
Optimal Allocation with Costly Verification1

Elchanan Ben-Porath2 Eddie Dekel3 Barton L. Lipman4

First Preliminary Draft
October 2011

Current Draft
March 2014

1We thank Ricky Vohra, Benjy Weiss, numerous seminar audiences, and Andy Skrzypacz and
three anonymous referees for helpful comments. We also thank the National Science Foundation,
grants SES–0820333 and SES-1227434 (Dekel) and SES–0851590 (Lipman), and the US–Israel
Binational Science Foundation (Ben-Porath and Lipman) for support for this research. Lipman
also thanks Microsoft Research New England for their hospitality while the first draft was in
progress and Alex Poterack for proofreading.

2Department of Economics and Center for Rationality, Hebrew University. Email: benpo-
rat@math.huji.ac.il.

3Economics Department, Northwestern University, and School of Economics, Tel Aviv Uni-
versity. Email: dekel@northwestern.edu.

4Department of Economics, Boston University. Email: blipman@bu.edu.



Abstract

A principal allocates an object to one of I agents. Each agent values receiving the object
and has private information regarding the value to the principal of giving it to him.
There are no monetary transfers, but the principal can check an agent’s information at
a cost. A favored–agent mechanism specifies a value v∗ and an agent i∗. If all agents
other than i∗ report values below v∗, then i∗ receives the good and no one is checked.
Otherwise, whoever reports the highest value is checked and receives the good iff her
report is confirmed. All optimal mechanisms are essentially randomizations over optimal
favored–agent mechanisms.



1 Introduction

Consider a principal with a good to allocate among a number of agents, each of whom
wants the good. Each agent i knows the value the principal receives if he gives the good
to i, but the principal does not. (This value need not coincide with the value to i of
getting the good.) The principal can verify the agents’ private information at a cost,
but cannot use transfers. There are a number of economic environments of interest that
roughly correspond to this scenario; we discuss a few below. How does the principal
maximize the expected gain from allocating the good less the costs of verification?

We characterize optimal mechanisms for such settings. We construct an optimal
mechanism with a particularly simple structure which we call a favored–agent mechanism.
There is a threshold value and a favored agent, say i. If each agent other than i reports
a value for the good below the threshold, then the good goes to the favored agent and no
verification is required. If some agent other than i reports a value above the threshold,
then the agent who reports the highest value is checked. This agent receives the good iff
his claims are verified and the good goes to any other agent otherwise.

In addition, we show that every optimal mechanism is essentially a randomization
over optimal favored–agent mechanisms. In this sense, we can characterize the full set of
optimal mechanisms by focusing entirely on favored–agent mechanisms. By “essentially,”
we mean that any optimal mechanism has the same outcomes as such a randomization
up to sets of measure zero.1 An immediate implication is that if there is a unique optimal
favored–agent mechanism, then there is essentially a unique optimal mechanism.

Finally, we give a variety of comparative statics. In particular, we show that an agent
is more likely to be the favored agent the higher is the cost of verifying him, the “better”
is his distribution of values in the sense of first–order stochastic dominance (FOSD),
and the less risky is his distribution of values in the sense of second–order stochastic
dominance (SOSD).

The standard mechanism–design approach to an allocation problem is to construct a
mechanism with monetary transfers and ignore the possibility of the principal verifying
the agent’s information. In many cases obtaining information about the agent’s type at
a cost is quite realistic (see examples below). Hence we think it is important to add this
option. In our exploration of this option, we take the opposite extreme position from the
standard model and do not allow transfers. This obviously simplifies the problem, but
we also find it reasonable to exclude transfers. Indeed, in many cases they are not used.
In some situations, this may be because transfers have efficiency costs that are ignored in

1Two mechanisms have the same “outcome” if the interim probabilities of checking and allocating
the good are the same; see Section 2 for details.
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the standard approach. More specifically, the monetary resources each agent has might
matter to the principal, so changing the allocation of these resources in order to allocate
a good might be costly. In other situations, the value to the principal of giving the good
to agent i may differ from the value to agent i of receiving the good, which reduces the
usefulness of monetary transfers. For example, if the value to the principal of giving the
good to i and the value to agent i of receiving it are independent, then, from the point
of view of the principal, giving the good to the agent who values it most is the same as a
random allocation. For these reasons, we adopt the opposite assumption to the standard
one: we allow costly verification but do not allow for transfers.

We now discuss some examples of the environment described above. A firm may need
to choose a unit to head up a new, prestigious project. A venture capital firm may need
to choose which of a set of competing startups to fund. A government may need to choose
in which town to locate a new hospital. A funding agency may have a grant to allocate
to one of several competing researchers. A dean may have a job slot to allocate to one
of several departments in the university. The head of personnel for an organization may
need to choose one of several applicants for a job with a predetermined salary.

In each case, the head of the organization wishes to allocate a good to that agent
who would use it in the way which best promotes the interests of the organization as a
whole. Each agent, on the other hand, has his own reasons for wanting the good which
may not align entirely with the incentives of the organization. For example, each town
may want the hospital and put little or no value on having the hospital located in a
different town. Each unit in the firm may want the resources and prestige associated
with heading up the new project without regard to whether it is the unit which will best
carry out the project. The venture capital firm wishes to maximize its profits, but each
of the competing startups desires funding independently of which startup will yield the
highest return.

It is also natural to assume that the agents have private information relevant to the
choice by the head of the organization. The researchers know much more about the
likelihood of a breakthrough than the funding agency. The individual towns know more
about the likely level of use of a hospital than the central government. The departments
know more about the characteristics of the people they would hire than does the dean.

In many of these situations, the head of the organization can, at a cost, obtain and
process some or all of this information. The funding agency can investigate the research
areas and progress to date of some or all of the competing researchers. The government
can carry out a careful study of the towns. The firm can audit past performance of a
unit and its current capabilities in detail. The head of personnel can verify some of the
job applicants’ claims.

Finally, monetary transfers are not practical or at least not used in many of these
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cases. Firms allocate budgets to individual units based on what activities they want
these units to carry out — it would be self–defeating to have units bid these resources for
the right to head up the new project. Similarly, it would be odd for a funding agency to
ask researchers to pay in order to receive grants. Governments may ask towns to share
in the cost of a hospital — but if part of the purpose of the project is to serve the poor,
such transfers would be undermine this goal.2

Literature review. Townsend (1979) initiated the literature on the principal–agent model
with costly state verification. See also Gale and Hellwig (1985), Border and Sobel (1987),
and Mookherjee and Png (1989). These models differ from what we consider in that they
include only one agent and allow monetary transfers. In this sense, one can see our work
as extending the costly state verification framework to multiple agents when monetary
transfers are not possible. Our work is also related to Glazer and Rubinstein (2004, 2006),
particularly the former which can be interpreted as model of a principal and one agent
with limited but costless verification and no monetary transfers. Finally, it is related to
the literature on mechanism design and implementation with evidence — see Green and
Laffont (1986), Bull and Watson (2007), Deneckere and Severinov (2008), Ben-Porath
and Lipman (2012), Kartik and Tercieux (2012), and Sher and Vohra (2011). With the
exception of Sher and Vohra, these papers focus general issues, rather than on specific
mechanisms and allocation problems. Sher and Vohra do consider a specific allocation
question, but it is a bargaining problem between a seller and a buyer, very different from
what is considered here.

There is a somewhat less related literature on allocations without transfers but with
costly signals (McAfee and McMillan (1992), Hartline and Roughgarden (2008), Yoon
(2011), Condorelli (2012), and Chakravarty and Kaplan (2013)).3 In these papers, agents
can waste resources to signal their values and the principal’s payoff is the value of the
type receiving the good less the cost of the wasted resources. The papers differ in their
assumptions about the cost, the number of goods to allocate, and so on, but the common
feature is that wasting resources can be useful in allocating efficiently and that the
principal may partially give up on allocative efficiency to save on these resources. See also
Ambrus and Egorov (2012) who allow both monetary transfers and wasting of resources
in a delegation model.

The remainder of the paper is organized as follows. In the next section, we present
the model. Section 3 shows that all optimal mechanisms are essentially randomizations

2In a similar vein, Banerjee, Hanna, and Mullainathan (2011) give the example of a government that
wishes to allocate free hospital beds. Their focus is the possibility that corruption may emerge in such
mechanisms where it becomes impossible for the government to entirely exclude willingness to pay from
playing a role in the allocation. We do not consider such possibilities here.

3There is also a large literature on allocations without transfers, namely the matching literature; see,
e.g., Roth and Sotomayor (1990) for a classic survey and Abdulkadiroglu and Sonmez (2013) for a more
recent one.
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over optimal favored–agent mechanisms. In Section 4, we characterize the set of best
favored–agent mechanisms. In Section 5, we give comparative statics and discuss various
properties of the optimal mechanism. In Section 6, we sketch the proof of our uniqueness
result, while Section 7 discusses some simple extensions. Section 8 concludes. Proofs not
contained in the text are either in the Appendix or the Online Appendix.

2 Model

The set of agents is I = {1, . . . , I}. There is a single indivisible good to allocate among
them. The value to the principal of assigning the object to agent i depends on information
which is known only to i. Formally, the value to the principal of allocating the good to
agent i is ti where ti is private information of agent i. We normalize so that types
are always non–negative and the value to the principal of assigning the object to no
one is zero. As we explain in Section 7, the assumption that the principal always prefers
allocating the object to the agents is used only to simplify some statements — the results
easily extend to the case where the principal sometimes prefers to keep the object. We
assume that the ti’s are independently distributed. The distribution of ti has a strictly
positive density fi over the interval4 Ti ≡ [ti, t̄i] where 0 ≤ ti < t̄i < ∞. We use Fi to
denote the corresponding distribution function. Let T =

∏
i Ti.

The principal can check the type of agent i at a cost ci > 0. We interpret checking
as obtaining information (e.g., by requesting documentation, interviewing the agent, or
hiring outside evaluators) which perfectly reveals the type of the agent being checked.
The cost to the agent of providing information is assumed to be zero. We discuss these
assumptions and the extent to which they can be relaxed in Section 7.

We assume that every agent strictly prefers receiving the object to not receiving it.
Consequently, we can take the payoff to an agent to be the probability he receives the
good. The intensity of the agents’ preferences plays no role in the analysis, so these
intensities may or may not be related to the types.5 We also assume that each agent’s

4It is straightforward to drop the assumption of a finite upper bound for the support as long as all
expectations are finite. Also, when in Section 7 we allow the principal to prefer keeping the object, it is
similarly straightforward to drop the assumption that the support is bounded below.

5Suppose we let the payoff of agent i from receiving the good be ūi(ti) and let his utility from not
receiving it be ui(ti) where ūi(ti) > ui(ti) for all i and all ti. Then it is simply a renormalization to let
ūi(ti) = 1 and ui(ti) = 0 for all ti. To see this, note that each of the incentive constraints will take the
form

pūi(ti) + (1− p)ui(ti) ≥ p′ūi(ti) + (1− p′)ui(ti)

where p is the probability player i gets the good when he is type ti and tells the truth and p′ is the
probability he gets the good if he lies in some particular fashion. It is easy to rearrange this equation
as p[ūi(ti)− ui(ti)] ≥ p′[ūi(ti)− ui(ti)]. Since ūi(ti) > ui(ti), this holds iff p ≥ p′, exactly the incentive
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reservation utility is less than or equal to his utility from not receiving the good. Since
monetary transfers are not allowed, this is the worst payoff an agent could receive under
a mechanism. Consequently, individual rationality constraints do not bind and so are
disregarded throughout.

In its most general form, a mechanism can be quite complex, having multiple stages
of cheap–talk statements by the agents and checking by the principal, where who can
speak and which agents are checked depend on past statements and the results from past
checks, finally culminating in the allocation of the good, perhaps to no one. However, it
is not hard to show that one can use an argument similar to the Revelation Principle to
restrict attention to a simple class of mechanisms.6 Specifically, we show in part A of the
Online Appendix that we can consider only direct mechanisms (i.e., mechanisms which
ask agents to report their types) for which truthful revelation is a Nash equilibrium
and which have the following properties. First, for any vector of reported types, the
mechanism selects (perhaps via randomization) at most one agent who is checked. If
an agent is checked and (as will happen in equilibrium) found to have told the truth,
then he receives the good. If no agent is checked, then the mechanism (again, perhaps
randomly) selects which agent, if any, receives the good.

Hence we can write a mechanism as specifying for each vector of reports, two prob-
abilities for each agent: the probability he is awarded the object without being checked
and the probability he is awarded the object conditional on a successful check. Let pi(t)
denote the total probability i is assigned the good and qi(t) the probability i is assigned
the good and checked. Then these functions must satisfy pi : T → [0, 1], qi : T → [0, 1],∑

i pi(t) ≤ 1 for all t ∈ T , and qi(t) ≤ pi(t) for all i ∈ I and all t ∈ T . Henceforth,
the word “mechanism” will be used only to denote such a tuple of functions, generally
denoted (p, q) for simplicity.

The principal’s objective function is

Et

[∑
i

(pi(t)ti − qi(t)ci)

]
.

The incentive compatibility constraint for i is

Et−i
pi(t) ≥ Et−i

[pi(t
′
i, t−i)− qi(t′i, t−i)] , ∀ti, t′i ∈ Ti, ∀i ∈ I.

Given a mechanism (p, q), let

p̂i(ti) = Et−i
pi(t)

constraint we have if ūi(ti) = 1 and ui(ti) = 0.
6The usual version of the Revelation Principle does not apply to games with verification and hence

cannot be used to obtain this conclusion. See Townsend (1988) for discussion and an extension to a class
of verification models which does not include ours.
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and
q̂i(ti) = Et−i

qi(t).

The 2I tuple of functions (p̂, q̂)i∈I is the reduced form of the mechanism (p, q). We say
that (p1, q1) and (p2, q2) are equivalent if p̂1 = p̂2 and q̂1 = q̂2 up to sets of measure zero.
It is easy to see that we can write the incentive compatibility constraints and the objective
function of the principal as a function only of the reduced form of the mechanism. Hence if
(p1, q1) is an optimal incentive compatible mechanism, (p2, q2) must be as well. Therefore,
we can only identify the optimal mechanism up to equivalence.

3 The Sufficiency of Favored–Agent Mechanisms

Our main result in this section is that we can restrict attention to a class of mechanisms we
call favored–agent mechanisms. To be specific, we show that every optimal mechanism
is equivalent to a randomization over favored–agent mechanisms. Hence to compute
the set of optimal mechanisms, we can simply optimize over the much simpler class of
favored–agent mechanisms. In the next section, we use this result to characterize optimal
mechanisms in more detail.

We say that (p, q) is a favored–agent mechanism if there exists a favored agent i∗ ∈ I
and a threshold v∗ ∈ R such that the following holds up to sets of measure zero. First,
if ti − ci < v∗ for all i 6= i∗, then pi∗(t) = 1 and qi(t) = 0 for all i. That is, if every
agent other than the favored agent reports a “value” ti − ci below the threshold, then
the favored agent receives the object and no agent is checked. Second, if there exists
j 6= i∗ such that tj − cj > v∗ and ti − ci > maxk 6=i(tk − ck), then pi(t) = qi(t) = 1 and
pk(t) = qk(t) = 0 for all k 6= i. That is, if any agent other than the favored agent reports
a value above the threshold, then the agent with the highest reported value (regardless
of whether or not he is the favored agent) is checked and, if his report is verified, receives
the good.7

Note that this is a very simple class of mechanisms. Optimizing over this set of
mechanisms simply requires us to pick one of the agents to favor and a number for the
threshold, as opposed to probability distributions over checking and allocation decisions
as a function of the types.

Obviously, any randomization over optimal mechanisms is optimal.8 Also, as noted in
Section 2, if a mechanism (p, q) is optimal, then any mechanism which is essentially the
same in the sense of having the same reduced form up to sets of measure zero must also

7If there are several agents that maximize ti − ci, then one of them is chosen arbitrarily. This event
has probability zero and so does not affect incentives or the principal’s payoff.

8Randomizing refers to the pointwise convex combination of mechanisms (p, q).
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be optimal. Hence given any set of optimal mechanisms, we know that all mechanisms
that are essentially equivalent to a randomization over mechanisms in this set must also
be optimal.

Theorem 1. A mechanism is optimal if and only if it is essentially a randomization
over optimal favored–agent mechanisms.

Hence we can restrict attention to favored–agent mechanisms without loss of gener-
ality.9 Furthermore, if there is a unique optimal favored–agent mechanism, then there is
essentially a unique optimal mechanism.

Section 6 contains a sketch of the proof of this result.

A very incomplete intuition for this result is the following. For simplicity, suppose
ci = c for all i and suppose Ti = [0, 1] for all i. Clearly, the principal would ideally give the
object to the agent with the highest ti. Of course, this isn’t incentive compatible as each
agent would claim to have type 1. By always checking the agent with the highest report,
the principal can make this allocation of the good incentive compatible. So suppose the
principal uses this mechanism.

Consider what happens when the highest reported type is below c. Obviously, it’s
better for the principal not to check in this case since it costs more to check than it
could possibly be worth. Thus we can improve on this mechanism by only checking the
agent with the highest report when that report is above c, giving the good to no one
(and checking no one) when the highest report is below c. It is not hard to see that
this mechanism is incentive compatible and, as noted, an improvement over the previous
mechanism.

However, we can improve on this mechanism as well. Obviously, the principal could
select any agent at random if all the reports are below c and give the good to that agent.
Again, this is incentive compatible. Since all the types are positive, this mechanism
improves on the previous one.

The principal can do still better by further exploiting his selection of the person to
give the good to when all the reports are below c. To see this, suppose the principal
gives the good to agent 1 if all reports are below c. Continue to assume that if any agent
reports a type above c, then the principal checks the highest report and gives the good to
this agent if the report is true. This mechanism is clearly incentive compatible. However,
the principal can also achieve incentive compatibility and the same allocation of the good
while saving on checking costs: he doesn’t need to check 1’s report when he is the only
agent to report a type above c. To see why this cheaper mechanism is also incentive

9It is straightforward to show that an optimal mechanism exists, so Theorem 1 is not vacuous.
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compatible, note that if everyone else’s type is below c, 1 gets the good no matter what
he says. Hence 1 only cares what happens if at least one other agent’s report is above
c. In this case, he will be checked if he has the high report and hence cannot obtain the
good by lying. Hence it is optimal for him to tell the truth.

This mechanism is the favored–agent mechanism with 1 as the favored agent and
v∗ = 0. Of course, if the principal chooses the favored agent and the threshold v∗

optimally, he must improve on this payoff.

This intuition does not show that some more complex mechanism cannot be superior,
so it does not establish existence of an optimal mechanism in the favored–agent class,
much less the uniqueness part of Theorem 1. Indeed, the proof of this theorem is rather
complex.

Remark 1. It is worth noting that the favored–agent mechanism is ex post incentive
compatible. To see this, note first that any agent i with ti− ci above the threshold has a
dominant strategy to report honestly. Second, any nonfavored agent i with ti − ci below
the threshold gets the good with zero probability regardless of his report. Finally, if the
favored agent has ti− ci below the threshold, he obtains the good iff all the other agents
report values below the threshold, independently of his report.10 Since ex post incentive
compatibility is stricter than incentive compatibility, this implies that the favored–agent
mechanism is also the optimal ex post incentive compatible mechanism.

4 Optimal Favored–Agent Mechanisms

We complete the specification of the optimal mechanism by characterizing the optimal
threshold and the optimal favored agent. We show that conditional on the selection of
the favored agent, the optimal favored–agent mechanism is unique. After characterizing
the optimal threshold given the choice of the favored agent, we consider the optimal
selection of the favored agent.

For each i, define t∗i by

E(ti) = E(max{ti, t∗i })− ci. (1)

10In other words, truth telling is an almost dominant strategy in the sense that it is an optimal strategy
for every type of every player regardless of the strategies of his opponents. It is not dominant for an
agent who is not favored and whose type is such that ti−ci is below the threshold since his payoff is zero
regardless of his report. We can make truth telling a dominant strategy by changing the mechanism off
the equilibrium path. Specifically, suppose we modify our mechanism only by assuming that if an agent
is checked and found to have lied, we select another agent at random, check him, and give the good to
him iff he is found to have told the truth. It is easy to see that truth telling is a dominant strategy in
this mechanism and that it generates the same allocation as the original mechanism.
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It is easy to show that t∗i is well–defined.11

To interpret t∗i , suppose the principal is using a favored–agent mechanism with i as
the favored agent. Note that the principal does not take into account i’s report unless at
least one of the other agents reports a value above the threshold. For intuition, think of
the principal as not even asking i for a report unless this happens. Suppose the profile
of reports of the other agents is t′−i. Let v = maxj 6=i(t

′
j − cj). Suppose the principal is

not committed to the threshold and consider his decision at this point. He can choose a
threshold above v or, equivalently, give the object to agent i without checking him. If he
does so, his expected payoff is E(ti). Alternatively, he can choose a threshold below v or,
equivalently, ask for a report from agent i and give the object to the agent with the highest
value of tj − cj after a check. In expectation, this yields the principal E max{ti − ci, v}.
Hence equation (1) says that when v = t∗i − ci, the principal is indifferent between these
two options.

A slight extension of this reasoning yields a proof of the following result.

Theorem 2. Within the set of favored–agent mechanisms with i as the favored agent,
the unique optimal mechanism is obtained by setting the threshold v∗ equal to t∗i − ci.

Proof. For notational convenience, let the favored agent i equal 1. Contrast the principal’s
payoff to thresholds t∗1− c1 and v̂∗ > t∗1− c1. Given a profile of types for the agents other
than 1, let x = maxj 6=1(tj − cj) — that is, the highest value of (and hence reported by)
one of the other agents. Then the principal’s payoff as a function of the threshold and x
is given by

x < t∗1 − c1 < v̂∗ t∗1 − c1 < x < v̂∗ t∗1 − c1 < v̂∗ < x
t∗1 − c1 E(t1) E max{t1 − c1, x} E max{t1 − c1, x}
v̂∗ E(t1) E(t1) E max{t1 − c1, x}

To see this, note that if x < t∗1 − c1 < v̂∗, then the principal gives the object to agent 1
without a check using either threshold. If t∗1 − c1 < v̂∗ < x, then the principal gives the
object to either 1 or the highest of the other agents with a check and so receives a payoff
of either t1− c1 or x, whichever is larger. Finally, if t∗1− c1 < x < v̂∗, then with threshold
t∗1 − c1, the principal’s payoff is the larger of t1 − c1 and x, while with threshold v̂∗, she
gives the object to agent 1 without a check and has payoff E(t1).

11To see this, observe that the right–hand side of equation (1) is continuous and strictly increasing
in t∗i for t∗i ≥ ti, below the left–hand side at t∗i = ti, and above it as t∗i → ∞. Hence there is a unique
solution. Note that if we allowed it, then when ci = 0, we would have t∗i = ti. (At ci = 0, t∗i is not
uniquely defined, but it is natural to take it to be the limit value as ci ↓ 0 which gives t∗i = ti.) This fact
together with what we show below implies the unsurprising observation that if all the costs are zero, the
principal always checks the agent who receives the object and gets the same payoff as under complete
information. Note also that if ci is very large, we can have t∗i > t̄i. If so, then t∗i = E(ti) + ci > t̄i.
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Recall that t∗1 > t1. Hence t1 < t∗1 with strictly positive probability. Therefore, for
x > t∗1 − c1, we have

E max{t1 − c1, x} > E max{t1 − c1, t
∗
1 − c1}.

But the right–hand side is E max{t1, t∗1}− c1 which equals E(t1) by definition of t∗i . Thus

E max{t1 − c1, x} > E(t1).

Hence given that 1 is the favored agent, the threshold t∗1−c1 weakly dominates any larger
threshold. A similar argument shows that the threshold t∗1 − c1 weakly dominates any
smaller threshold, establishing that it is optimal.

To see that the optimal mechanism in this class is unique, note that the comparison
of threshold t∗1− c1 to a larger threshold v∗ is strict unless the middle column of the table
above has zero probability. That is, the only situation in which the principal is indifferent
between the threshold t∗1 − c1 and the larger threshold v∗ is when the allocation of the
good and checking decisions are the same with probability 1 given either threshold. That
is, indifference occurs only when changes in the threshold do not change (p, q). Hence
there is a unique best mechanism in Fi.

While t∗i resembles an index or reservation value of the sort often seen in the search
literature, this specific definition is not standard in that literature. Indeed, it is not
straightforward to interpret it in terms of search. To see the point, compare it to the
index identified in Weitzman (1979). In his model (with some minor adjustments for
easier comparability), the value to learning the payoff to option i is characterized by a
critical value t∗i defined by

t∗i = E(max{ti, t∗i })− ci
where ci is the cost of finding out the payoff of option i and ti is the random variable
giving the value of this payoff. Note that this is identical to our expression, except that
E(ti) appears on the left–hand side of equation (1), not t∗i . Weitzman’s expression is
easily interpreted. If the best alternative found so far has value t∗i , then the agent is
indifferent between stopping his search and choosing it versus checking option i and then
stopping. Our expression is not as obviously interpreted in terms of search.12

Now that the optimal threshold is characterized given the choice of the favored agent,
it remains only to characterize the optimal favored agent.

12Since the first draft of this paper, Doval (2013) considered a search model where this definition
does appear. In Doval, the searcher could choose option i without checking it, yielding payoff E(ti).
Thus t∗i , computed according to our definition, emerges as the cutoff for the best option found so far
with the property that it leaves the agent indifferent between taking the last option without checking it
and checking the last option and then choosing between it and the outside option. To the best of our
knowledge, this is the first time this definition has appeared in the search literature.
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Theorem 3. The optimal choice of the favored agent is any i with t∗i −ci = maxj(t
∗
j−cj).

A rough intuition for this result is that t∗i − ci can be thought of as the standard that
agents j 6= i must satisfy to persuade the principal to not give the good to i without
checking anyone. Intuitively, the higher is this threshold, the more inclined the principal
is to give the good to i without checking anyone. It is not surprising that the agent
towards whom the principal is most inclined in this sense is the principal’s choice for the
favored agent.

We sketch the main part of the proof here (see part C of the Online Appendix for
the omitted details). Fix any two agents, i and j, and assume t∗i − ci ≥ t∗j − cj. We will
show that this inequality implies that given a threshold of t∗j − cj, it is weakly better for
the principal to favor agent i than agent j. By Theorem 2, favoring i with a threshold
of t∗i − ci is better still, establishing the result.

If any agent k other than i or j reports tk − ck above the threshold, then the agent
with the highest report is checked and receives the object, independent of which agent
was favored. Hence we may as well condition on the event that all agents other than i
and j report values below the threshold. Also, if both i and j report values above the
threshold, again, it does not matter to the principal which agent was favored. Hence we
only need to consider realizations such that at least one of these agents reports a value
below the threshold.

Note that j’s report is above the threshold if tj − cj ≥ t∗j − cj — i.e., tj ≥ t∗j . On the

other hand, i’s report is above the threshold if ti − ci ≥ t∗j − cj or ti ≥ t̂i ≡ t∗j − cj + ci.
Given this, we see that the principal is better off favoring i than j if

Fi(t̂i)Fj(t
∗
j)E[ti | ti ≤ t̂i] + [1− Fi(t̂i)]Fj(t∗j)E[ti | ti > t̂i]

+ Fi(t̂i)[1− Fj(t∗j)]
{

E[tj | tj > t∗j ]− cj
}

≥ Fi(t̂i)Fj(t
∗
j)E[tj | tj ≤ t∗j ] + [1− Fi(t̂i)]Fj(t∗j)

{
E[ti | ti > t̂i]− ci

}
+ Fi(t̂i)[1− Fj(t∗j)]E[tj | tj > t∗j ].

Rewriting,

Fi(t̂i)Fj(t
∗
j)
(
E[ti | ti ≤ t̂i]− E[tj | tj ≤ t∗j ]

)
+ [1−Fi(t̂i)]Fj(t∗j)ci−Fi(t̂i)[1−Fj(t∗j)]cj ≥ 0.

This equation summarizes the change in the principal’s payoff from switching from j as
the favored agent to i. The first term is the change in the expected payoff conditional on
giving the object to the favored agent without a check, while the last two terms give the
change in the expected costs of checking.

It is easy to show that this must hold if Fi(t̂i) = 0, so assume Fi(t̂i) > 0. It follows

11



from the definition of t∗j that Fj(t
∗
j) > 0, so we can rewrite this as

E[ti | ti ≤ t̂i] +
ci

Fi(t̂i)
− ci ≥ E[tj | tj ≤ t∗j ] +

cj
Fj(t∗j)

− cj. (2)

We now show that this is implied by t∗i − ci ≥ t∗j − cj.

Recall that t∗i is defined by

E(ti) = E max{ti, t∗i } − ci,

so t∗i − ci ≥ t∗j − cj or, equivalently, t∗i ≥ t̂i implies

E(ti) = E max{ti, t∗i } − ci ≥ E max{ti, t̂i} − ci

or ∫ t̂i

ti

tifi(ti) dti ≥ Fi(t̂i)t̂i − ci

or
E[ti | ti ≤ t̂i] +

ci

Fi(t̂i)
≥ t̂i = t∗j − cj + ci.

Hence
E[ti | ti ≤ t̂i] +

ci

Fi(t̂i)
− ci ≥ t∗j − cj.

But the same rearranging of the definition of t∗j shows that

t∗j − cj = E[tj | tj ≤ t∗j ] +
cj

Fj(t∗j)
− cj.

Combining the last two inequalities yields equation (2) as asserted.

Summarizing, we see that the set of optimal favored–agent mechanisms is easily char-
acterized. A favored–agent mechanism is optimal if and only if the favored agent i satisfies
i ∈ argmaxj(t

∗
j − cj) and the threshold v∗ satisfies v∗ = maxj(t

∗
j − cj). Thus the set of

optimal mechanisms is equivalent to picking a favored–agent mechanism with threshold
v∗ = maxj(t

∗
j−cj) and randomizing over which of the agents in argmaxj(t

∗
j−cj) to favor.

Clearly for generic checking costs, there will be a unique j maximizing t∗j − cj and hence
a unique optimal mechanism. Moreover, fixing ci and cj, the set of (Fi, Fj) such that
t∗i − ci = t∗j − cj is nowhere dense in the product weak* topology. Hence in either sense,
such ties are non–generic.13

13We thank Yi-Chun Chen and Siyang Xiong for showing us a proof of this result.
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5 Properties of Optimal Mechanisms

Given that optimal mechanisms are favored–agent mechanisms, it is easy to compare
outcomes under the optimal mechanism to the first best. For simplicity, suppose there
are two agents and that the optimal mechanism favors agent 1 and has threshold v∗.
Then there are exactly three ways the outcome can be inferior for the principal to the
first best. First, if t2− c2 < v∗ but t2 > t1, then agent 1 receives the object, even though
the principal would be better off giving it to agent 2. Second, if t2 − c2 > v∗, then the
principal ends up checking one of the agents, a cost he would avoid in the first best.
Finally, if t2 − c2 > v∗, the good could still go to the “wrong” agent relative to the first
best. In particular, if t1 > t2 but t2 − c2 > t1 − c1, then agent 2 will receive the good
even though the principal prefers agent 1 to have it and similarly if we reverse the roles
of 1 and 2.

Also, our characterization of the optimal favored agent and threshold makes it easy
to compute optimal mechanisms and analyze their properties. Consider the following
example. There are two agents. Agent 1’s cost of being checked is large in the sense
that c1 > t̄1 − E(t1). As discussed in footnote 11, this implies t∗1 = E(t1) + c1. For
concreteness, assume E(t1) = 1. Suppose c2 = ε where ε > 0 but very small. Finally,
assume t2 is uniformly distributed over [.99, 1.99]. It is easy to see that as ε ↓ 0, we have
t∗2− c2 ↓ t2 = .99 < 1 = t∗1− c1. Hence for ε sufficiently small, 1 will be the favored agent
and the threshold v∗ will equal 1. However, suppose 2 reports t2 − c2 > v∗ = 1. Note
that t1 − c1 < t̄1 − c1 < E(t1) = 1. Thus if 2 is above the threshold, he receives the good
for sure. Therefore, 1, even though he is favored, only receives the good if t2− c2 < 1, or
t2 < 1 + ε. Recall t2 ∼ U [.99, 1.99], so for ε small, 1 receives the good slightly more than
1% of the time, even though he is favored. Note that we have assumed very little about
the distribution of t1, so it could well be true that 1 is very likely to have the higher
type.14

This example highlights the fact that the favored agent is not necessarily the agent
with the highest probability of receiving the good, even conditional on his type. So in
what sense is the favored agent “favored”?

Compare a favored–agent mechanism with favored agent i and threshold v∗i to a
favored–agent mechanism with j 6= i favored and threshold v∗j . Then for any v∗i , v

∗
j , and

j 6= i, agent i (at least weakly) prefers the former mechanism to the latter. That is, it
is always better to be favored than not. To see this, simply note that in the mechanism
where j is favored, a necessary condition for i to receive the good is that ti− ci ≥ tk− ck
for all k. This is true because i can only receive the good if he or some other agent is
above the threshold and i’s value is the highest. However, in the mechanism where i is

14We thank an anonymous referee for raising this issue with a similar example.
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the favored agent, a sufficient condition for i to receive the good is that ti − ci ≥ tk − ck
for all k. Thus i must weakly prefer being favored and typically will strictly prefer it.

For comparative statics, it is useful to give an equivalent definition of t∗i . Our original
definition can be rewritten as∫ t∗i

ti

tifi(ti) dti = t∗iFi(t
∗
i )− ci

or

ci = t∗iFi(t
∗
i )−

∫ t∗i

ti

tifi(ti) dti =

∫ t∗i

ti

Fi(τ) dτ.

So an equivalent definition of t∗i is ∫ t∗i

ti

Fi(τ) dτ = ci. (3)

From (3), it is easy to see that an increase in ci increases t∗i . Also, from our first
definition of t∗i , note that t∗i − ci is that value of v∗i solving E(ti) = E max{ti − ci, v∗i }.
Obviously for fixed v∗i , the right–hand side is decreasing in ci, so t∗i−ci must be increasing
in ci. Hence, all else equal, the higher is ci, the more likely i is to be selected as the
favored agent. To see the intuition, note that if ci is larger, then the principal is less
willing to check agent i’s report. Since the agent who is favored is the one the principal
checks least often, this makes it more desirable to favor i.

It is also easy to see that a first–order or second–order stochastic dominance shift
upward in Fi reduces the left–hand side of equation (3) for fixed t∗i , so to maintain the
equality, t∗i must increase. Therefore, such a shift makes it more likely that i is the
favored agent and increases the threshold in this case. Hence both “better” (FOSD) and
“less risky” (SOSD) agents are more likely to be favored.

The intuition for the effect of a first–order stochastic dominance increase in ti is
clear. If agent i is more likely to have high type, he is a better choice to be the favored
agent. The intuition for why less risky agents are favored is that there is less benefit from
checking i if there is less uncertainty about his type.

Finally, equation (3) shows that if we change Fi only at values of ti larger than t∗i ,
then t∗i is unaffected. In this sense, the optimal favored agent and the optimal threshold
are independent of the upper tails of the distributions of the ti’s. Intuitively, this is
because the choice of threshold conditional on favoring agent i is based on comparing
E(ti) versus E(max{ti − ci, v}) where v = maxj 6=i(tj − cj), for the reasons explained in
Section 4. Changing the probabilities for very high values of ti affects both parts of this
comparison symmetrically and hence are irrelevant.
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Now that we have shown how changes in the parameters affect the optimal mechanism,
we turn to how these changes affect the payoffs of the principal and agents. First,
consider changes in the realized type vector. Obviously, an increase in ti increases agent
i’s probability of receiving the good and thus his ex post payoff. Therefore, his ex ante
payoff increases with an FOSD shift upward in Fi. Similarly, the ex post payoffs of other
agents are decreasing in ti, so their ex ante payoffs decrease with an FOSD shift upward
in Fi. However, the principal’s ex post payoff does not necessarily increase as an agent’s
type increases: if at some profile, the favored agent is receiving the good without being
checked, an increase in another agent’s type might result in the same allocation but with
costly verification.15

Nevertheless, an FOSD increase in any Fi does increase the principal’s ex ante payoff.
To see this, suppose ti has distribution function Fi and t̂i has distribution function F̂i
where F̂i dominates Fi in the sense of FOSD. It is not hard to see that F−1

i (F̂i(t̂i)) has
the same distribution as ti. So suppose after changing the distribution of i’s type from
Fi to F̂i, the principal uses the same mechanism as he used before the shift, but converts
i’s report to keep the distribution of i’s reports unchanged. That is, if i reports t̂i, the
principal treats this as a report of F−1

i (F̂i(t̂i)). Given this, we see that the principal’s
payoff is affected by the shift in the distribution only if he gives the good to agent i. In
this case, he would have received F−1

i (F̂i(t̂i)) under the original distribution, but receives
t̂i instead. Since Fi(t̂i) ≥ F̂i(t̂i) by FOSD, we see that t̂i ≥ F−1

i (F̂i(t̂i)), so the principal
is better off.16

Turning to the effect of changes in ci, it is obvious that a decrease in ci makes the
principal better off as he could use the same mechanism and save on costs. It is also easy
to see that if agent i is not favored, then increases in ci make him worse off and make all
other agents better off, as long as the increase in ci does not change the identity of the
favored agent. This is true simply because i receives the good iff ti − ci is large enough,
so a higher ci makes i less likely to receive the good and other agents more likely to do
so.

On the other hand, changes in the cost of checking the favored agent have ambiguous
effects in general. This is true because t∗i − ci is increasing in ci. Hence if the cost of the
favored agent increases, all other agents are less likely to be above the threshold. This
effect makes the favored agent better off and the other agents worse off. However, it is
also true that if tj−cj is above the threshold, then it is the comparison of tj−cj to ti−ci
that matters. Clearly, an increase in ci makes this comparison worse for the favored agent
i and better for j. The total effect can be positive or negative for the favored agent. For

15For example, if 1 is the favored agent and t satisfies t1 > t∗1 and ti − ci < t∗1 − c1 for all i 6= 1, the
payoff to the principal is t1. If t2, say, increases to t′2 such that t∗1 − c1 < t′2 − c2 < t1 − c1, then the
principal’s payoff falls to t1 − c1.

16We thank Andy Skrzypacz for suggesting this approach.

15



example, if I = 2 and F1 = F2 = F , then the favored agent benefits from an increase in
his cost of being checked if the density f is increasing and conversely if it is decreasing;
see Online Appendix D. In short, every agent has an incentive to increase his cost of
being checked if this can make him the favored agent and, depending on the density, the
favored agent may have incentives to increase his cost of being checked even beyond that
point. Clearly, such an incentive is potentially costly for the principal.

6 Proof Sketch for Theorem 1

Mechanism design problems without transfers are very difficult to solve in general since
the usual integral characterization of feasible allocation rules is unavailable. As we ex-
plain in this section, in our case, the structure of the problem provides some useful
simplifications which allow for a complete characterization of optimal mechanisms.

The first step is to rewrite the optimization problem. Recall that p̂i(ti) = Et−i
pi(ti, t−i)

and q̂i(ti) = Et−i
qi(ti, t−i). We can write the incentive compatibility constraint as

p̂i(t
′
i) ≥ p̂i(ti)− q̂i(ti), ∀ti, t′i ∈ Ti.

That is, the payoff to type t′i from telling the truth exceeds the payoff to claiming to
be type ti. The unusual property of our incentive compatibility constraint is that the
payoff to falsely claiming to be type ti does not depend on the true type t′i. We have this
structure because any lie is caught iff the agent is checked and because we can normalize
so that an agent’s payoffs to receiving or not receiving the good do not depend on his
type.

Normally, one rearranges the incentive constraints to say that for each type, telling
the truth is better than the best possible lie. Because the payoff to lying does not depend
on the truth, we can rearrange the incentive constraint to say that the worst truth is
better than any lie. In other words, a mechanism is incentive compatible if and only if it
satisfies

inf
t′i∈Ti

p̂i(t
′
i) ≥ p̂i(ti)− q̂i(ti), ∀ti ∈ Ti.

Letting ϕi = inft′i∈Ti p̂i(t
′
i), we can rewrite the incentive compatibility constraint as

q̂i(ti) ≥ p̂i(ti)− ϕi, ∀ti ∈ Ti.

Because the objective function is strictly decreasing in q̂i(ti), this constraint must bind,
so

q̂i(ti) = p̂i(ti)− ϕi. (4)
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We can substitute this result into the objective function and rewrite it as

Et

[∑
i

pi(t)ti −
∑
i

ciqi(t)

]
=
∑
i

Eti [p̂i(ti)ti − ciq̂i(ti)]

=
∑
i

Eti [p̂i(ti)(ti − ci) + ϕici] (5)

= Et

[∑
i

[pi(t)(ti − ci) + ϕici]

]
. (6)

Some of the arguments below will use the reduced form probabilities and hence rely on
the first expression, (5), for the payoff function, while others focus on the “nonreduced”
mechanism and so rely on the second expression, (6).

From this point forward, we treat the principal’s problem as choosing the ϕi’s and pi’s
subject to the constraints that the pi’s be well–defined probabilities and the constraints
implied by ϕi = infti p̂i(ti). Given this, equation (6) expresses the key tradeoff in the
model. Recall that ϕi is the minimum probability for any type of i to receive the good.
Since the principal only needs to check ti often enough that a fake claim of ti succeeds
with probability equal to this minimum, a higher value of ϕi means that the principal
does not have to check agent i as often, as shown by equation (4). Thus, as the payoff
function (6) shows, this helps the principal in proportion to the cost ci that he saves.
However, this puts a more severe constraint on p̂i, thus tending to force a less efficient
allocation of the good.

Next, we give a partial characterization of the optimal mechanism taking the ϕi’s as
given and optimizing over the pi’s. This partial characterization enables us to reduce
the problem to choosing the ϕi’s and one other variable which will turn out to be the
threshold.

Thus in what follows, we fix ϕi ∈ [0, 1] for each i and characterize the solution to what
we will call the relaxed problem of maximizing (6) by the choice of functions pi : T → [0, 1]
for i ∈ I subject to

∑
i pi(t) ≤ 1 for all t and Et−i

pi(t) ≥ ϕi for all ti and all i.17 Note
that since the ϕi’s are fixed, we can take the objective function to be

∑
i

Eti p̂i(ti)(ti − ci) = Et

[∑
i

pi(t)(ti − ci)

]
.

We show below that every optimal solution to the relaxed problem is what we call a
threshold mechanism. Specifically, every solution has a threshold v∗ with the following

17The constraint set is nonempty iff
∑

i ϕi ≤ 1. It is not hard to show that the solution to the overall
problem will necessarily satisfy this and so we assume it in what follows.
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properties. First, if ti− ci < v∗, then p̂i(ti) = ϕi. Second, for any t such that some agent
i has ti − ci > v∗, the agent with the highest ti − ci receives the good with probability
1. As we show below, for an appropriate selection of the ϕi’s, a threshold mechanism is
equivalent to a favored–agent mechanism.

Theorem 4. Every solution to the relaxed problem is a threshold mechanism.

To see the intuition for this, first note that the solution to the relaxed problem would
be trivial if we did not have the constraint that Et−i

pi(t) ≥ ϕi. Without this constraint,
the relaxed problem is equivalent to allocating the good where the principal receives ti−ci
if he allocates the good to i. Hence the solution would be pi(t) = 0 for all i if ti < ci for
all i and otherwise pi(t) = 1 for that i such that ti − ci = maxk(tk − ck). Typically, this
solution will violate the lower bound constraint on p̂i(ti). For example, if ti < ci, this
solution would have p̂i(ti) = 0, so the constraint could only be satisfied if ϕi = 0.

Thus the constraint forces the principal to sometimes allocate the good to an agent
with ti < ci or to an agent who does not have the highest value of ti − ci. When should
the principal deviate from giving the good to the agent with the highest value of ti − ci
in order to satisfy the constraint? Intuitively, it is obvious that the principal should do
this only when maxi(ti− ci) is relatively small. That is, it is natural that there should be
a threshold for maxi(ti− ci) such that the principal allocates the good to the agent with
the highest ti− ci when this threshold is met. It is also natural that if the principal does
not want to allocate the good to a particular type of a particular agent because ti− ci is
relatively small, then he gives it to that agent with the smallest probability allowed by
the constraints. It is not as immediately intuitive that the same threshold should apply
to every i for this second statement or that this threshold should also apply to the first
statement, but this is the content of Theorem 4.

We sketch the proof of Theorem 4 below, but first explain how this result enables us
to complete the proof of Theorem 1.

Theorem 4 implies that p̂ is completely pinned down as a function of v∗ and the ϕi’s.
Specifically, if ti−ci > v∗, then p̂i(ti) must be the probability that ti−ci > maxj 6=i(tj−cj).
If ti < t∗, then p̂i(ti) = ϕi. By substituting into equation (5), we can write the principal’s
payoff as a function only of v∗ and the ϕi’s. Note that Theorem 4 does not say that any
v∗ is consistent with given ϕi’s. To see why, note that the theorem pins down p̂i(ti) as
a function of v∗ for any ti > v∗ + ci. But if this implied value of p̂i(ti) is below ϕi, then
the threshold v∗ is not feasible given the ϕi’s.

It turns out to be more convenient to fix the threshold v∗ and ask which ϕi’s are
consistent with it. We show in Appendix A (Lemma 1) that for any v∗, the set of
consistent ϕi’s is convex. It is also easy to show that the objective function of the
principal, holding v∗ fixed, is linear in the ϕi’s. Hence given v∗, there must be a solution
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to the principal’s optimization problem at an extreme point of the set of consistent ϕi’s.
Furthermore, every optimal choice of the ϕi’s is a randomization over optimal extreme
points.

The last step is to show that the optimal extreme points correspond to favored–agent
mechanisms. First, we show that extreme points take on one of two forms. In one type
of extreme point, all but one of the ϕi’s is set to zero and the remaining one is “as large
as possible.” For convenience, consider the extreme point where ϕj = 0 for all j 6= 1 and
ϕ1 is set as high as possible. In this case, we have a favored–agent mechanism where 1
is the favored agent and v∗ is the threshold. To see this, first observe that the allocation
probabilities match this. If every agent other than the favored agent has tj − cj < v∗,
then each of these agents receives the good with probability ϕj = 0. It is not hard to
show that making ϕ1 “as large as possible” entails giving the good to agent 1 in this
situation, whether or not t1 − c1 is above v∗. If some agent j 6= 1 has tj − cj > v∗, then
he receives the good if and only if he has the highest value of tj − cj, just as required
by the favored–agent mechanism. Equation (4) can be used to show that the checking
probabilities, up to equivalence, are as required for a favored–agent mechanism.

The other type of extreme point is where ϕi = 0 for all i. One way this can come
about is if there are two agents, say i and j, with ti − ci > v∗ and tj − cj > v∗ with
probability 1. In this case, we have the same mechanism as a favored–agent mechanism
with threshold v∗ and any agent selected as the favored agent. Since we always have
more than one agent above the threshold, the identity of the favored agent is irrelevant
as the mechanism always picks the agent i with the largest ti− ci, checks him, and gives
him the good after a successful check.

There is one other way to have an extreme point with ϕi = 0 for all i. This occurs
when every agent has a strictly positive probability of being below the threshold. Recall
that Theorem 4 implies that if ti − ci < v∗, then p̂i(ti) = ϕi. Hence this mechanism has
the property that for any t such that all agents have ti − ci < v∗, no agent receives the
good. It is easy to use our assumption that the value of the good to the principal is zero
and that types are positive with probability 1 to show that this extreme point cannot be
optimal.18

We now sketch the proof of Theorem 4. The proof of this theorem has some technical
complications because of our use of a continuum of types. The continuum has the sig-
nificant advantage that it makes the statement of the optimal mechanism much cleaner,
while we would have messy specifications of the mechanism at certain “boundary” types
if we assumed finitely many types instead. On the other hand, the continuum of types
assumption introduces measurability considerations and makes the argument more com-

18As we discuss in Section 7, if the principal has a strictly positive value for keeping the good, then
this extreme point can be optimal.
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plex. We could retain the simplicity of the statement of the mechanism but simplify the
proof if we only wished to characterize an optimal mechanism rather than all optimal
mechanisms. To characterize an optimal mechanism, we could approximate the contin-
uum type space with a finite partition, characterize the optimal mechanism measurable
with respect to this partition (and hence focus on an effectively finite model), and take
limits. It is not hard to show that the limiting mechanism would have to be optimal in
the continuum model, but we know of no way to show that all optimal mechanisms in
the continuum model would be characterized this way. Thus we are led to work with the
continuum model in spite of its complexities.

For the purposes of this sketch, we will simplify by considering the case of finite type
spaces and will disregard certain boundary issues. This enables us to convey the basic
ideas of the construction without getting bogged down in measurability issues, allowing
a much simpler approach. We now use this simplification to sketch the argument that
any solution to the relaxed problem is a threshold mechanism.

The proof sketch has four steps. First, we observe that every solution to the relaxed
problem is monotonic in the sense that higher types are more likely to receive the object.
That is, for all i, ti > t′i implies p̂i(ti) ≥ p̂i(t

′
i). To see why this holds, suppose we

have a solution which violates this monotonicity property so that we have types ti and
t′i such that p̂i(ti) < p̂i(t

′
i) even though ti > t′i. For simplicity, suppose that these two

types have the same probability.19 Then consider the mechanism p∗ which is the same
as this one except we flip the roles of ti and t′i. That is, for any type profile t̂ where
t̂i /∈ {ti, t′i}, we let p∗j(t̂) = pj(t̂) for every j. For any t−i, we set p∗j(ti, t−i) = pj(t

′
i, t−i) and

p∗j(t
′
i, t−i) = pj(ti, t−i) for every j. Since the probabilities of ti and t′i are the same, our

independence assumption implies that for every j 6= i, agent j is unaffected by the change
in the sense that p̂∗j(tj) = p̂j(tj) for all tj. Obviously, p̂i(t

′
i) = p̂∗i (ti) > p̂∗i (t

′
i) = p̂i(ti).

Since the original mechanism satisfied the constraint that p̂j(tj) ≥ ϕj for all tj and all j,
the new mechanism satisfies this constraint as well. It is easy to see from equation (5)
that this change improves the objective function, so the original mechanism could not
have been optimal.

This monotonicity property implies that any solution to the relaxed problem has the
property that there is a cutoff type, say t̂i ∈ [ti, t̄i], such that p̂i(ti) = ϕi for ti < t̂i and
p̂i(ti) > ϕi for ti > t̂i.

The second step shows that if we have a type profile t = (t1, . . . , tI) such that ti−ci >
tj − cj > t̂j − cj, then any solution to the relaxed problem has pj(t) = 0. To see this,
suppose to the contrary that we have a solution with pj(t) > 0. Then we can change

19If, say, ti has higher probability than t′i, we can simply create two “versions” of ti, one of which
has the same probability as t′i. Then apply this argument to t′i and the version of ti with the same
probability, leaving the other version unchanged.
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the mechanism by lowering this probability slightly and raising the probability of giving
the good to i. Since tj > t̂j, we have p̂j(tj) > ϕj before the change, so if the change
is small enough, we still satisfy this constraint. Since ti − ci > tj − cj, the value of the
objective function in equation (6) increases, so the original mechanism could not have
been optimal.

The third step is to show that for a type profile t = (t1, . . . , tI) such that ti > t̂i
and tj < t̂j, we must have pj(t) = 0. Because this step is more involved, we postpone
explaining it till the end of the argument. So we continue the proof sketch taking this
step as given.

The fourth step is to show that t̂i − ci = t̂j − cj for all i and j. To see this, suppose
to the contrary that t̂j − cj > t̂i − ci. Then consider a type profile t = (t1, . . . , tI) such
that t̂j − cj > tj − cj > ti − ci > t̂i − ci and tk < t̂k for all k 6= i, j. From our second
step, the fact that tj − cj > ti − ci > t̂i − ci implies pi(t) = 0. However, from our third
step, ti > t̂i and tk < t̂k implies pk(t) = 0 for all k 6= i. But ti > t̂i implies p̂i(ti) > ϕi.
The only way this could be optimal is if ti > ci. But then we can improve the objective
function at t by setting pi(t) = 1, a contradiction. Hence t̂i − ci = t̂j − cj for all i and j.

Let v∗ equal the common value of t̂i − ci. To sum up the four steps, we see that any
solution to the relaxed problem is characterized by a threshold v∗. If ti − ci < v∗, then
since v∗ = t̂i − ci, we have ti < t̂i and hence p̂i(ti) = ϕi. Also, suppose we have a type
profile t such that ti − ci > v∗ for some i. From our third step, if ti − ci > v∗ > tj − cj,
then pj(t) = 0. Hence no agent below the threshold can receive the object. As argued
in the last step, we must also have

∑
i pi(t) = 1. Hence if only one agent is above the

threshold, he receives the object. From our second step, if we have ti− ci > tj − cj > v∗,
then pj(t) = 0. Hence if two or more agents are above the threshold, the agent with the
highest ti − ci receives the object. Either way, then, if there is at least one agent i with
ti − ci above the threshold, the agent with the highest ti − ci receives the object. Hence
we have a threshold mechanism.

This concludes the proof sketch, except for proving step 3 to which we now turn. For
added simplicity, we sketch this argument only for the case of two agents.20 We show
that for a type profile t = (t1, t2) such that t1 > t̂1 and t2 < t̂2, we must have p2(t) = 0.
To see this, suppose we have a solution to the relaxed problem such that this property
is violated at the point labeled α = (t̃1, t̃2) in Figure 2 below where t̃1 > t̂1 while t̃2 < t̂2.
So suppose that at α, p2(t̃) > 0 so player 1 receives the good with probability strictly
less than 1.

Then at any point directly below α but above t̂1, such as the one labeled β = (t′1, t̃2),

20The case of three or more agents works similarly but the construction of the improving mechanism
is more complex.
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player 1 must receive the good with probability zero. This follows because if 1 did
receive the good with strictly positive probability at β, we could change the mechanism
by lowering this probability slightly, giving the good to 2 at β with higher probability,
and increasing the probability with which 1 receives the good at α. By choosing these
probabilities appropriately, we do not affect p̂2(t̃2) so this remains at ϕ2. Also, by making
the reduction in p1 small enough, p̂1(t′1) will remain above ϕ1. Hence this new mechanism
would satisfy the constraints for the relaxed problem. Since it would switch probability
from one type of player 1 to a higher type, the new mechanism would be better than the
old one, implying the original one was not a solution to the relaxed problem.21
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Figure 2

Similar reasoning implies that for every t1 6= t̃1, we must have
∑

i pi(t1, t̃2) = 1. Oth-
erwise, the principal would be strictly better off increasing p2(t1, t̃2), decreasing p2(t̃1, t̃2),
and increasing p1(t̃1, t̃2). Again, if we choose the sizes of these changes appropriately,
p̂2(t̃2) is unchanged but p̂1(t̃1) is increased, an improvement.

Since player 1 receives the good with zero probability at β but type t′1 does have a
strictly positive probability overall of receiving the good (as t′1 > t̂1), there must be some
point like the one labeled γ = (t′1, t

′
2) where 1 receives the good with strictly positive

probability. We do not know whether t′2 is above or below t̂2 — the position of γ relative
to this cutoff plays no role in the argument to follow.

21Since p̂2(t̃2) is unchanged, the ex ante probability of type t̃1 getting the good goes up by the same
amount that the ex ante probability of the lower type t′1 getting it goes down.
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Finally, there must be a t′′1 6= t̃1 (not necessary below t̂1) corresponding to points δ
and ε where p1 is strictly positive at δ and strictly less than 1 at ε. To see that such a
t′′1 must exist, suppose not. Then for all t1 6= t̃1, either p1(t1, t̃2) = 0 or p1(t1, t

′
2) = 1.

Since
∑

i pi(t1, t̃2) = 1 for all t1 6= t̃1, this implies that for all t1 6= t̃1, either p2(t1, t̃2) = 1
or p2(t1, t

′
2) = 0. Either way, p2(t1, t̃2) ≥ p2(t1, , t

′
2) for all t1 6= t̃1. But we also have

p2(t′1, t̃2) = 1 > 1 − p1(t′1, t
′
2) ≥ p2(t′1, t

′
2). So p̂2(t̃2) > p̂2(t′2). But p̂2(t̃2) = ϕ2, so this

implies p̂2(t′2) < ϕ2, which violates the constraints of the relaxed problem.

Now we use p1(t′′1, t̃2) > 0 and p1(t′′1, t
′
2) < 1 to derive a contradiction to the optimality

of the mechanism. Specifically, we change the specification of p at the points α, γ, ε,
and δ in a way that lowers the probability that 1 gets the object at γ and raises the
probability he gets it at α by the same amount, while maintaining the constraints. Since
1’s type is higher at α, this is an improvement, implying that the original mechanism
does not solve the relaxed problem. For simplicity, assume t̃1, t′1, and t′′1 all have the
same probability and that t̃2 and t′2 have the same probability.22 Let ∆ > 0 be a “small”
positive number. All the changes in p that we now define involve increases and decreases
by the same amount ∆. At γ, lower p1 and increase p2. At ε, do the opposite — i.e., raise
p1 and lower p2. Because the probabilities of t′1 and t′′1 are the same, p̂2(t′2) is unchanged.
Also, if ∆ is small enough, p̂1(t′1) remains above ϕ1. Thus the constraints are maintained.
Now that we have increased p1 at ε, we can decrease it at δ while increasing p2, keeping
p̂1(t′′1) unchanged as t̃2 and t′2 have the same probability. Finally, since we have increased
p2 at δ, we can decrease it at α while increasing p1, keeping p̂2(t̃2) unchanged. Note that
the overall effect of these changes is a reduction of ∆ in the probability that 1 gets the
object at γ and an increase of ∆ in the probability that he gets the object at α, while
maintaining all constraints.

7 Reservation Values, Small Fines/Costly Disclosure,

Weaker Verification

In this section, we discuss three issues. First, we show that our analysis extends to
the case where the principal has a strictly positive payoff to keeping the object. Second,
under an additional simplifying assumption, we characterize the optimal mechanism when
it is costly to an agent to have his report verified. A byproduct of this analysis is a
characterization of the optimal mechanism when the principal can impose limited fines
on dishonest agents. Finally, we discuss the robustness of our analysis to weakening our
assumptions on verification.

22If they do not have the same probability, the same approach as outlined in footnote 19 can be used
to complete the argument.
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Turning to the first point, let R > 0 denote the principal’s payoff from retaining the
object. To analyze this case, note first that we can renormalize by subtracting R from
every type of every player and changing the principal’s payoff from keeping the object to
0. This effectively subtracts R from the principal’s payoff to every action and so cannot
change the optimal mechanism. Thus we can consider this case simply by relaxing our
assumption that ti > 0 for all i.

This change affects very little of our analysis. To see this, refer again to the proof
sketch in Section 6. It is easy to see that our analysis of incentive compatibility is
unaffected by allowing some ti’s to be negative since the ti’s play no role in incentive
compatibility. Hence the rewriting of the objective function in the form of equations (5)
and (6) is unaffected.

Similarly, the threshold mechanism result, Theorem 4, is unaffected. This result
characterizes the solution of

max
p1....,pI

Et

[∑
i

pi(t)(ti − ci)

]
subject to feasibility and p̂i(ti) ≥ ϕi for all i and ti. This characterization again has
nothing to do with the sign of the ti’s. The sign of ti − ci is certainly relevant, but the
assumptions we used to prove Theorem 4 did not impose any particular sign on this
expression. Hence this result still holds even when some of the ti’s can be negative.

Once we have Theorem 4, the convexity of the set of ϕi’s, the linearity of the objec-
tive function in ϕi’s, the conclusion that the optimum is at an extreme point, and the
characterization of the extreme points all have nothing to do with the signs of the ti’s.

The only time the assumption that the types are positive is used in the proof of
Theorem 1 is when we rule out one of the extreme points for ϕ. Specifically, as discussed
in the proof sketch, we can have an extreme point of the form ϕi = 0 for all i. If
every agent has a strictly positive probability of being below the threshold, then this
mechanism has a strictly positive probability that no agent receives the good. When
types are positive with probability 1, this cannot be optimal. But when types can be
negative, it may be. Thus the only point that changes when we allow the possibility that
it’s better for the principal to keep the good than to allocate it to any of the agents is
that this particular mechanism may now be optimal.

So what is this mechanism? If ϕi = 0 for all i, this says that if every agent has
ti−ci < v∗, then no one gets the good. In other words, this is a “reserve–price mechanism”
with reserve v∗.

This mechanism is easily reinterpreted as a form of a favored–agent mechanism. Sim-
ply introduce an agent 0 whose type t0 = 0 with probability 1 and for whom the checking
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cost c0 is zero. Then the principal keeping the good is the same as allocating the good to
this agent. Then the reserve–price mechanism is the same as a favored–agent mechanism
where agent 0 is the favored agent.

Our characterization of optimal thresholds and the optimal favored agent carries over
to the inclusion of “agent 0.” More specifically, it is easy to see that t∗0 = 0 solves the
equation E(t0) = E max{t0, t∗0}−c0 (though negative values of t∗0 also solve the equation).
One can show that if “agent 0” is favored, then the optimal threshold to use is t∗0−c0 = 0
and that the optimal agent (including agent 0 in this statement) to favor is any agent i
with t∗i − ci = maxj=0,...,I(t

∗
j − cj).

The simplest way to state how the principal’s value affects the optimal mechanism
is to undo the renormalization and go back to a model where types are positive and
the principal’s value is R > 0. It’s easy to see that undoing the renormalization makes
t∗0 − c0 = R. So we can restate the results above as follows. If R is sufficiently large,
then agent 0 will be favored. That is, if every agent i ≥ 1 reports ti − ci < R, then the
principal retains the object. If any agent i ≥ 1 reports ti − ci > R, then the agent with
the highest such report is checked and, if found not to have lied, receives the object. If R
is small enough that 0 is not the favored agent, then the optimal mechanism is unaffected
by the principal’s value. In this case, the principal may end up allocating the good to
the favored agent even when the favored agent’s type is below R.23

We can treat in parallel two other natural extensions. First, we can consider the
case when the process of verifying an agent’s claim is also costly for that agent. This
complicates the analysis since such costs create a “back door” for transfers. If agents
bear costs of providing documentation, then the principal can use these costs to provide
incentives for truth telling. Intuitively, the agents may now trade off the value of obtaining
the object with the costs of verification. An agent who values the object more highly
would, of course, be willing to incur a higher expected verification cost to increase his
probability of receiving it. This both complicates the analysis and indirectly introduces
a form of the transfers we wish to exclude.

Second, as this intuition suggests, this case is similar to the case where the principal
can impose limited fines on the agent. As above, agents who value the object more are
willing to take a bigger risk of receiving such fines.

In both cases, the simplification we obtain where we can treat the agent’s payoff as

23On the other hand, from the definition of t∗i , we have

E(ti) = E(max{ti, t∗i })− ci ≥ t∗i − ci.

Hence if i 6= 0 is the favored agent, we must have E(ti) ≥ t∗i − ci > R. That is, while the favored agent
might receive the good even though his type is below R, his type cannot be below R in expectation.
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equal to the probability he receives the object no longer holds. While a general analysis
of either of these extensions is beyond the scope of this paper, we can easily extend our
analysis at the cost of adding an assumption under which this simplification continues to
hold. To be specific, we assume that the value to the agent of receiving the object is 1 and
the value of not receiving it is 0, regardless of his type. If we make this assumption, the
extension to fines or verification costs for the agents is straightforward. To see this, first
consider the case where verification imposes costs on the agent. Let ĉTi ≥ 0 be the cost
incurred by agent i from being verified by the principal if he reported his type truthfully
and let ĉFi ≥ 0 be his cost if he lied. We assume ĉTi < 1 to ensure that individual
rationality always holds. This formulation nests the case where the principal can impose
limited fines on the agent. To see this, simply note that the optimal mechanism in such
a case is for the principal to impose the largest possible fine when the agent is found to
have lied and nothing otherwise. Thus we obtain a model appropriate for this case by
setting ĉTi = 0 and ĉFi equal to this maximum penalty.

In this model, the incentive compatibility condition becomes

p̂i(t
′
i)− ĉTi q̂i(t′i) ≥ p̂i(ti)− ĉFi q̂i(ti)− q̂i(ti), ∀ti, t′i, ∀i.

Let
ϕi = inf

t′i

[p̂i(t
′
i)− ĉTi q̂i(t′i)],

so that incentive compatibility holds iff

ϕi ≥ p̂i(ti)− ĉFi q̂i(ti)− q̂i(ti), ∀ti, ∀i.

Analogously to the way we characterized the optimal mechanism in Section 6, we can
treat ϕi as a separate choice variable for the principal where we add the constraint that
p̂i(t

′
i)− ĉTi q̂i(t′i) ≥ ϕi for all t′i.

Given this, q̂i(ti) must be chosen so that the incentive constraint holds with equality
for all ti. To see this, suppose to the contrary that we have an optimal mechanism where
the constraint holds with strict inequality for some ti (more precisely, some positive
measure set of ti’s). If we lower q̂i(ti) by ε, the incentive constraint will still hold. Since
this increases p̂i(t

′
i) − ĉTi q̂i(t

′
i), the constraint that this quantity is greater than ϕi will

still hold. Since auditing is costly for the principal, his payoff will increase, implying the
original mechanism could not have been optimal, a contradiction.

Since the incentive constraint holds with equality for all ti, we have

q̂i(ti) =
p̂i(ti)− ϕi

1 + ĉFi
. (7)

Substituting, this implies that

ϕi = inf
t′i

[
p̂i(t

′
i)−

ĉTi
1 + ĉFi

[p̂i(ti)− ϕi]
]
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or

ϕi = inf
t′i

[{
1− ĉTi

1 + ĉFi

}
p̂i(ti) +

ĉTi
1 + ĉFi

ϕi

]
.

By assumption, the coefficient multiplying p̂i(t
′
i) is strictly positive, so this is equivalent

to {
1− ĉTi

1 + ĉFi

}
ϕi =

{
1− ĉTi

1 + ĉFi

}
inf
t′i

p̂i(t
′
i),

so ϕi = inft′i p̂i(t
′
i), exactly as in our original formulation.

The principal’s objective function is

Et

∑
i

[pi(t)ti − ciqi(t)] =
∑
i

Eti [p̂i(ti)ti − ciq̂i(ti)]

=
∑
i

Eti

[
p̂i(ti)ti −

ci
1 + ĉFi

[p̂i(ti)− ϕi]
]

=
∑
i

Eti [p̂i(ti)(ti − c̃i) + ϕic̃i]

where c̃i = ci/(1 + ĉFi ). This is the same as the principal’s objective function in our
original formulation but with c̃i replacing ci.

Thus the solution changes as follows. The allocation probabilities pi are exactly the
same as what we characterized but with c̃i replacing ci. The checking probabilities,
however, are the earlier ones divided by 1 + ĉFi (see equation (7)). Intuitively, since
verification or fines impose costs on the agent in this model, the threat of checking the
agent is more severe than in the previous model, so the principal doesn’t need to check
as often.

That is, the new optimal mechanism is still a favored–agent mechanism but where
the checking which had probability 1 before now has probability 1/(1+ ĉFi ). The optimal
choice of the favored agent and the optimal threshold is exactly as before with c̃i replacing
ci. Note that agents with low values of ĉFi have higher values of c̃i and hence are more
likely to be favored. That is, agents who find it easy to undergo an audit after lying are
more likely to be favored. Note also that ĉTi has no effect on the optimal mechanism.

Finally, we discuss the robustness of our results to weakening our assumptions on the
verification process.24 To motivate the kinds of robustness that are of interest, we first
clarify how we view the model. Think of each agent as knowing a set of facts about how
he would make use of the object if the principal were to give it to him. Suppose the
principal has no private information and that the facts known to the agent are sufficient
to determine the value the principal would receive if he gives the object to the agent.

24We thank Andy Skrzypacz for useful observations exploited in the discussion which follows.
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Thus verifying the agent’s type is equivalent to verifying these facts known to the agent.
Finally, suppose that if the principal checks the agent, he learns all the facts known to
the agent. Since the agent knows these facts, he knows exactly what the principal would
learn if he were to verify. Thus we can identify the agent’s knowledge with the value of
the object to the principal and with what the principal would learn if he verifies and call
all of these things ti.

There are several assumptions in this story that are worth generalizing. First, one
could assume that the facts known to agent i are not sufficient to determine the value
the principal would receive if he gives the object to i. If this is because the principal
has private information which is also relevant to determining this value, then the results
would depend greatly on the nature of this information.25 So suppose the principal does
not have private information. In this case, we can simply interpret ti as the expectation
of the value to the principal conditional on the information of the agent and our results
go through unaltered.

Second, one could assume that not all of the agent’s information is verifiable. We
can think of agent i’s type as consisting of a pair (ui, vi) where ui is the unverifiable
part of the agent’s information, vi is verifiable, and the value to the principal of giving
the object to i is determined by the pair. More precisely, if the principal checks agent
i, he learns vi but learns nothing about ui (except to the extent that these components
are correlated). We can rewrite this variation on our model in a way which makes it
identical to the original version. To see this, note that the principal cannot verify ui and
hence cannot induce the agent to reveal it unless he makes the agent indifferent over all
possible ui reports. That is, i’s ui report cannot affect the probability he receives the
object. Hence it is irrelevant to the principal since it cannot affect the objective function
so the principal may as well disregard the ui reports. So we can assume the principal only
solicits information about vi and treat the principal’s value given vi as the expectation
of his value conditional on this parameter. Then, just as in the preceding paragraph, our
results are unchanged.

Finally, we could assume that the verification process itself is subject to noise. That
is, even if all the agent’s information is verifiable and his information is sufficient to
determine the value to the principal, the verification process may not perfectly “measure”
the agent’s information. For example, it may be that the agent’s information is contained
in a large number of documents and the principal checks the agent by reading a randomly
chosen subset of these documents.

25As a very simple example, suppose the principal has a type s and the value to the principal of giving
the object to agent i is a function of (si, ti). Suppose that for some values of s, this function is increasing
in ti, while for others, it is decreasing. Then it is possible that even without verification, the agent
reports ti truthfully because the agent thinks he is equally likely to get the object with a high report or
a low one. Such a formulation would yield very different results from ours.
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A thorough analysis of such noise is well beyond the scope of this paper. However,
we can show that the favored–agent mechanism is robust to relaxing this assumption by
allowing small amounts of noise. More specifically, for approximately perfect verification,
a mechanism which is approximately a favored–agent mechanism is approximately opti-
mal. Also, it is easy to see that if verification is pure noise, the principal has no means
to enforce incentive compatibility of a nonconstant mechanism and hence will simply
allocate the good to some agent i ∈ argmaxjE(tj). Note that this is also a favored–agent
mechanism with a threshold that no type of any agent can meet. Thus we see that our
results continue to hold, at least approximately, for very large or very small amounts of
noise. The range in between is more complex.

8 Conclusion

A natural question to ask is whether we see mechanisms like the favored–agent mechanism
in practice and, if not, why not. As argued in the introduction, the setting we consider
appears to be a natural benchmark description of many real world situations involving
allocation of desirable resources, particularly within an organization or by a government.

Mechanisms similar to the favored–agent mechanism do seem to be used in some
of these settings. At its essence, the favored–agent mechanism is simply a setting of
appropriate defaults. In other words, we can describe the mechanism as setting a default
outcome in case no agent makes a strong enough claim for “special consideration.” If
such a strong claim is made, it is checked before being granted. Otherwise, the principal
goes with the default outcome.

The use of defaults along this line is very common and can be seen in any of the
examples from the introduction. For instance, when selecting a unit to head a new
project, it seems natural that the manager has a default unit in mind if no other unit
makes a strong claim of special qualifications. While in practice the principal’s prior and
the checking costs will surely enter in the determination of the threshold and the default
agent, how these are determined may not exactly match our calculations. For example,
the default unit may the one with the most experience, or, when checking costs are low,
every unit may be checked. There are a variety of implicit or explicit assumptions of the
model that may be violated in some situations, suggesting why the mechanism used in
practice does not exactly match our favored–agent mechanism.

First, as noted at the end of Section 5, the favored–agent mechanism gives every
agent an incentive to increase his costs of being checked in order to become the favored
agent, cost increases which make the principal worse off. Hence in settings where agents
can affect these costs, it may be optimal for the principal to modify the favored–agent
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structure to avoid such incentives.

Second, in some settings, there may be concerns that the principal is biased in favor
of one of the agents. For example, some divisions of an organization may suspect that
the head of the organization isn’t just maximizing profits, but is biased toward one
division in the sense that his payoff is skewed toward them. Such beliefs could have
counterproductive effects as these divisions engage in strategic behavior to overcome
this bias or protect themselves from it. Similar issues arise with government allocation of
public goods. If a government has to locate a hospital, for example, and uses a mechanism
which favors one town, this could create political pressure by the other towns. Thus it
may be important for the mechanism designer to signal a lack of bias by choosing a
mechanism which treats all agents symmetrically, even (or especially) if it is costly to do
so.

Third, as noted in Section 7, if each agent bears costs associated with being checked
by the principal and his value of receiving the good is increasing in his type, then the
favored–agent mechanism may not be optimal. In some situations, the assumption that
checking does not impose costs on the agent is natural, but in others, it is more natural
to assume that this involves time–consuming and hence costly paperwork for the agent.

Fourth, as discussed in Section 7, it may be of interest to consider models where either
the principal has private information relevant to determining his value and/or there is
an intermediate level of noise in the verification technology.
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A Proof of Theorem 1

In the Appendix, we work with the restated version of the optimization problem for the
principal derived in Section 6 (in particular, equations (5) and (6) and the constraints
that follow).

The following definition was given in the text.

Definition 1. (p, q) is a threshold mechanism if there exists v∗ ∈ R such that the
following holds for all t up to sets of measure zero. First, if there exists any i with
ti − ci > v∗, then pi(t) = 1 for that i such that ti − ci > maxj 6=i(tj − cj). Second, for all
i, if ti − ci < v∗, then qi(t) = 0 and p̂i(ti) = mint′i∈Ti p̂i(ti).

As discussed in the text, Theorem 4, proved in part B of the Online Appendix, states
that every solution to the relaxed problem is a threshold mechanism. We now use this
result to prove Theorem 1.

Let (p, q) denote any optimal mechanism. In light of Theorem 4, we know (p, q) is a
threshold mechanism. Hence we can specify p̂i(ti) for each agent as a function only of v∗

and ϕ. To see this, fix v∗ and ϕ and consider ti such that ti − ci > v∗. Since (p, q) is a
threshold mechanism, ti receives the object with probability 1 if ti − ci > maxj 6=i tj − cj
and with probability 0 if maxj 6=i tj − cj > ti − ci. Hence p̂i(ti) =

∏
j 6=i Fj(ti − ci + cj).

For any ti such that ti < v∗, the definition of a threshold mechanism requires p̂i(ti) = ϕi.
Since we can write the principal’s payoff as a function of the p̂i’s, this means we can write
his payoff as a function only of v∗ and ϕ. More specifically, the principal’s payoff is

Et

[∑
i

[pi(t)(ti − ci) + ϕici]

]
=
∑
i

Fi(v
∗ + ci)Et[pi(t)(ti − ci) | ti < v∗ + ci]

+
∑
i

∫ t̄i

v∗+ci

[∏
j 6=i

Fj(ti − ci + cj)

]
(ti − ci)fi(ti) dti +

∑
i

ϕici.

Note that

Et[pi(t)(ti − ci) | ti < v∗ + ci] = Eti

{
Et−i

[pi(t)(ti − ci)] | ti < v∗ + ci
}

= Eti [p̂i(ti)(ti − ci) | ti < v∗ + ci]

= Eti [ϕi(ti − ci) | ti < v∗ + ci]

= ϕi (Eti [ti | ti < v∗ + ci]− ci) .
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Hence we can rewrite the objective function as∑
i

Fi(v
∗ + ci)ϕi[Eti(ti | ti < v∗ + ci)− ci]

+
∑
i

∫ t̄i

v∗+ci

[∏
j 6=i

Fj(ti − ci + cj)

]
(ti − ci)fi(ti) dti +

∑
i

ϕici

=
∑
i

ϕi {Fi(v∗ + ci)Eti(ti | ti < v∗ + ci) + [1− Fi(v∗ + ci)]ci}

+
∑
i

∫ t̄i

v∗+ci

[∏
j 6=i

Fj(ti − ci + cj)

]
(ti − ci)fi(ti) dti.

Without loss of generality, we can restrict attention to v∗ ≥ maxi ti − ci and v∗ ≤
maxi t̄i− ci. To see this, note that if v∗ < maxi ti− ci, then with probability 1, there will
be some i with ti − ci > v∗. Hence the principal’s payoff is the same if v∗ = maxi ti − ci
as it would be at any lower v∗. Similarly, if v∗ > maxi t̄i − ci, then with probability 1,
every i will have ti − ci < v∗. Hence, again, the principal’s payoff at v∗ = maxi t̄i − ci is
the same as it would be at any higher v∗ (holding ϕ fixed).

For a fixed v∗, the principal’s objective function is linear in ϕ. Given v∗, the set of
feasible ϕ vectors is convex. To be precise, recall that a given specification of pi and
ϕi, i ∈ I, is feasible iff each pi : T → [0, 1], each ϕi ∈ [0, 1],

∑
i pi(t) ≤ 1 for all t, and

Et−i
pi(t) ≥ ϕi for all ti ∈ Ti and all i. From Theorem 4, we know the exact value of pi(t)

for all i for (almost) any t such that ti− ci > v∗ for some i. Finally, Theorem 4 also tells
us that p̂i(ti) = ϕi for (almost) all ti < v∗ + ci for all i. (From Lemma 9, we know this
holds on a set of strictly positive measure.) We say that a profile ϕi, i ∈ I, is feasible
given v∗ if there exists pi functions satisfying the properties above given v∗ and these
ϕi’s.

Lemma 1. The set of ϕi, i ∈ I, that is feasible given v∗ is the set satisfying ϕi ∈ [0, 1]
for all i,

ϕi =
∏
j 6=i

Fj(v
∗ + cj), ∀i such that Fi(v

∗ + ci) = 0,

and ∑
i

ϕiFi(v
∗ + ci) ≤

∏
i

Fi(v
∗ + ci).

Proof. Since ϕi = p̂i(ti) on a set of strictly positive measure, it is obviously necessary
to have ϕi ∈ [0, 1]. To see the necessity of the second condition, consider some i with
Fi(v

∗ + ci) = 0 or, equivalently, v∗ ≤ ti − ci. Since we must have v∗ ≥ maxj tj − cj, this
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implies v∗ = ti − ci. For any ti ∈ (ti, t̄i), then, we have ti − ci > v∗, so type ti receives
the good iff his is the highest type. That is, p̂i(ti) =

∏
j 6=i Fj(ti − ci + cj). Thus

ϕi = inf
ti
p̂i(ti) = lim

ti↓ti
p̂i(ti) =

∏
j 6=i

Fj(v
∗ + cj),

implying that the second condition is necessary.

For necessity of the third condition, note that

∑
i

ϕiFi(v
∗ + ci) =

∑
i

∫ v∗+ci

ti

p̂i(ti)fi(ti) dti

=
∑
i

∫ v∗+ci

ti

Et−i
pi(ti, t−i)fi(ti) dti

=
∑
i

∫ v∗+ci

ti

∫
t−i

pi(t)fi(ti)f−i(t−i) dt−i dti.

But for any t−i such that tj − cj > v∗ for some j 6= i, we must have pi(ti, t−i) = 0. Hence

∑
i

∫ v∗+ci

ti

∫
t−i

pi(t)fi(ti)f−i(t−i) dt−i dti =
∑
i

∫
t|tj<v∗+cj , ∀j

pi(t)f(t) dt

=

∫
t|tj<v∗+cj , ∀j

[∑
i

pi(t)

]
f(t) dt

≤
∫
t|tj<v∗+cj , ∀j

f(t) dt

=
∏
j

Fj(v
∗ + cj).

Hence the third condition is necessary.

Note for use below that the third condition and ϕi ≥ 0 implies

ϕiFi(v
∗ + ci) ≤

∏
j

Fj(v
∗ + cj).

If Fi(v
∗ + ci) 6= 0, this implies ϕi ≤

∏
j 6=i Fj(v

∗ + cj). As the second condition shows, if
Fi(v

∗ + ci) = 0, we still require this condition, though with equality.

To see that these conditions are sufficient, we consider three cases. Let

I0 = {i ∈ I | Fi(v∗ + ci) = 0} = {i ∈ I | v∗ = ti − ci}.
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The first case is where #I0 ≥ 2 (where # denotes cardinality). In this case, we have∏
j 6=i Fj(v

∗+ cj) = 0 for all i. Hence the third condition implies ϕi = 0 for all i such that
Fi(v

∗+ci) 6= 0. If Fi(v
∗+ci) = 0, then the second condition applies to i, so, again, ϕi = 0.

Hence the only ϕ satisfying the necessary conditions for such a v∗ is the zero vector. It is
easy to see that this is feasible since it is achieved for any p satisfying pi(t) = 1 for that
i with ti − ci > maxj 6=i tj − cj for every t.

The second case is where #I0 = 1. Let k denote the unique element of I0. Then
the third condition implies that ϕi = 0 for all i 6= k. The second condition implies ϕk =∏

j 6=k Fj(v
∗ + cj). Hence, again, there is a unique ϕ satisfying the necessary conditions

for such a v∗. Again, it is easy to see that this is feasible since it is achieved for any p
satisfying pi(t) = 1 for that i with ti − ci > maxj 6=i tj − cj for every t. To see this, note
that k ∈ I0 implies tk − ck > v∗ with probability 1, so the threshold mechanism must
always allocate the good to the agent with the highest value. If every other agent has
value below v∗, k must get the good, regardless of his value, ϕk is the probability this
occurs.

Finally, suppose I0 = ∅. In this case,
∏

j 6=i Fj(v
∗ + cj) > 0 for all i. Fix any ϕ

satisfying the conditions of the lemma. To see that this ϕ is feasible, set p as follows. For
any t such that maxi ti− ci > v∗, let pi(t) = 1 for that i with ti− ci > maxj 6=i tj − cj. For
any t with maxi ti− ci < v∗, let pi(t) = ϕi/

∏
j 6=i Fj(v

∗ + cj) for every i. Since ϕi ∈ [0, 1],
pi(t) is non–negative for all i. Also,∑

i

pi(t) =
∑
i

ϕiFi(v
∗ + ci)∏

j Fj(v
∗ + cj)

=

∑
i ϕiFi(v

∗ + ci)∏
j Fj(v

∗ + cj)
.

By our third condition, this is less than 1.

Also, for any i and any ti < v∗ + ci, we have

p̂i(ti) =

[∏
j 6=i

Fj(v
∗ + cj)

]
E(pi(t) | tj ≤ v∗ + cj, ∀j 6= i)

+

[
1−

∏
j 6=i

Fj(v
∗ + cj)

]
E(pi(t) | tj > v∗ + cj, for some j 6= i)

=

[∏
j 6=i

Fj(v
∗ + cj)

][
ϕi∏

j 6=i Fj(v
∗ + cj)

]
+

[
1−

∏
j 6=i

Fj(v
∗ + cj)

]
(0)

= ϕi.

If Fi(v
∗ + ci) = 1, this implies infti p̂i(ti) = ϕi. Otherwise, for ti > v∗ + ci, we have

p̂i(ti) =
∏
j 6=i

Fj(ti − ci + cj) ≥
∏
j 6=i

Fj(v
∗ + cj) ≥ ϕi,
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where the last inequality follows from the necessary conditions. Hence, again, infti p̂i(ti) =
ϕi, so ϕ is feasible given v∗.

Given Lemma 1, we see that the set of feasible ϕ given v∗ is the set satisfying a finite
system of linear inequalities and hence is convex. Since the objective function is linear in
ϕ and the feasible set is convex, we see that given v∗, there is an optimal ϕ which is an
extreme point. Furthermore, the set of optimal ϕ is the convex hull of the set of optimal
extreme points.

The following lemma characterizes the extreme points. Recall that

I0 = {i ∈ I | Fi(v∗ + ci) = 0} = {i ∈ I | v∗ = ti − ci}.

Lemma 2. If I0 is not a singleton, then ϕ∗ is an extreme point of the set of feasible
ϕ given v∗ iff either ϕ∗ = 0 or there exists i such that ϕ∗j = 0 for all j 6= i and ϕ∗i =∏

j 6=i Fj(v
∗ + cj). If I0 = {i}, then ϕ∗ is an extreme point of the set of feasible ϕ given

v∗ iff ϕ∗j = 0 for all j 6= i and ϕ∗i =
∏

j 6=i Fj(v
∗ + cj).

Proof. If #I0 ≥ 2, then, as shown in the proof of Lemma 1, the only feasible ϕ is the
0 vector. Note, though, that

∏
j 6=i Fj(v

∗ + cj) = 0 for all i, so the description in the

statement of the lemma applies. If I0 = {i}, then the proof of Lemma 1 shows that the
only feasible ϕ is the one stated as the extreme point in the lemma, so again the lemma
follows.

So for the rest of this proof, assume I0 = ∅. That is, Fi(v
∗+ci) > 0 for all i. It is easy

to see that the ϕ∗’s stated in the lemma must all be extreme points. To see this, suppose
that there exists a feasible ϕ1 and ϕ2 such that ϕ1 6= ϕ2 and there exists λ ∈ (0, 1)
such that λϕ1 + (1 − λ)ϕ2 = ϕ∗ for one of the ϕ∗’s stated in the lemma. Obviously, we
cannot have ϕ∗ equal to the zero vector since ϕki ≥ 0 for all i and k would then imply
ϕ1 = ϕ2 = 0, a contradiction. So suppose there is some i with ϕ∗j = 0 for all j 6= i and
ϕ∗i =

∏
j 6=i Fj(v

∗ + cj). Again, we must have ϕ1
j = ϕ2

j = 0 for all j 6= i. Since we cannot

have ϕ1 = ϕ2, without loss of generality, we must have ϕ1
i <

∏
j 6=i Fj(v

∗ + cj) < ϕ2
i . But

then ϕ2 violates the third condition for feasibility of ϕ given v∗, a contradiction.

Hence we only need to show that there are no other extreme points. To show this,
we show that any ϕ which is feasible given v∗ can be written as a convex combination
of these points. So fix any such ϕ. Define ri = ϕi/

∏
j 6=i Fj(v

∗ + cj). By the necessary
conditions stated in Lemma 1, ri ≥ 0. Also,

I∑
i=1

ri =
I∑
i=1

ϕiFi(v
∗ + ci)∏

j Fj(v
∗ + cj)

=

∑I
i=1 ϕiFi(v

∗ + ci)∏
j Fj(v

∗ + cj)
.

By the third necessary condition, then,
∑I

i=1 ri ≤ 1. Finally, let r0 = 1−
∑I

i=1 ri Hence∑I
i=0 ri = 1. Let ϕ∗(i) denote the ϕ∗ of the lemma which has ϕ∗j = 0 for all j 6= i and
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ϕ∗i =
∏

j 6=i Fj(v
∗ + cj). It is easy to see that

ϕ =
I∑
i=1

riϕ
∗(i) + r0(0),

where 0 denotes the 0 vector. Hence ϕ is not an extreme point unless it equals one of
the ϕ∗’s.

Summarizing, any optimal mechanism has its reduced form completely specified by
a choice of v∗ and a vector ϕ. Given any v∗, the set of optimal ϕ’s is the convex hull of
the set of optimal extreme ϕ’s, characterized in Lemma 2. We now show that for any v∗

and any optimal extreme ϕ, there is a favored–agent mechanism with the same reduced
form as that determined by v∗ and ϕ.

Lemma 3. Given any v∗ and any optimal extreme ϕ, let (p̂∗, q̂∗) be the reduced form
specified by v∗ and ϕ. Then there is a favored agent mechanism (p, q) with p̂ = p̂∗ and
q̂ = q̂∗.

Proof. First, suppose #I0 ≥ 2. In Lemma 1, we showed that the only feasible ϕ in this
case is the zero vector. Because #I0 ≥ 2, we have at least two agents i with ti − ci > v∗

with probability 1. Hence p∗i (t) = 1 for that i such that ti− ci > maxj 6=i tj − cj. Thus for
all i and all ti, p̂

∗
i (ti) =

∏
j 6=i Fj(ti−ci+cj). Since ϕi = 0 for all i, we have q̂∗i (ti) = p̂∗i (ti).

We generate the same reduced form from the favored–agent mechanism with threshold
v∗ for any selection of the favored agent. Since there are always at least two agents with
values above the threshold, the selection of the favored agent is irrelevant — any agent
receives the good iff he has the highest value and is checked in this case.

Next, suppose I0 = {k}. In the proof of Lemma 1, we showed that the only feasible
ϕ in this case is ϕ∗(k) defined by

ϕ∗i (k) =

{
0, if i 6= k∏

i 6=k Fi(v
∗ + ci), if i = k.

The reduced form generated by this extreme point is as follows. First, consider any
j 6= k. Since ϕj = 0, we know that q̂∗j (tj) = p̂∗j(tj). By Theorem 4, if tj − cj < v∗, then
p̂∗j(tj) = ϕj = 0. For tj − cj > v∗, p∗j(tj) =

∏
i 6=j Fi(tj − cj + ci). Also, for every tk,

p̂∗k(tk) =
∏

j 6=k Fj(tk − ck + cj) and

q̂∗k(tk) = p̂∗k(tk)−
∏
j 6=k

Fj(v
∗ + cj)

= Pr[tk − ck > tj − cj, ∀j 6= k]− Pr[tj − cj < v∗, ∀j 6= k]

= Pr[v∗ < max
j 6=k

tj − cj < tk − ck].
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It is easy to see that a favored–agent mechanism with k as the favored agent and threshold
v∗ generates the same reduced form.

Finally, suppose I0 = ∅. We showed in the proof of Lemma 1 that the set of extreme
points consists of the zero vector 0 and the collection of vectors ϕ∗(k), k = 1, . . . , I.
The same argument as for the previous case shows that any of the extreme points ϕ∗(k)
generates the same reduced form as the favored–agent mechanism with k as the favored
agent and v∗ as the threshold.

We now complete the proof by showing that 0 cannot be the optimal extreme point.
To see this, simply note that the term multiplying ϕi in the principal’s objective function
is

Fi(v
∗ + ci)Eti(ti | ti ≤ v∗ + ci) + [1− Fi(v∗ + ci)]ci.

It is easy to see that this term must be strictly positive since ti ≥ 0 and ci > 0. Hence
whenever there is an feasible ϕ other than 0, it must yield the principal a higher payoff
than setting ϕ to the zero vector.

Hence the set of optimal mechanisms given a particular v∗ is equivalent to the convex
hull of the set of optimal favored–agent mechanisms with v∗ as the threshold. There-
fore, the set of optimal mechanisms is equivalent to the convex hull of the set of opti-
mal favored–agent mechanisms where we optimize over v∗ as well as the identity of the
favored–agent.
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Online Appendix

A Reduction

In this Appendix, we show that we can reduce the principal’s problem to the choice of
(p, q) functions as in the text. We begin with an arbitrary mechanism which could have
multiple stages of cheap talk statements by the agents and checking by the principal,
where who can speak and which agents are checked depend on past statements and the
results from past checks, finally culminating in the allocation of the good, perhaps to
no one. Think of such a dynamic mechanism as a game in extensive form between the
agents and the principal where the principal is committed in advance to his strategy. The
principal’s actions specify decisions about which agent or agents to check at various points
and, ultimately, which (if any) to allocate the good to. Fix such a dynamic mechanism,
deterministic or otherwise, and any equilibrium, say σ, in pure or mixed strategies. We
show that the principal’s payoff in this mechanism can be duplicated or improved by the
appropriate choice of (p, q) functions.

There are three key steps to the reduction. The first step is a version of the Revelation
Principle appropriate to this setting which shows that, without loss of generality, we can
restrict attention to truth–telling equilibria in direct mechanisms. In the second step,
we use our assumption of perfect verification to show that we can restrict attention to
mechanisms where all checks the principal carries out are done simultaneously. Finally,
the last step identifies two simple properties of the optimal allocation.

To show the first step, we take the equilibrium, σ, of the original mechanism and
construct a new mechanism as follows. Each player i reports a type ti ∈ Ti. Given a
vector of reports t, the principal simulates what would happen in the original mechanism
when the agents play the strategies σ(t). That is, they play as they would have in
the equilibrium if the true types were t. As the principal simulates the mechanism, he
may check some agents’ types. If he gets all the way through the simulation without
any checks revealing that some agent’s report is false, he allocates the good as in the
simulation.

Suppose that some checks reveal that one or more agents have lied. If more than one
agent must have lied, then the principal allocates the good arbitrarily. Since we will only
be interested in truth–telling equilibria, only unilateral lies will be relevant for incentives.

So suppose that checks reveal only that agent i has lied — that is, the outcome of
checks are consistent with the reports of all agents j 6= i. If agent i has another move
after this point, the principal can no longer simulate the mechanism using the strategy
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σi(ti). By definition, the information set corresponding to this later move is one that
could not have been reached if i really were type ti, so no strategy for type ti would say
anything about this information set. To continue the simulation, the principal chooses
any feasible strategy for i from this point forward. Again, he completes the simulation
and then allocates the good according to the result of the simulation.

It is easy to see that truth telling is an equilibrium of this game. Fix any player i of
type ti and assume that all agents j 6= i report truthfully. Then i’s payoff from reporting
truthfully as well is exactly the same as in the equilibrium of the original mechanism.
His payoff from reporting any other type is exactly the same as his payoff to a certain
deviation in the original mechanism. Hence the fact that the original strategies formed
an equilibrium implies that truth telling is a best reply. Clearly, the principal’s payoff in
the truth telling equilibrium is the same as in the original mechanism.

Next, we show that given our assumption that verification is perfect — that is, if
the principal checks agent i, he learns i’s true type — it is without loss of generality to
assume that the principal carries out whatever checks he does all at once. In other words,
there is no need for him to decide whether to check an agent based on the outcome of
earlier checks.

To see this, again, fix any mechanism and any equilibrium. Now we construct a direct
mechanism as follows. If the reported type profile is t, then the principal computes
the probability distribution over which agents would be checked in the equilibrium of
the original mechanism given that the true types are t. He then randomizes over the
set of agents to check using this probability distribution, but carries out these checks
simultaneously rather than sequentially. For example, if in the original mechanism, he
would have checked agent 1, then randomized 50–50 over whether to check agent 2,
the principal randomizes 50–50 over checking just agent 1 or checking both 1 and 2
simultaneously. Similarly, if the principal would have checked agent 1 and then only
checked 2 if he learned 1 had some type other than t1, then he just checks agent 1 since
this is what would happen conditional on the types being t.

If what the principal observes from the checks is consistent with what he would have
seen in the equilibrium (that is, for every agent j he checks, he sees that j’s type is tj),
then he allocates the good exactly as he would have done in the equilibrium after these
observations. If there is only a single player, say i, who is found to have type t′i 6= ti, then
the allocation of the good is the same as it would have been in the original equilibrium if
the type profile were (t′i, t−i), players j 6= i used their equilibrium strategies, and player i
deviated to the equilibrium strategy of type ti. Finally, the allocation is arbitrary if the
principal learns that two or more players have types different from their reports.

As before, truth telling is an equilibrium of this game. For any player i, consider the
best reply of type ti to truth–telling by the other agents. Just as before, i’s payoff from
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reporting truthfully is the same as in the equilibrium of the original mechanism. Just
as before, his payoff to reporting any other type is the same as his payoff to a certain
deviation in the original mechanism. Therefore, the fact that we began with equilibrium
strategies for the original mechanism implies that a best reply for ti is to report ti.
Clearly, the payoff for the principal is the same as before.

With imperfect verification, sequential checking procedures may be needed. However,
this is just a matter of computing the statistical tools available to the principal. That is,
a sequential procedure for checking gives the principal a certain probability distribution
over observations and costs as a function of the true types. One can simply determine
the set of such conditional distributions and treat the principal as picking among them.
That is, we can translate the problem into one with different stochastic verification
technologies, corresponding to what can be done in the sequential environment and have
the principal use these simultaneously.

For the third step, we give two simple but useful properties of the optimal allocation.
First, given that we focus on truth telling equilibria, all situations in which agent i’s
report is checked and found to be false are off the equilibrium path. The specification of
the mechanism for such a situation cannot affect the incentives of any agent j 6= i since
agent j will expect i’s report to be truthful. Thus the specification only affects agent
i’s incentives to be truthful. Since we want i to have the strongest possible incentives
to report truthfully, we may as well assume that if i’s report is checked and found to
be false, then the good is given to agent i with probability 0. Hence we can further
reduce the complexity of a mechanism to specify which agents are checked and which
agent receives the good as a function of the reports, where the latter applies only when
the checked reports are accurate.

Finally, any agent’s incentive to reveal his type is unaffected by the possibility of being
checked in situations where he does not receive the object regardless of the outcome of
the check. That is, if an agent’s report is checked even when he would not receive the
object if found to have told the truth, his incentives to report honestly are not affected.
Since checking is costly for the principal, this means that if the principal checks an agent,
then (if he is found to have been honest), he must receive the object with probability 1.

Therefore, we can think of the mechanism as specifying two probabilities for each
agent: the probability he is awarded the object without being checked and the probability
he is awarded the object conditional on a successful check. As in the text, we let qi(t)
denote the probability i is awarded the object conditional on a successful check and let
pi(t) be the total probability i is awarded the object.

3



B Proof of Theorem 4

The proof of Theorem 4 proceeds with a series of lemmas. Throughout we write the
distribution of ti as a measure µi. Recall that we have assumed this measure is absolutely
continuous with respect to Lebesgue measure on the interval Ti ⊂ R. We let µ be the
product measure on the product Borel field of T . For any S ⊆ T , let

S(ti) = {t−i ∈ T−i | (ti, t−i) ∈ S}

denote the ti fiber of S. Let Si denote the projection of S on Ti, and S−ij the projection
on
∏

k 6∈{i,j} Tk.

We begin with a technical lemma.26

Lemma 4. Given any Borel measurable S ⊂ Ri with µ(S) > 0, there exists S∗ ⊆ S
with µ(S∗) = µ(S) such that the following holds. First, for every i and every ti ∈ Ti, the
measure of every fiber is strictly positive. That is, µ−i(S(ti)) > 0 for all i and all ti ∈ Ti.
Second, for all i, the projection on i of S∗, S∗i , is measurable.

Moreover, given any j, there exists ε > 0 and S∗∗ ⊆ S with µ(S∗∗) > 0 such that the
following holds. First, for every i 6= j and every ti ∈ Ti, the measure of every fiber is
strictly positive. That is, µ−i(S

∗∗(ti)) > 0. Second, for every tj ∈ S∗∗j , the fiber S∗∗(tj)
has measure bounded below by ε. That is, µ−j(S

∗∗(tj)) > ε. Finally, for all i, S∗∗i , the
projection on i of S∗∗, is measurable.

Proof. We first prove this for I = 2, and then show how to extend it to I > 2. So, to
simplify notation for the first step, denote by x and y the two dimensions. Fix a Borel
measurable S with µ(S) > 0. We need to show that there is an equal measure subset of
S, S∗, such that all fibers of S∗ have strictly positive measure and all projections of S∗

are measurable. So we need to show (1) µx(S
∗(y)) > 0 for all y, (2) µy(S

∗(x)) > 0 for all
x, and (3) the projections of S∗ are measurable.

First, we observe that if all the fibers have strictly positive measure, then the pro-
jections are measurable. To see this, note that the function f : X → R given by
f(x) = µy(S

∗(x)) is measurable by Fubini’s Theorem. Hence the set {x | µy(S∗(x)) > 0}
is measurable. But this is just the projection on the first dimension if the fiber has
positive measure. An analogous argument applies to the y coordinate.

Let S1 denote the set S after we delete all x fibers with µy measure zero. That is,
S1 = S ∩ [{x | µy(S(x)) > 0} × R]. We know that S1 is measurable, has the same

26We thank Benjy Weiss for suggesting the idea of the following proof.
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measure as S (by Fubini, because we deleted only fibers of zero measure), all its x fibers
have strictly positive y measure, and its projection on x is measurable.

We do not know that the projection of S1 on y is measurable nor that the y fibers
have strictly positive x measure. Let S2 denote the set S1 after we delete all y fibers
with µx measure zero. That is, S2 = S1 ∩ [{y | µx(S1(y)) > 0} ×R]. We know that S2

is measurable with the same measure as S1, that its projection on y is measurable, and
all its y fibers have strictly positive y measure.

Again, we do not know that its projection on x is measurable nor that the x fibers
have strictly positive y measure. But at this step we do know that the set of x fibers
that have zero measure is contained in a set of measure zero. Put differently,

µx
{
x | µy

(
S2(x)

)
> 0
}

= µx
(
S1
x

)
= µx

{
x | µy

(
S1 (x)

)
> 0
}
. (8)

To see this, suppose not. Then

µx
{
x | µy

(
S2 (x)

)
> 0
}
< µx

{
x | µy

(
S1 (x)

)
> 0
}

as {
x | µy

(
S2 (x)

)
> 0
}
⊆
{
x | µy

(
S1 (x)

)
> 0
}
.

Let
∆ =

{
x | µy

(
S1 (x)

)
> 0
}
\
{
x | µy

(
S2 (x)

)
> 0
}
.

If µ(∆) > 0, then

µ
(
S1
)

=

∫
{x|µy(S1(x))>0}

µy
(
S1 (x)

)
µx (dx)

=

∫
{x|µy(S2(x))>0}

µy
(
S1 (x)

)
µx (dx) +

∫
∆

µy
(
S1 (x)

)
µx (dx)

>

∫
{x|µy(S2(x))>0}

µy
(
S2 (x)

)
µx (dx)

= µ
(
S2
)

as S1(x) ⊇ S2(x) and µ(∆) > 0. But this contradicts µ(S2) = µ(S1). Hence equation
(8) holds.

Finally, let S3 denote S2 after we delete all x fibers with µy measure zero. That is,
S3 = S2 ∩ [{x | µy(S2(x)) > 0} × R]. We know that S3 is measurable with the same
measure as S2, that its projection on x is measurable, and that all its x fibers have strictly
positive y measure. But now we also know that all the y fibers have strictly positive x
measure, since in going from S2 to S3, we deleted a set of x’s contained in a set of zero
measure. Hence each y fiber has the same measure as before.
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We now extend this to I > 2. For brevity, we only describe the extension to I = 3,
the more general result following the same lines. Denote the coordinates by x, y, and z.
Consider a set S with µ(S) > 0. We show there exists S∗ ⊆ S such that µyz(S

∗(x)) > 0
for all x ∈ S∗x, and similarly for all y ∈ S∗y and all z ∈ S∗z .

From the case of I = 2, we know there exists S1 ⊆ S with µ(S1) = µ(S) such that for
all x ∈ S1

x, we have µyz(S
1(x)) > 0 and for all (y, z) ∈ S1

yz, we have µx(S
1((y, z))) > 0.

Applying I = 2 result again to the set S1
yz, we have G ⊆ S1

yz with µyz(G) = µyz(S
1
yz)

such that for all y ∈ Gy, we have µz(G(y)) > 0 and for all z ∈ Gz, we have µy(G(z)) > 0.
(Note that this implies that µyz(G) > 0.)

Now define

S2 = S1 ∩ (R×G) =
{

(x, y, z) | (x, y, z) ∈ S1 and (y, z) ∈ G
}
.

Since G ⊆ S1
yz and µyz(G) = µyz(S

1
yz), we have µ(S2) = µ(S1). Clearly, S2

y = Gy and
S2
z = Gz. Fix any y ∈ S2

y . Since y ∈ Gy, we have µz{z | (y, z) ∈ G} > 0. Since G ⊆ S1
yz

for every (y, z) ∈ G, we have µx(S
2(y, z)) = µx(S

1(y, z)) > 0. By Fubini’s Theorem,
µxz(S

2(y)) =
∫
z∈G(y)

µx(S
2(y, z))µz(dz) and hence µxz(S

2(y)) > 0. A similar argument

implies that for all z ∈ S2(z), we have µxy(S
2(z)) > 0. However, we do not know that

for every x ∈ S2
x, we have µy,z(S

2(x)) > 0. Hence we now define the set S3 by

S3 = S2 ∩
({
x | µyz(S2(x)) > 0

}
×R2

)
.

Clearly, S3
x is measurable and we have µyz(S

3(x)) > 0 for every x ∈ S3
x. Furthermore,

S3 ⊆ S2 ⊆ S1 and hence S3
x ⊆ S1

x. In fact, µ(S3) = µ(S2) = µ(S1) implies µ(S3
x) = µ(S1

x).
To see this, suppose not. Then µx(S

3
x) < µx(S

1
x). Since for each x ∈ S1

x, we have
µyz(S

1(x)) > 0, we obtain that µ(S3) < µ(S1), a contradiction.

We claim that S3 satisfies the properties stated in the first part of the lemma. That
is, (1) S3

y and S3
z are measurable, (2) for all y ∈ S3

y , we have µx,z(S
3(y)) > 0, and (3)

for all z ∈ S3
z , we have µx,y(S

3(z)) > 0. Consider an element y ∈ S2
y . We have seen

that for all z ∈ G(y), we have µx(S
2(y, z)) > 0. Since our construction of S3 removes

from S2 a set of elements x in S2
x that is contained in a set of measure zero, we must

have µx(S
3(y, z)) = µx(S

2(y, z)) > 0. Hence S3
y = S2

y and for every y ∈ S3
y , we have

µxz(S
3(y)) = µxz(S

2(y)) > 0. A similar argument establishes that S3
z = S2

z and that
for z ∈ S3

z , we have µxy(S
3(y)) > 0. By defining S∗ = S3, we obtain a set S∗ with the

properties claimed in the first part of the lemma.

It remains to prove the “moreover” claim. This follows from a similar argument where
in defining S1, we remove all x’s whose fibers do not have probability at least ε for an
appropriately chosen ε. We provide the proof for the case I = 2. The proof for I > 2 is
similar.
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Note that

{x | µy(S(x)) > 0} =
∞⋃
n=1

{x | µy(S(x)) > 1/n} .

Since µx({x | µy(S(x)) > 0}) > 0, there exists n̂ such that µx({x | µy(S(x)) > 1/n̂}) > 0.
Define ε = 1/n̂ and define S1 = S ∩ ({x | µy(S(x)) > ε} ×R).

The rest of the argument is essentially identical to the argument given in the proof
of the first part of the lemma. Specifically, we know that S1

x is measurable and that for
every x ∈ S1

x, we have µy(S
1(x)) > ε. Define

S2 = S1 ∩
({
y | µx(S1(y)) > 0

}
×R

)
S3 = S2 ∩

({
x | µy(S2(x)) > ε

}
×R

)
.

We have S3 ⊆ S2 ⊆ S1. Fubini’s Theorem implies that µ(S2) = µ(S1) which in turn
implies that

µx(
{
x | µy(S2(x)) > ε

}
) = µx(

{
x | µy(S1(x)) > ε

}
).

To see this, suppose not. Then S2 ⊆ S1 and the fact that µy(S
1(x)) > ε for all x ∈ S1

x

implies that µ(S2) < µ(S1), a contradiction.

Since {
x | µy(S2(x)) > ε

}
=
{
x | µy(S3(x)) > ε

}
= S3

x,

we see that µx(S
1
x) = µx(S

3
x). Hence in moving from S2 to S3, the set of x’s that is

deleted is contained in a set of measure zero. Since for all y ∈ S2
y , we have µx(S

2(y)) > 0,
we see that S3

y = S2
y and that µx(S

3(y)) > 0 for all y ∈ S3
y . Thus the set S3 satisfies all

the properties stated in the second paragraph of the lemma.

For the remaining lemmas, fix p and ϕ that maximize

Et

[∑
i

[pi(t)(ti − ci) + ϕici]

]
=
∑
i

{Eti [p̂i(ti)(ti − ci)] + ϕici]}

subject to
∑

i pi(t) ≤ 1 for all t and p̂i(ti) ≥ ϕi ≥ 0 for all i and ti where p̂i(ti) =
Et−i

pi(t). As explained in Section 6, the optimal q will then be any feasible q satisfying
q̂i(ti) = p̂i(ti)− ϕi for all i and ti where q̂i(ti) = Et−i

qi(t).

Lemma 5. There is a set T ′ ⊆ T with µ (T ′) = 1 such that the following hold:

1. For each i, if ti < ci and ti ∈ T ′i , then p̂i(ti) = ϕi.

2. For each t ∈ T ′, if ti > ci for some i, then
∑

j pj(t) = 1.

3. For any t ∈ T ′, if p̂i(ti) > ϕi for some i, then
∑

j pj(t) = 1.
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Proof. Proof of 1. If ti < ci, then the objective function is strictly decreasing in p̂i(ti).
Obviously, reducing p̂i(ti) makes the other constraints easier to satisfy. Since we improve
the objective function and relax the constraints by reducing p̂i(ti), we must have p̂i(ti) =
ϕi at the optimum. This completes the proof of part 1. Since we only characterize
optimal mechanisms up to sets of measure zero, we abuse notation, and redefine T to
equal a measure 1 subset of T on which property 1 is satisfied, and whose projections are
measurable (which exists by Lemma 4).

Proof of 2. Suppose not. Then there exists an agent i and a set T̂ with positive
measure such that for every t ∈ T̂ , we have ti > ci and yet

∑
j pj(t) < 1. Define an

allocation function p∗ by

p∗j(t) =

{
pj(t), if j 6= i or t /∈ T̂
1−

∑
j 6=i pj(t), otherwise.

It is easy to see that p∗ satisfies all the constraints and improves the objective function,
a contradiction.

Proof of 3. Suppose to the contrary that we have a positive measure set of t such that∑
j pj(t) < 1 but for each t, there exists some i with p̂i(ti) > ϕi. Then there exists i and

a positive measure set of t such that for each t, we have
∑

j pj(t) < 1 and p̂i(ti) > ϕi.
From part 1, we know that for all ti ∈ Ti with p̂i(ti) > ϕi we have ti > ci. Hence from
part 2, the mechanism is not optimal, a contradiction.

Abusing notation, redefine T to equal a measure 1 subset of T \ T ′ whose projections
are measurable (which exists by Lemma 4) on which all the properties of Lemma 5 are
satisfied everywhere.

Lemma 6. There is a set T ′ ⊆ T with µ(T ′) = 1 such that for any t ∈ T ′, if ti−ci > tj−cj
and p̂j(tj) > ϕj, then pj(t) = 0.

Proof. Suppose not. Then we have a positive measure set S such that for all t ∈ S,
ti − ci > tj − cj, p̂j(tj) > ϕj, and pj(t) > 0. Hence there exists α > 0 and ε > 0 such

that µ(Ŝ) > 0 where

Ŝ = {t ∈ T | ti − ci − (tj − cj) ≥ α, p̂j(tj) ≥ ϕj + ε, and pj(t) ≥ ε}.

Define p∗ by

p∗j(t) =


pk(t), for k 6= i, j or t /∈ Ŝ
pj(t)− ε, for k = j and t ∈ Ŝ
pi(t) + ε, for k = i and t ∈ Ŝ.

Since pj(t) ≥ ε for all t ∈ Ŝ, we have p∗k(t) ≥ 0 for all k and t. Obviously,
∑

k p
∗
k(t) =∑

k pk(t), so the constraint that the pk’s sum to less than one must be satisfied.
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Turning to the lower bound constraint on the p̂k’s, obviously, for k 6= j, we have
p̂∗k(tk) ≥ p̂k(tk) ≥ ϕk, so the constraint is satisfied for all k 6= j and all tk. For any tj,
either p̂∗j(tj) = p̂j(tj) or

p̂∗j(tj) = p̂j(tj)− εµ−j(Ŝ (tj)) ≥ p̂j(tj)− ε.

But for each tj for which p̂∗j(tj) 6= p̂j(tj), we have p̂j(tj) ≥ ϕj + ε, so

p̂∗j(tj) ≥ ϕj + ε− ε = ϕj.

Hence for every k and every tk, we have p̂∗k(tk) ≥ ϕk. Therefore, p∗ is feasible given ϕ.

Finally, the change in the principal’s payoff in moving from p to p∗ is

µ(Ŝ)ε
[
E(ti − ci | t ∈ Ŝ)− E(tj − cj | t ∈ Ŝ)

]
≥ µ(Ŝ)εα > 0.

Hence p could not have been optimal, a contradiction.

Thus the set S0 = {t ∈ T | ti − ci − (tj − cj) > 0, p̂j(tj) > ϕj, and pj(t) > 0} has
measure zero. Abusing notation, redefine T to equal a measure 1 subset of T \ S0 whose
projections are measurable (which exists by Lemma 4).

Lemma 7. There is a set of measure one T ′ ⊆ T such that for all t′, t′′ ∈ T ′ such that
t′j = t′′j , pj(t

′) > 0, p̂i(t
′
i) > ϕi, t

′′
i < t′i, and p̂i(t

′′
i ) > ϕi, we have pi(t

′′) = 0.

The idea that underlies the proof is simple. Consider two profiles t′ and t′′ that have
the properties stated in the lemma. That is, t′j = t′′j , pj(t

′) > 0, p̂i(t
′
i) > ϕi, t

′′
i < t′i, and

p̂i(t
′′
i ) > ϕi. Suppose the claim is false, so that pi(t

′′) > 0. Clearly, there is some ε > 0
such that pj(t

′) > ε, p̂i(t
′
i) > ϕi + ε, and p̂i(t

′′
i ) > ϕi + ε, and pi(t

′′) > ε. For simplicity,
assume µ(t′) = µ(t′′) = δ > 0. (The formal proof will extend the argument to the case
that µ is a general atomless probability measure.) Consider the following transfer of
allocation probabilities between agents i and j. For the profile t′, increase pi(t

′) by ε
and decrease pj(t

′) by ε. For the profile t′′, decrease pi(t
′′) by ε and increase pj(t

′′) by ε.
Let p∗ denote the resulting probability function. It is easy to see that p∗ satisfies all the
constraints. Also, it increases the value of the objective function because the net effect
of the transfers is to move a probability εδ of allocating the object from type t′′i to type
t′i where t′i > t′′i . This argument is not sufficient for the general proof, of course, since µ
is atomless, implying that we must change p on a positive measure set of types to have
an effect.

Proof. Given any rational number α and any t′j ∈ Tj, let

Â−j(α, t
′
j) = {t′−j ∈ T−j | t′i > α, p̂i(t

′
i) > ϕi, and pj(t

′) > 0}
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B̂−j(α, t
′
j) = {t′−j ∈ T−j | t′i < α, p̂i(t

′
i) > ϕi, and pi(t

′) > 0}.

Ĉj(α) = {t′j ∈ Tj | µ−j(Â−j(α, t′j)) > 0, µ−j(B̂−j(α, t
′
j)) > 0}.

Also let

Ã−j(α, t
′
j, ε, δ) = {t′−j ∈ T−j | t′i > α + δ, p̂i(t

′
i) > ϕi + ε, and pj(t

′) > ε}

B̃−j(α, t
′
j, ε, δ) = {t′−j ∈ T−j | t′i < α− δ, p̂i(t′i) > ϕi + ε, and pi(t

′) > ε}.
and

Ã(α, ε, δ) = {t ∈ T | ti > α + δ, p̂i(ti) > ϕi + ε, and pj(t) > ε}

=
⋃
t′j∈Tj

{
t′j
}
× Ã−j(α, t′j, ε, δ)

B̃(α, ε, δ) = {t ∈ T | ti < α− δ, p̂i(ti) > ϕi + ε, and pi(t) > ε}

=
⋃
t′j∈Tj

{
t′j
}
× B̃−j(α, t′j, ε, δ)

C̃j(α, ε, δ) = {t′j ∈ Tj | µ−j(Ã−j(α, t′j, ε, δ)) > 0, µ−j(B̃−j(α, t
′
j, ε, δ)) > 0}.

Finally let

Ā (α, ε, δ) =
⋃

tj∈C̃j(α,ε,δ)

{tj} × Ã−j(α, tj, ε, δ) =
(
C̃j (α, ε, δ)× T−j

)
∩ Ã (α, ε, δ)

B̄ (α, ε, δ) =
⋃

tj∈C̃j(α,ε,δ)

{tj} × B̃−j(α, tj, ε, δ) =
(
C̃j (α, ε, δ)× T−j

)
∩ B̃ (α, ε, δ)

Measurability of all the sets defined above follows from standard arguments.

We now show that for every rational number α, we have µj(Ĉj(α)) = 0. So suppose
not. Fix the rational α for which it fails. Then there must be ε > 0 and δ > 0 such that
µj(C̃j(α, ε, δ)) > 0. For notational simplicity, we drop the arguments α, ε, δ in the next
step of the argument as they are fixed in this step.

Define p∗ as follows. For k 6= i, j and any t, p∗k(t) = pk(t). Also, for any t /∈ Ā ∪ B̄
and all k, p∗k(t) = pk(t). For t ∈ Ā,

p∗j(t) = pj(t)− εµ−j
(
B̃−j (tj)

)
and p∗i (t) = pi(t) + εµ−j

(
B̃−j(tj)

)
.

For t ∈ B̄,

p∗j(t) = pj(t) + εµ−j

(
Ã−j (tj)

)
and p∗i (t) = pi(t)− εµ−j

(
Ã−j (tj)

)
.

10



For t ∈ Ā, we have pj(t) ≥ ε, while for t ∈ B̄, pi(t) ≥ ε. Hence p∗ satisfies non–
negativity. Clearly, for any t,

∑
k p
∗
k(t) =

∑
k pk(t), so p∗ satisfies the constraint that the

sum of the p’s is less than 1.

Obviously, for k 6= i, j, we have p̂∗k(tk) = p̂k(tk) ≥ ϕk. So the lower bound constraint
on p̂k(tk) holds for all tk for all k 6= i, j. Clearly, for any tj such that p∗j(t) ≥ pj(t) for all
t−j, we have p̂j(tj) ≥ ϕj. Otherwise, we have

p̂∗j(tj) = p̂j(tj)− εµ−j
(
B̃−j(tj)

)
µ−j(Ã(tj)) + εµ−j

(
B̃−j(tj)

)
µ−j

(
Ã−j (tj)

)
.

So p̂∗j(tj) = p̂j(tj). Hence p̂∗j(tj) ≥ ϕj for all tj ∈ Tj.

For any ti such that p∗i (t) ≥ pi(t) for all t−i, we have p̂i(ti) ≥ ϕi. So consider ti
such that p∗i (t) < pi(t) for some t−i. Then there must be t−i such that t ∈ B̄. Hence
p̂i(ti) ≥ ϕi + ε. So

p̂∗i (ti) = p̂i(ti) + εµ−i
(
{t−i | (ti, t−i) ∈ Ā}

)
µ−j

(
B̃−j (tj)

)
− εµ−i

(
{t−i | (ti, t−i) ∈ B̄}

)
µ−j

(
Ã−j (tj)

)
≥ p̂i(ti)− ε
≥ ϕi + ε− ε = ϕi.

Hence the lower bound constraint for p̂i also holds everywhere.

Finally, the change in the principal’s payoff from switching to p∗ from p is∫
t∈Ā

{[
(ti − ci)εµ−j

(
B̃−j(tj)

)]
−
[
(tj − cj)εµ−j

(
B̃−j(tj)

)]}
µ(dt)

+

∫
t∈B̄

{[
−(ti − ci)εµ−j

(
Ã−j(tj)

)]
+
[
(tj − cj)εµ−j

(
Ã−j(tj)

)]}
µ(dt)

=

∫
C̃j

(∫
Ã−j(tj)

{[
(ti − ci)εµ−j

(
B̃−j(tj)

)]
−
[
(tj − cj)εµ−j

(
B̃−j(tj)

)]}
µ−j(dt−j)

+

∫
B̃−j(tj)

{[
−(ti − ci)εµ−j

(
Ã−j(tj)

)]
+
[
(tj − cj)εµ−j

(
Ã−j(tj)

)]}
µ−j(dt−j)

)
µj(dtj).

Note that (tj − cj)εµ−j(Ã−j(tj)) and (tj − cj)εµ−j(B̃−j(tj)) are functions only of tj, not
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t−j. Hence we can rewrite the above as∫
C̃j

(
−
[
(tj − cj)εµ−j

(
B̃−j(tj)

)] ∫
Ã−j(tj)

µ−j(dt−j)

)
µj(dtj)

+

∫
C̃j

([
(tj − cj)εµ−j

(
Ã−j(tj)

)] ∫
B̃−j(tj)

µ−j(dt−j)

)
µj(dtj)

+

∫
C̃j

(∫
Ã−j(tj)

[
(ti − ci)εµ−j

(
B̃−j(tj)

)]
µ−j(dt−j)

)
µj(dtj)

−
∫
C̃j

(∫
B̃−j(tj)

[
(ti − ci)εµ−j

(
Ã−j(tj)

)]
µ−j(dt−j)

)
µj(dtj)

The first two lines sum to zero. For the last two lines, recall that t ∈ Ā implies ti ≥ α+δ,
while t ∈ B̄ implies ti ≤ α− δ. Hence the last two lines sum to at least∫

C̃j

(∫
Ã−j(tj)

[
(α + δ)εµ−j

(
B̃−j(tj)

)]
µ−j(dt−j)

)
µj(dtj)

−
∫
C̃j

(∫
B̃−j(tj)

[
(α− δ)εµ−j

(
Ã−j(tj)

)]
µ−j(dt−j)

)
µj(dtj)

=

∫
C̃j

[
(α + δ)εµ−j

(
B̃−j(tj)

)
µ−j

(
Ã−j(tj)

)]
µj(dtj)

−
∫
C̃j

[
(α− δ)εµ−j

(
Ã−j(tj)

)
µ−j

(
B̃−j(tj)

)]
µj(dtj)

> 0.

Hence the payoff difference for the principal between p∗ and p is strictly positive. Hence
p could not have been optimal, a contradiction.

This establishes that for every rational α, µj(Ĉj(α)) = 0.

To complete the proof, let

Âj(α) = {tj ∈ Tj | µ−j(Â−j(α, tj)) = 0}

and
B̂j(α) = {tj ∈ Tj | µ−j(B̂−j(α, tj)) = 0}.

It is easy to see that for any α, Âj(α) ∪ B̂j(α) ∪ Ĉj(α) = Tj. Let

A(α) =
⋃

tj∈Âj(α)

{tj} × Â−j(α, tj)

= {t ∈ T | ti > α, p̂i(ti) > ϕi, and pj(t) > 0} ∩
[
Âj (α)× T−j

]
12



B(α) =
⋃

tj∈B̂j(α)

{tj} × B̂−j(α, tj)

= {t ∈ T | ti < α, p̂i(ti) > ϕi, and pi(t) > 0} ∩
[
B̂j (α)× T−j

]
C(α) =

⋃
tj∈Ĉj(α)

{tj} × T−j

and
D(α) = A(α) ∪ B(α) ∪ C(α).

Once again measurability of the sets just defined is straightforward.

Note that µ (A (α)) = 0, since

µ(A(α)) =

∫
Âj(α)

µ−j(A−j(α, tj))µj(dtj)

=

∫
Âj(α)

µ−j(Â−j(α, tj))µj(dtj)

= 0,

where the last equality follows from µ−j(Â−j(α, tj)) = 0 for all tj ∈ Âj(α). Similarly,

µ(B(α)) = 0. Also, µ(C(α)) = µj(Ĉj(α))µ−j(T−j) which is 0 by the first step. Hence
µ(D(α)) = 0.

Let S = ∪α∈QD(α) where Q denotes the rationals. Clearly µ(S) = 0.

To complete the proof, suppose that, contrary to our claim, there exists t′, t′′ ∈ T \ S
such that pj(t

′) > 0, p̂i(t
′
i) > ϕi, t

′′
i < t′i, and p̂i(t

′′
i ) > ϕi, but pi(t

′
j, t
′′
i , t
′′
−ij) > 0.

Obviously, there exists a rational α such that t′′i < α < t′i. Hence (t′i, t
′
−ij) ∈ Â−j(α, t′j)

and (t′′i , t
′′
−ij) ∈ B̂−j(α, t′j). Since t′ is not in S, we know that t′ /∈ A(α), implying that

t′j /∈ Âj(α). Similarly, since t′′ is not in S, we have t′′ /∈ B(α), so t′j /∈ B̂j(α). Similarly,

t′ /∈ C(α), implying t′j /∈ Cj(α). But Âj(α) ∪ B̂j(α) ∪ Ĉj(α) = Tj, a contradiction.

Abusing notation, define T to be a measure one subset of T ′ whose projections are
measurable and such that for all t′, t′′ ∈ T for which t′j = t′′j , pj(t

′) > 0, p̂i(t
′
i) > ϕi,

t′′i < t′i, and p̂i(t
′′
i ) > ϕi, we have pi(t

′′) = 0.

Lemma 8. There is a set of measure one T ′ such that if p̂j(tj) = ϕj, p̂i(ti) > ϕi, and

µi ({t′i ∈ Ti | t′i < ti and p̂i(t
′
i) > ϕi}) > 0,

then pj(t) = 0.
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Proof. Let

T ∗i = {ti ∈ Ti | p̂i(ti) > ϕi and µi({t′i | p̂i(t′i) > ϕi and t′i < ti}) > 0} .

To see that T ∗i is measurable. note that

T ∗i = T̃ ∗i
⋂
{ti ∈ Ti | p̂i(ti) > ϕi}

where
T̃ ∗i = {ti ∈ Ti | µi({t′i | p̂i(t′i) > ϕi and t′i < ti}) > 0} .

Since T̃ ∗i is an interval (i.e., t̂i ∈ T̃ ∗i and t′′i > t̂i implies t′′i ∈ T̃ ∗i ), it is measurable. Hence
T ∗i is the intersection of two measurable sets and so is measurable.

Suppose the claim of the lemma is not true. Then there exists ε > 0 such that
µ(S) > 0 and such that S has measurable projections where

S = {t ∈ T | ti ∈ T ∗i , p̂j(tj) = ϕj, p̂i (ti) > ϕi + ε, and pj(t) ≥ ε},

and where we use Lemma 4 and take an equal measure subset if necessary.

Since µ(S) > 0, we must have µi(Si) > 0 and hence µi(T
∗
i ) > 0 since Si ⊆ T ∗i . Choose

measurable sets Li,Mi, Ui ⊂ Si such that the following hold. First, all three sets have
strictly positive measure. Second, supLi < inf Mi and supMi < inf Ui. (Think of U , M ,
and L as standing for “upper,” “middle,” and “lower” respectively.) Third, there is an
ε′ > 0 such that µ(Ŝ) > 0 where Ŝ is defined as follows. Let

S ′′ =
⋃
ti∈Ui

{ti}×{t−i ∈ T−i | (ti, t−i) ∈ S} = {t ∈ T | ti ∈ Ui, p̂j(tj) = ϕj, and pj(t) ≥ ε}.

Clearly µ(S ′′) > 0. By Lemma 4, there exists a positive measure set Ŝ ⊂ S ′′ and a number
ε′ > 0 satisfying the following. First, Ŝ has strictly positive measure fibers. That is, for
all i and all ti, µ−i(Ŝ(ti)) > 0. Second, the j fibers of Ŝ have measure bounded below by
ε′. That is, µ−j(Ŝ(tj)) > ε′.

Let E = {t ∈ T | pi (t) > ϕi, ti ∈ Li}. Since p̂i (ti) > ϕi for all ti ∈ Li ⊂ T ∗i , E has
strictly positive measure. By taking a subset if necessary, we know that for all k, the
projections Ek on Tk have strictly positive measure, as do the projections on −i and on
−{i, j}. (E−i(ti) denotes, as usual, the ti fiber of E.)

Let A = Mi × E−i. Since µi(Mi) > 0 and µ−i(E−i) > 0, we see that µ(A) > 0.
Taking subsets if necessary, and using Lemma 4, we know that we can find an equal
measure subset (also, abusing notation, denoted A) all of whose fibers have strictly
positive measure and whose projections are measurable. We now show that pi(t) = 1 for
almost all t ∈ A.
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To see this, suppose not. Then we have a positive measure set of such t ∈ A with
pi(t) < 1. For all t ∈ A, we have p̂i(ti) > ϕi. In light of Lemma 5, this implies∑

k pk(t) = 1. Therefore, there exists k 6= i and a positive measure set Â ⊆ A such that

pk(t) > 0 for all t ∈ Â.

But fix any t′ ∈ Â. By construction, t′i ∈ Mi and t′−i ∈ E−i(t
′′
i ) for some t′′i ∈ Li.

Since t′i ∈ Mi and t′′i ∈ Li, we have t′i > t′′i , p̂i(ti) > ϕi, and p̂i(t
′′
i ) > ϕi. By definition

of E−i(t
′′
i ), we have pi(t

′′
i , t
′
−i) > 0. Finally, we have pk(t

′) > 0. Letting t′′ = (t′′i , t
′
−i), we

see that this is impossible given that we removed the set S̄ defined in Lemma 7 from T .
Hence pi(t) = 1 for all t ∈ A.

Let B = Mi × Ŝj ×E−ij. Recall that µi(Mi) > 0. Also, µ(Ŝ) > 0 implies µj(Ŝj) > 0.
Finally, µ−ij(E−ij) > 0. Hence µ(B) > 0. Again, taking subsets if necessary, and using
Lemma 4, we know that we can find an equal measure subset (also, abusing notation,
denoted B) all of whose fibers have strictly positive measure and whose projections are
measurable. We now show that for all t ∈ B, we have pj(t) = 1.

To see this, suppose not. Just as before, Lemma 5 then implies that there exists k 6= j
and B̂ ⊆ B such that for all t ∈ B̂, pk(t) > 0. First, we show that k 6= i. To see this,
suppose to the contrary that k = i. Fix any t′′ ∈ B̂. By assumption, pi(t

′′) > 0. By
definition of B, t′′i ∈ Mi, so p̂i(t

′′
i ) > ϕi. Also by definition of B, t′′j ∈ Ŝj. So fix t′ ∈ Ŝ

such that t′j = t′′j . By definition of Ŝ, t′i ∈ Ui, implying both p̂i(t
′
i) > ϕi and t′i > t′′i (as

t′′i ∈Mi). The definition of Ŝ also implies pj(t
′) > 0. Just as before, this contradicts the

removal of S̄ from T . Hence k 6= i.

So fix any t′ ∈ B̂. By assumption, pk(t
′) > 0. By definition of B, t′i ∈ Mi, so

p̂i(t
′
i) > ϕi. Also, the definition of B implies that t′−ij ∈ E−ij(t′′i ) for some t′′i ∈ Li. Hence

there exists t′′j such that (t′′j , t
′
−ij) ∈ E−i(t

′′
i ). Let t′′ = (t′′i , t

′′
j , t
′
−ij). By construction,

t′k = t′′k. Also, since t′′i ∈ Li, we have p̂i(t
′′
i ) > ϕi and t′i > t′′i (as t′i ∈ Mi). Finally, by

definition of E−i(t
′′
i ), we have pi(t

′′) > 0. Again, this contradicts the removal of S̄ from
T . Hence for all t ∈ B, pj(t) = 1.

Summarizing, for every t ∈ A, we have pi(t) = 1 (and hence pj(t) = 0) and p̂i(ti) ≥
ϕi + ε, while for almost every t ∈ B, we have pj(t) = 1 and and p̂i(ti) ≥ ϕi + ε.

For any t′j ∈ Aj and t′′j ∈ Bj, let

F−j(t
′
j, t
′′
j ) = {t−j ∈ T−j | pj(t′j, t−j) > pj(t

′′
j , t−j)}.

Obviously, for every tj and hence every tj ∈ Aj, we have p̂j(tj) ≥ ϕj. For every tj ∈ Bj,

we have tj ∈ Ŝj ⊆ Sj, so p̂j(tj) = ϕj. Hence for every t′j ∈ Aj and t′′j ∈ Bj, we
have p̂j(t

′
j) ≥ p̂j(t

′′
j ) even though pj(t

′) = 0 and pj(t
′′) = 1 for all t′ ∈ A, t′′ ∈ B.

Moreover, B−j = A−j = Mi × E−i,j. Hence for every t′j ∈ Aj and t′′j ∈ Bj, we must have
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µ−j(F−j(t
′
j, t
′′
j )) > 0.

By Lemma 5, the fact that pj(t
′′) = 1 for t′′ ∈ B implies that t′′j > cj for all t′′ ∈ B.

Hence, by Lemma 5, for every (t′′j , t−j) with t′′j ∈ Bj, we have
∑

k pk(t
′′
j , t−j) = 1. Thus

for every t−j ∈ F−j(t′j, t′′j ), there exists k 6= j such that pk(t
′′
j , t−j) > 0.

Let

G =
{(
t′j, t

′′
j , t−j

)
∈ T (1)

j × T
(2)
j × T−j | t′j ∈ Aj, t′′j ∈ Bj, and t−j ∈ F−j

(
t′j, t

′′
j

)}
where we use the superscripts on Tj to distinguish the order of components. The argument
above implies that according to the product measure µ =µj × µj × µ−j, G is non–null,
i.e., µ (G) > 0. (Specifically, µ (G) =

∫
Aj

∫
Bj
µ−j

(
F−j

(
t′j, t

′′
j

))
µj
(
dt′j
)
µj
(
dt′′j
)

which is

strictly positive since for each
(
t′j, t

′′
j

)
in the domain of integration µ−j

(
F−j

(
t′j, t

′′
j

))
> 0

and the domains of integration has positive µj measure.) The argument above also
showed that for every

(
t′j, t

′′
j , t−j

)
∈ G, there exists k such that pk(t

′′
j , t−k) > 0. Therefore

there exists k such that µ(Gk) > 0 where

Gk =
{(
t′j, t

′′
j , t−j

)
∈ Aj ×Bj × T−j | t−j ∈ F−j

(
t′j, t

′′
j

)
, and pk

(
t′′j , t−j

)
> 0
}
.

So we can find Ĝk ⊂ Gk such that µ(Ĝk) > 0 and for all (t′j, t
′′
j , t−j) ∈ Ĝk, we have (1)

pj(t
′
j, t−j) > pj(t

′′
j , t−j)+ε

′′, and (2) pk(t
′′
j , t−j) > ε′′. Taking subsets if necessary, and using

Lemma 4, we know that we can find an equal measure subset (also, abusing notation,
denoted Gk) all of whose fibers have strictly positive measure and whose projections are
measurable.

Now we define

Ĉ = proj
T

(2)
j ×T−j

Ĝk

D̂ = proj
T

(1)
j ×T−j

Ĝk

Â = A ∩
[
proj

T
(1)
j
Ĝk × T−j

]
=
{
t ∈ A | tj ∈ proj

T
(1)
j
Ĝk
}

B̂ = B ∩
[
proj

T
(2)
j
Ĝk × T−j

]
=
{
t ∈ B | tj ∈ proj

T
(2)
j
Ĝk
}

S̃ = Ŝ ∩
[
proj

T
(2)
j
Ĝk × T−j

]
=
{
t ∈ Ŝ | tj ∈ proj

T
(2)
j
Ĝk
}

All the above defined sets are measurable with strictly positive measure.27

27For example, Â has strictly positive measure because we defined it to have fibers with strictly positive
measure. Moreover, proj

T
(1)
j

Ĝk is a subset of Aj with strictly positive measure. So the measure of Â is

the integral over a strictly positive measure set of tj ’s (those in proj
T

(1)
j

Ĝk) of the measure of the j–fibers

of A, which have strictly positive measure. The same argument applies to B̂ and to S̃ (the latter since
Ŝj = Bj).

16



The following is a summary of the key facts about these sets. For every t ∈ Â, we
have pi(t) = 1 and p̂i(ti) ≥ ϕi + ε. For every t ∈ S̃, we have pj(t) ≥ ε. For every

t ∈ Ĉ, we have pk(t) ≥ ε′′. For every t ∈ D̂, we have pj(t) ≥ ε. Finally, Âj = D̂j,

S̃j = Ĉj, and Ĉk = D̂k. (Also µ−j(Ĉ−j) = µ−j(D̂−j) > 0, µ(Ĉ) > 0, and µ(D̂) > 0.

To see that Âj = D̂j, note that Ĝk
j(1)
⊂ Aj. Similarly, to see that S̃j = Ĉj, note that

Ĝk
j(2)
⊂ Ŝj = Bj.)

For each E ∈ {Â, S̃, Ĉ, D̂}, define a function zE : T → [0, 1) such the following holds
(where, for notational simplicity, the subscripts of Z do not include the hats and tildes):

zE = 0 iff t 6∈ E (9)

∀tj ∈ Âj = D̂j, Et−j
[zA(tj, t−j)] = Et−j

[zD(tj, t−j)] (10)

∀tk ∈ Ĉk = D̂k, Et−k
[zC(tk, t−k)] = Et−k

[zD(tk, t−k)] (11)

∀tj ∈ S̃j = Ĉj, Et−j
[zS(tj, t−j)] = Et−j

[zC(tj, t−j)] (12)

We show below that such functions exist. Note the following useful implication of the
definitions. If we multiply both sides of the first equation by µj(tj) and integrate over
tj, we obtain

Et[zA(t)] = Et[zD(t)].

Similarly,
Et[zS(t)] = Et[zC(t)].

Et[zC(t)] = Et[zD(t)].

Hence
Et[zA(t)] = Et[zS(t)].

We now use this fact to construct a mechanism that improves on p.

Define p∗ as follows. For any t /∈ Â ∪ S̃ ∪ Ĉ ∪ D̂, p∗(t) = p(t). Similarly, for any
` /∈ {i, j, k}, we have p∗`(t) = p`(t) for all t. Also,

∀t ∈ Â, p∗i (t) = pi(t)− εzA(t), p∗j(t) = pj(t) + εzA(t), and p∗k(t) = pk(t)

∀t ∈ S̃, p∗i (t) = pi(t) + εzS(t), p∗j(t) = pj(t)− εzS(t), and p∗k(t) = pk(t)

∀t ∈ Ĉ, p∗i (t) = pi(t), p∗j(t) = pj(t) + εzC(t), and p∗k(t) = pk(t)− εzC(t)

∀t ∈ D̂, p∗i (t) = pi(t), p∗j(t) = pj(t)− εzD(t), and p∗k(t) = pk(t) + εzD(t).

The key facts summarized above are easily seen to imply that p∗`(t) ≥ 0 for all ` and all
t. Also,

∑
` p
∗
`(t) =

∑
` p`(t), so the constraint that p∗ sum to less than 1 is satisfied.

It is easy to see that the way we defined the z functions implies that p̂∗j(tj) = p̂j(tj)

for all tj and p̂∗k(tk) = p̂k(tk) for all tk. Finally, note that p∗i (t) < pi(t) only for ti ∈ Âi
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and that such ti have p̂i(ti) ≥ ϕi + ε. Hence for those ti’s with p∗i (ti, t
′
−i) < pi(ti, t−i) for

some t−i, we have
p̂∗i (ti) ≥ p̂i(ti)− εEt−i

[zA(t−i, ti)].

But the fact that zA(t) < 1 for all t implies that the right–hand side is at least

p̂i(ti)− ε ≥ ϕi + ε− ε = ϕi.

Hence the constraint that p∗`(t`) ≥ ϕ` holds for all t` and all `. Therefore, p∗ is feasible
given ϕ.

Finally, note that the principal’s payoff from p∗ minus his payoff from p is

Eti [(p̂∗i (ti)− p̂i(ti))(ti − ci)] = ε

∫
S̃

zS(t)(ti − ci)µ(dt)− ε
∫
Â

zA(t)(ti − ci)µ(dt)

> ε(inf Ui − ci)E[zS(t)]− ε(supMi − ci)E[zA(t)]

= εE[zS(t)](inf Ui − supMi),

where the first inequality follows from the fact that ti ∈ S̃i implies ti ∈ Ui and ti ∈ Âi
implies ti ∈ Mi and the last equality from E[zS(t)] = E[zA(t)]. Recall that inf Ui >
supMi, so the expression above is strictly positive. Hence if such z functions exist, p
could not have been optimal.

To conclude, we show that for each E ∈ {Â, S̃, Ĉ, D̂}, zE functions exist that satisfy
equations (9), (10), (11), and (12).

Fix δ < 1 and define functions as follows:

g(tj) = δµ−j(Â−j(tj))

zA(tj) = δ

∫
D̂−j(tj)

[
µ−k(Ĉ−k(tk))

]
µ−j(dt−j)

zC(tk) =

∫
D̂−k(tk)

g(tj)µ−k(dt−k)

zD(tk, tj) = g(tj)µ−k

(
Ĉ−k(tk)

)
zS(tj) =

∫
Ĉ−j(tj)

zC(tk)µ−j(dt−j)

µ−j(S̃−j(tj))

where we recall that for any event S, we let S−`(t`) = {t−` ∈ T−` | (t`, t−`) ∈ E}, the t`-
fiber of E. For any δ < 1, it is obvious that zA, zC , and zD take values in [0, 1). Regarding
zS, if µ(S̃(tj)) is bounded away from above zero, then for δ ≤ inftj∈S̃j

µ−j(S̃−j(tj)), we

have zS ∈ [0, 1). As discussed above, inftj∈S̃j
µ−j(S̃−j(tj)) > ε so we can find such a δ.
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We now verify equations (10), (11), and (12). First, consider equation (10). Note
that

Et−j
[zA(tj, t−j)] =

∫
Â−j(tj)

zA(tj)µ−j(dt−j)

= zA(tj)µ−j(Â−j(tj))

= δµ−j(Â−j(tj))

∫
D̂−j(tj)

µ−k(Ĉ−k(tk))µ−j(dt−j)

and

Et−j
[zD(tj, t−j)] =

∫
D̂−j(tj)

g(tj)µ−k(Ĉ−k(tk))µ−j(dt−j)

= δµ−j(Â−j(tj))

∫
D̂−j(tj)

µ−k(Ĉ−k(tk))µ−j(dt−j),

where in both sets of equalities the main step is taking terms outside the integral when
they do not depend on the variable of integration. Thus (10) holds.

Second, consider equation (11). Note that

Et−k
[zC(tk, t−k)] = zC(tk)

∫
Ĉ−k(tk)

µ−k(dt−k)

=

[∫
D̂−k(tk)

g(tj)µ−k(dt−k)

] [
µ−k(Ĉ−k(tk))

]
and

Et−k
[zD(tk, t−k)] =

∫
D̂−k(tk)

zD(tk, t−k)µ−k(dt−k)

=

∫
D̂−k(tk)

g(tj)µ−k(Ĉ−k(tk))µ−k(dt−k)

= µ−k(Ĉ−k(tk))

∫
D̂−k(tk)

g(tj)µ−k(dt−k).

Thus (11) holds.

Finally, consider equation (12). We have

Et−j
[zC(tj, t−j)] =

∫
Ĉ−j(tj)

zC(tk)µ−j(dt−j)
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and

Et−j
[zS(tj, t−j)] =

∫
S̃−j(tj)

zS(tj)µ−j(dt−j) = zS(tj)

∫
S̃−j(tj)

µ−j(dt−j)

=

∫
Ĉ−j(tj)

zC(tk)µ−j(dt−j)

µ−j(S̃−j(tj))

∫
S̃−j(tj)

µ−j(dt−j)

=

∫
Ĉ−j(tj)

zC(tk)µ−j(dt−j).

Thus (12) holds.

Lemma 9. For any i,
µi ({ti ∈ Ti | p̂i(ti) = ϕi}) > 0.

Proof. Clearly if ϕi = 1, the result holds, so assume ϕi < 1.

Suppose the claim is false. Recall that the principal’s objective function is∑
i

{Eti [p̂i(ti)(ti − ci)] + ϕici}

and that at the optimal solution ϕi = infti p̂i(ti).

If µi({ti | p̂i(ti) = ϕi}) = 0, then for any δ > 0, there is an ε > 0 such that

µi ({ti | p̂i(ti) < ϕi + ε}) < δ.

To see this, fix a sequence εn converging to 0 and define

An = {ti | p̂i(ti) < ϕi + εn},

A0 = {ti | p̂i(ti) = ϕi},

and let δn = µi(An). Then An ↓ A0 and µi (A0) = 0 by assumption, so δn ↓ 0. Hence for
any δ > 0, find n such that δn < δ and choose ε = εn to get the desired property.

So given any δ ∈ (0, 1) and the corresponding ε, let Aδ,εi = {ti | p̂i(ti) < ϕi + ε}.
Choose δ small enough so that ϕi + ε < 1− I

√
δ. (This is possible since ϕi < 1.) So for

each ti ∈ Aδ,εi , we have ∫
T−i

pi(ti, t−i)µ−i(dt−i) < 1− I
√
δ.

By hypothesis, p̂i(ti) > ϕi with probability 1. Hence by Lemma 5, we have
∑

k pk(t) = 1
with probability 1. Therefore, for each ti with p̂i(ti) < ϕi + ε, there exists k = kti,δ,ε 6= i
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and V ti,δ,ε
k ⊆ T−i with pk(ti, t−i) ≥

√
δ for all t−i ∈ V ti,δ,ε

k and µ−i(V
ti,δ,ε
k ) ≥

√
δ. Choose

a subset of V ti,δ,ε
k with measure

√
δ and for simplicity denote it by V ti,δ,ε

k .

Let η = min{
√
δ, ε}. Increase ϕi by η

√
δ. This change increases the value of the

objective function by ciη
√
δ. However, this may violate the constraint that p̂i(ti) ≥ ϕi

for all ti. Clearly, this can only occur for ti such that p̂i(ti) < ϕi + η
√
δ. By our choice

of η, such ti satisfy p̂i(ti) < ϕi + ε
√
δ < ϕi + ε as δ < 1. So for all ti such that

p̂i(ti) < ϕi + ε and all t−i ∈ V ti,δ,ε
k , increase pi(ti, t−i) by η and decrease pk(ti, t−i) by

η. Since µ−i(V
ti,δ,ε
k ) =

√
δ, this change increases p̂i(ti) by η

√
δ. Hence we again have

p̂i(ti) ≥ ϕi for all ti after the change.

However, the reduction in pk may have violated the constraint p̂k(tk) ≥ ϕk for all tk.
Hence we increase ϕk by ηδ. To see that this will ensure the constraint is satisfied, note
that pk was reduced only for ti such that p̂i(ti) < ϕi + ε, a set with probability less than
δ. Hence for any tk, the reduction in p̂k(tk) must be less than ηδ. After this change, the
resulting p and ϕ tuples satisfy feasibility.

To see that the objective function has increased as a result, recall that the gain from
the increase in ϕi is ciη

√
δ. Similar reasoning shows that the loss from decreasing ϕk is

ckηδ. Finally, the reduction in pk and the corresponding increase in pi generates a loss of
no more than ηδ

√
δ[(t̄k − ck)− (ti − ci)] since the measure of the set of t’s for which we

make this change is less than δ
√
δ. Hence the objective function increases if

ciη
√
δ > ckηδ + ηδ

√
δ [(t̄k − ck)− (ti − ci)] ,

which must hold for δ sufficiently small.

Recall that

T ∗i =
{
ti ∈ Ti \ S̄i | p̂i(ti) > ϕi and µi({t′i | p̂i(t′i) > ϕi and t′i < ti}) > 0

}
.

Lemma 10. There exists v∗ such that for all i,

T ∗i = {ti ∈ Ti | ti − ci > v∗}

up to sets of measure zero.

Proof. First, we show that for every i and j, we have µij(Eij) = 0 where

Eij =
{

(ti, tj) | ti − ci > tj − cj, p̂i(ti) = ϕi, and tj ∈ T ∗j
}
.

To see this, suppose to the contrary that µij(E−ij) > 0. Clearly, this implies T ∗j 6= ∅. Let

F−ij =
∏
k 6=i,j

{tk ∈ Tk | p̂k(tk) = ϕk}
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and let S = Eij × F−ij. Then µ(S) > 0 by Lemma 9.

By Lemma 8, the fact that tj ∈ T ∗j and that p̂k(tk) = ϕk for all k 6= j implies that
up to sets of measure zero, we must have pk(t) = 0 for all k 6= j. However, by Lemma 6,
the fact that ti − ci > tj − cj and p̂j(tj) > ϕj implies that up to sets of measure zero, we
have pj(t) = 0. So

∑
k pk(t) = 0 for almost all t ∈ E × F , contradicting Lemma 5.

We now show that this implies that for all i and j such that T ∗i 6= ∅ and T ∗j 6= ∅, we
have

inf T ∗i − ci = inf T ∗j − cj.
Without loss of generality, assume inf T ∗i − ci ≥ inf T ∗j − cj. Suppose that there is a
positive measure set of ti ∈ Ti such that ti > inf T ∗i but ti /∈ T ∗i . Hence for each such ti,
we must have p̂i(ti) = ϕi. By definition of the infimum, for every r > inf T ∗j , there exists
tj ∈ T ∗j such that r > tj ≥ inf T ∗j . By definition of T ∗j , the measure of such tj’s must
be strictly positive since tj ∈ T ∗j implies that there is a positive measure set of t′j < tj
with t′j ∈ T ∗j . But then µij(Eij) > 0, a contradiction. Hence, up to sets of measure zero,
ti > inf T ∗i implies p̂i(ti) > ϕi.

By Lemma 9, then, we must have inf T ∗i > ti. So suppose, contrary to our claim, that
inf T ∗i − ci > inf T ∗j − cj. Then the set of ti such that inf T ∗i − ci > ti − ci > inf T ∗j − cj
and p̂i(ti) = ϕi has strictly positive probability. The same reasoning as in the previous
paragraph shows that µij(Eij) > 0, a contradiction.

In light of this, we can specify v∗ such that the claim of the lemma holds. First, if
T ∗i = ∅ for all i, then set v∗ ≥ maxi(t̄i − ci). Obviously, the lemma holds in this case.

Otherwise, let v∗ = inf T ∗i − ci for any i such that T ∗i 6= ∅. From the above, we see
that v∗ is well–defined. Let IN denote the set of i with T ∗i 6= ∅ and IE the set of i with
T ∗i = ∅. By assumption, IN 6= ∅.

First, we show that for this specification of v∗, the claim of the lemma holds for all
i ∈ IE. To see this, suppose to the contrary that for some i ∈ IE, we have t̄i − ci > v∗.
Then there is a positive measure set of t such that tj ∈ T ∗j for all j ∈ IN and ti−ci > tj−cj
for all j ∈ IN and some i ∈ IE. Then Lemma 6 implies pj = 0 for all j ∈ IN , Lemma 8
implies pi = 0 for all i ∈ IE, and Lemma 5 implies

∑
i pi(t) = 1, a contradiction. Hence

for all i ∈ IE, we have v∗ ≥ t̄i − ci.

To complete the proof, we show that the claim holds for all i ∈ IN . Fix any i ∈ IN .
Obviously, up to sets of measure zero, ti ∈ T ∗i implies ti − ci > inf T ∗i − ci, so

T ∗i ⊆ {ti ∈ Ti | ti − ci > v∗}.

To prove the converse, suppose to the contrary that there is a positive measure set of ti
such that ti− ci > v∗ and ti /∈ T ∗i . Hence there must be a positive measure set of ti such
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that ti > inf T ∗i and p̂i(ti) = ϕi. To see why, recall that v∗ = inf T ∗i − ci, so ti− ci > v∗ is
equivalent to ti > inf T ∗i . Also, T ∗i is the set of points that have p̂i(ti) > ϕi and a positive
measure of smaller points also satisfying this. So if ti /∈ T ∗i but does have p̂i(t̂i) > ϕi, it
must be that the set of smaller points satisfying this has zero measure. Hence there is a
zero measure of such ti. Hence if there’s a positive measure set of points outside T ∗i , a
positive measure of them have p̂i(ti) = ϕi. Let T̂i denote this set.

If there is some j 6= i with T ∗j 6= ∅, the same argument as above implies that µ(Eij) >
0, a contradiction. Hence we must have T ∗j = ∅ for all j 6= i. Hence p̂j(tj) = ϕj with
probability 1 for all j 6= i. Hence Lemma 8 implies that for all ti ∈ T ∗i , we have pj(t) = 0
for j 6= i for almost all t−i. By Lemma 5, then pi(t) = 1 for all ti ∈ T ∗i and almost all t−i.

By definition, for ti ∈ T̂i, we have p̂i(ti) = ϕi < 1.28 Note that ti ∈ T̂i implies that ti
is larger than some t′i ∈ T ∗i . Since t′i ∈ T ∗i implies p̂i(t

′
i) > ϕi, Lemma 5 implies t′i > ci

and hence ti > ci. Hence Lemma 5 implies that for almost every ti ∈ T̂i and almost every
t−i, we have

∑
j pj(t) = 1.

This implies that for every ti ∈ T̂i, there exists T̂−i(ti) ⊆ T−i and j 6= i, such that
pj(ti, t−i) ≥ (1 − ϕi)/(I − 1) for all t−i ∈ T̂−i(ti). To see this, suppose not. Then

there is some ti ∈ T̂i such that for every t−i we have pj(ti, t−i) < (1 − ϕi)(I − 1). But

then
∑

j 6=i pj(ti, t−i) < 1− ϕi. Recall that
∑

j pj(t) = 1 for all ti ∈ T̂i and all t−i. Hence

pi(ti, t−i) > ϕi for all t−i, so p̂i(ti) > ϕi, contradicting ti ∈ T̂i. Since I is finite, this implies
that there exists j 6= i, a positive measure subset of T̂i, say T̂ ′i , and a positive measure
subset of T−i, say T̂ ′−i, such that for every t ∈ T̂ ′i × T̂ ′−i, we have pj(t) ≥ (1−ϕi)/(I − 1).

Fix any t′i ∈ T̂ ′i such that µi({ti ∈ T̂ ′i | ti > t′i}) > 0. It is easy to see that such t′i
must exist. Since t′i > inf T ∗i , it must also be true that µi({ti ∈ T ∗i | ti < t′i}) > 0. Given
this, for any sufficiently small ε > 0, we have

µi

(
{ti ∈ T̂ ′i | ti ≥ t′i + ε}

)
> 0

µi ({ti ∈ T ∗i | ti ≤ t′i − ε}) > 0.

Choose any such ε ∈ (0, (1− ϕi)/(I − 1)).

Taking subsets if necessary, then, we obtain two sets, S1 ⊆ T̂ ′i and S2 ⊆ T ∗i satisfying
the following. First, µi(S

1) = µi(S
2) > 0. Second, ti ∈ S1 implies ti ≥ t′i + ε and ti ∈ S2

implies ti ≤ t′i − ε.

Define p∗ as follows. For any t /∈ (S1 ∪ S2) × T̂ ′−i, p
∗(t) = p(t). For any k 6= i, j,

p∗k(t) = pk(t) for all t. For t ∈ S1 × T̂ ′−i,
p∗j(t) = pj(t)− ε and p∗i (t) = pi(t) + ε.

28If ϕi = 1, then T ∗i = ∅ which contradicts our assumption.

23



For t ∈ S2 × T̂ ′−i,
p∗j(t) = ε and p∗i (t) = 1− ε.

Recall that S2 ⊆ T ∗i and that pi(t) = 1 for almost all ti ∈ T ∗i and t−i ∈ T−i. Hence this is
equivalent to p∗j(t) = pj(t)+ε and p∗i (t) = pi(t)−ε. Recall that ε < (1−ϕi)/(I−1) ≤ pj(t)

for all t ∈ S1 × T̂ ′−i and that ε < 1, so we have p∗k(t) ≥ 0 for all k and t. Also,∑
k p
∗
k(t) =

∑
k pk(t), so the constraint that the pk’s sum to less than one is satisfied. For

any k 6= i, j, we have p̂∗k(tk) = p̂k(tk) for all k and tk so for such k, the constraint that
p̂∗k(tk) ≥ ϕk obviously holds.

For any tj, either p̂∗j(tj) = p̂j(tj) or

p̂∗j(tj) = p̂j(tj)− εµ−j(S1 × T̂ ′−ij) + εµ−j(S
2 × T̂ ′−ij),

where T̂ ′−ij is the projection of T̂ ′−i on T−ij. But µi(S
1) = µi(S

2), implying p̂∗j(tj) =
p̂j(tj) ≥ ϕj for all tj.

For any ti, either p̂∗i (ti) ≥ p̂i(ti) or

p̂∗i (ti) = 1− εµ−i(T̂ ′−i) > 1− ε.

By construction, ε < (1 − ϕi)/(I − 1) ≤ 1 − ϕi. Hence 1 − ε > ϕi. Hence we have
p̂∗i (ti) ≥ ϕi for all ti. So p∗ is feasible given ϕ.

Finally, the change in the principal’s payoff in moving from p to p∗ is

µ(S1)ε
[
E(ti − ci | ti ∈ S1)− E(ti − ci | ti ∈ S2)

]
≥ 2µ(S1)ε2 > 0.

Hence p was not optimal, a contradiction.

To see that this proves Theorem 4, let v∗ be the threshold. By Lemma 10, if some
i has ti − ci > v∗, then that i satisfies p̂i(ti) > ϕi. By Lemma 6, if there is more than
one such i, then only the i with the largest value (i.e., ti − ci) has a positive probability
of getting the good. By Lemma 8, no j with tj − cj < v∗ has any probability of getting
the good. Since p̂i(ti) > ϕi, Lemma 5 implies that we must have

∑
j pj(t) = 1. Hence if

some i has ti − ci > v∗, the i with the largest such value gets the good with probability
1. If any i has ti − ci < v∗, then Lemma 10 implies that p̂i(ti) = ϕi. Thus we have a
threshold mechanism.
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C Proof of Theorem 3

For this proof, it is useful to give an alternative definition of t∗i . Note that we can
rearrange the definition in equation (1) as∫ t∗i

ti

tifi(ti) dti = t∗iFi(t
∗
i )− ci

or
t∗i = E[ti | ti ≤ t∗i ] +

ci
Fi(t∗i )

. (13)

For notational convenience, number the agents so that 1 is any i with t∗i − ci =
maxj(t

∗
j − cj) and let 2 denote any other agent so t∗1 − c1 ≥ t∗2 − c2. First, we show that

the principal must weakly prefer having 1 as the favored agent at a threshold of t∗2 − c2

to having 2 as the favored agent at this threshold. If t∗1 − c1 = t∗2 − c2, this argument
implies that the principal is indifferent between having 1 and 2 as the favored agents, so
we then turn to the case where t∗1 − c1 > t∗2 − c2 and show that it must always be the
case that the principal strictly prefers having 1 as the favored agent at threshold t∗1 − c1

to favoring 2 with threshold t∗2 − c2, establishing the claim.

So first let us show that it is weakly better to favor 1 at threshold t∗2 − c2 than to
favor 2 at the same threshold. First, note that if any agent other than 1 or 2 reports a
value above t∗2 − c2, the designation of the favored agent is irrelevant since the good will
be assigned to the agent with the highest reported value and this report will be checked.
Hence we may as well condition on the event that all agents other than 1 and 2 report
values below t∗2 − c2. If this event has zero probability, we are done, so we may as well
assume this probability is strictly positive. Similarly, if both agents 1 and 2 report values
above t∗2 − c2, the object will go to whichever reports a higher value and the report will
be checked, so again the designation of the favored agent is irrelevant. Hence we can
focus on situations where at most one of these two agents reports a value above t∗2 − c2

and, again, we may as well assume the probability of this event is strictly positive.

If both agents 1 and 2 report values below t∗2 − c2, then no one is checked under
either mechanism. In this case, the good goes to the agent who is favored under the
mechanism. So suppose 1’s reported value is above t∗2 − c2 and 2’s is below. If 1 is the
favored agent, he gets the good without being checked, while he receives the good with
a check if 2 were favored. The case where 2’s reported value is above t∗2 − c2 and 1’s is
below is symmetric. For brevity, let t̂1 = t∗2 − c2 + c1. Note that 1’s report is below the
threshold iff t1− c1 < t∗2− c2 or, equivalently, t1 < t̂1. Given the reasoning above, we see
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that under threshold t∗2 − c2, it is weakly better to have 1 as the favored agent if

F1(t̂1)F2(t∗2)E[t1 | t1 ≤ t̂1] + [1− F1(t̂1)]F2(t∗2)E[t1 | t1 > t̂1]

+ F1(t̂1)[1− F2(t∗2)] {E[t2 | t2 > t∗2]− c2}
≥ F1(t̂1)F2(t∗2)E[t2 | t2 ≤ t∗2] + [1− F1(t̂1)]F2(t∗2)

{
E[t1 | t1 > t̂1]− c1

}
(14)

+ F1(t̂1)[1− F2(t∗2)]E[t2 | t2 > t∗2].

If F1(t̂1) = 0, then this equation reduces to

F2(t∗2)E[t1 | t1 > t̂1] ≥ F2(t∗2)
{

E[t1 | t1 > t̂1]− c1

}
,

which must hold. If F1(t̂1) > 0, then we can rewrite the equation as

E[t1 | t1 ≤ t̂1] +
c1

F1(t̂1)
− c1 ≥ E[t2 | t2 ≤ t∗2] +

c2

F2(t∗2)
− c2. (15)

From equation (13), the right–hand side of equation (15) is t∗2 − c2. Hence we need to
show

E[t1 | t1 ≤ t̂1] +
c1

F1(t̂1)
− c1 ≥ t∗2 − c2. (16)

Recall that t∗2 − c2 ≤ t∗1 − c1 or, equivalently, t̂1 ≤ t∗1. Hence from equation (1), we have

E(t1) ≥ E[max{t1, t̂1}]− c1.

A similar rearrangement to our derivation of equation (13) yields

E[t1 | t1 ≤ t̂1] +
c1

F1(t̂∗1)
≥ t̂1.

Hence
E[t1 | t1 ≤ t̂1] +

c1

F1(t̂1)
− c1 ≥ t̂1 − c1 = t∗2 − c2 + c1 − c1 = t∗2 − c2,

implying equation (15). Hence as asserted, it is weakly better to have 1 as the favored
agent with threshold t∗2 − c2 than to have 2 as the favored agent with this threshold.

Suppose that t∗1− c1 = t∗2− c2. In this case, an argument symmetric to the one above
shows that the principal weakly prefers favoring 2 at threshold t∗1 − c1 to favoring 1 at
the same threshold. Hence the principal must be indifferent between favoring 1 or 2 at
threshold t∗1 − c1 = t∗2 − c2.

We now turn to the case where t∗1 − c1 > t∗2 − c2. The argument above is easily
adapted to show that favoring 1 at threshold t∗2 − c2 is strictly better than favoring 2 at
this threshold if the event that tj − cj < t∗2 − c2 for every j 6= 1, 2 has strictly positive
probability. To see this, note that if this event has strictly positive probability, then the
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claim follows iff equation (14) holds with a strict inequality. If F1(t̂1) = 0, this holds iff
F2(t∗2)c1 > 0. By assumption, ci > 0 for all i. Also, t2 < t∗2, so F2(t∗2) > 0. Hence this
must hold if F1(t̂1) = 0. If F1(t̂1) > 0, then this holds if equation (16) holds strictly. It
is easy to use the argument above and t∗1 − c1 > t∗2 − c2 to show that this holds.

So if the event that tj− cj < t∗2− c2 for every j 6= 1, 2 has strictly positive probability,
the principal strictly prefers having 1 as the favored agent to having 2. Suppose, then,
that this event has zero probability. That is, there is some j 6= 1, 2 such that tj − cj ≥
t∗2−c2 with probability 1. In this case, the principal is indifferent between having 1 as the
favored agent at threshold t∗2 − c2 versus favoring 2 at this threshold. However, we now
show that the principal must strictly prefer favoring 1 with threshold t∗1 − c1 to either
option and thus strictly prefers having 1 as the favored agent.

To see this, recall from the proof of Theorem 2 that the principal strictly prefers
favoring 1 at threshold t∗1−c1 to favoring him at a lower threshold v∗ if there is a positive
probability that v∗ < tj − cj < t∗1 − c1 for some j 6= 1. Thus, in particular, the principal
strictly prefers favoring 1 at threshold t∗1 − c1 to favoring him at t∗2 − c2 if there is a
j 6= 1, 2 such that the event t∗2 − c2 < tj − cj < t∗1 − c1 has strictly positive probability.
By hypothesis, there is a j 6= 1, 2 such that t∗2 − c2 < tj − cj with probability 1, so we
only have to establish that for this j, we have a positive probability of tj − cj < t∗1 − c1.
Recall that tj − cj < t∗j − cj by definition of t∗j . By hypothesis, t∗j − cj < t∗1 − c1. Hence
we have tj − cj < t∗1 − c1 with strictly positive probability, completing the proof.

D Comparative Statics Proof

In this appendix, we show the claim in the text regarding the effect of changes in the
cost of checking the favored agent when I = 2 and F1 = F2 = F . For notational ease, let
1 be the favored agent. Then the probability 1 gets the good is

F (t∗1)F (t∗1 − c1 + c2) +

∫ t̄

t∗1

F (t1 − c1 + c2)f(t1) dt1.

Differentiating with respect to c1 gives

f(t∗1)F (t∗1 − c1 + c2)
∂t∗1
∂c1

+ F (t∗1)f(t∗1 − c1 + c2)

[
∂t∗1
∂c1

− 1

]
− F (t∗1 − c1 + c2)f(t∗1)

∂t∗1
∂c1

−
∫ t̄

t∗1

f(t1 − c1 + c2)f(t1) dt1

or

F (t∗1)f(t∗1 − c1 + c2)

[
∂t∗1
∂c1

− 1

]
−
∫ t̄

t∗1

f(t1 − c1 + c2)f(t1) dt1.
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Recall that t∗1 is defined by ∫ t∗1

t

F (s) ds = c1.

Using this, it’s easy to see that
∂t∗1
∂c1

=
1

F (t∗1)
.

Substituting, the derivative is

f(t∗1 − c1 + c2)[1− F (t∗1)]−
∫ t̄

t∗1

f(t1 − c1 + c2)f(t1) dt1

=

∫ t̄

t∗1

[f(t∗1 − c1 + c2)− f(t1 − c1 + c2)]f(t1) dt1.

Hence if f is increasing throughout the relevant range, this is negative, implying that the
probability 1 gets the good is decreasing in c1. If f is decreasing throughout the relevant
range, this is positive, so 1’s probability of getting the good increases in c1. If the types
have a uniform distribution, the derivative is zero.
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