Structuring a model for lexical causatives: Formal machinery

Rebekah Baglini (Aarhus University)

Elitzur A. Bar-Asher Siegal (Hebrew University of Jerusalem)

Definition 1 (Causal Structure): A causal structure of a set of proposition letters \mathcal{P} is a directed acyclic graph (DAG) in which each node corresponds to a distinct element of \mathcal{P} , and each link represents direct functional relationship among the corresponding propositions.

Definition 2 (Causal Model): A causal model is a pair $M = \langle D, \Theta_D \rangle$ consisting of a causal structure D and a set of parameters Θ_D compatible with D. The parameters Θ_D assign a function $\psi_i = f_i(\Sigma)$ to each $\psi_i \in \mathcal{P}$, where Σ is the set of all nodes that ψ_i causally depends on in D.

Definition 3 (Truth values generated by a causal model): Let \mathcal{P} be a set of proposition letters and \mathcal{L} the closure of \mathcal{P} under conjunction and negation. Furthermore, let $M = \langle D, \Theta_D \rangle$ be a causal model for \mathcal{P} , and $I : \Sigma \to 0, 1, u$ an interpretation of a set of variables Σ of M. For arbitrary $\psi \in \mathcal{L}$ we define the interpretation of ψ with respect to M and I, $[[\psi]]^{M,I}$ recursively as follows: $[[\psi]]^{M,I} = I(\psi)$, if $\psi \in \Sigma$, $[[\psi]]^{M,I} = [[F(\psi)]]^{M,I}$, if $\psi \in \mathcal{P} - \Sigma$ and $[[F(\psi)]]^{M,I}$ is defined (0/1) $[[\neg \psi]]^{M,I} = 1$, iff $[[\psi]]^{M,I} = 0$ and $[[\psi \land \phi]]^{M,I} = 1$, iff $[[\psi]]^{M,I} = 1$ and $[[\phi]]^{M,I} = 1$.

Definition 4 (Causal relevance): A set of variables Σ of M, is causally relevant for a proposition ψ when the interpretation of ψ with respect to M and I is defined, when $I : \Sigma^c$ (the complementary set of Σ in \mathcal{P}) assigns u for all its members.

Definition 5 (Situation): A set of pairs of propositions Σ in \mathcal{P} and their values is a situation. We refer to the set of propositions and their value in a situation *s* as dom(s).

Definition 6 (Causal necessity): χ is causally necessary for a certain value of ψ in a situation *s*, i.e. its value in *s* ($S\chi$) is necessary for a certain value of ψ (0 or 1) if: There is a set Σ and there are two situations *s* and *s'*, which are two situations of Σ , such that

- i. Σ is causally relevant for a proposition ψ
- ii. $I : \Sigma \to 0, 1$ is an interpretation of the set of variables Σ of M, in situation s and $I' : \Sigma \to 0, 1$ an interpretation of the set of variables Σ of M, in situation s' and
- iii. $s(\chi) \neq s'(\chi)$.
- iv. The cardinality of the complementary set *J*, such that J = dom(s) dom(s') is 2, and the two members of *J* are the pair of χ and its value, different in each pair, and
- v. $[[\psi]]^{M,I} \neq [[\psi]]^{M,I'}$, and
- vi. There is no interpretation I'' of the set of variables Σ , in which $s'(\chi) = s''(\chi)$ and $[[\psi]]^{M,I'} \neq [[\psi]]^{M,I''}$.