 }eoslavg(d+ ) + 2]

—ﬁ27¢ cos|(2vp + fo)(é +1t)+ 27+ )

_62w2

- cos[(2vp + 2fo) (¢ + t) + 2y + 20] (69)

Now we can use the following trigonometric identities

i - +8] iy, [a=s
sina — sin 8 = 2 cos {O‘T] sin [O‘T}
cosa + cos 3 = 2cos (a—;ﬁ) cos (O‘T_ﬁ>

cosa — cos 3 = —2sin (O‘Qﬁ) sin (#)

We can then find that the photocurrent expression is simplified

P(t) = 2 B(Q0) - [2 (1 — cos(a)) + & 4+ 2547

— %02 cos[2fo (¢ + ) + 20]

+4psin[g] cos[§ + 58] { cosluo(d -+ &) + A)sinlfo(6 + ) + 8] + sinfuo(é + 1) + ]}

— B cos[2v0( + t) + 2] cos[2fo(d + 1) + 28] + F2sin[200($ + 1) + 24] sin[fo(d + 1) + 6]

2,/,2 2
+ {ﬂ 1} - 62} cos2vy(o +t) + 27]} (70)
As we can see signal analysis of the system indeed demonstrates that this phase information
is preserved in the E/O conversion (through the optical modulator), in transport (through the
DUT), and upon detection of the beat term. The beat term contains a few arguments: DC and
harmonic terms (vg, 2vp). Since the phase information is preserved in the harmonic terms we

can choose to demodulate it with either vy harmonic or 2y harmonic.

When realizing the suggested signal processing scheme, we have to consider the RF Mixer RF
to IF leakage (assuming it is the same as LO to IF leakage 30 dB typical). Moreover there is
also a LO to RF leakage of typically 35 dB - taking in mind that the LO port contains only
a pure RF harmonic without any audio tones around it. In case they will leak they might
limit the minimum audio signal we can achieve when changing the DC bias phase, v, e.g. the
slow frequency signal component cos|2fj (qﬁ +t) + 26]. Therefore we choose to lock to the slow

frequency component sin[fo(é +1t)+ 9]
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3.1.1 MPS with Audio

First when applying the MPS with Audio method we need to consider the fact that we are
biasing the optical modulator at the midpoint in order to maximize the vy at the photodetector
output, a = %5—: = 5. The photocurrent is multiplied with a local oscillator signal oscillating
at the vy frequency, LO(t) = sin[vpt] (not regarding any constant electrical group delay that our

electrical circuit may have). Using the following identities
cosa-sin 3 = 1 [sin(a + B) — sin(a — 3)]

sina-sin 3 = 1 [cos(a — B) — cos(a + )]

M(t) = 2o B(90)? - l(z (1—cos(a)) + 2 + ﬁi;f) sin[vot]

_ey? (sin[Vot + 2f0(d + t) + 26] — sin[2fo (¢ + ) — vot + 25]>
40 sin(3]cos[§ + 58] { [sinf2vot +vod 4] — sinlvod +7]] sinlfo(d + 1) + 4]

+4 [cosluod + ] — cos[2vot + v +]] }

_ﬁzﬁz (sin[2yog15 + 3uot 4 2] — sin[2v9¢ + vot + 27]) cos[2fo(¢ + t) + 20]

—i—ﬁQTw <COS[2VO¢ + vt + 27] — cos[2v9¢ + 3wt + 27]) sin[fo(¢ +t) + 4]

2,/,2 2
N {ﬁ;ﬁ _ i} (Sin[2z/o<i> + 3upt + 29] — sin[2u9¢ + vot + 27]” (71)

at the mixer output we have connected a Low Pass Filter (LPF). Meaning that every vy, 21y
harmonic terms will be extincted by the LPF. Therefor we remain with the following expression

V(D) = ~ 2 5(20)? sin[] cos[ + L318 | sinlud + 3] sinlfo(d+ 1) + 8] — cosd+ 7]

the LTA may lock onto this expresison

(72)

According to this LPF output indeed we are able to control the amplitude of the fy tone with
the aid of dc bias phase, 7, while holding the audio dc bias as constant §. Of course the DC

contribution found in the 2nd expression will be eliminated in the LIA circuits.

Once more there are three possible working points to choose ~:

1. maximize the fy tone signal, vyé + v = 5

s

2. work at half maximum of the fy tone signal, vpp + v = T

3. eliminate the f; tone signal, z/ogi') +~v=0.
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Conclusions:

1. The LIA will lock to the oscillating term sin[fo(¢ + t) + 6], with the reference term of
sin[fot + 0].

2. Group delay is measured at the nulling of a sine term with oscillating frequency fy, i.e.
1/0(25 + Y= 0.

The measurement itself is the electrical phase shift © = 2rvd + v = 2mvyT4 + v which can be
recovered from any electrical phase detector instrument locked to the slow oscillating term fy
which is present in §. The minimum limit is the phase resolution limit of the instrument itself,
and the maximum allowable measurable phase without ambiguity is © € [0,7]. In case of a
measurement beyond this limit there will be an alias error, and therefore a wrong measurement
of the group delay (without applying a RF phase offset v). However, we can set the RF phase
offset vy at an appropriate bias point and therefore we can avoid the ambiguity problem typically
found in phase measurements. Thus keeping the interference point always at the null point,
which sets the phase bias directly proportional to the measured optical phase. In practice, the
wavelength is stepped a small wavelength interval and the corresponding change in the group
delay ATy is calculated from the measured change in phase according to

_A61

Ar — 22
797 360 1

(73)

where AO is the phase change in degrees produced by a small wavelength step and vq is the
modulating frequency in Hz. We need to remember that the attribute called dispersion is defined

by
_ A1y

D_AA

(74)

where A7, is the change in group delay in seconds corresponding to a change in wavelength A\

in meters. We can combine this last two equations and find that

AOrpS with Audio = 360 - D - 19 - AX (75)

this shows that the amount of phase change measured in response to a wavelength step is the
product of device dispersion, the modulation frequency and wavelength step as in the conven-
tional MPS (see Eq. 36).

3.1.2 2nd order MPS with Audio

First when applying the 2nd order MPS with Audio method we need to consider the fact that
we are biasing the optical modulator at the minimum point in order to maximize the 2y at

the photodetector output, a = W% = 7. The photocurrent is multiplied with a local oscillator
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signal oscillating at the 2vq frequency, LO(t) = sin[2vpt] (not regarding any constant electrical

group delay that our electrical circuit may have).

M(t) = ZoB(9)? - [(2 (1—cos(a)) + 2 + @) sin[2vt]

_oy? (Sin[QVot + 2f0(d +t) + 26] — sin[2fo (¢ + 1) — 2vot + 25]>
F4fsinfg]cosl + %gqs] {% [Sm[?’y‘)t + 106 + 7] + sin[upt — vod — V]} sin[fo(¢ +t) + 9]

+% [COS[Vot - Voqz'ﬁ — 4] — cos[3vot + uoq's + y]} }

—% (sin[?uoqg + 4wyt + 2] — sin[2v0¢ + 27]) cos[2fo(d + t) + 26]

+ﬁ;¢ (cos[Zuoé + 27] — cos[2up¢ + dupgt + 27]> sin[fo(¢ + t) + 0]

g2 g
55

— } (Sin[QV()(/; + 4ot + 29] — sin[2V0¢ + 27})] (76)

at the mixer output we have connected a Low Pass Filter (LPF). Meaning that every vy, 21y
harmonic terms will be extincted by the LPF. Therefor we remain with the following expression
B>y

V(t) = 2B(Q0)? [{§ - 5} sin2vod + 291+ S5+ cosl2vod + 2] sinlfo(d + ) + 9]

the LIA may lock onto this expresison

B2y

< sin[2v9¢ + 27] cos[2fo(d + t) + 2] (77)

_|_

This LPF output expression contains dc, fo and 2fy harmonics with amplitude dependence on
group delay, with a 7 phase in between them. The LIA will lock onto the Sin[fo(q'ﬁ +t) +d]
harmonic term. According to this LPF output indeed we are able to control the amplitude of
the fy tone with the aid of dc bias phase, «, while holding the audio dc bias as constant §. Of

course the DC contribution found in the 2nd expression will be eliminated in the LIA circuits.

As in MPS with Audio case there are 3 possible working points to choose . However, the GD

dependence is inside a cosine instead of a sine term:
1. maximize the fj tone signal, 21/()(;5 + 2y =0.

2. work at half maximum of the fy tone signal, 2v9¢ + 2y = T

3. eliminate the fy tone signal, 209¢ + 2y = 5

Conclusions:

1. The LIA will lock to the oscillating term sin[fo(¢ + t) + 0], with the reference term of
sin[fot + 9].
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2. Group delay is measured at the nulling of a cosine term oscillating with frequency fo,
ie. 21/()(;5 +2v=73.

The measurement itself is the electrical phase shift © = 272vy¢ + 2y = 2721974 + 27y which can
be recovered from any electrical phase detector instrument locked to the slow oscillating term fo
which is present in . The minimum limit is the phase resolution limit of the instrument itself,
and the maximum allowable measurable phase without ambiguity is © € [0,7]. In case of a
measurement beyond this limit there will be an alias error, and therefore a wrong measurement
of the group delay (without applying a RF phase offset ). However, we can set the RF phase
offset y at an appropriate bias point and therefore we can avoid the ambiguity problem typically
found in phase measurements. Thus keeping the interference point always at the null point,
which sets the phase bias directly proportional to the measured optical phase. In practice, the
wavelength is stepped a small wavelength interval and the corresponding change in the group

delay A7y is calculated from the measured change in phase according to

!

=== _- 78
360 21 (78)

Tg

where AO is the phase change in degrees produced by a small wavelength step and vq is the
modulating frequency in Hz. We need to remember that the attribute called dispersion is defined

by
_Ar

D=
AX

(79)

where A7, is the change in group delay in seconds corresponding to a change in wavelength A\

in meters. We can combine this last two equations and find that

A92nd order M PS with Audio = 360 - D- 2vyp - AN (80)

this shows that the amount of phase change measured in response to a wavelength step is the
product of device dispersion, twice the modulation frequency and wavelength step. Quite similar
to the conventional MPS, where the amount of measured phase change (see Eq. 36) in response to
a wavelength step is the product of device dispersion, the modulation frequency and wavelength

step
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3.2 Appendix: MPS with audio accurate signal analysis Jacobi Anger
expansion to AM and PM

In this appendix we develop the RF AM modulation in the optical field expression according to
Jacobi-Anger expansion to the harmonic phase term. As is well known an entire comb of RF har-
monics around the optical carrier will appear; the power distribution to these tones depends on
the modulation strength. The higher harmonics might introduce undesired signal contributions
to the component we are interested in measuring. We first expand the RF modulation, assuming
phase 6 is constant (or slowly varying) and then expand the audio variation, PM modulation,

according to a second Jacobi-Anger expansion to the audio harmonic phase term.

In case we drive the upper arm with a voltage signal which have a DC component and an AC
term (there could also be a constant phase delay between the ports) we have omitted 27 factor

in the right side of Eq. 81 for brevity, we can return it in the end of the analysis

Vo + Vsin(2mvpt +6) 4
T

RF = v S a+ - sin(vgt + 0) (81)

where V}, is the bias voltage, V is the modulation voltage, V. is the voltage applied to achieve a
m phase shift and vy is the RF driving frequency. The signal is more conveniently parametrized
by « and g.

U(t) _ @ejﬁot . [ej[aJrﬂsin(uotJrB)] _ 1} _ @ejﬂgt [ejaejﬁsin(ugt+0) _ 1}

Py o ;
_ \/270639015 el Z Jm(ﬁ)ejm(VoH'e) -1 (82)

m=—oo

where €2 is the optical carrier frequency, vy is the RF modulation frequency, Fp is the laser
intensity, a is the MZM bias point, § is the MZM RF modulation depth, J,, is the Bessel J
function of order m and 6 is the RF phase delay.

The RF signal driving the optical modulator is phase modulated by the low frequency signal

0 =+ ¢sin(fot +9) (83)

where v is the DC bias phase, 1 is the audio modulation depth, fo is the low (audio) frequency
signal and § is the DC phase offset at low (audio) frequency.

Ut) = v o0t | gia f: Jm(B)ejm(uot+7+w8in(fot+5)) —1 (84)

m=—oo
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We will use the J.A expression for the PM signal at the slow frequency component fy

U(t) = @JQ lﬂ fj Ty (B)eI 0 HY) fj T (map)ednJor+o) — 1] (86)

m=—oo n=-—oo

we will rearrange this optical field expression at the MZM output
VB . S & .
U(t) = V20 it [eja Z Z Jm(5)Jn(m¢)ea[(muo+nfo)t+m7+n5] _ 11 (87)

inserting the optical carrier frequency to the infinite sums in order to see the complete optical

spectrum

U(t) =

eJOl i i Jm mi/})e] [(Qo+mro+nfo)t+my+nd] eont] (88)

— oo

Remark in this expression we indeed see an entire comb of slow frequency n fy around RF a comb
of RF frequency muvy. Under the assumptions of LTI system we can propagate the signal in the

system using the convention of the Fourier transform.

Y(t) = Y |eia f: T (B) T (mah)ed M7+18) B(Q + mug + nfo )l Qotmvo+tnfo) gi(Qotmrotnfo)t

_B(Qo)ej90t6j¢(90) (89)

Since, nfy <€ myy < Qg, we shall make the following approximations:
1. the typical assumption is that the attenuation experienced by all the tones is identical.
B (Qo + myg + ’I’Lfo) ~ B(Qo)

2. the phase is developed using Taylor series for the DUT response, assumption being that the

phase can be expressed as a Taylor expansion about carrier frequency

= & (o +mwo +nfo) = 6(Q) + 22| (mro+nfo) + 12| (mvy +nfo)® +

2% .
= ¢(Q) + ¢ (mvy + nfo) + ¢ (mvo + nfo)” +

Y(t) = Y0 1% 3 7, (8) T (mh)edm1n0) B(g) [P0+ 0muntnfo) + b mun+nfo)?].

m,n=-—oo
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.3 (Qotmrotnfo)t _ B(Qo)ejgotej¢’(90) (90)
rearranging and gathering common expressions in the optical field at the DUT output

m,n=—oo

Y(t) = @ejﬂotemmeja B(Q) [ f: T (8) Ty (map) 3 (my+nd) i 3 d(muo+nfo)” gi(mrotnfo)(6+1)

—e™7%] (91)

oo

S T (B) T (map)ed(mrHnd) g =i s d(mrotnfo)® o —i(mrotnfo)(@+t)

m,n=—oco

Y*(t) = Yo emifte=id(® e=ia B() [

o] (92)

changing of indexes m — p, n — ¢ when multiplying the combs.

A few minor calculations

jio [(mVo +nfo)? — (pro + Qfo)ﬂ = j56 [mvg + 2mnug fo +n? f§ — p*vf — 2paofo — ¢ f5 ] =

= j30 [(m® = p*)g + 2(mn — pg)wo fo + (n* — ¢°) 7]

From the received field we find an expression for the optical power reaching a detector (being

proportional to generated photocurrent):

Pt)=Y () -Y*(t) = L2B(Qy)? |1+

eI SN (B) T (map) eI myEnd) =ik blmuotnfo)? o= (mvotnfo) () 4

m,n=—o0

O S T (B) T () el ) i3 dlmvotn o) pi(muotnfo) (d+) 4

m,n=—oo

+ 3 Jm(g)Jn(mw)Jp(5)Jq(pqp)ej[(m—p)w+(n—q)6]ej[(m—p)w+(n—Q)fo](¢5+t).

,ej%ifi[(mQpr)u§+2(mnqu)Vofo+(n2*q2)fo2]] (93)

In order to emphasize the harmonic terms we can perform an index change k=m-p, I=n-q. After
manipulating the infinite sum terms (using tricks as index shifts and sign changes see Appendix
A) and using the symmetric and anti-symmetric characteristic of the Bessel J functions, the

photocurrent can be represented in the equivalent form

. cos ( (kvo 4+ nfo)(d +1t) + ky +néd
P(t) =2 B(0)?-{1— 5 2-J(B)Ju(kB)- ,<(((k° . ;)>(<¢+z>+1;+ 2)
k,n=—o0 —Sin 140 njo n
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cos (a kvg +n .
+ £ ( 0+ nfo)? n Z o (B) Ttk (B) I (map) Ty ([m + k1))

m,n,k,l=—oco

sin({a+ £ (k:uo—i—nfo) .

cos ((kuo +1fo)(p+1t) + ky + lé)
—sin ((kuo F1fo)(d+1t) +ky + 15)

cos %{k 2m + k)v, (nk+l(m+k‘))1/0f0+l(2n+l)f§} (94)
sin %{k 2m + k)vg + 2(nk +U(m + k))vo fo +1(2n +1) f5 } %
where | formalizm is introduced to denote that top element is chosen if k is even and

S
bottom if k is odd.
Now we can return the 27 constant to to the generated photocurrent expression.

The photocurrent can be demodulated using local oscillator at sin(qrot) to find the response of
the system about DC (i.e. q=1 MPS with Audio and q=2 2nd order MPS with Audio). We
collect the contributions about DC according to an ideal mixer (using k = £¢q). We then collect
the contributions at frequency fo (using I = 41). During this selection process, summation of
four index terms reduces to two indices (referred to as bi-term), while the summation of the two
index term reduces to a single term (now single term). The photocurrent can be simplified since
the RF fading term primarily contributes from the term %k(?m + k)1 [20], since fo < vg, we
can perform the following assumption ¢ ((nk + [(m + k))v fo) < 1 moreover %l(2n +)ff k1
can be entirely neglected. The signal used by the LIA for extraction of the GD in the case of
MPS with Audio is:

V(t) = =22 B(Q)?sin (u0¢'> + 7) - sin (fo(gz's +1) + 5) .

{- S TnB) e () I () (2 + 1)) - sin (ﬁ(zm + 1)u§> +21(8)1y()sin (a +4

m,n,k,l=—o00

(95)
and for the 2nd order MPS with Audio is

V(t) = £2B(Q)2sin (21/045 + 27) - 8in (fo((,z'S +1)+ 5) :

¢ 5

L)

)

{- S In(8)Imsa D)+ 20) - cos (2m + 208) — 22(8) h(2b)eos (a + o) }

m,n,k,l=—oc0

(96)

Usually the desired RF driving frequency is chosen to satisfy the requirement of c'ziyg < 1,
therefore avoiding signal extinction due to RF fading. Upon closer observation of these terms

we can simplify these results.
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In the case of MPS with Audio, the main contribution to the signal arises from the second term
in the parenthesis of Eq. (95), 2J1(8)J1(¢)sin(«), which originates from the beat between the
+/-1st tones and the center carrier. As in standard MPS, the MZM bias point should be chosen
to satisfy a = 7/2, thus working in the linear response regime of the MZM when the condition
08,1 < 1 is fulfilled.

In the case of 2nd order MPS with Audio, the main contribution to the signal arises from the bi-
term (double infinite sum term in the brackets of Eq. (96), Jim(8)Jm+t2(8)Jn(map)J) ([m+2]y)).
The most prominent beat tone arises from the beat tone between the +1 and -1 sidetones,
J_1(8)J1(8). The remaining contributions are undesired, e.g. beat tone in between the optical
carrier and the 2nd sidetone Jo(5)J2(5). If the MZM bias point is chosen to satisfy o = 7/2,
then the single term will disappear entirely, however the bi-term contribution remains present.

Therefore optimization of the modulation depths § and 1 and the MZM bias point « is required,
in order to maximize the desired signal. In the case of MPS with Audio, setting both of the
modulation depths 3,1 = 1.841. In the case of 2nd order MPS with Audio, we require maximum
power transfer to the 1st sidetones, while desiring minimum power transfer to the 2nd undesired
sidetones. However, when setting the MZM bias point « at an appropriate bias point, we can
cancel the single term and bi-term contributions of the response at J>(3) (i.e. m=0, n=0 and
m=-2, n = £1). Upon fulfillment of the condition

—2.75(B)J1(2¢) [Jo (8)cos (g'z;mg) + cos (a + éQV&)} -0 (97)

we can simplify Eq. (97), in case we have negligible RF fading q%z/g <& 1. Therefore, setting
a = arcos|—Jo ()], will eliminate the Jo(5)J2(8) contribution. A 20dB difference in between the
desired and undesired contributions, is achieved by setting the RF modulation depths 8 = 0.341,
the audio modulation depth ¥ = 0.921.

In confirmation of our analysis (Jacobi-Anger and small signal), we can demonstrate that the
full analytic derivation converges to the small signal analysis preformed in section 2 by assuming
8,1 < 1, and expanding the Bessel J-th function of the first kind using the small value approx-
imation, 2nd order at most. Then we can conclude that the full analysis mixer output, which
is described in Eq. (95) and (96), converges to the small signal analysis mixer output, which is
described by Egs. (72) and (77).

Note that standard MPS technique (without audio) can also be derived from Eq. (94), by setting
the condition ¢ = 0. Thus n=0 and =0, since J,,(0) = 0 except for n=0 and Jy(0) = 1. Then
the photocurrent can be demodulated using sin(ivgt) to find the response of the system at DC.
We collect the contributions at DC according to an ideal mixer (using k = +1), obtaining:

V(1) = B2 B(Q)%cos (VO<2>+7)-{2J1(5)SM (04 58) ~1 S ()

Tt (B)sin (%(2m + 1)y§) 4 2051 (8)sin (%(2m - 1)ug) }

~ %B(Qo)zﬁ - sin (a + ZI/S) - cos (l/od.) + 7) (98)
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where the approximation made is of small modulation depths, hence § < 1.

Notice that the standard MPS result in Eq. (98) has a RF 7/2 phase shift for the null point in
comparison with MPS with Audio result in Eq. (95). We confirmed this result experimentally,
as shown in Fig. 16. We further see that standard MPS signal nulling point at DC is not a
well-defined value, while the slow varying frequency f, demonstrates signal nulling at a unique
angle. We exploit the LIA high sensitivity and large dynamic range in measurement of the
amplitude of frequency component fy, allowing us to detect small phase changes at low v, thus
overcoming the limitations imposed by the conventional MPS method. Measurement at the
frequency component f; avoids the broad band 1/f noise of DC measurement.

Comparison of Signal Elimination
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Figure 16: Comparison of signal nulling measurements using DC and f; frequency Vs. RF phase
delay.
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4 Experimental realization of modified MPS

In both of our experimental apparatus we have chosen the RF carrier frequency 400 MHz in
order to achieve ultra fine resolution. In case there will be a need to change the RF carrier
frequency there will be a need to characterize the RF Phase Modulator (RF PM) at that specific
frequency. In the appendix to this chapter the reader may find that the RF PM circuit has a
different characteristic s-shape of the DC bias phase versus applied DC bias voltage. In order
to resolve rapidly changing group delay we have in our lab three RF phase modulators in the
following RF frequency range: 100-150 MHz, 366-446 MHz and 700-1000 MHz.

4.1 MPS with Audio apparatus

In order to address conventional MPS disadvantages there are two major conceptual changes
in our scheme. The first is an introduction of RF PM in order to introduce a slow frequency
component fy into the optical signal. The second is the introduction of theLTA which will lock
upon the slow frequency component in order to avoid 1/f noise and solving limitations in rapidly
changing group delay. Furthermore we can achieve a measurement resolution improvement. Our
MPS with Audio apparatus complete circuit used with the RF frequency range of 366-446 MHz
is decipted in Fig. 17.

The instruments appearing in this scheme are as following: slow (audio) frequency source and DC
bias controls (Stanford Research Systems SR850 DSP Lock-In Amplifier), RF frequency source
(Agilent 8341B Synthesizer Sweeper 10MHz-20GHz), tunable CW laser (Agilent 8164A Light-
wave measurement, system; 81640A), DC detectors (Agilent 81525A High power InGaAs optical
heads with electrical bandwidth below 1 KHz), high speed detector (New Focus 1544-LF 12GHz
Amplified Photoreceiver), and LIA (Stanford Research Systems SR850 DSP Lock-In Amplifier).
The optical components are as following: manual polarization controller (Fiber Control FPC-2
Manual Polarization Controller), optical couplers (JDSU AC0199-A3 Optical Coupler 1%-99%
& JDSU AC1900-A18-G3W Optical Coupler 10%-90%) and optical amplitude modulator(JDSU
10020427 10 GHz amplitude modulator). The electrical components are as following: bias tee
(Picosecond Pulse Labs 5541A 80KHz-26GHz), low noise amplifiers (MiniCircuits ZX60-33LN
Low Noise Amplifier 50-3000 MHz), fixed attenuators (MiniCircuits VAT-20 20 dB attenuator &
VAT-6 6 dB attenuator), RF phase shifter (MiniCircuits JSPHS-446 Narrow band phase shifter
366-446 MHz), high pass filter (MiniCircuits SHP-100 High pass filter 90-2000 MHz), low pass
filter (MiniCircuits SLP-50 Low pass filter DC-48 MHz), DC block (Picosecond Pulse Labs 5502C
20KHz-14GHz) and RF mixer (MiniCircuits ZFM-150).

Our experimental setup is comprised of a few electronic filters and a directional coupler which
are used to filter unwanted signals which might interfere in the electronic signal processing. We
have encountered a presence of audio signals even when we were blocking the optical path of the
DUT. The physical source for this audio signals is impedance mismatch which causes reflection of
signals in the electronic circuit. Therefore we have been interested in investigating these signals
sources. At first we have used a simple RF broadband (DC-18GHz) 6 dB power divider which
is consisted of a network of 3 equivalent resistors of 16.72 see Fig. 18(a) (Picosecond Pulse
Labs 5330A 6 dB Power divider). The experimental setup use to characterize this reflections
is decipted in Fig. 19. We have found out that of the RF PM have shown us that both of
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the RF port input and output there exhibit a leakage of the slow frequency component fy see
Fig. 20(a) around DC signal. Further investigation of our RF Phase Modulator (PM) revealed
reflection our RF, vy, phase modulated signal back to the power divider, shown in Fig. 20(b)
around vg = 400M H z signal, passing through to the Local Oscillator (LO) port of the RF mixer.
In order to decrease this reflections we are using a directional coupler 5-2000MHz while using
it’s coupling port to feed the RF PM see Fig. 18(b). Therefore for all of our designated phase
modulators we are using a high pass filter in the frequency range of 90-2000MHz in order to filter
this slow frequency component from arriving to the optical domain, which after detection can
leak from the RF port of the RF mixer to the IF port and interfering with our desired signal.
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Figure 17: Schematic of MPS with Audio complete circuit
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Figure 18: Schematic of (a) 6dB power divider, (b) directional coupler scheme.
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Figure 19: Schematic of phase modulator audio leakage experiment
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Figure 20: RF electrical spectrum demonstrating audio leakage

A bias tee is used to supply a DC+AC signal to both of the RF PM bias ports. A low noise
amplifier and a fixed attenuator are used to adjust the power level to a maximum level 0 dBm
at the PM RF input port. A DC block, frequency bandwidth of 20Khz-14GHz, since the high
speed detector detector output currently available to us in the lab needs to be connected to a
DC block. A low pass filter DC-48 MHz is used to filter the unwanted signals at the RF mixer
output, also to avoid strong signals from arriving to the LIA input and distributing it’s circuits.

Upon changing of the RF PM there is also a necessity to change the fixed attenuators in order
to set the optimal RF power level at 0 dBm at the PM RF input and +10 dBm Local Oscillator
(LO) at the LO port of the RF mixer.
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4.2 2nd order MPS with Audio apparatus

In order to address conventional MPS disadvantages there are three major conceptual changes
in our scheme. The first is an introduction of RF Phase Modulator (PM) in order to introduce
a slow frequency component fj into the optical signal. The second is the introduction of theLTA
which will lock upon the slow frequency component in order to avoid 1/f noise and solving
limitations in rapidly changing group delay. The third is the introduction of the RF X2 frequency
multiplier which will demodulate the 21y harmonics. Furthermore we can achieve a measurement
resolution improvement. Our 2nd order MPS with Audio apparatus complete circuit used with
the RF frequency range of 366-446 MHz is decipted inFig. 21.

The instruments appearing in this scheme are as following: slow frequency source and DC bias
controls (Stanford Research Systems SR850 DSP Lock-In Amplifier), RF frequency source (Ag-
ilent 8341B Synthesizer Sweeper 10MHz-20GHz), tunable CW laser (Agilent 8164A Lightwave
measurement system; 81640A), DC detectors (Agilent 81525A High power InGaAs optical heads
with electrical bandwidth below 1 KHz), high speed detector (New Focus 1544-LF 12GHz Am-
plified Photoreceiver), and LIA (Stanford Research Systems SR850 DSP Lock-In Amplifier).
The optical components are as following: manual polarization controller (Fiber Control FPC-2
Manual Polarization Controller), optical couplers (JDSU AC0199-A3 Optical Coupler 1%-99%
& JDSU AC1900-A18-G3W Optical Coupler 10%-90%) and optical amplitude modulator(JDSU
10020427 10 GHz amplitude modulator). The electrical components are as following: bias tee
(Picosecond Pulse Labs 5541A 80KHz-26GHz), low noise amplifiers (MiniCircuits ZX60-33LN
Low Noise Amplifier 50-3000 MHz), fixed attenuators (MiniCircuits VAT-6 6 dB, VAT-12 12 dB
& VAT-20 20 dB attenuators), RF phase shifter (Minicircuits JSPHS-446 Narrow band phase
shifter 366-446 MHz), high pass filters (Minicircuits SHP-100 High pass filter 90-2000 MHz &
SHP-600 High pass filter 600-3000MHz), low pass filter (MiniCircuits SLP-50 Low pass filter
DC-48 MHz), DC block (Picosecond Pulse Labs 5502C 20KHz-14GHz), x2 frequency multi-
plier (MiniCircuits FK-3000 x2 Frequency multiplier 70-1500MHz) and RF mixer (MiniCircuits
ZFM-150).

Our experimental setup is comprised of a few electronic filters and a directional coupler which
are used to filter unwanted signals which might interfere in the electronic signal processing.
As described in the previous section, the physical source for this audio signals is impedance
mismatch which causes reflection of signals in the electronic circuit. In order to decrease this
reflections we are using a directional coupler 5-2000MHz while using it’s coupling port to feed the
RF PM. Further investigation of the RF PM have shown us that both of the RF port input and
output there exhibit a leakage of the slow frequency component fy around DC signal. Therefore
for all of our designated phase modulators we are using a high pass filter in the frequency range
of 90-2000MHz in order to filter this slow frequency component from arriving to the optical
domain, which after detection can leak from the RF port of the RF mixer to the IF port and
interfering with our desired signal. A bias tee is used to supply a DC+AC signal to both of the
RF PM bias ports. A low noise amplifier and a fixed attenuator are used to adjust the power
level to 0 dBm at the PM RF input port.
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Figure 21: Schematic of 2nd order MPS with Audio complete circuit

The x2 frequency multiplier, input range 70-1500 MHz, is connected to the output port of the

directional coupler. Since the frequency multiplier is a nonlinear device several harmonics are
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created at the component output (1st, 2nd, 3rd and 4th 1y harmonics). Since we are interested
only in the 2nd harmonics we are using a high pass filter 600-3000MHz which decreases the 1st
harmonics at approximately 30 dB. Without the use of the high pass filter all of these harmonics
are multiplying our photocurrent, which has DC, vy and 21y terms, thus contributing a non
desired term (photocurrent vy term) to our desired signal at the IF port of the RF mixer. A low
noise amplifier and a fixed attenuator are used to adjust the power level to +10 dBm at the RF

mixer LO port.

Upon changing of the RF PM there is also a necessity to change the high pass filter accordingly,
which is located at the frequency multiplier output and used to lower the 1st harmonics output
of the frequency multiplier, in order to get a better dynamic range between the 1st and 2nd
harmonics output of the frequency multiplier. Of course there will also need to be a change of
the fixed attenuators in order to set the optimal RF power at 0 dBm at the PM input and +10
dBm Local Oscillator (LO) at the LO port of the RF mixer.

A DC block, frequency bandwidth of 20Khz-14GHz, since the high speed detector detector
output currently available to us in the lab needs to be connected to a DC block. A low pass
filter DC-48 MHz is used to filter the unwanted signals at the RF mixer output, also to avoid
strong signals from arriving to the LIA input and distributing it’s circuits.

In Fig. 22 we can see how the signal is passing in our apparatus. I have inserted pictures of the
RF power spectrum in order to demonstrate that. We have an entire controllable comb of slow
frequency component fo = 100 KHz around the RF modulation frequency vy = 400 MHz.We can
see that the Local Oscillator (LO) signal at the RF mixer LO port is clean from any speckles
due to all the additional filtering elements in the circuit. After detection we can see the all
the beating signals, an entire comb of slow frequency component f; = 100 KHz around the RF
frequency vg = 400 MHz and around 2xRF frequency 2vg = 800 MHz. At the RF mixer IF port

we can see that our slow varying component exist and has been preserved in our apparatus!
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Figure 22: Schematic of 2nd order MPS with Audio - low frequency signal preserved in our apparatus
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4.3 Appendix: Apparatus components characterization

Since the RF x2 frequency multiplier is a nonlinear device it contains in its output not only
the desired 2nd harmonics, but also the 1st, 3rd, and 4th harmonics. We are interested only in
the 2nd harmonics. Therefore we have used the RF Spectrum Analyzer to read the frequency
multiplier output in order to characterize the behavior of the frequency multiplier see Fig. 23.
We have found the behavior of the multiplier to be dependent on the input power arriving to the
frequency multiplier see Fig. 24. The most efficient working point for our apparatus demands
that the 2nd harmonics will be the strongest as possible, while the 1st harmonics will be lowest
as possible. In the 2nd order MPS with Audio apparatus a high pass filter is connected at the
frequency multiplier output in order to attenuate the 1st harmonics by additional 30dB. Since
the desired demodulation at the photodiode output is of the 2vy beat term, while the vy beat

term might contribute to unwanted signal.

Y Fixed Spectrum
0 Attenuator Analyzer

Figure 23: Schematic of x2 frequency doubler power sweep characterization
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Figure 24: x2 Frequency doubler characterization

In order to demonstrate the influence High Pass Filter (HPF) we have measured its RF spectrum
at the HPF connected to the x2 frequency multiplier output. We will summarize the results in
Tab. 1.
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x2 Frequency multiplier harmonics | without HPF [dBm]| | with HPF [dBm] |

1st -25.25+0.05 -61.00+£0.05
2nd 0.45+0.05 0.05+0.05

3rd -27.45+0.05 -29.35+0.05
4th -14.35£0.05 -15.25%0.05

Table 1: x2 Frequency doubler harmonic output comparison without\with HPF

Every passive component we have used in our apparatus has been measured for Insertion Loss
(IL) according to the following simple setup utilizing a broadband source as a white light source
see Fig. 25. In order to measure IL before connecting the passive DUT we have measured the
power that goes through our patch cord fibers which we will be using to connect to the DUT.
After wards we connect the DUT with these patch cords and subtract from the measured spectra
the patch cords spectra thus obtaining our DUT IL. In order to characterize the optical couplers
splitting ratio (in percentage) we have measured how much power is transmitted to each port.
Then each port was divided by the total output power in order to obtain the DUT splitting ratio

in percentage.

Broadband
Source

—— DUT —— OSA

Figure 25: Schematic of optical passive components characterization setup

The RF phase versus applied DC bias was obtained using an oscilloscope A/D converter, and
the phase shifts were extracted in Matlab from the parameter fitting of a sine function to the
sampled data of both the reference channel (RF directional coupler output) and the RF phase

shifter output channel.
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Figure 26: RF phase modulator 400 MHz phase shift Vs. DC bias characterization

Each RF carrier frequency demonstrates a different characteristic s-shape this is why preforming
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RF frequency sweep changes the relative phase shift . The RF PM circuit does not create second

harmonics of the RF carrier.

The PM circuit allows us to control of the audio comb around the RF carrier. In order to
demonstrate this behavior I have attached here are 2 power spectrum pictures in Fig. 27 of the
PM output at 2 different audio AC Voltages 0.5 Volt and 1.2 Volt.

RF Carrier Frequency RF Carrier Frequency
400 MHz 400 ‘MHz

Vac=1 vAY ! |

Modulator
Output Output

1 MHz 1 MHz

Figure 27: Controllable audio comb demonstration

The RF carrier passes a little of his energy to the audio comb as can be seen from these graphs,
we can see that the audio comb different harmonics arises as the audio AC voltage increases see
Fig. 29. We can also notice the saturation of the comb as expected from theory (Jacobi-Anger

expansion).
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204 04

+  RF Power [dBm] 5]
18] e =+ = flst[dBe]
10 . . - +  2nd [dBg]
164 } I I G -154 4 3rd [dBe]
I S 20 -7 . 7 Ath[dBq]
kA - M
14 g -25 4 - - 5th[dBe]
. -
E 12 i & %7 - "
fus} £ 35 -
T, E]
= 1.0 £ -d04 - *
g f $ ]
> os & - *
a b T ﬁ -50 = * x
e 064 % 55 ] = *
T 2] g . = . F
| i <
04 3 65 T * I T
02 2 704 H
7 T
I 75
00 T T T T 1 -80 T T T T T 1
00 05 1.0 15 20 25 0.0 05 1.0 15 20 25 30
Audio AC Voltage [Volt] Audio AT Voltage [Volt]

(a) (b)

Figure 28: PM output - RF carrier and audio tones power Vs. audio AC voltage
(a) measured RF carrier 400 MHz power while sweeping audio AC voltage (b) measured audio tone
harmonics relative to the RF carrier 400 MHz while sweeping audio AC voltage. Notice that the audio
tone comb gains more harmonics as the audio AC voltage is increased, moreover there is also a saturation
in this increased sidetones power.

We can see that the RF mixer has a linear dynamic range of about 80 dB see Fig. 29. Moreover
we have a conversion loss of about 5dB see Fig. 30. The RF mixer LO-RF isolation for LO
power +10dBm @ 400 MHz RF carrier is 39.05 £+ 0.05dB. The LO-IF isolation for LO power
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+10dBm @ Rf carrier 400 MHz is 36.05 + 0.05dB. The RF mixer LO-RF isolation for LO power
+10dBm @ 800 MHz RF carrier is 39.05 & 0.05dB. The LO-IF isolation for LO power +10dBm
@ Rf carrier 800 MHz is 29.35 £ 0.05dB.
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Figure 29: RF mixer characterization IF 100 KHz

ZFM-150 RF Mixer Conversion Loss Characterization
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Figure 30: RF Mixer conversion loss characterization

The conversion loss defined as the output power difference at the IF port relative to the summation of
the RF and LO ports power.
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5 Optical devices characterization results and discussion

The characterization apparatus has been realized in our lab using commercially available optical
and electrical components. We set 1y = 400MHz, demonstrating the high sensitivity extraction
even at such low RF driving frequency. Due to resolution limit of the Optical Spectrum Analyzer
(OSA) in such low RF driving frequency we cannot use optical spectrum analysis method directly
to measure the MZM output field power spectrum [31]. Care was taken to prevent higher RF
tones (i.e. above 1st order) in the MZM output field, which could interfere with the desired
measurement. fy is set to 50KHz, matching the bandwidth of our LTA (SRS model 850). The
chosen LIA conveniently provides both DC bias controls and the slow varying (audio) signal
which has been inserted into the optical domain and processed using standard electronic circuits.
Care was taken to prevent RF leakages in the electronic circuitry, which could interfere with
the measurement of weak signals. The apparatus was used for characterization of dispersion

compensating devices and optical components.

We measured several component categories and fibers to demonstrate the measurement tech-
nique. At each wavelength step, the GD term is extracted. All the presented data points
obtained using the apparatus are without data averaging, smoothing or processing. In essence,
the LIA provides a degree of averaging through its integration time. Currently the measure-
ment time for a single optical carrier step takes relatively long time due to GPIB bus limits
on signaling and data transfer (each RF phase bias sweep and data transfer takes ~7 sec).
Future commercialization of the apparatus can reduce the measurement time dramatically by

introducing custom electronics.

5.1 MPS with Audio
5.1.1 Dispersion Compensating Fiber (DCF) modules

Measurements of Dispersion Compensating Fiber (DCF) modules are depicted in Fig. 31. The
DCF exhibit nearly flat amplitude response and a nearly linear relation of GD vs. A (almost
constant CD). After unwrapping the GD data points and curve fitting to a 2nd degree polynomial,
the dispersion and dispersion slope are extracted in Fig. 32. In Fig. 31 the left DCF module
demonstrated CD of -298.21 ps/nm with dispersion slope of -2.55 ps/nm?, while the right DCF
module demonstrated CD of -1346.5 ps/nm with dispersion slope of -1.97 ps/nm?. These results
are obtained from measurements spanning 5 nm only. The long fiber length of the DCF modules
(~ 1.1km) prevented us from conducting comparative measurements using the interferometer

technique, due to coherence length limitations.
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MPS with Audio DCF -300.10[ps/nm] @ 1550nm MPS with Audio DCF -1310.22[ps/nm] @ 1545nm
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Figure 31: Dispersion Compensating Fiber (DCF) modules MPS with Audio measurements
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Figure 32: Dispersion Compensating Fiber (DCF) modules MPS with Audio unwrapping group
delay

5.1.2 Arrayed Waveguide Planar Lightwave Circuit (AWG PLC) against reflective

mirror

Example of high resolution optical component measurement is depicted in Fig. 34, in this case a
custom Arrayed Waveguide Grating with 100GHz Free Spectral Range (FSR) Planar Lightwave
Circuit (AWG PLC) against reflective mirror (see reference [32, 33] for device illustration and
abbreviation). CD of -564 ps/nm are extracted from the group delay measured slope. The f
audio AC voltage was set to 0.3Volt and the laser intensity was set to maximum. The apparatus
was connected to the AWG PLC through a circulator. Input port (port 1) was connected to
MPS with audio, port 2 was connected to the AWG PLC and the output port (port 3) was
connected to the 2nd optical coupler of MPS with audio apparatus see Fig. 33.
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Figure 33: 100 GHz FSR, AWG against reflective mirror experimental setup
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Figure 34: MPS with Audio 100 GHz FSR AWG against reflective mirror measurement.

In order to evaluate the apparatus dynamic range, IL tolerance, we have made an additional
experiment in which the fy audio ac voltage was set to to be constant through this sweep to
1.929Volt and the laser intensity was swept, since all of the optical signals are predominated by
the optical carrier power level see Fig. 35. Comparison of the extracted chromatic dispersion
values are listed in Tab. 2. As we can see from the chromatic dispersion extraction using linear
fitting to the group delay values the optical carrier IL tolerance is 16.38 dB (the minimum output

power of the laser relative to the maximum optical power in this wavelength range) see Fig. 36.
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Figure 35: AWG PLC against mirror insertion loss and group delay comparison versus laser optical

power

laser attenuation of 16.38dB does not affect the extraction of the group delay, therefore we can estimate
that the MPS with Audio apparatus have at least 26dB tolerance to DUT IL.

Laser optical power [dBm] [ Chromatic dispersion [ps/nm] |

3.37 -517.13
-0.63 -514.64
-4.63 -533.48
-8.63 -510.52
-12.63 -504.40
-13.01 -511.81

Table 2: AWG PLC against mirror chromatic dispersion versus laser optical power
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From this group delay linear fittings we can see a chromatic dispersion value of -511.81 [psec/nm]
at the lowest optical carrier power level. According to the theoretical value this PLC should
exhibit a chromatic dispersion of 530 [psec/nm]. Thus we have measured a relatively close value

to the theoretical value with an error of 18.19 [psec/nm] (3.43% error from the theoretical value).
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This error might be caused from a chromatic dispersion in the circulator, or perhaps from the
low coupling efficiency of the mirror (10 dB IL on the center wavelength) and the insertion
loss curvature induced by the radius of the cylindrical lens at the AWG PLC output. This
insertion loss curvature may contribute to a summing of two phasors which are not equal in
there power spectrum power and therefore one of the phasors will dominate in the MPS with

Audio apparatus.

We set another experiment in order to check the MPS with Audio technique tolerance to insertion
loss. We have inserted a tunable attenuator at the circulator input port in order to emulate
insertion tolerance of the signals see Fig. 35, same experimental setup see Fig. 33. The fj
audio AC voltage was held constant 1.5Volt through the laser optical power sweep. Chromatic
dispersion extraction from linear fitting to the group delay is given as an example see Fig. 39.
The extracted chromatic dispersion values from the group delay linear fittings are summarized
in Tab. 3.
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Figure 37: AWG PLC against mirror insertion loss and group delay comparison versus tunable atten-
uation
group delay values up to IL of 23.5dB appear to be the same, while another increase in the IL give a
noisy measurement of the group delay.
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| Tunable attenuation [dB] | Chromatic dispersion [ps/nm] |

3.5 -601.15
8.5 -599.16
13.5 -594.94
18.5 -617.90
23.5 -642.02
28.5 -675.26
33.5 -434.53

Table 3: AWG PLC against mirror with tunable attenuator chromatic dispersion comparison

In order to estimate the MPS with Audio optical dynamic range of the system we can define
an error range of 5%. Therefore if will consider the smallest attenuation (3.5dB) as a reliable
measurement then five percent error (30 ps/nm) means that our optical dynamic range is at
18.5dB, since the best coupling in between the AWG PLC and the mirror is 10 dB.

Since we have an electrical controllable RF phase modulated comb, which is transmitted to
an optical signal comb we can try and increase the dynamic range of the apparatus from the
electrical power spectrum. Therefore we have measured the same experimental setup while
maintaining a constant optical power of 3.37dBm, while sweeping the fy audio AC voltage (see
Fig. 39 on the following page).
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Chromatic dispersion extraction from linear fitting to the group delay is given as an example

in Fig. 40. The extracted chromatic dispersion values from the group delay

summarized in Tab. 4.
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Figure 40: AWG PLC against mirror group delay linear fitting: fo audio AC Voltage 1.5Volt

| Jfo audio AC voltage [Volt] | Chromatic dispersion [ps/nm] |

0.300 -564.21
0.700 -552.09
1.500 -554.42
1.929 -540.70

Table 4: AWG PLC against mirror chromatic dispersion versus fo audio AC voltage comparison

In conclusion the MPS with Audio apparatus has an optical dynamic range of 28.5dB or equiv-

alently 2.8% error in chromatic dispersion extraction. Moreover in another set of measurements
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(see Tab. 4) while holding the optical power as constant and changing the audio AC voltages
values thus increasing the optical comb sampling the DUT spectra, for f, audio AC voltage
1.5Volt we have measured a value of -554.42 [psec/nm] (11.45% error from this measured value
in the dynamic range limit of the MPS with Audio apparatus) .We need to mention that we have
also measured the group delay of the tunable attenuator (attenuation values of 3.5,13.5,23.5dB;
in the defined optical dynamic range of the MPS with Audio apparatus). In a separate mea-
surement we didn’t find any contribution to group delay or chromatic dispersion values in the
measured wavelength sweep range. This measured value is not far from the theoretical value
of 530 [psec/nm] (16.6% error from the theoretical value). As it is known that this AWG PLC
has Polarization Dependent A\ (PD)) of 2dB. It is also possible that in these measurement the
PDL and PD) was worse (since I have measured a polarization dependence of 6-8dB at the DC
output detector, while changing the polarization with polarization controller at the circulator

input port).

Furthermore, in another set of measurements (see Tab. 4 on the previous page) while holding
the optical power as constant and changing the audio AC voltages values thus increasing the
optical comb sampling the DUT spectra, for f, audio AC voltage 1.929Volt we have measured
a value of -540.70 [psec/nm]. This measured value is not far from the theoretical value of 530

[psec/nm] (2% error from the theoretical value).

5.1.3 DWDM Demux

A final example of an optical component is a DWDM 20 channels 200 GHz spacing demux
(Fig. 41). The MPS with Audio results are compared with a LUNA Optical Vector Ana-
lyzer (LUNA OVA model CTe), which is based on interferometer technique [10]. We have
preformed characterization of ETEK Dynamics C-band 20 channels DWDM Demux (model no.
DWDM2YM3CRVO01) with the MPS with Audio technique using audio tone oscillating voltage
(Vae = 1.2Volt). In order to cover all the DWDM demux spectra we have decided to measure 3
channels: 1, 13 and 20. The Insertion Loss (IL) characterization and the chromatic dispersion
agree in between the two techniques. Results at low IL compare well, whereas the phase esti-
mates for the LUNA becomes unreliable at high IL values. Even the LUNA OVA measurement
was acquired 200 samples it was still needed to play with the DSP capabilities of the LUNA
in order to remove the noise from its measurements by narrowing the filter bandwidth in order
to cut high frequency components which translates to oscillations that can be demonstrated in
channel 20. When preforming a better filtering of this noise the chromatic dispersion behavior
is seen clearer (see channels 1 and channel 13).
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Figure 41: DWDM Demux MPS with Audio & LUNA OVA insertion loss and chromatic dispersion
comparison
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The MPS with Audio technique has an electrical RF PM controllable comb which is been trans-
ported through the DUT optical spectra. As the audio oscillating voltage increased there is a
slight drift in measuring the group delay absolute value see Fig. 43 left side. However when
calculating the local group delay slope we can see that all these drifts are filtered out and that
there is a good agreement no matter the chosen audio tone oscillating voltage see Fig. 43 right

side.
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Figure 42: DWDM Demux channel 1 - MPS with Audio insertion loss, group delay and chromatic
dispersion comparison Vs. fy audio AC Voltage

5.2 2nd order MPS with Audio

5.2.1 Dispersion Compensating Fiber (DCF) modules

Measurements of Dispersion Compensating Fiber (DCF) modules are depicted in Fig. 44. The
DCF exhibit nearly flat amplitude response and a nearly linear relation of GD vs. A (almost
constant CD). After unwrapping the GD data points and curve fitting to a 2nd degree polynomial,
the dispersion and dispersion slope are extracted in Fig. 45. In Fig. 44 the left DCF module
demonstrated CD of -299.42 ps/nm with dispersion slope of -4.5 ps/nm?, while the right DCF
module demonstrated CD of -1344.6 ps/nm with dispersion slope of -2.4 ps/nm?. These results
are obtained from measurements spanning 5 nm only. The long fiber length of the DCF modules
(~ 1.1km) prevented us from conducting comparative measurements using the interferometer

technique, due to coherence length limitations.
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Figure 43: Dispersion Compensating Fiber (DCF) modules 2nd Order MPS with Audio mea-
surements
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Figure 44: Dispersion Compensating Fiber (DCF) modules 2nd Order MPS with Audio unwrap-
ping group delay

5.2.2 Arrayed Waveguide Planar Lightwave Circuit (AWG PLC) against reflective

mirror

Example of high resolution optical component measurement is depicted in Fig. 5.2.2, in this case
a custom Arrayed Waveguide Grating with 100GHz Free Spectral Range (FSR) Planar Lightwave
Circuit (AWG PLC) against reflective mirror (see reference [32, 33] for device illustration and
abbreviation). CD of -566 ps/nm are extracted from the group delay measured slope. The f

audio AC voltage was set to 0.3Volt and the laser intensity was set to maximum.
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Figure 45: 2nd Order MPS with Audio 100 GHz FSR AWG against reflective mirror measure-
ment.

We have repeated the experiment of AWG PLC against mirror see experiment on Fig. 34 on page
63. T have applied the current 2nd order MPS with Audio apparatus using the RF broadband
amplifier and setting the optical bias point at maximum transfer regime of the optical AM
modulator (Vbias=3.0Volt), the f, audio AC voltage was set to 1.929Volt. As can be seen in
Fig. 46 as the laser output power is decreased a curvature of the group delay starts to arise at
attenuation level of 12.00dB (optical power -8.63dBm). Linear group delay fitting are given as

an example in Fig. 47. The extracted chromatic dispersion values are summarized in Tab. 5.
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Figure 46: AWG PLC against mirror insertion loss and group delay comparison versus laser optical
power
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Figure 47: Group delay linear fitting optical power attenuated 12.00dB

| Laser optical power [dBm] | Chromatic dispersion [ps/nm] |

3.37 -680.92
0.37 -684.61
-2.63 -699.87
-5.63 -704.04
-8.63 -738.25
-11.63 -840.83
-13.01 -838.10

Table 5: AWG PLC against mirror chromatic dispersion versus laser optical power

From this group delay linear fittings we can see a chromatic dispersion value of -680 [psec/nm]
at the highest optical carrier power level, in agreement with the fy audio AC Voltage sweep mea-
sured results (see Tab. 6 on the following page), fo Va. = 1.929Volt -682.37 [psec/nm]. According
to the theoretical value this PLC should exhibit a chromatic dispersion of 530 [psec/nm]. Thus
we have measured a discrepancy in the chromatic dispersion value. Once more this measured
value is far from the theoretical value of 530 [psec/nm]|. It is known that this AWG PLC has
Polarization Dependent A (PD)) of 2dB.

We have measured the same experimental setup while maintaining a constant optical power of
3.37dBm, while sweeping the fy audio AC voltage see results in Fig. 48. The extracted chromatic

dispersion values from the group delay linear fittings are summarized in Tab. 6.
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Figure 48: AWG PLC against mirror Insertion Loss and Group Delay versus fo audio AC Voltage

| Jo audio AC voltage [Volt] | Chromatic dispersion [ps/nm] |

0.300 -566.09
0.7000 -579.61
1.200 -621.37
1.500 -630.74
1.929 -682.37

Table 6: AWG PLC against mirror chromatic dispersion versus fo audio AC voltage comparison

In order to estimate the 2nd order MPS with Audio optical dynamic range of the system we can
define an error range of 5%. Therefore if we will consider the smallest attenuation (0.0dB) as a
reliable measurement then five percent error ( 34 ps/nm) means that our optical dynamic range
is at -5.63dBm (10 dB attenuation). Since the largest coupling in between the AWG PLC and
the mirror is 10 dB as can be seen in the insertion loss curves in Fig. 46 on page 71.

In conclusion the 2nd order MPS with Audio apparatus has an optical dynamic range of 20.0dB

or equivalently 3.2% error in chromatic dispersion extraction.

5.2.3 DWDM Demux

A final example of an optical component is a DWDM 20 channels 200 GHz spacing demux
(Fig. 49). The MPS with Audio results are compared with a LUNA Optical Vector Ana-
lyzer (LUNA OVA model CTe), which is based on interferometer technique [10]. We have
preformed characterization of ETEK Dynamics C-band 20 channels DWDM Demux (model no.
DWDM2YM3CRVO01) with the MPS with Audio technique using audio tone oscillating voltage
(Vae = 1.2Volt). In order to cover all the DWDM demux spectra we have decided to measure 3
channels: 1, 13 and 20. The Insertion Loss (IL) characterization and the chromatic dispersion
agree in between the two techniques. Results at low IL compare well, whereas the phase esti-
mates for the LUNA becomes unreliable at high IL values. 2nd order MPS demonstrates less

noisy measurements in comparison with the LUNA.
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Figure 49: DWDM Demux 2nd order MPS with Audio & LUNA OVA insertion loss and chromatic

dispersion comparison

The 2nd Order MPS with Audio technique has an electrical RF PM controllable comb which is
been transported through the DUT optical spectra. As the audio oscillating voltage increased

there is a slight drift in measuring the group delay absolute value see Fig. 51 left side. However

when calculating the local group delay slope we can see that all these drifts are filtered out and

that there is a good agreement no matter the chosen audio tone oscillating voltage see Fig. 51

right side.
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6 Conclusions and future research

We introduce a frequency dither of the RF modulation drive which drives the MZM, using a PM
modulation at low (audio) frequency. Signal analysis of the system demonstrates that the audio
phase information is preserved in the E/O/E conversion. In contrast to the MPS technique, we
measure the RF phase accumulation with an harmonic term oscillatory at the audio frequency,
instead of comparing phases of RF frequency. The measured phase term still depends on the
phase delay experienced by the RF tones. We presented a full analytic response of the modified
MPS technique, and compared it to the traditional small signal approximation. We performed
optimization of the modulation depths and the MZM bias point in order to maximize the desired
signal contribution, while suppressing the undesired contributions (see Appendix 3.2). The 2nd
order MPS technique does not suffer from RF fading at all, since we extract the GD from the
symmetric beat tone of the +1 and -1 sidetones, at a cost of lower signal amplitude in comparison
with standard MPS.

Our approach exploits the high sensitivity and large dynamic range of a LIA to extract the
low (audio) frequency amplitude. The RF frequency is used to sample the GD, while the audio
frequency is used for the LIA measurement. Thus, enabling the use of a low RF driving frequency
as necessary for precise measurement of components exhibiting fine spectral features such as

microresonators and slow light devices.

Moreover, an elegant solution to the ambiguity problem typically found in phase measurements
is suggested, with the help of the RF phase offset. We demonstrated that modifying the MPS
technique by introducing the audio secondary modulation and using the LIA improves the GD
measurement resolution in case of devices with fine spectral resolution. Also the apparatus
can measure fine structure as well as long devices, as it isn’t limited by coherence length. A
comparison summarizing the differences in between MPS with Audio and 2nd order MPS with
Audio in Tab. 7.

’ \ MPS with Audio \ 2nd order MPS with Audio ‘

Signal suffer from RF fading Yes No
Demodulation frequency Vo 2ug
Electrical phase change 360-D-vy- A 360 - D - 2vg - AX

GD measurement without ambiguity (0,1/[2vp]) (0,1/[4vp])

Table 7: Comparison table in between MPS with Audio and 2nd order MPS with Audio

In conclusion, the modified MPS technique was investigated and was successfully demonstrated
in measurement of several component categories and fibers. The future work with the apparatus
noise analysis of the apparatus can be conducted with HCN gas cell, which can be used as a
known physical reference [34]. A polarization controller can be added to the apparatus as part of
an all parameter station, to extract DUT’s polarization dependencies. In order to avoid electrode
charging and reduce drift in the measurement, the MZM can be driven with a slow varying AC
signal instead of the DC signal (i.e. frequency component lower then the sweep rate of the RF
phase shift DC bias).
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7 Appendix A: Modified MPS - photocurrent simplification

We recall the expression for the optical power reaching a detector (being proportional to gener-

ated photocurrent):
Pit)=Y () -Y*(t) = LB(Qy)? |1+

_e—ia i T (B) Jy (map)e =3 (my+nd) =i 3 d(mrotnfo)? =i (mrotnfo) (+t)

m,n=-—oco

_ele i T (B) Iy (map) 3 (my+nd) i 3 (mvotnfo) es(mvotnfo)(é+) 4

m,n=—oo

+ i Jm(g)Jn(mw)Jp(5)Jq(pwej[(m—p)w+(n—q)6]ej[(m—p)uo+(n—q)fol(a5+t).

m,n,p,q
=—o0

,ej%é[(mz—pz)V§+2(mn—Pq)Vofo+(n2—qz)fg]} _
In order to deal with the two infinite sum terms we will use the following approach, taking each
infinite sum to 2 sums while substituting a variable with its minus variable on one of the infinite

sums.
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Using J_,(z) = (=1)" - J(z) and J,(—x) = (=1)" - Jp(2)
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Now we can rearrange the expression, with the same terms of optical bias point and RF fading

due to dispersion.
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CLei® S () T (k) - 7Bt nf0)? (iG] . iln(fo(é+0+9)]

k,n=—o0

+(=1)2n+ke=ilk(o(@+8)+7)] . g=i[n(fo(d+)+0)]]

—leie i Je(B) T (ktp) - e339(kvo—nfo)® . [(_1yntke=ilk(wo(d+D+7)] . eiln(fo(d+t)+)]

k,n=—occ

+(—1)melko@+D+7)] . =iln(fo(é+0)+)]

we need to distinguish in between the following cases

(_1)2n+k _ 1 k even
—1kodd

etk 1 n even, k even n odd, k odd
(-1) = or
—1 n odd, k even n even, k odd
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k even, n even case

= —leia i Jie(B) Jn (k) - =330 (kvotnfo)® . [o=ilk(wo(d+D+7] . g=iln(fo(d+t)+)]

k,n=—o0

el ko041 . giln(fo(é+0)+9)]

l —ja z: J%( )7&k¢0.e—j%akw—nﬂﬂ2.k—ﬂkWM¢+ﬂ+7H.eﬂ”UM¢+ﬂ+®]

k,n=—o0

i lho(@+0+)] L g=iln(fo(é+)+0)]

—Leja S Ju(B) (k) - ed38votno) | [eilk(wo(b+0) )] . giln(fo(d+1)+5)]

k,n=—o0

+eIk@o(@+0+] L g=iln(fo(d+D+0)]]

—Leja S Ju(B) (k) - 7380 —nio)? | [o=ilk(o(+D47)] | iln(fo(b+0)+0)]

k,n=—oo

+eI ko (@+D+7] L g=iln(fo(d+D+0)]]

= —1le-ie i Je(B) (k) - =339 kvotnfo)® L cosl(kvg + nfo)(d + t) + kv + nd]

k,n=—o0

—Lemie S Ju(B) (k) - eI 3010 L cos[(kuy — nfo) (b +t) + ky — nd]

k,n=—o0

361 32 J(B) (k) - 3 I)  cosf(kug + nfo) (& + ) + ky + nd]

k,n=—o0
oo

—1e% S Tp(B) T (k) - €7 2000 =n Il - cos[(kvy — nfo)(d +t) + ky — nd]

k,n=—oc
=5 X Ju(B)Iu(ky) - cosl(kvo +nfo)(é + ) + ky +nd]
k,n=—o00
Jedlot3dtkvotnfo)’] 4 g=ijlatzdlkro+nfo)’])

i T (B) I (k) - cos| (kv — nfo) (& + 1) + ky — nd]

N[

Jedlot3otkvo—nfo)’] 4 g=jlatzdlkro—nfo)’])

S Ju(B)Jn (k) - cos|(kvo + nfo)(é + 1) + ky + nd]

k,n=—o0

-cos[a + %925 (kvo + nfo)Q}

S Te(B) (k) - cos|(krp — nfo)(é + t) + ky — nd]

k,n=—oc
cosla + 3¢ (kvo — nfo)’]
substituting n=-n

5 Ji(B)Jn (k) - cosl(kvo + nfo)(é+ ) + by + nd]

k,n=—o0
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coslo+ 36 (kvo + nfo)’]

i Ji(B) T (k1) - cos[(kvy + nfo)(d +t) + kv + nd]

k,n=—occ
-cos[a + %qﬁ (kvo + nf0)2}
since n even

=2 S Je(B) (k) - cos|(kvo + nfo)(d+t) + kv + nd]

k,n=—o0
-cos[a + %¢ (kvo + nfo)?].
k even, n odd case

R i Jie(B) Jn (k) - =i 30(kvotnfo)® . [o=ilk(wo(d+D)+7] . g=iln(fo(d+t)+0)]

k,n=—o0

teilk@o S+ . piln(fo(d+6)+0)])

T i Je(B8) T (k) - =3 b(kro—nfo)? | [_e—j[k(uo(¢5+t)+7)] . ed[n(fo(d+1)+9)]

k,n=—oc

— eIk (@47 . =iln(fo(@+6)+0)]]

—Leia S Ju(B) T (k) - €1 3B kvotno) | [eilk(vo(b+0)+)] . giln(fo(d+1)+5)]

k,n=—oo

+e—ilk@o(@+) 4] . g=iln(fo(d+D)+0)]]

—Leia f’: Je(B) T (kt)) - e339(kvo—nfo)® . [_e=ilk(vo(@+6)+7)] . giln(Fo(s+)+0)]

k,n=—oc

—eilk@o S+ . g=iln(fo(é+0)+0)]]

:—%e*ja i Ji(8)In (kW) - e P(kvo+nfo)? 305[(kl/o+Tlfo)(¢.7+t)—|-k'y—|—n5)]
Jr%e*ja i Ji(B)In (k) - e b(kvo—nfo)? cos[(kl/o*Tlfo)(q.ﬁth)Jrkfyfnd)}

—Leiac S Ju(B)Jn (k) - 83800 tniol . cos((kvy + nfo)(d +t) + ky + no)]

k,n=—oo

F1E S Ju(B) T (k) - 3RO - cos|(kuy — nfo)(§+ 1) + ky — né)]

k,n=—oo

= =1 3 (B)nlk) - cosl(kvo+ nfo)(G+ 0 + k7 + )

[6][06+ (kvo+nfo)?] +e la+jso b(kvo+nfo)? ]}

+5 X Je(B)Jn(ke) - cos|(kvo —nfo) (6 + 1) + ky — nd))
k,n=—
Jedlotizdlkvo—nfo)’] 4 e=ilatizdkvo—nfo)’]]
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= S Je(B) (k) - cos|(kvy + nfo)(d +t) + ky + nd)]

k,n=—o0

coslo+ 36 (kvo +nfo)’]

+ % Te(B)Jn (k) - cos(kvo — nfo) (6 + t) + ky — nd)]

k,n=—o0
-cos[a + ]%(b (kvg — nf0)2]
substituting n—=-n

— = Y Te(B)Ta(k) - cos[(kvo + nfo) (b + ) + ky + nd)]

k,n=—oo

coslo+ 36 (kvo + nfo)’]

+ Y Te(B) (k) - cos[(kvo + nfo)(é + ) + ky + no)]

k,n=—o0
-cos[a + ]%(b (kvo + nfO)Q]
since n odd

=2 Y Ju(B)Julkt) - cos[(kvo +nfo)(d + 1) + ky + né)]

k,n=—o0
-cos[a + %¢ (kvo + nf0)2}
identical to previous case.

k odd, n even case

= _leia S Ji(B)Jn (k) - eI 3 rotnfo)? | [e=ilk(ro(3+0)+7)] . g=iln(fo(d+1)+6)]

k,n=—oc0

— ik @+ 4)] . giln(fo(+)+0)])

—leie i Je(B) Jn (k) - e=339(kvo—nfo)® . [o=ilk(o(d+D)+M] . ¢iln(fo(d+t)+)]

k,n=—oc
_eiR@o( 4] . =in(fo(d+6)+0)]

—Leja S Ju(B) T (k) - ed3Bkvotn o) | [ilk(vo(b+0))] . giln(fo(d+1)+9)]

k,n=—o0c
—eilk(o(d+DHM] . o=iln(fo(d+6)+0)]]

CLei® S () T (k) - €750 o) [ emilko(@ 0] L eiln(fo(d+0)+0)

kyn=—o0
el kW@ +)+7] . g=iln(fo(é+0)+6))

= eI i Ji(B) T (k1)) - e=3300votnfo)” . ginl(kuy + nfo)(¢ + t) + ky + nd)]

k,n=—o00

+ieI0 Y Tu(B) (ki) - e TAER0n L gin](kvg — nfo)(é + t) + ky — )]

k,n=—oc
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=)

—ded S T(B) (k) - €130 kvotnio) L gin((kuy + nfo)(d + t) + ky + nd)]

k,n=—o0

oo

—Le® S Te(B)In (k) - 7 300=n Il sin (kv — nfo)(d + t) + ky — nd))

k,n=—o0

= =4 3 B ulk) - sinl(kvo+nfo)(@+ ) + by + )

[ej[aJr%(ﬁ(kVO*nfO)Q] — e*j[a+%$(kﬂ/0*nf0)2]]

= S T(B)Tu(k) - sin|(kvo + nfo)(é + 1) + ky + nd)]

kyn=—o0

sinfa+ 16 (kg +nfo)?]

+ % Te(B)Tu (k) - sin[(kvo — nfo)(é + t) + ky — no)]

k,n=—oc
-sinfo + 6 (kvo — nfo)’]
substitute n—n

= S Je(B)In(kW) - sinl(kvo + nfo)(é + 1) + ky + nd)]

kyn=—o0

sinfa+ 16 (kg +nfo)?]

+ Y Tu(B) (k) - sin[(kvo + o)+ ) + ky + nd)]

k,n=—oc
-sinfo + 6 (kvo + nfo)’]
since n even

=2 Y Ju(B) (ko) - sinl(kvo +nfo)( + t) + ky +nd)]

-sinfa + %QS (kvo + nfo)Q].

k odd, n odd case

= —le—ja i T (B) Jn (k) - e=i30(kvotnfo)® . [o=ilk(vo(d+D)+m] . g=iln(fo(d+t)+0)]

k,n=—o0

—eilk(o(d+D+M)] . eiln(fo(é+t)+0)])

—1e-ia S Je(B) (k) - eI 3800 o) [ emilk(o(d+) 4] . giln(fo(+0)+0)]

k,n=—o0

el kW@ +)+7] . g=in(fo(é+0)+6))
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—Lei® S T (B) (k) - €3t nIo) L [eilk(o@ 4] L giln(fo(b+0)+9)

kyn=

— ik G047 . g=iln(fo(d+)+0)])

—leie i Je(B) T (ktp) - e339(kvo—nfo)® . [o=ilk(vo(b+D)+7] . giln(fo(d+t)+)]

k,n=—oc

_eih@o( 4] . =in(fo(d+6)+0)]

= %eija i Jk(ﬂ)Jn(kw) . e*ﬂ%‘%(kl/oJrnfo)? . Sin[(kljo + nfO)(¢+ t) 4 k"}/ + nﬁ)]

k,n=—o0

46 S Tu(B)Talb) - IO iy — o) (6 -+ 1) + Ky )

—3e S Tu(B) (k) - I FE0EnI i (kv + nfo) (& + £) + ky + nd)]

k,n=—o0c

eI Y J(B) (ki) - T nIO”  sin[(ky — fo)($ + ) + ky = )

-sinfa + %(25 (kvo + nfo)z]

— S J(B) (k) - sinl(kvo —nfo) ($ +t) + ky — nd)]

k,n=—occ
-sinfa + %(;S (kv — nfo)z]
substitute n—n

= S Te(B)In (k) - sin(kvo + nfo)( + ) + ky + nd)]

k,n=—oc0

-sinfa + 36 (kvo + nfo)’]

— > Te(B)T (k) - sin[(kvo + nfo)(d+t) + ky + n6)]

k,n=—occ
-sinfa + %cf) (kvo + nfo)Q]
since n odd

=2 S Ju(B)Inlk) - sin[(kvo +nfo)($ + ) + ky + nd)]

k,n=—o0
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-sinfo + %(ﬁ (kvo +nfo)’]
same as preViOuS case.

Finally we can summarize this calculations by noting that the expression:

_eie i Je(B)Jn (ktp)e=ik@o @+ 4] . g=izd(kratnfo)* . o=iln(fo(d+t)+6)]
k,n=—o0
_ela i T (B) T (k1) ed k(o (9+0+)] . gi5dkvotnfo)® . giln(fo($+1)+6)]

k,n=—o0

is independent of n, and can be represented in the equivalent form

=2 S Ju(B)Ju(k):

k,n=—o0

. [ —cosla + %cf) (kvo + nfo)?] - cos[(kvy +nfo)(d + t) + kv + nd]

sinfa + 3¢ (ko +nfo)’] - sin[(kvo +nfo)(d+1) + ky+nd)] |,

where | formalizm formalism is introduced to denote that top element is chosen if k is

S
even and bottom if £ is odd.

We will apply the same approach to the four infinite sum terms

S T (B) T (M) Ty (B) T ([ — K]ab) - e3B7 8] . ilkvotifol(+0)

myn,k,l
=0

o 3 6[k@m—R)1g+2[nk-+l(m—k)]vo fo+1(2n—1) /3]

oo

=1 S Jn(B) (M) T (B) Tt ([m — K1) - edkr+18) . gilkvo+ifol(é+t)

N

eJ 5 b[k@m—k)vg+2[nk+(m—k)]vo fo+l(2n—1) 5]

1S T (B) I (—m) Tk (B) i (= — KJ1p) - SR +0] . cilkwo+Lfol(d+0)

m,n,k,l
=—o00

'ej%é[k(—2m—k)y§+2[nk-l—l(—m—k)]vofo-&-l(Zn—l)fg]

— % S T ()T (M) 1 (B) 1 ([m — K1) - IRy +18) | gilkvo+ifol(d+t)

1 B O[R@m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £3]

41 S T (B) T (M) Tk (B) ([ — KJap) - €3k +0) . gilkwo+Lfol(@+0)

m,n,k,l
=0

eJ 30[k(@m—k)1g+2[—nk+l(m—k)]vo fo+1(~2n—1) f7]

oo

+i S T (B) Tn(—mp) T 1 (B) Tt ([—m — E]2p) - eIlErH10] . edlkvotfol($+t)
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eJ 3 P[k(=2m—k)vg+2[nk+1(—m—k)lvo fo+1(2n—1) /5]

1S Tean(B) T (1) T (B) Tt ([ = — KJap) - e3lR710] . gilhvoLfol (61

m,n,k,l
=—o00

i B O[k(=2m—k)vg +2[~nk+1(—m—k)]vo fo+1(~2n—1) f3]

oo

LS T(B) T (M) T (B) Tt ([m — KJ@p) - edF7H0] . gilhvo+ifol (1)

.ej%d;[k(2m—k)Vg+2[nk+l(m—k)]l/ofo+l(2n—l)f02]

LS T () (1) Ton s (B) Tt (fm + KJap) - 1R H0) . gil—hvotifol(9+0)

m,n,k,l
=0

_ej%[iﬁ[7k(2m+k)ug+2[fnk+l(m+k)]uofo+l(2n7l)f§]

53 Jn(B) T (M) Sk (B) Tt ([ — K]a)) - 3 E7H] . eilkrotifol(G+0)

eJ 5 O[k@m—k)1g+2[—nk+1(m—k)]vo fo+1(—2n—1) /5]

+3 i T (B) T (map) Ty ke (B) Tt ([ + E]ap) - eI =Fy+10] . ed[=kvotifol(d-+t)

% b[—k(@m+k)g +2[nk+1(m+k)]vo fo+i(—2n—1) f3]

€
+1 5 T n(B) (=) Tk (B) Tt (=m0 — k) - edF7H19] . ilivotiful(G+)

_ej%éﬁ[k(—Qm—k)ug+2[nk+l(—m—k)]uof0+l(2n—l)f§]

+3 i T (B) T (—map) T s e (B) Tt ([—m + E]ap) - edl=Fr+1d] edl=kvo+ifol(d+t)

m,n,k,l
=—o0

eI B[ (=2mAR)g+2[—nk+l(=m+F)lvo fo+l(2n—1) f5]

LS T (B)Tn(—10) T s (B) T ([~ — KJ1p) - SB113] . galhvo kol 50

&
15 T (B (=) T 1 (B) Tt + KJap) - 3R] il v Lol (90

eJ 50| —k(=2mAR) g +2[nk+1(=mAk)]vo fo+l(—2n—1) f3]

= L SN T (B) T () Tk (B) T —i(fm — KJap) - dbr+18] . gilkvo+ifol(G+t)

m,n,k,l
=—00

i 3 O[k(@m—k)vg+2lnk+1(m—k)]vo fo+1(2n—1) 3]
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+% i o (B) T (mah) T (B) Tt ([m — EJab) - edlky—=14] .ej[kuo—lfo](<z5+t)

myn,k,l
=00

eJ 5 O[k(@m—k)vg+2[nk—1(m—k)]vo fo—1(2n+1) 5]

T Y Tn(B) () T (B) Tui(m + K - IR HEL L gll=kvo o))

m,n,k,l
=—o00

eI 5P|~k @mAk)vg+2[—nk+1(mk)lvo fo+1(2n—1) /7]

+4= i T (8) T (ma)) s (B) Tt ([m + k) - ed[=Rr=10]. edl=kro—Lfol(d+1)

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo~1(2n+1) /7]

oo

i S T (B) T (M) Tk (B) T ([ — K]gp) - eI F7H0] . gilhvotLfol(+1)

.ej%é[k(2m—k)vg+2[—nk+l(m—k)]uofg+l(—2n—l)f§]

15 S T B ()i (B) T ([ — Kp) - 18] ilhro—10o)(6+)

m,n,k,l
=—o0

eI B O[R@m—R)1g+2[=nk—I(m—Fk)]vo fo—1(~2n+1) f5]

oo

tis 5 Tm(B) (M) Tk (B) T i ([ + k) - eI 1R 4] il =hrotifol (6+0)

eI 5[ —k@mAR) g +2[nk-+H(m+k)]vo fo+U(—2n—1) f3]

Fhs Y Tn(B) T (M) T (B) T ([ + K]ap) - €71 7v=10) . il—hvo—Lfol (é+1)

eJ 5O[—k@mAk)vg+2[nk—1(m+F)]vo fo—1(—2n+1) f7]

LS T (BT () T (B) Tt ([ — KJa)) - 357 H8] . cilivn 4ol (9+0)

m,n,k,l
=—o00

'ej%[ﬁ[k(—2m—k)y§+2[nk+l(—m—k)]vofo+l(2n—l)f§]

+35 i T (B) T (=mtp) Ty (B) Tt ([ — EJap) - etor =101 eilkvo—1fo](d+1)

m,n,k,l
=—o00

I B O[R(=2m—k)vg +2[nk—1(=m—F)lvo fo—1(2n+1) f5]

+% S T (B) T (=) T (8) Ty (=m0 + k1) - ed[=Fr+10] el=kvo+Lfol(d+t)

myn,k,l
=0

_ej%[i;[fk(f2m+k)ug+2[fnk+l(fm+k)]Vofo+l(2nfl)f§]

oo

ti5 2 Ton(B) () Tk (B) T ([~ + M) - IRr18] . gil—ko—1fol(é+)
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.ej%Jﬁ[—k(—2m+k)u§+2[—nk—l(—m+k)]u0f0—l(2n+l)fg}

oo

o S T (B) T () T o (B) Tt ([ — kJip) - 1B H10] . ilbvotifol(6+1)

_ej%<}5[k(—2m—k)y§+2[—nk-i—l(—m—k)]l/of0+l(—2n—l)f§]

+45 i T (B) T (—map) I (B) T g ([—m — KJp) - e3lhv=10) . eilkvo—Lfo)(é+1)

m,n,k,l
=—o00

eI B O[k(=2m—k)vg +2[~nk—1(—=m—k)vo fo—1(~2n+1) f3]

+% f: T (B) T (=map) T g (B) Tt ([—m + K]ep) - IRy 18] | pil=kvo+1fo](d+1)

m,n,k,l
=—o0

.ej%c'ﬁ'[fk(72m+k)ug+2[nk+l(7m+k)]uof0+l(72n7l)f§]

L S T (B) o (—m) Ty (B)—ia (= + k) - @I1R118] . gil—hvo—1do](d+0)

m,n,k,l
=—o0

,ej%&[—k(—2m+k)u§+2[nk—z(—m+k)]u0f0—z(—2n+l)fg] _
Using J_,(z) = (=1)" - J,(z) and J,,(—z) = (=1)" - Jp(2)

= LS Tn(B)n () Jon (BTt — K] - s gilivartigol 40
e
L S T (B) T () T (B) T ([ — KJap) - e3E7=10) . eilkvo=tfol(§+)

+% S T (B) T (M) Tt (B) Jo— ([ + K]ap) - ed=Fr+10] . ei[—kvo+ifol(d+t)

15 S TnlB) T (M) Tur ik (B) T a ([ + KJip) - 17101 il=hvo Lol

_ej%d;[fk(2m+k)u§+2[fnkfl(m+k)]u0fofl(2n+l)f§]
S T (B) () o (B) Fua ([ — K]) - €I E7H10] . ealbvo+ifol ()
m,n,k,l

(—1)21 . I B[ Cm R 2Lk m—R)lvo forti(~2n—0) ]

i f:k ljm(g)Jn(m¢)Jm_k(g)Jn_l([m — ko) - ekl . gilkvo—tfol($+1)

=—o00

(=1)2n—! . I 3 0[k@m—k)vg+2[—nk—1(m—k)]vo fo—1(~2n+1) 7]
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_,_% S T (B) T (M) T (B) Ty ([ + k) - e3[R +19] . edl=kvo+ifol($+1)

myn,k,l
= oo

(- 1)2n+l . ej%&[7k(2m+k)ug+2[nk+l(m+k)]Vof0+l(f2n7l)fg]

_,_% i T (B) T (M) T 1 (B) Tt ([ + EJa) - el=Fr=10] . edl=kvo—1fo]($+1)

myn,k,l
= oo

_(_l)znfl . ej%[15[7k(2m+k)u3+2[nkfl(m+k)]z/gfofl(f2n+l)f§]

5 Y T (B)Tn (M) o (B) i ([ + KJap) - 7 E7+10] . eilkvo+Lfol(6+0)

myn,k,l
= oo

_(_1)2m+k+2n7l ) ej%¢[k(72m7k)Vg+2[nk+l(—mfk)]uofo+l(2nfl)f§}

_,_% i T (B) T () Ty 1 (B) Tt ([m + KJap) - eter =11 eilkvo—Lfol(d+t)

myn,k,l
= oo

.(_1)2m+k+2n+l . ej%é[k(*2m*k)l’§+2[nk*l(*m*k)]VOfO*l(2n+l)frﬂ

+ i T (B) T (M) Ty — 1 (B) T ([m — KJap) - eI [=F7+10] . ed[=kvotifo](d+t)

myn,k,l
= oo

_(_1)2m7k+2n7l . ej%¢[7k(72m+k)V§+2[7nk+l(fm+k)]u0f0+l(2n—l)f§]

5 3 T8I} T (8) ([ — k) - 10 k1)

=—o0

_(_1)2m7k+2n+l ) ej%¢[7k(72m+k)V§+2[7nkfl(fm+k)]uofo7l(2n+l)f§]

+% S T (B) T (M) T g1 (B) Ty ([m + KJa) - e7kr+0] . edlkro+ifol(d+1)

myn,k,l
= oo

(—1)2mtktAnt2L o 5 B[k(—2m—k)vg+2[~nk+I(=m—k)lvo fo+l(—2n—1) f3]

_,_% i T (B) T () Ty 1 (B) Tt ([ + E]ap) - ey =131 . dlkro—1fol($+1)

myn,k,l
= oo

_(_1)2m+k+4n72l . ej%[iﬁ[k(mefk)Vg+2[7nkfl(7m7k)]uofgfl(72n+l)f§]

_,_% i T (B) T () Ty — 1 (B) Tru1 ([m — K]a) - eIkl eil—kvo+Lfol(d+1t)

myn,k,l
= oo

_(_1)2m7k+4n+2l . ej%z'i;[fk(72m+k)Vg+2[nk+l(fm+k)]V0f0+l(72n7l)f§]

_,_% i T (B) T () Ty — 1 (B) T ([m — KJa) - e7=F7=1] . edl=kro—1fo]($+1)

myn,k,l
= oo

_(_1)2m7k+4n72l . ej%45[*k(*2m4rk)V§+2[”k*l(*m+k)]l’0fo*l(*2n+l)fg] .

We need to distinguish in between the following cases
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(—1)il _ 11 even
—11odd

(—1)Ekt 1k even, 1 even or k odd, 1 odd
—1 k odd, 1 even k even, | odd

(‘Uik _ 1 k even
—1k odd

Therefore our discussion is now limited to the following cases

k even, 1 even
k even, 1 odd
k odd, 1 even
k odd, 1 odd
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k even, [ even case

oo

=5 Tn(B)In (M) T (B) Tni([m — K] - e/F7 ] . gilkvo+ifol(o+0)

ed 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 7]

35 % Tn(B)a(m) Ton i (5) Tt + k) - IR418] L TlhvoLfol(G+1)

m,n,k,l
=—o0

3% b[—k(@mAk)g +2[—nk+1(m+k)]vo fo+1(2n—1) f3]

€
i 3 Tm(B)Tn (1) T (B) Tt ([m + K]ap) - edlF7=10] . eil=hvo=tfol(@+0)
m,n,k,l

=—o00

0 [ —k@mAR) g +2[—nk—1(m+k)]vo fo—1(2n+1) f7]

+15 S T (B) T (m30) T (B) o1 ([ — KJap) - e3ErH18] . gilhvo +Lfal(G-+t)

m,n,k,l
=—o0

1 36[k@m—Rk)vg+2[—nk+1(m—Fk)lvo fo+1(~2n—1) f§]

S T (B) I (1) s (B) Tt ([ — KI) - 3 B7—10] . ealbvo—Lfol (40

myn,k,l
= oo

73 6[k(2m—k) g +2[—nk—1(m—k)]vo fo—1(—2n+1) £3]

-e
+% Z I (B) In(ma)) Jrng i (8) Ty ([m + ki) - eI l=ky ] ej[ikVOHfO](éH)

o § B[k @mAk) g +2nk+U(mAk)]vo fo+U(—2n—1)£3]
+4= i T (B) T (M) s (B) Tt ([ + k1)) - @31k =181 . gil=hro—1fol(6-+¢)
m,n,k,l

eI 5[ —k@mAR)vg +2[nk—1(m+k)]vo fo—U(=2n+1) /7]

+L S T ()T (18) Torese (B) Tt ([ + K40 - €31E1+10] . gilkvo+1fo] (1)

m,n,k,l
=—o0

0 B O[k(=2m—k)vg +2[nk-+1(=m—k)]vo fo+1(2n—1) f5]

+15 X Tn(B) (M) ok (B) T ga([m + KJap) - 7110 eilkvo=Lfol(@+)

.ej%é[k(—Qm—k)uS-i—Q[nk—l(—m—k)]uofo—l(2n+l)f§}

kS T (B) T () S (B) T ([ — KJap) - IR0 . il kvor+Lfol (340

myn,k,l
=0
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eJ 5O —k(=2mAR)g +2[—nk+I(=m+k)]vo fo+1(2n—1) f]

oo

ti5 3 Tn(B) ) Ton i (B)Tna([m — k) - @371 w0 tfol(+)

o 5 B[ —k(=2m-+k)vg +2[—nk—L(—m+k)]vo fo—1(2n+1) £3]

15 20 Inn(B) () Tk (8) Tusa([m + k) - T+ gTlvot1fol(6+0)

myn,k,l
= oo

I EB[k(=2m—k)r3+2[—nkt1(—m—Fk)lvo fo+1(—2n—1) f3]

oo

i S T (B) I (1) Tk (B) Tt ([m + K1) - 3B =10] . eilkvo=Lfol(9+0)

+% S T (B) T (M) Ty (B) T ([ — K]ap) - edl=hr+1d] . ei[=kvo+ifol(d+t)

T 3 T(B) T (mt) T (8) Ju—s(fm — Kp) - 1H7=18] . eil=kvo=1fol(é+1)

I ¥ B[~ k(=2mAk)vE +2[nk—L(—m+k)]vo fo—U(—2n+1) £3]

rearranging common RF fading terms (due to dispersion) in adjacent lines

= LS J(B) () T (B) Ty ([ — KJep) - 3T+ ilhwotifol @)
m,n,k,l

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+1(2n—1) 5]

5 2 Tn(B)Tn(m) Jon i (B) T ([ — KJip) - LRI ool

m,n,k,l

I $B[—R(=2mAk)vE +2[nk—U(—m+k)]vo fo—U(—2n+1) £3]

+L S T (B)Tn () T o (B) T ([0 — K]) - €3l6718] . gilhvo—Lfol(6+1)

myn,k,l
= oo

.ej%[15[k(2m—k)V§+2[—nk—l(m—k)]u0fo—l(—2n+l)f§]

oo

+£ 2 Tn(B) T (M) Tk (B) Tt ([m — Eap) - eI k1] . edl—kvo+ifol(d+t)

1 30[—R(=2mAR)g 2 nkt1(=m+k)]vo fo+l(2n—1) £5]

oo

Jr% > In(B)In(m)) Sk (B) Jnyi([m — E]) - eilkr =131 . gilkro—Lfol(g+1)
eJ 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 3]
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s 3 Tn(B) () T (B) T — k) - R4 el vastil(G0

myn,k,l
=00

1 36[—k(=2m+R)g+ 2k (—mAk)lvo fo+1(~2n—1) f§]

oo

+15 X Tn(B)Tn(mid) T (8)Tnsi([m — k]gp) - edbr+10) . eilhmotifol(ért)

m,n,k,l
=—o00

eJ 5 P[k@m—k)1g+2[—nk+1(m—k)]vo fo+1(—2n—1) /5]

t5 3 Tn(B)n(m) Ton i (B)Tna(fm — k) - 3701 w0 Lol +)

m,n,k,l
=—o00

0 B[ —E(=2mAR)uG+2[—nk—I(=m+k)lvo fo—1(2n+1) f5]

+15 30 Tn(B)In (M) T (B) Tt ([ + Kp) - 31 +10] - eal=huosLfol (G40

I $ B[k @mAk) 342 —nk-+U(m+k)]vo fo+1(2n—1) £3]

+ i T (B) T () 1 (B) T ([ + K]a) - edFv =11 eilkro—Lfol(d-+t)

m,n,k,l
=—o0

eI B O[k(=2m—k)vg +2[~nk—1(—=m—K)vo fo—1(~2n+1) f3]

oo

+% S T (B) T (M) Tk (B) Ju—i ([ + K]ep) - edl=Er=10] . edl=kvo—1fol($+1)

eI 5O[—k@mAk)vg+2(nk—L(m+k)lvo fo—1(=2n+1) f7]
+% i o (B) T (mah) T (B) Ty ([m + K]2p) - i kv +18] | pilkvo+lfol(d+t)
m,n,k,l

eJ 5 O[k(=2m—k)vi+2[nk+1(—m—k)lvo fo+1(2n—1) /3]

oo

+% S T (B) T (M) Tk (B) Ta ([m + ki) - edl—ky—=1d] . ej[fkwflfo](dwt)

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo~1(2n+1) f7]

oo

+% 3 Jm(ﬁ)Jn(mw)Jm+k(ﬁ)Jn+l([m_|_k]w).ej[k“/+l5].ej[kuo+lfo](¢5+t)

eI B O[F(=2m—k)vg +2[~nk+1(—m—k)]vo fo+1(~2n—1) f3]

i S T (B) I (M) ok (B) Tyt ([ + E]) - e[-R7H8] L il =kvotifol(9+0)

myn,k,l
=0

) § B[k @mAk) g +2nk+U(mtk) o fo+U(—2n—1)£3]
+% Z Jm(ﬁ)Jn(m¢)Jm+k(ﬁ)Jn+l([m + k]dj) ' ej[k'yflé] ' ej[kyoilfo](édﬁ)
m,n,k,l
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ed 5 O[k(=2m—k)vi+2[nk—1(=m—F)lvo fo—1(2n+1) /5]

assembling trigonometric identities

—

T (8) I (M) T~k (B) -1 ([m = K]) - cos[(kvo + Lfo) (& + 1) + ky + 16]

l

m,

=1 >
n,k,
eI B O[F@m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £3]

15 TnlB) T (1) T (B) T ([ — KJ0) - cos{(kvo — Lfo) (& + 1) + ky — 16]

oI [ —R(=2mt k)R 2 —nk(=m+k)]vo fo+1(2n—1) £3]

15 Tl B) T (100) T (B) Tosa ([ — KJi) - cos[(kvo — Lfo) (& + 1) + ky — 16]

eI B O[F@m—k)vg+2[nk—1(m—k)]vo fo—1(2n+1) 5]

1S Tn(B) I () Ton 1 (B) g1 ([ — K1) - cos[ (ko + Lfo) (6 + £) + ky + 16]

I B O[R@m—R)1g+2[=nk-+i(m—Fk)]vo fo+l(—2n—1) /5]

1S T (BT () T s (B) T 1 ([ + ) - cos[(hwo — Lfo) (6 + ) + ky — 1]

eI 5O~k @mAR) g +2[—nk+l(m+k)]vo fot+1(2n—1) £3]

1S T (B) () T (B) Jui([m + KJ8) - cos|(kvo + Lfo) (& + 1) + ky + 10]

eI B O[F(=2m—k)vg +2[nk-+1(=m—F)]vo fo+l(2n—1) /5]

+3 5> T8 T (1) Tk (B) Tosa ([ + KJib) - cos (kv + Lfo) (& + £) + oy + 1]

m,n,k,l
=—o00

.ej%é[—k(2m+k)u§+2[—nk—l(m—i—k)]uofo—l(2n+l)fg]

+3 5> T T (1) Tk (B) Tosa ([ + KJib) - cos(kvo — Lfo) (& + 1) + ky — 1]

m,n,k,l
=—o00

) 5 B[—k@mAk) g +2[nk+U(mAk) o fo+U(—2n—1)£3]

after rearranging common expressions and substitute [ = —I

= 1S Tn(B) (M) oo (B) Tt ([m — KJ4) - cos[(kvo + Lfo) (& + 1) + ky + 0]

m,n,k,l
=—o0

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+l(2n—1) 5]

150 Tn(B) I ()T (B) T — K1) - cos[(kvo + Lfo) (& + 1) + ky + 10]

m,n,k,l
=0
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o) 5 O[k@m—k)vg+2[nk+I(m—k)]vo fo+l(2n—1) 5]

+% i Jm(ﬂ)Jn(mzp)Jm—k(ﬁ)Jn—&-l([m_kh[})'COS[(kV0+lfo)(qf;+t)+]€’Y—|—15]

m,n,k,l
=—o00

'ej%[ﬁ[k(2m—k)vg+2[—nk+l(m—k)]z/ofg-&-l(—Qn—l)fg]

+1 50 Tn(B) I () (B) Juya ([ — KJi6) - cos[(kvo + Lfo) (& + 1) + ky + 1]

m,n,k,l
=—o0

el B[~k (=2mAR)g+2[—nk—I(=m+k)lvo fo—1(2n+1) f5]

15 Tn(B) () Tk (B) Tt ([ + KJ8) - cos((kvo + Lfo) (@ + 1) + ky + 1]

m,n,k,l
=—o0

_ej%[15[k(f2mfk)V§+2[nlc+l(fmfk)]uofo+l(2nfl)f§]

oo

+% Z Jm(5)Jn(m¢)Jm+k(ﬂ)Jn4([m + k]@/’) : C0‘9[(k’/0 + lfO)(é +t) +ky+ 15]

I 5Bk @mAk) g +2[nk—1(m+k)Jvo fo+1(2n—1)£3]

oo

+35 2 In(B)In (M) Ik (B) Jnpi([m + EJ) - cos[(kvy + lfo)(fl-5 +1) + ky+ 6]

=

eJ 5O[—k@mAk)vg —2[nk+l(m+k)]vo fo—1(2n+1) f5 ]

+3 5> T8I (1) Tk (B) Tosa ([ + KJib) - cos (kv + Lfo) (& + £) + oy + 1]

m,n,k,l
=—o00

,ej%é[—k(2m+k)ug—z[nk+z(m+k)]u0fo—l(2n+l)fg]

substitute n = —n

oo

=1 5 Tn(B)Tn () Jon—k(B) J—i([m — K]3p) - cos[(kvo + 1fo) (¢ + t) + ky + 16]

ed Ok @m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £§]

oo

+51 2 In(B) I n(m) Ik (8) T nii([m — K]) - cos[(kvo + Lfo) (& + 1) + kv + 1]

m,n,k,l
=—o0

_ej%[15[k(2m—lc)Vg+2[nlc-i—l(m—k)]u0f0+l(2n—l)f02]

oo

+1 5 Tn(B) T (ma)) Tk (B) T——i([m + E]) - cos[(kvo + Lfo) (¢ + t) + ky + 10]

eJ 3O[k(=2m—k)vi+2[—nk+1(m+k)lvo fo—1(2n+1) f7]

oo

+3 3 Tn(B) 0 (M) Tk (B) Jnga (Im + kJo) - cos|(kvo + Lfo) (& +1) + ky + 1]

m,n,k,l
=—o0

eJ 5O —k@mAk)vg —2nk+l(m+k)]vo fo—1(2n+1) f5 ]
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[ even case

oo

=1 > I B)In(ma)) Ik (B) Jn—i([m — E]9) - cos[(kvo + lfo)(é +t) + ky + 19]

N

eJ 5 b[k@m—k)vg+2[nk+(m—k)]vo fo+l(2n—1) 3]

+% i Jm(ﬂ)‘]n(md))‘]m—k(ﬁ)]n—l([m_k]d)) '605[(kV0+lf0)((J5+t)—|—]€7+l5]

m,n,k,l
=—00

i 3 O[k@m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £5]

+15 Tn(B) ()1 (B) T i ([ + K) - cos[(kvo + Lfo)( + t) + ky + 10]

m,n,k,l
=—o0

o~ 3 B[k(@mAk)g +2nk+1(m+k)lvo fot1(2n+1) f5]

oo

15 T (B) T (1) Tk (B) T ([ + K]0 - cos[ (kv + Lfo) (é + t) + ky + 1]

eI 5[k (@m+R)vg+2nk+1(m+k)|vo fo+1(2n+1) £7]

=

l

m

= 15 Tn(B) (M) oo (B) Tt ([m — KJ8) - cos[(kvo + Lfo) (& + 1) + ky +10]

ed B O[R@m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £§]

+% i Jm(ﬁ)Jn(m¢)Jm+k(ﬁ)Jn+l([m+k]w)'COS[(kVO+lf0)(¢.5+t)+k’y+l5]

m,n,k,l
=0

o~ 3 B[k@mAk)g +2nk+1(m+k) o fo+1(2n+1) /5]

in 2nd equation substitute variable
mtk={(m=-k,2m+k=2{-2k+k=2{—k
s=m+k—omm-om-—Fk;2m+k—2m—k
n+l=&En=-02n+1=26-21+1=26 -1

=>n+l—-nn-on—1I0;2n+1—2n—1

oo

=3 2 In(B)n(m) Tk (B) Jn-1([m — k]ib) - cos[(kvo + Lfo) (& + 1) + ky + 1]

m,n,k,l
=—o00

eJ 5 b[k@m—k)vg+2[nk+(m—k)]vo fo+l(2n—1) 5]

2 S Tonek(B) Tt ([ — K1) T (8) I () - cos[(kvo + Lfo) (b + ) + ky + 10]

m,n,k,l
=—o00

o~ 3B[R(@m—k)vg +2[(n—Dk-+Im]vo fo+1(2n—1) 3]

= 3 Ta(B) () T (B) Tt — k) - cos{(kvo + Lfo)(J + ) + ky + 10]

m,n,k,l
=0
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-cos (%qﬁ [k(2m — k)1g + 2[nk + l(m — k)]vo fo + 1(2n — l)fg])

or (substitute n - n+1, m — m+ k)

oo

= 3 T8I () T (B) T ([m + M) - cos[(kvo + Lfo) (& + 1) + ky + 16]

-cos (%qﬁ [k(2m + k)vg + 2[nk + l(m + k)]vo fo + 1(2n + l)fg])
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k even, [ odd case

oo

=& 3 Tn(B)In (M) i (B) Tt ([m — K]tp) - e F7+10] . edlkvo+1fol(§+t)

ti5 X Tn(B) () Tk (B) Jna([m — K]ap) - 3 F7=10] - eilhro=tfol(G0

ed 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 7]

+% S T (B) T (M) Tt (B) Jo— ([ 4 i) - edl=Fr+10] . edl=Fvo+ifo]($+1)

m,n,k,l
=—o00

3% b[—k(@mAk)g +2[—nk+1(m+k)]vo fo+1(2n—1) f3]

€
+% S Tn(B) I (M) Ttk (B) Jnsa ([ + EJa) - eIl=ky=18] | pil—kvo—1fo]($+1)
m,n,k,l

=—o00

0 [ —k@mAR) g +2[—nk—1(m+k)]vo fo—1(2n+1) f7]

~L S T (B) T (1) Tn o (B) Tt ([ — KJab) - 3 IB7HE]  gilkvo+Lfol(d-+1)

m,n,k,l
=—o0

.ej%<‘i;[k(2m—k:)1/02+2[—nk:-H(m—k)]Vof0+l(—2n—l)f§]

—L S T (B) T (1) Ty o (B) Tt ([ — KJa)) - €3 B7=18] . gilkvo—Lfo](d-+1)

myn,k,l
= oo

eJ 30[k(@m—k)1g+2[—nk—1(m—k)]vo fo—1(~2n+1) /5]

oo

2 S T (8) T (M) T (B) T ([ 4 kJp) - €3 1-R7 48] eil=hvotifol(é+0)

eI 30—k @mAk)vg+2[nk+l(m+k)]vo fo+1(—2n—1) /7]

— S Tn(B) () Ton 4(B) T ([ + KJg) - LRI il g0

m,n,k,l
=—o00

eJ 5 O[—k@mAk)vg+2[nk—1(m+F)lvo fo—1(—2n+1) f5]

_% i I (B) T (M) T (B) T—i ([ + KJab) - eI lky+18] .ej[kvwlfo](dﬂrt)

m,n,k,l
=—o0

0 B O[k(=2m—k)vg +2[nk-+1(=m—k)]vo fo+1(2n—1) f5]

LS T(B) T (M) T 1 (B) T ([ + K]p) - eIR1=10) . gilhvo—Lfol(+1)

I B O[k(=2m—k)vg +2[nk—1(=m—F)lvo fo—1(2n+1) f5]

—L S T (B) T (1) Ty o (B) Tt ([ — KJab) - 31KV 0] . il =k +Lfo](d-+1)

myn,k,l
=0
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eJ 5O —k(=2mAR)g +2[—nk+I(=m+k)]vo fo+1(2n—1) f]

oo

7% S T (B) T (M) T (B) Tyt ([ — K]ap) - edl—kr—10] . edl=kro—lfol($+t)

o 5 B[ —k(=2m-+k)vg +2[—nk—L(—m+k)]vo fo—1(2n+1) £3]

15 20 Inn(B) () Tk (8) Tusa([m + k) - T+ gTlvot1fol(6+0)

myn,k,l
= oo

I EB[k(=2m—k)r3+2[—nkt1(—m—Fk)lvo fo+1(—2n—1) f3]

oo

i S T (B) I (1) Tk (B) Tt ([m + K1) - 3B =10] . eilkvo=Lfol(9+0)

+% S T (B) T (M) Ty (B) T ([ — K]ap) - edl=hr+1d] . ei[=kvo+ifol(d+t)

T 3 T(B) T (mt) T (8) Ju—s(fm — Kp) - 1H7=18] . eil=kvo=1fol(é+1)

I ¥ B[~ k(=2mAk)vE +2[nk—L(—m+k)]vo fo—U(—2n+1) £3]

rearranging common RF fading terms (due to dispersion) in adjacent lines

= LS J(B) () T (B) Ty ([ — KJep) - 3T+ ilhwotifol @)
m,n,k,l

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+1(2n—1) 5]

5 2 Tn(B)Tn(m) Jon i (B) T ([ — KJip) - LRI ool

m,n,k,l

I $B[—R(=2mAk)vE +2[nk—U(—m+k)]vo fo—U(—2n+1) £3]

LS () T () Fus—i (B) ([ — EJap) - 3718 ilhvo—tiol(9+0)

myn,k,l
= oo

.ej%[15[k(2m—k)V§+2[—nk—l(m—k)]u0fo—l(—2n+l)f§]

oo

_% 3 Jm(g)Jn(mw)Jm_k(g)Jn_l([m_k]w).ej[—szé].ej[—kuo+zfo]<¢'>+t)

1 30[—R(=2mAR)g 2 nkt1(=m+k)]vo fo+l(2n—1) £5]

oo

Jr% > In(B)In(m)) Sk (B) Jnyi([m — E]) - eilkr =131 . gilkro—Lfol(g+1)
eJ 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 3]
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s 3 Tn(B) () T (B) T — k) - R4 el vastil(G0

myn,k,l
=00

1 36[—k(=2m+R)g+ 2k (—mAk)lvo fo+1(~2n—1) f§]

— b S Tn(B) () T () T — KJ) - IFTHIL . eilbrotifolién

m,n,k,l
=—o00

eJ 5 P[k@m—k)1g+2[—nk+1(m—k)]vo fo+1(—2n—1) /5]

5 Y (B Tn () Tk (B)na(fm — Klp) - IV R0t Rol(4)

m,n,k,l
=—o00

0 B[ —E(=2mAR)uG+2[—nk—I(=m+k)lvo fo—1(2n+1) f5]

+15 30 Tn(B)In (M) T (B) Tt ([ + Kp) - 31 +10] - eal=huosLfol (G40

I $ B[k @mAk) 342 —nk-+U(m+k)]vo fo+1(2n—1) £3]

+ i T (B) T () 1 (B) T ([ + K]a) - edFv =11 eilkro—Lfol(d-+t)

m,n,k,l
=—o0

eI B O[k(=2m—k)vg +2[~nk—1(—=m—K)vo fo—1(~2n+1) f3]

oo

_% Z Jm(ﬂ)Jn(mdj)Jerk(ﬁ)Jnfl([m + k]w) - ell=ky=to] ej[_kyo_lfo](d)—i_t)

eI 5O[—k@mAk)vg+2(nk—L(m+k)lvo fo—1(=2n+1) f7]
— > Jn(B) T (M) T (B) Tt ([ + k1)) - €3 E7+10] . gilhvotifol(o-+0)
m,n,k,l

eJ 5 O[k(=2m—k)vi+2[nk+1(—m—k)lvo fo+1(2n—1) /3]

oo

+% S T (B) T (M) Tk (B) Ta ([m + ki) - edl—ky—=1d] . ej[fkwflfo](dwt)

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo~1(2n+1) f7]

oo

+% 3 Jm(ﬁ)Jn(mw)Jm+k(ﬁ)Jn+l([m_|_k]w).ej[k“/+l5].ej[kuo+lfo](¢5+t)

eI B O[F(=2m—k)vg +2[~nk+1(—m—k)]vo fo+1(~2n—1) f3]

— 5 T (B) () T 1(B) T i ([ + K] - @IHVHOL . il bt ifol(40)

myn,k,l
=0

_ej%[iﬁ[7k(2m+k)ug+2[nk+l(m+k)]V0f0+l(72nfl)f§]
_% 5o T (B) T (M) Tk (B) Tna ([m + ko) - eIlky—=18] . pilkvo—Lfol(d+1)
m,n,k,l
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ed 5 O[k(=2m—k)vi+2[nk—1(=m—F)lvo fo—1(2n+1) /5]

assembling trigonometric identities

—

T (8) I (M) T~k (B) -1 ([m = K]) - cos[(kvo + Lfo) (& + 1) + ky + 16]

l

m,

=1 >
n,k,
eI B O[F@m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £3]

T (B) T (1) T (B) Tt ([m — k] - cos[(kvo — Ufo)(é + t) + ky — 1]

\
|
8

m,n,k,l
=—o0

eI B O[R@m—R)1g+2[—nk—I(m—Fk)]vo fo—1(~2n+1) f5]

o

+3 T (B) I (M) T (B) T ([m — K]) - cos[(kvo — Lfo)(é + 1) + ky — 16]

m,n,k,
=—o00

eI B O[F@m—k)vg+2[nk—1(m—k)]vo fo—1(2n+1) 5]

LS T (BT (M) ok (B) i (Im — K] - cos[(kvo + Lfo) (& + ) + ky + 14]

I B O[R@m—R)1g+2[=nk-+i(m—Fk)]vo fo+l(—2n—1) /5]

1S T (BT () T s (B) T 1 ([ + ) - cos[(hwo — Lfo) (6 + ) + ky — 1]

eI 5O~k @mAR) g +2[—nk+l(m+k)]vo fot+1(2n—1) £3]

1S TnB) () Tk (B) Tt ([ + KJ) - cos[(kvo + Lfo) (& + 1) + ky + 10]

eI 3Ok @mAk)vg +2[nk—1(m+k)]vo fo—I(—2n+1) f5]

+3 5> T8 T (1) Tk (B) Tosa ([ + KJib) - cos (kv + Lfo) (& + £) + oy + 1]

m,n,k,l
=—o00

.ej%é[—k(2m+k)u§+2[—nk—l(m—i—k)]uofo—l(2n+l)fg]

o

=1 5 Tn(B) T (ma) Tk (B) T ([m + KJ3p) - cos(kvo — 1fo) (¢ +t) + ky — 16]

) 5 B[—k@mAk) g +2[nk+U(mAk) o fo+U(—2n—1)£3]

after rearranging common expressions and substitute [ = —I

= 1S Tn(B) (M) oo (B) Tt ([m — KJ4) - cos[(kvo + Lfo) (& + 1) + ky + 0]

m,n,k,l
=—o0

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+l(2n—1) 5]

150 Tn(B) I ()T (B) T — K1) - cos[(kvo + Lfo) (& + 1) + ky + 10]

m,n,k,l
=0
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o) 5 O[k@m—k)vg+2[nk+I(m—k)]vo fo+l(2n—1) 5]

o

§ 2 InlB)In(m) Jn—1(B) Jnsi([m — kJW) - cos[(kvo + Lfo) (& + ) + kv +16]

~5 2 Jn(B)n(m) S o(B) Jusi([m — kJp) - cos[(kvo + Lfo) (& +t) + ky + 14]

—5 2 (B In (1) ik (B) Tt ([m + K] - cos[(kvo + Ufo) (¢ +t) + ky + 1d]

_ej%[15[7k(2m+k)u§+2[nkfl(m+k)]uofo+l(2n7l)f§]

oo

_% Z Jm(5)Jn(m¢)Jm+k(ﬂ)Jn4([m + k]@/’) : C0‘9[(k’/0 + lfO)(é +t) +ky+ 15]

'ej%[iﬁ[7k(2m+k)ug+2[nkfl(m+k)]u0fo+l(2nfl)f§]

oo

+35 2 In(B)In (M) Ik (B) Jnpi([m + EJ) - cos[(kvy + lfo)(fl-5 +1) + ky+ 6]

=

eI 5Pk (@mAk)vg+2[nk+1(m+k)]vo fo+1(2n+1) £7]

+3 5> T8I (1) Tk (B) Tosa ([ + KJib) - cos (kv + Lfo) (& + £) + oy + 1]

m,n,k,l
=—o0

e i L6[k@m4k)1g +2[nk+1(m+k)lvo fo+1(2n+1) £

substitute n = —n

oo

=1 5 Tn(B)Tn () Jon—k(B) J—i([m — K]3p) - cos[(kvo + 1fo) (¢ + t) + ky + 16]

ed Ok @m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £§]

oo

—1 2 In(B)n (M) o (B) T i1 ([m = k]¢b) - cos[(kvo + 1fo) (¢ + 1) + ky + 16]

m,n,k,l
=—o0

_ej%[15[k(2m—lc)V§+2[nk+l(m—k)]uofo—l(—2n+l)f§]

oo

% Z Jm(5)an(m¢)Jm+k(ﬁ)anfl([m + kwj) : COS[(kVO + lfO)(é +t) +ky+ 15]

m,m,k,l
=0

_efj%d;[k(Zerk)ug+2[nk+l(m+k)]V0f0+l(2n+l)f§]

+15 Tn(B) T () T (B) T ([m + KJ3p) - cos[(kvo + 1fo) (¢ + 1) + Ky + 16]

m,n,k,l
=—o00

eI 5Ok @mAk)vg+2[nk+1(m+k)]vo fo+1(2n+1) £7]
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[ odd case

oo

=5 % In(B)In(m) Jn—i(B) Jui([m — kJ¢)) - cos[(kvo + Lfo) (& + ) + kv +16]

eJ 5 P[k@m—k)1g+2[nk+1(m—k)]vo fo—1(—2n+1) f3]

15 Tl B) T () Tk (B) Tosa ([ + KJ8) - cos((kvo + Lfo) (& + £) + oy + 1]

m,n,k,l
=—o00

o~ 3 B[R(@mAk) g +2nk+1(m+k) o fot1(2n+1) £5]

+1 5 T (B)n () T (8) T ([ + K) - cos[ (kv + Lfo)(é+ ) + kv +10]

m,n,k,l
=—o0

.e—j%<}5[k(2m+k)u§+2[nk+l(m+k)]V0f0+l(2n+l)fg]
identical to previous case i.e., independent of [ polarity

=—o00

cos (5 [k(2m — k) + 2lnk + 1(m — K)o fo + U2 — 1) 53] )

or

oo

> T (B)Tn (1)) Ton-41,(B) Ti([m + K] - cos[(kvo + Ufo) (6 +t) + ky + 1]

-cos (%qb [k(2m + k)1g + 2[nk + l(m + k)]vo fo + 1(2n + l)fg])
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k odd, 1 even case

oo

=5 Tn(B)In (M) T (B) Tni([m — K] - e/F7 ] . gilkvo+ifol(o+0)

t ks 2 (BT (mth) Ts i (B) Tt ([ — Klap) - W7 —10] . ealbwo—ifol )

ed 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 7]

35 % Tn(B)a(m) Ton i (5) Tt + k) - IR418] L TlhvoLfol(G+1)

m,n,k,l
=—o0

3% b[—k(@mAk)g +2[—nk+1(m+k)]vo fo+1(2n—1) f3]

€
i 3 Tm(B)Tn (1) T (B) Tt ([m + K]ap) - edlF7=10] . eil=hvo=tfol(@+0)
m,n,k,l

=—o00

0 [ —k@mAR) g +2[—nk—1(m+k)]vo fo—1(2n+1) f7]

+15 S T (B) T (m30) T (B) o1 ([ — KJap) - e3ErH18] . gilhvo +Lfal(G-+t)

m,n,k,l
=—o0

1 36[k@m—Rk)vg+2[—nk+1(m—Fk)lvo fo+1(~2n—1) f§]

S T (B) I (1) s (B) Tt ([ — KI) - 3 B7—10] . ealbvo—Lfol (40

myn,k,l
= oo

73 6[k(2m—k) g +2[—nk—1(m—k)]vo fo—1(—2n+1) £3]

-e
+% Z I (B) In(ma)) Jrng i (8) Ty ([m + ki) - eI l=ky ] ej[ikVOHfO](éH)

o § B[k @mAk) g +2nk+U(mAk)]vo fo+U(—2n—1)£3]
+4= i T (B) T (M) s (B) Tt ([ + k1)) - @31k =181 . gil=hro—1fol(6-+¢)
m,n,k,l

eI 5[ —k@mAR)vg +2[nk—1(m+k)]vo fo—U(=2n+1) /7]

L S T (B) I () Tk (B) Tt ([ + KJap) - 3+ ilhwotifol @)

m,n,k,l
=—o0

0 B O[k(=2m—k)vg +2[nk-+1(=m—k)]vo fo+1(2n—1) f5]

—5 2 Tn(B) T (1) T (B) T ([ + Kgp) - edRv10) L eilhvo ~tfal (60

.ej%é[k(—Qm—k)uS-i—Q[nk—l(—m—k)]uofo—l(2n+l)f§}

_% i T (B) T (Ma)) 1 (B) Tt ([m — k]3p) - edl=F7+10] . edl=kro+ifol($+1)

myn,k,l
=0
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eJ 5O —k(=2mAR)g +2[—nk+I(=m+k)]vo fo+1(2n—1) f]

oo

7% S T (B) T (M) T (B) Tyt ([ — K]ap) - edl—kr—10] . edl=kro—lfol($+t)

o 5 B[ —k(=2m-+k)vg +2[—nk—L(—m+k)]vo fo—1(2n+1) £3]

Y T (B) T () sk (B) Tt ([ + kJ) - €719 il Lol G40

myn,k,l
= oo

I EB[k(=2m—k)r3+2[—nkt1(—m—Fk)lvo fo+1(—2n—1) f3]

oo

LS Tn(B) T (M) Ty 1 (B) Tt ([ + k]p) - eIB1=10) - gilbvo—Lfol(é+1)

— 2 S T(B) T (M) Tk (B) Tt ([m — K] - ed[-R1+0] L eil=krotifol(9+0)

s 2 TalB) T () i (B) Ju—i(fm — Kup) - IR=18]  eal=hvo—Lfol(é+1)

I ¥ B[~ k(=2mAk)vE +2[nk—L(—m+k)]vo fo—U(—2n+1) £3]

rearranging common RF fading terms (due to dispersion) in adjacent lines

= LS J(B) () T (B) Ty ([ — KJep) - 3T+ ilhwotifol @)
m,n,k,l

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+1(2n—1) 5]

5 S TalB) T (m) i (B) Jui(fm — Kup) - R118]  eil=kvo—ifol(é+1)

m,n,k,l

I $B[—R(=2mAk)vE +2[nk—U(—m+k)]vo fo—U(—2n+1) £3]

+L S T (B)Tn () T o (B) T ([0 — K]) - €3l6718] . gilhvo—Lfol(6+1)

myn,k,l
= oo

_ej%[15[k(2m—k)V§+2[—nk—l(m—k)]uofo—l(—2n+l)f§]

_% 3 Jm(g)Jn(mw)Jm_k(g)Jn_l([m_k]w).ej[—szé].ej[—kuo+zfo]<¢'>+t)

1 30[—R(=2mAR)g 2 nkt1(=m+k)]vo fo+l(2n—1) £5]

oo

Jr% > In(B)In(m)) Sk (B) Jnyi([m — E]) - eilkr =131 . gilkro—Lfol(g+1)
eJ 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 3]
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e 5 (B (0) Tan () T [ — KJ) - /9] il ool

myn,k,l
=00

1 36[—k(=2m+R)g+ 2k (—mAk)lvo fo+1(~2n—1) f§]

oo

+15 X Tn(B)Tn(mid) T (8)Tnsi([m — k]gp) - edbr+10) . eilhmotifol(ért)

m,n,k,l
=—o00

eJ 5 P[k@m—k)1g+2[—nk+1(m—k)]vo fo+1(—2n—1) /5]

5 Y (B Tn () Tk (B)na(fm — Klp) - IV R0t Rol(4)

m,n,k,l
=—o00

0 B[ —E(=2mAR)uG+2[—nk—I(=m+k)lvo fo—1(2n+1) f5]

+15 30 Tn(B)In (M) T (B) Tt ([ + Kp) - 31 +10] - eal=huosLfol (G40

I $ B[k @mAk) 342 —nk-+U(m+k)]vo fo+1(2n—1) £3]

S T BT (BTt ([ Kap) - @181 ko 100)(6+)

m,n,k,l
=—o0

eI B O[k(=2m—k)vg +2[~nk—1(—=m—K)vo fo—1(~2n+1) f3]

oo

+% S T (B) T (M) Tk (B) Ju—i ([ + K]ep) - edl=Er=10] . edl=kvo—1fol($+1)

eI 5O[—k@mAk)vg+2(nk—L(m+k)lvo fo—1(=2n+1) f7]
— > Jn(B) T (M) T (B) Tt ([ + k1)) - €3 E7+10] . gilhvotifol(o-+0)
m,n,k,l

eJ 5 O[k(=2m—k)vi+2[nk+1(—m—k)lvo fo+1(2n—1) /3]

oo

+% S T (B) T (M) Tk (B) Ta ([m + ki) - edl—ky—=1d] . ej[fkwflfo](dwt)

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo~1(2n+1) f7]

oo

— 5 2 T B) T (1) T (B) T ([ + Kgp) - edVHL . eilkvotifol (640

eI B O[F(=2m—k)vg +2[~nk+1(—m—k)]vo fo+1(~2n—1) f3]

i S T (B) I (M) ok (B) Tyt ([ + E]) - e[-R7H8] L il =kvotifol(9+0)

myn,k,l
=0

_ej%[iﬁ[7k(2m+k)ug+2[nk+l(m+k)]V0f0+l(72nfl)f§]
_% 5o T (B) T (M) Tk (B) Tna ([m + ko) - eIlky—=18] . pilkvo—Lfol(d+1)
m,n,k,l
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eI 3 O[k(=2m—k)vg +2[nk—1(=m—k)lvo fo—L(2n+1) /5]

assembling trigonometric identities

=& % (BTl o (B) Fucallm = KJo) - siml(kvo +1fo) (6 + )+ by + 1]
) E B[k @m—R)vg+2[nk41(m—k)]vo fo+1(2n—1) £3]

+1 5 (B In(m) I 1 (B) Jni([m — KJ) - sin[(kvo — Lfo) (& -+ 1) + ky — ]
eI B O[R@m—R)1g+2[—nk—I(m—Fk)]vo fo—1(~2n+1) f5]

+4 S T (B) T (M) T (B) Tss ([ — K]b) - sin[(kvo — Lfo)( + £) + Ky — 16]

eI B O[F@m—k)vg+2[nk—1(m—k)]vo fo—1(2n+1) 5]

LSS Tn(B) I () Tk (B) s ([ — K1) - sin[(kwo + Lfo)(+ £) + Ky + 6]

I B O[R@m—R)1g+2[=nk-+i(m—Fk)]vo fo+l(—2n—1) /5]

LS T (BT (M) o1 (B) i (I + K]0 - sin[(kvo — Lfo) (6 + ) + ky — 16]

.ej%dﬁ[—k(Qm-ﬁ-k)ug+2[—nk+l(m+k)]1/ofo+l(2n—l)f§]

LS TnlB) () 1 (B) Tt ([ + K) - sin[(kvo + Lfo) (6 + 1) + ky + 10]

1 38[=k(@mAk)g +2[nk—1(m+k)lvo fo—1(=2n+1) f3]

o

L3 Tn(B) (M) T (B) st ([ + K] - sin[(kvo + Lfo)(d + t) + ky + 10]

m,n,k,l

_ej%[15[—k(2m+k)u§+2[—nk—l(m+k)]uofo—l(2n+l)f§]

o

=13 Tn(B) T (ma) Tk (B) T ([m + K) - sin[(kvo — Lfo) (¢ + 1) + ky — 16]

.ej%(i[—k@m—i—k}ug+2[nk+l(m+k)]l/o fo +l(—2n—l)f§]

after rearranging common expressions and substitute [ = —I

5> Tn(B) I ()T (B) T — K1) - sin{ (kv + Lfo) (& + 1) + ky + 16]

m,n,k,l
co

ool

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+l(2n—1) 5]

oo

8 2 TnlB)In(m) T (B) Ja—i([m — kW) - sin[(kvo + Lfo) (& + t) + ky + 1]

m,n,k,l
=0

109



o) 5 O[k@m—k)vg+2[nk+I(m—k)]vo fo+l(2n—1) 5]

+% i Jm(ﬂ)‘]n(md))‘]m—k(ﬁ)Jn—&-l([m - kh[}) : Sin[(kl/o + lfo)(¢ + t) + kv + 15]

'ej%[ﬁ[k(2m—k)v§+2[—nk+l(m—k)]z/ofg—l(2n+l)f02]

10 T (B) () T (B) T (fm — kJ) - sin[(kvo + 1fo) (6 +t) + ky + 14]

eI B O[R@m—R)1g+2[=nk+I(m—k)]vo—1(2n+1) f3]

oo

~4 2 Tl B)In () ik (8) Tt ([ + KJ) - sin[(kvo + Ufo) (¢ +t) + ky + 14]

m,n,k,l
=—o0

o $ B[R @m+k)vg+2(nk—1(m+k)lvo fo+1(2n—1) £3]

oo

—1 Y Tn(B) I (m) o (B) Jn—i(m + KJ) - sin[(kvo + Ufo)(é + t) + ky + 16]

I 5Bk @mAk) g +2[nk—1(m+k)Jvo fo+1(2n—1)£3]

oo

3 Tn(B)Tn(mad) T 1o (8) Ta ([ + k) - sin[(kvo + Lfo) (& + 1) + kv + 0]

eJ 5O[—k@mAk)vg+2[—nk—1(m+k)lvo fo—1(2n+1) f5]

o

*% Y In(B)In(m) Ty (B) Jnri([m + E]) - sin[(kvo + lfo)(giy +t) + ky + 10]

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo—1(2n+1) /7]

substitute n = —n

oo

NS

T (8) T (1)) 1 (B) i ([m = kJap) - sin[(kvo + Lfo) (& + t) + ky + 1]

ed Ok @m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £§]

+55 TnB)Tn (1) Ty (B) T -y — KJ) - sin(kvo + Lfo) (6 + £) + ky + 6]

_ej%[15[k(2m—lc)Vg+2[nlc-i—l(m—k)]u0f0+l(2n—l)f02]

Y T (B)T () Tk (B) T ([ + KJD) - sin[(kvo + Lfo) (& + 1) + Ky + 10]

m,n,k,l

eJ 50— k@mAk)vg —2nk+l(m+k)]vo fo—1(2n+1) f5 ]

oo

I J(B) () T (B) Tua(fm + K - sinl(kvo + Lfo) (b + ) + ky + 16]

ed 5O —k@mAk)vg —2[nk+l(m+k)]vo fo—1(2n+1) f5 ]

110



[ even case

=5 S T(B)Tn (M) o (B) ([ — KJ) - sinl(kvto + Lfo) (b + £) + ky + 10]

o) 5 O[k@m—k)vg+2[nk+(m—k)]vo fo+1(2n—1) 5]

o

- > T (B) T (M) Tk (B) Tnsa (m + KJ) - sin[(kvo + 1fo) (¢ + 1) + ky + 16]

J
4

_ej%é[—k(2m+k)u§—2[nk+l(m+k)]u0fo—l(2n+l)f§]

4 S T8I (1) o1 (8) T a ([ + K) - sin{(kvo + Lfo) (6 + ) + Ky + 10]

m,n,k,l
=—o0

.ej%d;[—k(2m+k)ug—2[nk+l(m+k)]uofo—l(2n+l)f§]

NS

ik lJm(ﬂ)Jn(mw)Jmfk(ﬁ)Jnfl([m — k) - sin[(kvo + lfO)(é + 1) + ky +16]

_ej%d;[k(szkr)ug +2[nk+1(m—k)]vo fo +l(2n7l)f§]

oo

: Yo Im(B)In(m)) ik (B) Jnvi([m + k]9) - sin[(kvo + lfo)((l.5 + 1) + ky +16]

J
2

m,n,k,l
=—o0

eI 5 O[k@mAk)vg+2nk+1(m+k)]vo fo+1(2n+1) £7]

in 2nd equation substitute variable
=m+k—omm-om-—Fk;2m+k—2m-—k
>n+l—onn—-on—1I0;2n+1—2n—1

=15 TnB) (M) oo (B) Jui([m — kJob) - sin[(kvto + 1fo) (6 +t) + ky + 14]

eI B O[R@m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £3]

oo

_%’ Z Jmfk(ﬁ)‘]nfl([m - k]¢)Jm(ﬁ)Jn(mw) : Sin[(k’Vo + lfo)(¢'5 + t) + kv + l§]

_efj%[ﬁ[k(2m7k)Vg+2[(nfl)k+lm]u0f0+l(2nfl)f§}

oo

== 2 JnlB)In(m) Jn—i(B) Jni([m — kW) - sin[(kvo + Lfo)(é + t) + ky + 1]

-sin (%qﬁ [k(2m — k)1g + 2[nk + l(m — k)]vo fo + 1(2n — l)f(?])

or

oo

== Tn(B) (M) Tk (8) Tnsr([m + k) - sin[(kvo + Lfo)(d + t) + kv + 10]

-sin (%(ﬁ [k(2m + k)vg + 2[nk + l(m + k)]vo fo + 1(2n + l)fg])-
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k odd, 1 odd case

oo

=& 3 Tn(B)In (M) i (B) Tt ([m — K]tp) - e F7+10] . edlkvo+1fol(§+t)

ti5 X Tn(B) () Tk (B) Jna([m — K]ap) - 3 F7=10] - eilhro=tfol(G0

ed 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 7]

+% S T (B) T (M) Tt (B) Jo— ([ 4 i) - edl=Fr+10] . edl=Fvo+ifo]($+1)

m,n,k,l
=—o00

3% b[—k(@mAk)g +2[—nk+1(m+k)]vo fo+1(2n—1) f3]

€
+% S Tn(B) I (M) Ttk (B) Jnsa ([ + EJa) - eIl=ky=18] | pil—kvo—1fo]($+1)
m,n,k,l

=—o00

0 [ —k@mAR) g +2[—nk—1(m+k)]vo fo—1(2n+1) f7]

~L S T (B) T (1) Tn o (B) Tt ([ — KJab) - 3 IB7HE]  gilkvo+Lfol(d-+1)

m,n,k,l
=—o0

.ej%<‘i;[k(2m—k:)1/02+2[—nk:-H(m—k)]Vof0+l(—2n—l)f§]

—L S T (B) T (1) Ty o (B) Tt ([ — KJa)) - €3 B7=18] . gilkvo—Lfo](d-+1)

myn,k,l
= oo

eJ 30[k(@m—k)1g+2[—nk—1(m—k)]vo fo—1(~2n+1) /5]

oo

2 S T (8) T (M) T (B) T ([ 4 kJp) - €3 1-R7 48] eil=hvotifol(é+0)

eI 30—k @mAk)vg+2[nk+l(m+k)]vo fo+1(—2n—1) /7]

— S Tn(B) () Ton 4(B) T ([ + KJg) - LRI il g0

m,n,k,l
=—o00

eJ 5 O[—k@mAk)vg+2[nk—1(m+F)lvo fo—1(—2n+1) f5]

+% i I (B) T (M) T (B) T—i ([ + KJab) - eI lky+18] .ej[kvwlfo](dﬂrt)

m,n,k,l
=—o0

0 B O[k(=2m—k)vg +2[nk-+1(=m—k)]vo fo+1(2n—1) f5]

+15 X Tn(B) (M) ok (B) T ga([m + KJap) - 7110 eilkvo=Lfol(@+)

I B O[k(=2m—k)vg +2[nk—1(=m—F)lvo fo—1(2n+1) f5]

+4= i T (B) T (Ma)) 1 (B) Tt ([m — k]3p) - edl=F7+10] . edl=kvo+ifol(d+t)

myn,k,l
=0
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eJ 5O —k(=2mAR)g +2[—nk+I(=m+k)]vo fo+1(2n—1) f]

oo

ti5 3 Tn(B) ) Ton i (B)Tna([m — k) - @371 w0 tfol(+)

o 5 B[ —k(=2m-+k)vg +2[—nk—L(—m+k)]vo fo—1(2n+1) £3]

Y T (B) T () sk (B) Tt ([ + kJ) - €719 il Lol G40

myn,k,l
= oo

I EB[k(=2m—k)r3+2[—nkt1(—m—Fk)lvo fo+1(—2n—1) f3]

oo

LS Tn(B) T (M) Ty 1 (B) Tt ([ + k]p) - eIB1=10) - gilbvo—Lfol(é+1)

— 2 S T(B) T (M) Tk (B) Tt ([m — K] - ed[-R1+0] L eil=krotifol(9+0)

s 2 TalB) T () i (B) Ju—i(fm — Kup) - IR=18]  eal=hvo—Lfol(é+1)

I ¥ B[~ k(=2mAk)vE +2[nk—L(—m+k)]vo fo—U(—2n+1) £3]

rearranging common RF fading terms (due to dispersion) in adjacent lines

= LS J(B) () T (B) Ty ([ — KJep) - 3T+ ilhwotifol @)
m,n,k,l

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+1(2n—1) 5]

5 S TalB) T (m) i (B) Jui(fm — Kup) - R118]  eil=kvo—ifol(é+1)

m,n,k,l

I $B[—R(=2mAk)vE +2[nk—U(—m+k)]vo fo—U(—2n+1) £3]

+L S T (B)Tn () T o (B) T ([ — K]b) - e3l=h7+18] . gil—kvo-+ifol(é-+)

myn,k,l
= oo

o 3 B[ k(=2mAk)vE +2[—nk+l(—m+k)lvo fo+1(2n—1) £3]

oo

_% S T (B) T (M) 1 (B) i ([m — K1) - eIlFy=18] . gilkro—1fol($+1)

,ej%d&[k(zm—k)ug+2[—nk—l(m—k)]uofo—l(—2n+l)f§}

oo

Jr% > In(B)In(m)) Sk (B) Jnyi([m — E]) - eilkr =131 . gilkro—Lfol(g+1)
eJ 5 P[k@m—k)vi+2[nk—1(m—k)]vo fo—1(2n+1) 3]
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S (B ) Tk (B) T — KJ)

myn,k,l
=00

1 36[—k(=2m+R)g+ 2k (—mAk)lvo fo+1(~2n—1) f§]

oo

— 15 Y I (B)In(m)) ik (B) Ty ([ — k])

m,n,k,l
=—o00

eJ 5 P[k@m—k)1g+2[—nk+1(m—k)]vo fo+1(—2n—1) /5]

F LS Tn(B) (1) T (8) T — K1)

m,n,k,l
=—o00

0 B[ —E(=2mAR)uG+2[—nk—I(=m+k)lvo fo—1(2n+1) f5]
s 2 Tm(B) T () Tk (B) Tt ([m + KJ2))

I $ B[k @mAk) 342 —nk-+U(m+k)]vo fo+1(2n—1) £3]

S TulB) T (m) T (B) T ([ + KJ)

m,n,k,l
=—o0

eI B O[k(=2m—k)vg +2[~nk—1(—=m—K)vo fo—1(~2n+1) f3]

oo

— 15 Y I (B)In(m)) ik (B) T ([ + K]20)

I 5[~k @mA+R)VE+2nk—1(m+k)vo fo—U(~2n+1) £3]
+15 2 Im(B)Tn(m) Tk (B) Tn—i([m + k]

eJ 5 O[k(=2m—k)vi+2[nk+1(—m—k)lvo fo+1(2n—1) /3]

oo

i 2 Tn(B)Tn (1) Tk (B) na ([ + K1)

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo~1(2n+1) f7]

oo

—15 > Tn(B)In(m) ok (B) Jnra([m + K]¢)
eI B O[F(=2m—k)vg +2[~nk+1(—m—k)]vo fo+1(~2n—1) f3]

Y Ta(B) () T 1 (B) Tua(fm -+ KJ)

myn,k,l
=0

eJ 30—k @mAk)vg+2nk+l(m+k)]vo fo+1(~2n—1) /3]
m,n,k,l

. ed[=Rv 18] | gil—kvo+Lfol(d+t)

. il H8] | gilkvo+ifol (d+t)

. edl=ky=18] | gil=kvo—Lfol($+t)

. ed [k 18] | gil—kvo+Lfol(d+t)

. dlky=13] | gilkvo—Lfol(d-+t)

. edl=ky=18] | pil—kvo—1fol(+t)

. ik 18] | gilkvotlfol ($+t)

. e[k =18] . gil—kvo—Lfol(d-+t)

. ik +I8] | gilkro+1fol (d+1)

. edl=kv+18] | gil—kvo+lfol (é+1)

eilkr=18] | ilkvo—1fol(d+1)
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ed 5 O[k(=2m—k)vi+2[nk—1(=m—F)lvo fo—1(2n+1) /5]

assembling trigonometric identities

= % i I (B) In(ma)) T~ (B) Jn—1([m — kJap) - sin[(kvg + lfo)(q's + 1) + ky + 1]

) E B[k @m—R)vg+2[nk41(m—k)]vo fo+1(2n—1) £3]

LS T (BT (M) o1 (B) 1 ([m — KJ) - sin[(kvo — Lfo) (6 + £) + ky — 16]

m,n,k,l
=—o0

oI [ —R(=2mt k)R 2 —nk(=m+k)]vo fo+1(2n—1) £3]

o

+1 5 T B) T (1) T (B) Tnget ([ — KJap) - sin[(kvg — Lfo) (¢ + t) + ky — 10]

m,n,k,
=—o00

eI B O[F@m—k)vg+2[nk—1(m—k)]vo fo—1(2n+1) 5]

LS T (BT (M) ok (B) Tt (Im — KJ) - sin[(kvo + Lfo) (6 + £) + ky + 16]

m,n,k,l
=—o0

I B O[R@m—R)1g+2[=nk-+i(m—Fk)]vo fo+l(—2n—1) /5]

LS T (BT (M) o1 (B) i (I + K]0 - sin[(kvo — Lfo) (6 + ) + ky — 16]

eI 5O~k @mAR) g +2[—nk+l(m+k)]vo fot+1(2n—1) £3]

15 T (B) () T (B) T i([m + kJ) - sin[(kvo + Lfo) (6 +t) + ky + 14]

eI 3Ok @mAk)vg +2[nk—1(m+k)]vo fo—I(—2n+1) f5]

LS T BT () T (8) T ([m + K) - sinl (kv + Lfo) (& + 1) + ky + 16]

m,n,k,l

.ej%é[—k(2m+k)u§+2[—nk—l(m—i—k)]uofo—l(2n+l)fg]

+4 i T (B) T (M) T (B) Tna ([m 4 kJo) - sin[(kvo — Lfo)(d +t) + ky — 16]

) § B[k @mAk) g +2[nk+U(mAk) o fo+U(—2n—1)£3]

after rearranging common expressions and substitute [ = —I

5> Tn(B) I ()T (B) T — K1) - sin{ (kv + Lfo) (& + 1) + ky + 16]

m,n,k,l
co

ool

eJ 5 P[k@m—k)vg+2nk+(m—k)]vo fo+l(2n—1) 5]

oo

+% > Im(B)In(ma)) Tk (B) Jn—1([m — E]9) - sin[(kvo + lfo)(¢ + ) + ky + 16]

m,n,k,l
=0
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o) 5 O[k@m—k)vg+2[nk+I(m—k)]vo fo+l(2n—1) 5]

o

_% Z Jm(ﬂ)‘]n(md))‘]m—k(ﬁ)Jn—&-l([m - kh[}) : Sin[(kl/o + lfo)(¢ + t) + kv + 15]

L 3 T B)Tn(m) S o(B) Jusr ([ — kJp) - sin[(kvo + Lfo) (& + ) + ky + 14]

3
B
>

eI B O[R@m—R)1g+2[=nk+I(m—k)]vo—1(2n+1) f3]

S T (B)In (1) Ty (B) T —i([m + KJ0) - sin[(kvo + Lfo) (6 +£) + ky + 14]

m,n,k,l
=—o0

+

0o[.

o $ B[R @m+k)vg+2(nk—1(m+k)lvo fo+1(2n—1) £3]

oo

+1 Y Tn(B) () T (B) Jn—i([m + KJp) - sin[(kvo + Ufo)(é +t) + ky + 16]

m,n,k,l
=—o0

I 5Bk @mAk) g +2[nk—1(m+k)Jvo fo+1(2n—1)£3]

7% i T (B3) T (M) g (B) Jgr ([m + KJ0) - sin[(kvo + Lfo) (¢ + t) + kry + 1]

m,n,k,l

eJ 5O[—k@mAk)vg+2[—nk—1(m+k)lvo fo—1(2n+1) f5]

o

*% Y In(B)In(m) Ty (B) Jnri([m + E]) - sin[(kvo + lfo)(giy +t) + ky + 10]

m,n,k,l
=—o00

0 3 O[—k@mAR) g +2[—nk—1(m+E)]vo fo—1(2n+1) /7]

substitute n = —n

= % i T (8) T (M) Ty (8) Jn—i ([m — k) - sin[(kvo + Lfo)(d + t) + kv + 10]

ed Ok @m—R)vg+2lnk+1(m—k)]vo fo+1(2n—1) £§]

oo

— 25 Tn(B) T (M) T o (B) it ([m — KJ) - sin[(kvio + Lfo) (& +t) + ky + 16]

m,n,k,l
=—o0

_ej%[15[k(2m—lc)Vg+2[nlc-i—l(m—k)]u0f0+l(2n—l)f02]

+% i Jm(5)an(m¢)*]m+k(6)anfl([m + k]?/}) . Sin[(kl/o + lfo)(¢ + t) + k'y =+ 15]

eJ 50— k@mAk)vg —2nk+l(m+k)]vo fo—1(2n+1) f5 ]

I J(B) () T (B) Tua(fm + K - sinl(kvo + Lfo) (b + ) + ky + 16]

m,n,k,l

eI 5Ok @mAk)vg+2[nk+1(m+k)lvo fo+1(2n+1) £7]
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1 3 S[k@m—R)1g+2[nk-+1(m—k)]vo fo+1(2n—1) /5]

+4 S T (B) () Ty (B) T —i([m — KJ) - sin[(kvo + Lfo) (6 +t) + ky + 16]

eI 5 P[k@m—k)vg+2[nk+(m—k)]vo fo+l(2n—1) 3]

oo

L3 Tn(B) T (M) Tg e (B) Tt ([m + KkJab) - sin[(kvo + o) (¢ + t) + ky + 10]

4

m,n,k,l
=—o00

=03 B[k@mA+R)E+2[nkt(m+k)Jvo fo+U(2n+1) £3]

_% i T (8) In(ma)) Jon gk (B) Tt ([m + ko) - sin[(kvo + lfo)((ﬁ +t) + kv + 0]

m,n,k,l
=—o0

o~ I 3 S[k@mA k)3 +2nk+U(mAk) o fo+U(2n+1) £5]

5> Tn(B) I ()T (B) T — KJ0) - sin{ (kv + Lfo) (& + 1) + ky + 10]

myn,k,l
o

NS

_ej%d;[k(?mfk:)ug +2[nk+I1(m—k)]vo fo +l(2n7l)f§]

1Y (BT (mt) Furs(B) Tua(fm + K - sinl(kvo + Lfo) (b + ) + ky + 10]

Tt
o~ 3 B[k(@mAk)E +2ink+1(m+k)lvo fo+1(2n+1) /5]
in 2nd equation substitute variable
=m+k—mm—-om-—Fk; 2m+k—2m—k
>n+l—onn—on—1I0;2n+1—2n—1

=5 S T B)Tn (M) ok (B) ([ — K) - sinl(kvo + Lfo)(é + £) + ky + 10]

eI B O[k@m—k)vg+2lnk+1(m—k)]vo fo+1(2n—1) £5]

_% i Jmfk(ﬁ)t]nfl([m - k]w)‘]m<ﬁ)*]n(mz/)) : Sin[(k‘yo + lfo)((b + t) + kv + l(5]

m,n,k,l
=—o0

.e—j%é[k(2m—k)u§+2[(n—l)k+lm]Vof0+l(2n—l)f§}

identical to previous case i.e., independent of [ polarity

oo

== 3 Tn(B)In (M) T (B) Jn—i([m — k) - sin[(kvo + Lfo)(d +t) + ky + 0]
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.sin (%¢ [k(2m — k)1g + 2[nk + l(m — k)]vo fo + 1(2n — l)fﬁ])

= - i T (8) T (ma)) T 1 (B) Tngr ([m + k) - sin[(kvo + Lfo)(d + t) + kv + 10]

m,mn,k,l
=—0o0

sin (%gz; [k(2m + k)2 + 2[nk + L(m + k)]vo fo + 1(2n + Z)fg]).
Finally we can summarize these calculations by noting that the expression :

i T (B) T (100) Ty (8) Tt ([ — kJ1b) - e k1H8] . gilhvot ol (3+2)

m,n,k,l
=—o00

0 3 O[k@m—K)vg+2lnk+1(m—k)]vo fo+1(2n—1) 3]

is independent of [ polarity, and can be represented in the equivalent form

= S Tn(B) sk (B) T (mh) Ty (I + K]0):

m,n,k,l=—occ

cos((kvo +1fo) (¢ + ) + kv + 16]

| —sin[(kvo + 1fo) (¢ +t) + kv +16)] k

sin

. [ cos %qﬁ (k(2m + k) + 2[nk + L(m + k)]vo fo + 1(2n + 1) 3)
16 (k(2m + k)2 + 2[nk + L(m + k)|vo fo + 1(2n + 1) £3) .

where | formalizm formalism is introduced to denote that top element is chosen if k is

S
even and bottom if £ is odd.
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8 Appendix B: Extended model for conventional MPS

We will examine the LTI signal analysis of the MPS in the most general case, especially treating
the modulated signal in case of amplitude slopes. We drive the MZM with a voltage signal which
has DC and AC terms (the DC term could also be a constant phase delay between the ports),
such that

RF = W%ﬁ’:(wt) 2 o+ 3 sin(vt)

where V}, is the bias voltage, V is the modulation voltage, V; is the voltage applied to achieve a
A phase shift and Ijy is the RF driving frequency (we omit the 2IA constant in the harmonic
for brevity). The signal is more conveniently parametrized by 1§ and I5.

first we look at the optical field arriving to the DUT after passing the MZM in the bar port with
the use of Jacobi-Anger identity. Which demonstrates that there is an entire comb spectrum

generated with distributed powers dependent on J,,(3) is the n-th j-Bessel function at 5 value

Ut) = x/TPT eIt (gdor . i sin(not) _ 1)

= \/570 . eIt . (eja . i Jn(B) - e ot — 1) , neN

n=-—oo

n235

Y(t) = @ . ej¢(QO)ejQ0t . [eja . i Jn(ﬂ) . B(QO + n,/o) . ej(nvo(b+ 2 ) . ejnVOt

n=-—oo

—B(0)

Since nyy < Qp, we shall make the following approximations:

1. The typical assumption is that the attenuation experienced by all the tones is identical.
However, in our approach the amplitude is developed using a Taylor series for the DUT response,
assumption being that the amplitude can be expressed as a Taylor expansion up to 1st order
about carrier frequency.

:>B(Qo+nVo)gB(Qo)+g% TLVQ+...:B(Qo)+B~nV0+...

Qo

2. The phase is developed using a Taylor series for the DUT response, assumption being that

the phase can be expressed as a Taylor expansion up to 2nd order about carrier frequency.

2
= ¢ (Qo + nrp) = (Qo) + g—ﬁ nvg + %gw‘ﬁ (nu0)2 + ..
Qg Qo
= ¢(Q) + ¢ nvp + %cb (no)® + ...
. . . © - . . ,n2ug<./;
Y(t) = @ - B(Qp) - €79 0) it . |eia . ST () - {1 + g(?féﬂ . edmvo(@+t)) | o —32—

-1
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m=—o0

Y*(t) = Yo . B(Qp) - e~ 9#(Q0) =it . [ey‘a. i T (B) - [1 + %} . e—imuo(¢+t)

the expression of the photocurrent
P(t)=Y(t) - Y*(t) = 1 - B()?

Z Jn(8) - [1 + g(gl(’f)} . ednvo(¢+t) | oj 20‘7’ B 1‘|

n=-—oo

B(Q0)

m=—oo

i I (B) - [1 + B'm”"} e=imvo($+t) . o=i " 588 1]

1
(8]
|
<
Q

~emaor {3 3 o [1+ ) [1+ ]

n=—ocom=-—oc

i (n=m)o(G+t)+ 22

oo . ] . 2,25
=1 3 Tu(B) - {1 + %} eImo(@+D) | it

n=-—oo

: 3 e (d _.om2u2d
—e I Z Jm(ﬁ) ’ [1 + lg(ﬂog] e’ o(¢+1) . e’ 20 + 1}
in order to emphasis the harmonics we can define a index change k=n—m=m=n—k
n2—m?2=m-m)(n+m)=~k-(2n—k)

also for the harmonics appearing we can switch n,m =k

P®=Tﬂmf{fii%wm%@[HQ%Lp+%ﬁ%]

n=—ocock=—o00

oo ‘-1/ e . .k2V24.5
S (@) [14+ Fifs] o0 o

k=—oc0
k203 d
2 +1

—~ B k) B2.n(n—k)v2 ke
30 X nl8)na(6): [1+ B + B iiéen . o

n=—ocock=—o00

k(2 k
kvo(dtt) | o PO

e S () - [1 n g(gvoﬂ o= ikvo(d+t) | o—i

k=—o0

¢k(2n K)vd
2

the 1st term in the square brackets denotes the standard model for evaluation of MPS method,
the 2nd and 3rd terms are arising cause of our extended model. We can use an approach that

splits each infinite sum into plus/minus sign accordingly in order to simplify this expression

N N B-(2n—k)v B?-n(n—k)v? v M
Z S Tu(B) T n(B) - [1+ Bk 4 BLpluob i ] ol o

—ook=—o00

l\’)\»—\

oo oo

1 3.(—2n—k) v, B2.(—n)(—n—k)v2 v bk(=2n—k)v,
PSS S a9 [14 B 1 Bpae] e 22

n=—occk=—o00
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¢k(2n k)uo
2

Il
]
]

3.(2n—k)v B2 n(n—k)v2 v
Tn(B)Tcs(8) - [L+ Blnchire 4 Baln )] cskn(ort).

i
\

8
o
I

—oo

$r@ntk)vd
2

Ny
]
]

3.(2n+k) B2.n(n+k)vd —ikuvo(d —j
Tn(B) T a(B) - [1+ Bt | BEAGOUR ] o jhn(40) . o=

Ly B-(2ntkvo | Bn(ntk)vg v _jdrenikg
S S O a9 1 Bt Pasto] iy

1 ¢ . 3.(2n—k) v B2.n(n—k)v kv (¢  Sk(2n—k)vd
+Z Z Z J*n(ﬂ)anJrk(ﬁ) : |:1 —Z (é(ﬂo)) ¢+ BEQO)z) 0:| e Tkvo(dtt) L ed ERE

Using J_,(2) = (=1)" - Ju ()

IS . B-(2n—k)v B2.n(n—k)v v M
1 Z Z Jn(ﬂ)Jn—k(ﬁ) : {1 + (;(Qo)) . + BEQO)Q) 0] ejk 0(¢+t) . 3 =
1= —ocok=—00
1S & B-(2n+k)v B2.n(n+k)v2 v MQ
+Z Z Z In(B) Jn+k(8) - {1_‘_ B(Q0) -+ B ()2 ] e IRvo(6+1) .
n=—oock=—oco
AN Be@ntkvy | BPn(nak)d] ik _jdrentmg
+7 Z Z (= 1) 5 1 (8) i (B) - [1 _ (3?50)) 0 4 1328:)2) 0:| ikvo(+1) . .
n=—oock=—o0c0o

n— B-(2n—k)v B?.n(n—k)v? U M
F S ORIk (9) - [1 - B 4 Bl ] i

nffookffoo

rearranging these terms for harmonic identification

- i ST N Ju(B) i (B) i SR

n=—oock=—o00

. Kejkuo(<£>+t) 4 1)k e—jkuu<a5+t>)

+ Bk (ejkuo<<zs+t> — 1)k e*jkl/o(éﬂ))

52 2 . i . i
LB g((gg)iz)uo . (e]kyo(¢+t) F 1)k efjkuo(¢+t))i|

+ J n+k )ej 2

nffookffoo

: Ke—jkuo<a'b+t> F(—1)2nth ejxwo<¢+t>)

+B-(§?§Dk))w . (e—jkuo<<z5+t) (1)t ejkuo(a's+t)>

+% : (e*j’wo(ﬁ'ﬁrt) 4 1)k ejkVo(éH-t))}

We need to distinguish in between the following cases

1 k even
_1)2nEk _ (_1)ER —
(=1) (=1) —1 k odd

121



case of k even

- % D> Ju(B)Tu-ir(B) e

n=—oock=—o0c
> 2'7’1 n— l/2 .
: {(1 + W) - cos[kvy (¢ + )]
4 ZGre - sinlkun 6+ 1))

1l & — _dk@ntk)g
+§ Z Z Jn(ﬂ)Jn+k(ﬁ> -ed 2

n=—ocock=—o0c
'2'7'74 n V2 .
: {(1 + %) - cos[kvy (¢ + 1))
—j B GrB  sinlkvo( + )]

we can substitute the indexes in the 2nd term g =n+k=n=q—k

=3 3 S ()

n=—ook=—o00

.2'774 n— V2 .
. Kl + W) - cos[kvp (¢ + t)]

5 e - sinfkvo(@ + )]

oo oo

% S S Ja(B) k() e TS

n=—oock=—o0c0o
B2.n(n—Fk)v3 ;|
. 1 —+ W . COS[]CVO(QS —+ t)]

i G - sinfko(@ + )]

=3 S ()T

n=—ook=—o00

32 n(n—k)v : Sk@n-kwg L $k@n—kud
'[(“W)-cos[kuo<¢+t>]~<eﬂ“2’“ d ot )

. dE(2n—k)vd . dE(2n—k)vd

S EGER sinfron(§-4 )] (o ot )

n=—ock=—o00

(14 Epa8 ) - cos[ LU - cos k(6 + 1)

e
—BGnon i (SR iy (9 + 1)
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case of k odd

R DD IRAC TN I

n=—oock=—o00
32 (k)2 . ]
[0 Z58) st 41

+ B coslhug (¢ + 1)

L dk(2n+k)vd
— f

+% i i In(B) Jntk(B) - €7

n=—ook=—o00
32 n(n v2 . ]
(55 (S ) n

_i_% . cos[kvo(é + t)ﬂ

we can substitute the indexes in the 2nd term g =n+k=n=q—k

S DI AC I

n=—ock=—oc0
'2_n n— 1/2 ; j
(0 Pl im0

+W - cos[kvo (¢ + t)]}

oo oo

S S Ja(B) i (8) e A

n=—ook=—o0

+

32 (k)2 . i
[ (1 Zet)

BB sy (6 + t)]}

DDA TN

n=—ook=—o00

(1 ) sintont -

. dE(2n—k)vd

Bk(2n—k)vg
J 2

[ Bk(2n—k)vg
— e J 2

1+ BT sl (§+ )] - (eJ ’

2

+e

bk(2n—k)vE

[ (1 ) Rt

B(Q0)?

B-2n—k)vo

+ B(Qo) 2

+ cos| P2 sl (b + 1))
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Now we will deal with the harmonic terms involving the MZM bias point «

k2033
2

-l 3 Jk(B) - [1 + %} - eTkro(8+t) . ¢i

k=—oc0

k2033
2

—e 7 3 k() - [1 + g(g’:f’)} eIk (91t) L o—i

k=—oc0

separating this expression into two segments, the regular calculation without amplitude variation

(case of "1’ term), and the amplitude variation term.

— et $ T () 4 T (Bl
k=—oco

e’ Z e L [Ji(B)e—dkro+t) 4 J_, (B)edkvo(d+D)]
k=—oc0

Using J_y () = (~1)" - J, ()

2u0¢

Je(B) - [e7Rro(@+8) 4 (—1)ke—ikvo(+1)]

LY e

k=—o00

—Ja

k(g) e dkro(+) 4 (_1)keikro(4D)]

Zej

k=—o00

We need to distinguish in between the following cases

(‘Uik _ 1 k even
—1 k odd

case of k even

- _ i ej[a+k2§g‘£]Jk(g) - coslkvo(é + 1)]

k=—o0

— z eila+ o4 1Jk(ﬂ)-cos[ku0(q’s+t)]

k=—o0

=-2 Z Ji(B) - cos|a + V°¢] cos[kvo (¢ + t)]

k=—o0

case of k odd

=—j- i ej[“Jrkzggé]Jk(ﬂ) - sinfkvo(¢ +t))

k=—oc0

1SS e it = 1) - sinfhvo(d 4 1))

k=—o0

S Je(B) - sinfa + 52 sinfku(é + t)]

k=—oc

now we will treat the amplitude variation correction according to a Taylor expansion

. s 5. . . _k2u§$
—el S Je(B) - % . eJkvo(@+t) . i
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e ) Bty e i

k=—o0

S o L B’?(’Eﬂ; [Jk<g)ejkuo(¢3+t) _J_k<ﬂ)e—jk’/o(¢+t)}

2 5 e B [ (9)e a6 - gy ()ern]

Z o 203 Te(B) }?(’E{% [ejkuo(dﬂrt) _ (71)k€fjkuo(¢'5+t)}
0
k=—oc0o
_et § it Jk(g) (km)) [efjkllo(q.ﬂt) _ (_1)kejkl/o(<i7+t)}
0
k=—oc0

We need to distinguish in between the following cases

(_Uik _ 1 k even
—1kodd

case of k even

——j 5 el S g (8 Bl sinfhuo (4 )]

k=—oc

4 5 el

k=—o0

1 7(8) Bk sinlk( + 1)

=23 Jk('@)gﬁ?)?) sin[a + & 0¢] sinlkvo (¢ +t)]

case of k odd

— = 3 el S (8) B coufug (6 + )]

k=—oc0

oo k2
-3 e—dlot

k=—occo

Zaﬂjk(g)m) cos[kvo(¢ + t)]

=9 Z Je(B ) ) - cos| ¢] cos[kl/o(¢+t)]

k=—o0
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Therefore we can note that the generated photocurrent expression:

P(t) =1 B(0)*- { S0 X B () [+ fri] -1+ Bie]

n=—ook=—o0

d)k(?n k)uo k2 uoqb
2

eIkvo(d+t) e S Ju() - {1+ Bkw} . eIkvo(d+t) . o

B(Q0)
‘4 1}

is identical according to these calculations to the following expression

k=—o0

—eI 5 () - [14+ B ] el it

k=—o0

P(t) = %.3(90)2 : {1+ f: f: In(B)Jn—1(5)

n=—ock=—o00

2 2 g 2 .
_ (1 + B gégo—)lg)uo> szn[¢k(2” k)yo]szn[kl/o((b—i-t)] %?on)) cog[¢k(2”_k)”°]cos[kuo(¢+t)]
(1+ 550 ) cos| 220 sk (§ + 1)] — ZGrabe sin R iy () + )]

kQ””ﬁcos[kyo(é +1)]

- . sinfa + ”°¢]sm[kuo(¢ +1)] — g(lgm cos[a +
22 D : 4] sinfln 6+ 1)

k‘l/o

—cos[a + ”°¢]cos[kuo(¢ +1)]+ G )sm[a + £

k=—o0

where [ 1 formalizm is introduced to denote that top element is chosen if k is odd and
.

bottom is k is even.

Let’s look at the previous model DC response (without amplitude variation) (k=0)

By = B B(90)? - [ i Jn(B)? = 2Jo(B)cos(a) + 1].

n=-—oo

We can see that each generated sidetone, J,, (), contributes to the DC response dependent on
B, the contribution of the optical carrier, Jo(83), is dependent upon MZM bias point a.

Let’s look at the current model DC response (k=0)

By= . B(Qy)?- [ S .(8)? (1+ B ) 2J0(ﬁ)cos(a)+1}

n=-—oo

We can see that each generated sidetone, J,,(3), contributes to the DC response dependent on
2

[, with a small correction compared with MPS standard model dependent on Bnyo) , as in
standard MPS model the contribution of the optical carrier, Jo(8), is dependent upon MZM
bias point a.

Let’s look at the response at first harmonics on the previous model (k = +1)

P = Lo B(Q)?- {4J1 (B)sin|a + q.s%g}sin[uo(q5+t)] -2 i Jn(B)In-1(8)

n=-—oo

sm[wnf_l)yg]sm[l/ow + t)]}
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Response at first harmonic (k = £1)
D, el - 2'TL n— I/2 . b n— l/2
P =50 B(@)* {2 3 Ta(B)In-a(8) - |- (14 Zpippia ) sin 271

. - e 12 .
-sinfvo (@ + 1)) + ZEH o5 LD eosug (6 + t)]]

+4J1(8) - (sin[oz + %é}sin[l/o((ﬁ +1)] - BB(;;S) cos[a + %&]cos[u((ﬁ + t)}) }

We can note that the extended model represents that for each desired signal there might be a
distortion that arises from amplitude slope experienced by the different sidetones. It is imparent
that a larger amplitude slope value, the stronger these distortions will be.

Let’s look at the response at first harmonics on the previous model (k = £2)

Po= 2B {2 @ a(@eostiien ~2eostens + 1)

n=-—oo

—4.J5(B)cos[a + ¢p2u8]cos2vy(d + t)]}

Response at second harmonics(k = £2) {more detailed to show how I came to these final answers)

P=1%.B {ZJ (B)-

n=-—oo

[(1 + 732%5?”3) cos[ 2D o2 (¢ + 1)] — L EIA0 i [N i 91 (5 - 1)]

+ZJ n+2 )

n=-—oo

[(1+ E5 530 ) cos]— 228 cos 2w + 1)] — B Gr sin] - 2L i~ 201§ + 1)

+2.J5(3)-

[ cos|or + 2 ]cos[QVO(gZ) +6)]+ (52200) sinfo + 222345}31'71[2%(@3 + t)]}

+2J_2(83)-

[—cos[a + 22%345]005[—2%((;5 +1)] - .(?z } si nfa + 2 ]sm[ 2wo(d + t)ﬂ }

substitute index ¢ =n+k = n=¢q— k and using J_,,(z) = (=1)" - J,(x)

= Do B(y)?- { i In(B)Jn—2(B)-

n=-—oo

[(1 + 732';((30_)?'/3) 005[7&(2”{2)'/3 Jeos[2up(d + )] — B‘(;ng))"” sin[&(%{m”g |sin[2vo(¢d + t)]

n=-—oo

[(1+ 25 ) cos[ 222 Jeos 200 (¢ + 1)] — L1302 sin 2028 i 21 ($ + 1)
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+2J5(5)-

22 2
[—cas[a-i— >

+2.J5(3)-

[ cos[a + 2 ”°¢]cos[2uo(¢+ )] +

épg PO BQO {QZJ

n=-—oo

B'(2’n72)llg

$]cos[2uo(¢5 +t)] +

B'2l/0 ; 22'/3
Bragsinlo+ =

é]sin[2uo(¢§ + L‘)]}

B~2V[) ; 22
G, sinfa +

2% sin[2u0(9 + 1)]] }

[+ ) et

$2(2n—2)v3

-cos2vg(d + )] — B(%0)

+4J2(8) - { cosla + 2

2,/0 . 221/3
]008[21/0 (¢ + t)] B(Q0) Szn[a + 2

5 |sin[2v0(¢ + t)]}

“Jsin2v0(6 + )] }
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Finally, we can estimate the contribution of the amplitude change to the phase measurement
in the standard MPS method. The photocurrent is multiplied with a local oscillator signal

oscillating at the vy frequency, LO(t) = sin[vyt], using the following trigonometric identities

cosa-sinf3 = % [sin(a + B) — sin(a — 5)]

sina - sin 3 = % [cos(ax — B) — cos(a + )]

The photocurrent is composed of these expressions P = Py + P, + P». We will focus on the
contribution to the DC signal, caused by the down converting to DC with the local oscillator
signal. There is no need to multiply Py or P since any harmonic contribution will be filtered

out using the low pass filter.

Therefore the contributions to the signal are as following:

=5 5007 {2 £ 50150 [ (14 Dpad) st

sinfvo(¢ +t)] + B'%r(gol))uo cos[cb(%;l)yO Jcos[vo(d + t)]}

27 .

+441(8) - (sinlor+ B2]sinlvo(d + )] — Aacosla + B2 ]coslhv(d+)]) }

Viltnrs = [Pisiniot]) = 2 BO{ S 9u0)0aa9 [ (14 21

n=-—oo

,Sm[w]cos[w)é] - B'(;}gol))'/” cos[é(zn;n"g ]sin[u()(/.)]}

+2J1(8) - (sin[oz + l’gT(b]cos[VogZ;] + %cas[a + l’(zi]szn[vqﬁ])}

We can conclude that the deviation from desired signal in the standard MPS depends on proper
selection of MZM bias point «, and a proper selection of RF driving frequency to avoid RF fading
due to dispersion. In the case of stronger amplitude slope, B, the distortion of the desired signal
will be more dominant. Since our RF driving 3 ~ 42 = 1.0472 ~ 1.05. The assumption
standing behind this is that our electrical circuit transfers the oscillating RF power through a

perfect 50 ohms impedance network, which is usually not true, especially when treating a wide
range of RF frequencies. According to Bessel-J function of the first kind , we should anticipate
arising of approximately tones up to the second order, thus we will calculate the cases containing
n € [-1,2].

nil‘]n(ﬂ)']n—l(ﬂ) [— (1 + %{;g):«?)

Vi(t)eer = 22 - B(Q)? - {

-sin[w]cos[w)é] - B'(;Eg;))yo cos[¢(2";1)'/3 ]sin[uoé]}

+2J1(8) - (sz'n[oz + @]cos[z«)q’ﬁ] + %cos[a + Ij‘ii]sm[vgb])}
— % - B(Q)? - {le(ﬁ) . (sm[a + @]cas[uoqﬂ + %cos[a + if]sm[u@)
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+J_1(8)J-2(B) {(1 + 5@ 21;0) szn[¢?’2 Jcos[vod] + B(g’;o) cos[q.SgT]sm[l/o(b]]

+Jo(B)J-1(8) [sin[Z48 Jeos[vod] + 25 cos| 25 Jsinlvod]|

—|—J1(6)Jo(ﬁ){ sm[¢ ]cos[uo(ﬁ} B(Q )cos[d)2 ]sm[voqﬁ]}

+J2(8)J1(0) [ (1 + E(QZV)O ) szn[¢32 Jcos[vod] — B(%uo) cos[¢32 ]sm[uoq’)]}}
using J_n(z) = (=1)" - Jn(2)

=L B(Q)?- {2J1(ﬂ) . (sin[a + ;¢]cos[l/o¢] + B( )cos[a + iQ‘Zs]sm[uqb])

—T1(8)2(8) [ (1+ Breashy ) sin 258 coslnd] + B35 cos[ 238 sinfuod]|

ﬂ

—Jo(3)J1(B) sm[ ]cos[uo¢] + B(Q )cos[¢2 }sm[u(ﬂé]}

—J1(B)Jo(B) [sin| %5t Jeos(vod] + s cos 242 sinlod]|

—J2(B)J1(B) Kl + 133(292()'/)‘2) sin| “32"3](:05[1/0@5] + B(?l )cos[¢?’2 ]SZR[V0¢]:|}
=0 B(Q)?- {QJl(ﬁ) - (sin[a + 2¢]cos[1/o(b] + B( Bagcosla+ i24)]3171[1@])
—2Jo(9)1(B) [sm[%}cos[m)qﬁ] + B(Q )cos[¢2 ]sm[uoqb]}

—2J1(8)J2(B) [(1 + 5(2920”)[2;) sin[‘%s;g}cos[uogf)] + g(g’g’) cos[(%?’;g]sin[z/oqﬂ }

- % - B(99)? - {Jl (B) - (sin[a + T(b]cos[uod)] B(Q )cos[a + ”‘%ﬂsm[wﬁ])

- [Jo(ﬁ)Jl(ﬂ)szn[¢ Jcos[rod] + Jo(ﬁ)J1(ﬁ) Bon )cos[%]sm[uoé]}

— [718)72(8) (1 + ek ) sinlZ5 coslvod] + J1(8)J2(5) B cos| 5 Jsinfod)] |

In order to emphasize the extended model for MPS, we will arrange the signal according to the

perturbations
= Vi(t)pr = £ - B(Q0)? - {cos[l/o(ﬂ {Jl (8) (sin[a + T‘b] Jo(g)sm[ ] J2(ﬁ)sm[¢$32u§]”
+ gy sinlod] [Jl(ﬁ) (cos[a + 42) — Jo(B)cos| %] — BJ(B)cos[ L8 ])}

,%COS[VOQ'S] [2J1 (ﬂ)Jz(ﬁ)sin[@;g ]} }
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Finally, we can estimate the contribution of the amplitude change to the phase measurement
in the 2nd order MPS with Audio method. The photocurrent is multiplied with a local oscilla-
tor signal oscillating at the vy frequency, LO(t) = sin[2uvpt], using the following trigonometric
identities

cosa-sinff = % [sin(a + B) — sin(a — 3)]

sina - sin 3 = % [cos(a — B) — cos(a + B)]

The photocurrent is composed of these expressions P = Py + P, + P». We will focus on the
contribution to the DC signal, caused by the down converting to DC with the local oscillator
signal. There is no need to multiply Py or P, since any harmonic contribution will be filtered

out using the low pass filter.

Therefore the contributions to the signal are as following;:

= 32.n(n—2)12 $2(2n—2) 12
P2 - {2 Z J n 2 ) [(1 + B B((Qo)i) O) C08[¢2(2 3 2) 0]

n=-—oo

) : i ) )
-cos[2vp(p + t)] — B'%?S;OQ))VD sin[¢2(2"2_2)”0 |sin[2vo(¢ + t)]}

+4J2(08) - [ coslo + 2 ]608[21/0 (p+1t)]+ B(?z”o) sin[a + 22;§é]sin[21/0 (¢ + t)}] }

VaOhuee = [P sinl2t]] e = 52 - B(S0)? { S S dna(8) - [ (14 Bt

n=-—oo

cos[p(2n — 2)13] - sin[2v9d] — W‘sm[éﬁ@n - Q)Vg]cos[Quoqﬂ]

+2J5(8) - {cos[a + 202 ¢]sin[2up9] + g(é?) sin[a + 21/8(5]003[21/0(&]} }

Since our RF driving f ~ w3 B 5 = 1.0472 ~ 1.05. The assumption standing behind this is that
our electrical circuit transfers the oscillating RF power through a perfect 50 ohms impedance
network, which is usually not true, especially when treating a wide range of RF frequencies.
According to Bessel-J function of the first kind , we should anticipate arising of approximately

tones up to the second order, thus we will calculate the cases containing n € [0, 2].

Va(thoer = 5+ B(0)? {ZJM)J"_Q(@ [ (14 pasaed)

cos[p(2n — 2)13] - sin[2vyp) — %sm[cﬁ@n - 2)ug]cos[2yo<m

+2J5(5) - {cos[a + 202 d)sin[2vp¢] + g(?;;o) sinfa + 2V§(23]cos[2uogﬁ]} }

= 0. B(Q)?- {2J2(ﬁ) . [cos[a + 202 ) sin[2vo¢] + B(?)”O) sinfa + 202 |cos|2vpd)]

+J2(8)Jo(5) - [—cos[é21/§] - sin2vp) — g('?z’;o) sin[éng]cos[Zuoé]}
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FI(BI1(8) - [~ (1= B - sinf2vod]

+Jo(B)J—2(B) - {—COS[&QV&] - sin[2vy¢)] — g(é’;“) sin[g.zQQVg]cos[Quogf)]}}
using J_,(x) = (—=1)" - J,(z)

=L . B(Q)?- {ZJQ(/B) . [cos[a + 202 ) sin[2up¢] + g('é’j’) sinfa + 21/3(%]005[21/0(;.5]}

+J2(8)Jo(6) - {—COS[QB?I/&} - sin[2v@] — 5(5221;0) sin[(ﬁ21/§]cos[2uo¢§]}

+11(B)1(B8) - [ (1 = G ) - sinf2ud]]

+Jo(B)J2(B) - {—cos[éng] . sin[Quoé] - g(?{;‘)) sin[éng]cos[Quoé]}}

=L . B(Q)?- {QJQ(ﬁ) . [cos[a + 202 ) sin[2up¢] + g('é’;g) sinfa + 202 |cos 200

+J1(8)1(B) - [(1 - L);Tl)) ' Sin[%dﬂ
+2Jo(B8)J2(B) - [—cos[qﬁug] - sin[2uv @] — %5@'71[(521/3}005[21/0&]} }

In order to emphasize the extended model for MPS, we will arrange the signal according to the

perturbations
= Va(t)Lpr = % - B(Q)? - {sm[ZZ/oé] |:J2(ﬁ) (cos[a + 21/8(}5] - Jo(ﬁ)cos[ZZ/g(ﬁ]) —l—;.]%(ﬁ)}
+%cos[2yoq.ﬁ] [2J2(6) (Sin[a + 202 — Jo(ﬁ)sin[ngé])}

~ ptfesinland) [ 3721}
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MINN NR DYORNN 02237 191 (MICro-resonators) D*7ann-11’m 3 DT D1YHRIVPAD
(slow light devices) mxn
DR DMYM DIVP MMR *DPP2 vIY 'y MPS-n np ova Mmawn nR onmn 1R

wRYn RHNN 0LIRD Minnn MPS-n nprov arn Sv RO Y0MIRD MmNy MIRNINN
D272 MYXNRL NOV NTIYNI NAIND NTTNN NIIPYN NYRIND NPIVN YV IXDNIVIRY
MM ATIND NIIYNL DMWY MIMRD DR AR .D”HNYM DPVAIR DINT DINDN
NTYN RMINI (PYRT ITON MDD IMYI) DM PTIT MMR - NYNnh  mawn
yany onHy wr (Mach-Zehnder Modulator) 09180 1a8RNN YW 01INMIOPIRN
NYYY 2T OYNVUNN DN MMR MPOT NYINnd mwn mnd qona mxIn ammd
N AVRI NV NPIVAR NVWIA ATTND NIIPN DR IMRD .DNVP MMR NTINH YI9nY
D201 02237 YV NPIMNVP 7901 NTTA D190 IR T PTI TN VINY 'Y pyRann MR
7900 YV MNIOM NN HY 11T NNPD ATTRN NPV NR D)TNY NN HY DYVNIN
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