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Abstract

This thesis is devoted to developing a fully quantum theoretical model of systems

embedded in condensed phases, which are subject to ultrashort laser pulses. These

systems are ubiquitous in chemistry, and there is a strong need in a comprehensive

theoretical framework for interpretation and prediction of experimental data. The

chief obstacle facing dynamical simulations of many-body systems is the exponential

scaling of the computational effort with the number of degrees of freedom. Despite

the growing number of theoretical methods, no comprehensive solution to this scaling

problem has been achieved. Most of the existing theoretical methods fail to provide

a consistent treatment of all aspects of a quantum dissipative system.

The Surrogate Hamiltonian method, which is the basis of the presented work,

has been developed for simulating quantum transient phenomena taking place in

a condensed-phase environment. The method is based on constructing a surrogate

finite system-bath Hamiltonian, that in the limit of an infinite number of bath modes

reproduces the true dynamics of the system. Employing a finite Hamiltonian makes

the proposed method particularly suitable for ultrafast processes.

The method requires solving the time-dependent Schrödinger equation of the

combined system rather than the Lioville von Neumann equation of the reduced

density matrix. As a result, the Surrogate Hamiltonian starts with a fully correlated

initial state, and the treatment of time-dependent external fields poses no problem.

The method is not restricted to special forms of system-bath coupling, and formally,

no weak coupling assumption is employed.

The first part of this thesis presents a numerical comparison between a spin

bath (employed by the Surrogate Hamiltonian) and a widely-used bath of harmonic

oscillators. The dissipative quantum dynamics of an anharmonic oscillator coupled

to a bath is studied with the purpose of elucidating the differences between the
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relaxation to a spin bath and to a harmonic bath. The main findings confirmed

the fact that in the weak coupling limit the harmonic bath can be mapped to the

spin bath. In addition, under this limit the spin bath converges with only single

excitations of the bath modes, which means that the system and the bath are almost

disentangled.

The spin and harmonic baths begin to deviate when the initial excitation of the

primary system is increased. The first indication of differences is the requirement

for two simultaneous bath excitations in order to converge the spin bath. For longer

time periods, the spin bath saturates, limiting the ability to assimilate the system’s

energy. The effect of the saturation can be reduced if the bath Hamiltonian includes

a mode-mode coupling term, spreading the excitation between the non-resonant

modes.

The possibility of entanglement of bath modes mediated by the primary system is

a major conceptual difference between the spin bath and the harmonic bath. Never-

theless, the very similar dynamics observed in the weak and medium coupling cases

indicate that from the viewpoint of the reduced dynamics it is hard to distinguish

between the two baths.

The original construction of the method was limited to phenomena at low tem-

peratures. The new method, presented in this thesis enables employing the Sur-

rogate Hamiltonian to a wider range of temperatures with more favorable scaling

properties. The method is based on averaging over random phase thermal wavefunc-

tions - Boltzmann-weighted, random-phase superpositions of states in the combined

system-bath Hilbert space.

The random phase method obtains converged results for thermal observables by

averaging a relatively small number of randomly chosen initial states. Moreover the

number of initial states required to obtain convergence is a decreasing function of

the size of the total Hilbert space due to self-averaging, and it also decreases with

temperature. These findings suggest that the Surrogate Hamiltonian method has

the same scaling properties for the zero temperature simulation as for the finite

temperature simulations. As a consequence, the Surrogate Hamiltonian method can

be applied for moderate temperature simulations, as long as the bath modes do not

saturate.
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The effect of the dissipation on nonadiabatic dynamics has been discussed in the

second part of this thesis. The numerical extension of the Surrogate Hamiltonian

method to multidimensional models has been employed to provide a new insight into

nonadiabatic processes. Particularly, the system containing a conical intersection in

the presence of a dissipative environment has been studied with the purpose of iden-

tifying observable ultrafast spectroscopic signatures. A model system, consisting

of two vibronically coupled electronic states with two nuclear degrees of freedom,

has been constructed. Dissipation was treated by two different methods: Lindblad

semi-group formalism and the Surrogate Hamiltonian approach. Pump-probe ex-

perimental expectation values such as transient emission and absorption have been

calculated and compared to the adiabatic and diabatic population transfer. The

main findings of our work support the physical picture of rapid curve-crossing in

the case of conical intersection. The stimulated emission signals have shown de-

cay on a time-scale of tens of femtoseconds. The energy relaxation, dominated by

an intramolecular vibrational relaxation and monitored by the transient absorption

signal, proceeded at a much slower time scale. This suggests that conical mixing

symmetry is in itself not sufficient to generate a femtosecond relaxation, measured

experimentally as a fast recovery of the bleach.

The interaction of an optimized chirped pulse with a molecule embedded in a

solvent has been investigated in the study presented in the last part of the thesis.

The study was aimed at gaining insight on the interplay between the pulse param-

eters and the molecular response, which leads to minimal excitation and maximal

transmission. This task was carried out by setting simulations which included light-

matter interaction in an explicit fashion. The closed-loop feedback strategy has been

employed to find the optimal field. The effect of the dissipation on the optimized

solutions has been investigated, and the results of the simulations were compared to

the experimental data.

In this thesis the Surrogate Hamiltonian has been developed as an efficient and

practical tool. It has shown the ability to treat strongly driven chemical systems

consistently, including the system-bath correlations and the influence of electromag-

netic fields. The numerical extension of the Surrogate Hamiltonian beyond one

dimension allows the treatment of realistic chemical systems with nonadiabatically
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coupled potential energy surfaces. The random-phase thermal wavefunction enables

numerical simulations at a wider range of temperatures. The limitation of the Sur-

rogate Hamiltonian to short times can be overcome by its combination with the

semi-group approach. The combined method enables us, in principle, to simulate

long-time dynamics, approaching equilibrium.
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Chapter 1

Prologue

With the development of ultrashort lasers, chemists became able to probe the dy-

namics of molecules on the time scale of nuclear motion, which opened the door

for elucidating chemical reactions in a “real-time” regime [1,2]. Novel experimental

techniques, however, only emphasize a crucial need in extensive theoretical tools for

interpretation and prediction of experimental data.

Successful theoretical simulations of ultrafast molecular dynamics are based on

quantum time-dependent wavepacket calculations [3–6]. The solution of the Schrödinger

equation provides a complete dynamical picture of a pure quantum-mechanical state.

This description is satisfactory for isolated molecules in the gas phase. However,

when experiments involve processes taking place in condensed-phase environments,

the fully quantum description of such systems remains a challenging task. The

main obstacle is rooted in the exponential growth in complexity with the number of

degrees of freedom.

Significant simplifications may be achieved by partitioning the total many-body

system into a primary part and a bath describing the environment [7]. The primary

system consists of a few physically relevant degrees of freedom, which are probed

experimentally and treated explicitly. The bath, on the other hand, consists of a

large or even infinite number of degrees of freedom and enters the model implicitly,

i.e. only its influence on the primary system is addressed. The separability between

a system and an environment is not trivial. From an experimental point of view it

is based on an assumption that one can probe the degrees of freedom of the primary

system solely, without affecting directly the degrees of freedom of the environment.
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1.1 Methods to treat quantum dissipation

The theory demands a clear operational decomposition into a well-defined primary

system and a stable reservoir [8, 9].

Let us consider a combined system with following Hamiltonian:

Ĥ = ĤS ⊗ 11B + 11S ⊗ ĤB + ĤSB + ĤSF (t) , (1.1)

where ĤS is the Hamiltonian of the primary system, ĤB - the bath Hamiltonian and

ĤSB describes the interaction between the system and the bath. The time-dependent

interaction of the system with the external electromagnetic field is represented by

ĤSF (t).

It is assumed that the combined system-bath is closed, and therefore its dynamics

are generated by a unitary evolution:

ρ̂(t) = Û(t)[ρ̂S(0)⊗ ρ̂B(0)]Û
+
(t) , (1.2)

where Û(t) = e−iĤt/~ is the time-evolution operator of the total system. The dy-

namics of the primary system, however, are no longer unitarian and the interaction

with the environment creates system-bath correlations. Interaction with the envi-

ronment leading to energy relaxation and dephasing is often described by the term

quantum dissipation.

1.1 Methods to treat quantum dissipation

A considerable number of methods to treat “system plus bath” models have been

proposed in recent years [7]. Here is a short review of different approaches to the

problem of quantum dissipation

Since the combined dynamics are not feasible in most cases, many attempts have

been made to develop a simpler description in a reduced state space. The reduced

dynamics approaches are constructed to avoid the size scaling of a full treatment.

The equations of motion are derived for the reduced density operator ρ̂S = trB {ρ̂},
obtained as a partial trace over the bath degrees of freedom.

Following the Nakajima-Zwanzig projector formalism [10–13], the dynamics of

the reduced density matrix ρ̂S is given by a closed integro-differential equation:

d

dt
ρ̂S = − i

~
LS(ρ̂S)−

∫ t

K(τ)ρ̂S(t− τ)dτ , (1.3)
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1.1 Methods to treat quantum dissipation

where LS is the system’s free Liouville operator and K is an environment memory

kernel. Although the Nakajima-Zwanzig equation is formally exact, it is of little

practical use, since the memory kernel cannot be calculated. The equation serves,

therefore, as the basis for further approximations.

An important class of approximate quantum dissipative methods is based on two

main assumptions: firstly, that the system-bath interaction is weak and therefore it

can be considered up to a second order (Born approximation), and secondly, that the

bath memory time scale is extremely short compared to any appropriate time scale

within the system (Markov approximation). Under these conditions one can derive

a Markovian quantum master equation (QME) of the Bloch-Redfield type [14–20]

and its generalization [21–26].

The assumption of a weak system-bath coupling restricts the range of phenomena

that can be treated with QMEs, especially in condensed phase systems.

To overcome the restriction of the second order QME caused by the weak-

coupling approximation, the high order QMEs [27–29] have been derived and applied

mostly to the spin-boson problem. However, the fact that the system-bath coupling

is given in terms of multi-time correlation functions makes the computational im-

plementation of this scheme difficult. Strategies for calculating memory kernel, that

do not resort to the assumption of weak system-bath coupling have also been pro-

posed [30–32].

On the other hand, to model dynamics of quantum systems, which are subject

to a strong, short electromagnetic field, the Markovian approximation should be

abandoned. A number of methods to modify the Redfield theory beyond of Marko-

vian approximation have been proposed [33–37]. A method developed by Meier and

Tannor [38], for example, uses a special parametrization of the bath spectral den-

sity, leading to a set of coupled Markovian equations for the reduced density matrix

and auxiliary density matrices, which incorporate the memory effects. The number

of needed auxiliary density matrices depends on the coupling strength and tem-

perature, and for low temperature the calculations become numerically demanding.

While the method is not restricted to a specific form of the system-bath coupling,

it does consists of the weak-coupling assumption.

The method can treat time-dependent interactions explicitly and includes initial

3



1.1 Methods to treat quantum dissipation

correlations between the system and the bath. The latter is of particular importance,

since most of the reduced description approaches accept the factorization of the

initial state ρ̂S(0)⊗ ρ̂B(0). This widely used assumption of an initially uncorrelated

system-bath state is not consistent with most experimental situations, and has been

criticized in a number of works [26, 39–41].

An alternative approach for modeling the reduced dynamics, formally referred

to as semigroup analysis, was introduced by Lindblad [42] along with Gorini, Kos-

sakowski and Sudarshan [16, 43]. This dynamical semigroup approach is based on

the Markovian assumption augmented by a condition that the time evolution oper-

ator of the quantum mechanical system generates a completely positive dynamical

semigroup [16, 44]. The complete positivity condition physically means that popu-

lations can never become negative. Lindblad determined the general form that all

reduced dynamical equations must take:

d

dt
ρ̂S = − i

~
[ĤS, ρ̂S] +

∑

j

(
F̂jρ̂SF̂

+

j − 1

2
{F̂jF̂

+

j , ρ̂S}
)
. (1.4)

The Lindblad operators F̂j ’s are bound operators acting on the Hilbert space of

the system. The nature of the bath is implied in the formulation of a specific

Lindblad operator, which can be chosen to fit some phenomenological requirements

or can be derived from the full Hamiltonian. Such operators that can be constructed

to describe different relaxation and dephasing processes and parameters, entering

into the equation, can be obtained in a weak coupling limit, using perturbation

theory [8,45–47]. The semigroup approach is intrinsically quantum-mechanical and

follows directly from a physical picture of dissipation. However, the method is based

on the Markovian assumption, and therefore restricted to problems, in which the

separation of time scales between the system and the bath is possible.

Based on the semigroup approach, a number of methods have been developed in

order to include bath memory effects. In particular, Percival et al. have developed a

nonlinear stochastic Schrödinger equation approach using Monte Carlo methods [48,

49], and recently the method has been extended to treat non-Markovian situations

[50–56].

An alternative formulation of system-bath dynamics is based on the path inte-

gral description of quantum mechanics [57], and introduces the influence of the bath

4



1.1 Methods to treat quantum dissipation

in terms of the Feynman-Vernon influence functional [58]. For a linearly coupled

harmonic oscillator bath the exact influence functional can be obtained in a closed

form [59–61]. The application of real-time path integrals has been limited due to

the “dynamical sign problem”: the numerous path contributions are interfering with

each other, producing partial cancellations, which lead to numerical instabilities.

Several numerical methods based on the path integral formulation have been devel-

oped, including the optimized Monte Carlo simulation method [62,63], a path class

summation approach [64] and “interacting-blip chain” approximation [65]. Accurate

long-time path integral calculations have become possible with the development of

iterative tensor quasiadiabatic propagators by Makri and co-workers [66–69].

The numerical evaluation of the multi-dimensional integral nevertheless is com-

putationally challenging, which limits the applications of path integral methods to

relatively simple systems, linearly coupled to the bath. Finally, mapping the bath

Hamiltonian onto a harmonic one is questionable for energy relaxation and dephas-

ing of molecules in the liquid phase or on solids.

However, the fact that path integral results are numerically exact and that all

approximation are made when specifying the Hamiltonian makes path integral cal-

culations a popular benchmark for newly developed methods [70, 71].

Almost all the approaches mentioned above, treat the environment within the

linear response regime as a bath of harmonic oscillators. Thus the influence of the

bath enters as the bath correlation function. Several methods have been proposed

for calculating bath correlation functions, based on a mixed quantum-classical treat-

ment [72, 73], analytical continuation [74–77], centroid molecular dynamics [78–80],

quantum mode coupling theory [81,82], and the semiclassical approximation [83–87].

The difficulty is that practically only classical and semi-classical methods exist for

calculating correlation functions.

Despite the great progress in the field of quantum dissipation over the last few

decades, there is still a strong need for the development of efficient theoretical tools

to treat quantum dissipative processes. Ultra-fast pump-probe experiments allow a

real time resolution of chemical processes in condensed-phase environments. The in-

terpretation of these experiments remains a challenging problem and strongly depend

on theoretical support. Theoretical models able to describe consistently all aspects
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1.2 Motivation and objectives of the research

of ultra-fast experiments in a condensed-phase, are absent. The requirements for

such methods include the ability to treat non-Markovian dynamics without the re-

striction of a weak system-bath coupling, an explicit treatment of a time-dependent

field and its influence on the system-bath interactions. Non-harmonic baths with an

ab-initio calculated system-bath coupling are highly desirable.

1.2 Motivation and objectives of the research

The Surrogate Hamiltonian method [88] has been developed to simulate ultrafast

quantum dynamical processes for systems embedded in a bath. The method is

based on constructing a surrogate finite system-bath Hamiltonian, that in the limit

of an infinite number of bath modes reproduces the true dynamics of the system.

This is done by renormalizing the system-bath interaction term in the Surrogate

Hamiltonian. Since within a finite interval of time the system is not able to access

the actual full complexity of the bath, it is sufficient to replace the bath modes by a

finite set, which mimics the full dynamics for a finite time (shorter than the Poincaré

period at which recurrences appear [15]). Employing a finite Hamiltonian makes the

proposed method particularly suitable for ultrafast processes.

The Surrogate Hamiltonian method is not Markovian and differs from the Red-

field [18,19] or semigroup treatments [16,42,43]. It is close in spirit to real time path

integral techniques and the MCTDH method [89–92], which includes the environ-

mental degrees of freedom explicitly. The MCTDH method employs the combined

system-bath wavefunction expanded in a basis of time-dependent configurations, and

describes the dynamics of the complete system.

Similarly, the Surrogate Hamiltonian method requires to solve the time-dependent

Schrödinger equation of the combined system rather than the Lioville von Neumann

equation of the reduced density matrix. As a result, the method is able to start with

a fully correlated initial state, and the treatment of time-dependent external fields

poses no problem. The method is not restricted to special forms of system-bath

coupling, and formally, no weak coupling assumption is employed.

The applications of the Surrogate Hamiltonian method include dissipative pro-

cesses taking place on metal surfaces [88, 93, 94] and ultrafast charge transfer pro-

6



1.2 Motivation and objectives of the research

cesses in condensed matter [95,96]. While the method has already been established

as a practical tool, a number of aspects, which have yet to be addressed, served as

a motivation for the research summarized in this thesis.

The Surrogate Hamiltonian method employs a bath of two-level systems, which

acts as a spin bath [97–101]. The quantum properties of such a bath are different

from the widely used bath of harmonic oscillators. The bath modes of the linearly

driven harmonic bath are uncorrelated. In the spin bath even a linear coupling to

the primary system induces quantum entanglement between different spins inside

of the bath. The latter makes a spin bath a more appropriate candidate to treat

quantum phenomena, than a nearly classical harmonic bath.

While a harmonic bath is natural for systems interacting with the radiation field

[102], it has also been applied to less favorable scenarios such as energy relaxation

and dephasing of molecules in a liquid phase or on solid surfaces. In these cases

a strong coupling or interactions with a low-temperature environment may cause

large system-bath correlations, and will therefore result in a failure of the Markovian

approximation, as well as the assumption of the weak system-bath coupling.

In this context, our study is aimed to elucidate the differences between two kinds

of baths. In the limit of weak coupling, it has been shown that the two baths are

equivalent [97–99]. The limiting coupling strength - where the dynamics induced by

the two baths differ - has not yet been characterized. It is valuable to know how the

fundamental differences between the two kinds of bath are reflected in the dynamics

of the primary system, if at all.

The ultimate goal of theoretical simulations based on the Surrogate Hamiltonian

approach is to achieve a comprehensive description of realistic experimental systems.

For that purpose the extension of the method to finite-temperature situation is

required. The application of the method has been restricted to the low-temperature

regime due to unfavorable computational scaling. For finite temperatures thermal

averaging requires computing the large number of eigenstates and then repeating

the propagation step for each initial state. The number of eigenfunctions required

grows with temperature, and what is more important, it grows exponentially as the

number of bath modes increases. The prohibitive scaling of numerical effort used

in the Surrogate Hamiltonian method is behind the motivation for developing an

7



1.2 Motivation and objectives of the research

alternative scheme for thermal averaging.

The Surrogate Hamiltonian method allows the analysis of multidimensional sys-

tems without restricting the potential shape. The early applications of the method

[88,93–96] have been limited to a primary system with one nuclear degree of freedom

coupled to a dissipative environment. However, the chemistry of numerous systems

involves nuclear dynamics on few nonadiabatically coupled potential energy surfaces.

The most complicated nonadiabatic processes involve conical intersections [103,104].

These processes are intrinsically quantum-mechanical and extremely sensitive to the

landscape of the potentials involved [105] The influence of the dimensionality on

nonadiabatic transitions has been widely acknowledged [106–109]. The numerical

extension of the Surrogate Hamiltonian beyond one dimension is necessary in order

to treat realistic chemical systems with nonadiabatically coupled potential energy

surfaces. The ultrafast time scale of the internal-conversion process, often associ-

ated with the existence of conical intersections, make the Surrogate Hamiltonian

well-suited for the treatment of such systems.

The special emphasis of our study is placed on introducing time-dependent ob-

servables, which are the direct signature of the ultrafast dynamics measured in the

typical pump-probe experiments. The use of the Surrogate Hamiltonian method has

an advantage of a consistent treatment of initial correlations between the system and

the bath, as well as the ability to describe the pulse field and its influence on the

system-bath interaction explicitly. The non-perturbative approach allows us to di-

rectly simulate the dynamics induced by the pump pulse. Considering spectroscopic

observables, such as transient absorption and emission, enables reproduction of all

qualitative features of ultrafast pump-probe experiments.

Since optimization techniques have become an integral part of modern experi-

ments, it is inevitable to include them in our model. It is important to check the

capability to design control strategies in the presence of dissipation. Despite some

attempts [110–112] there is a shortage of methods able to treat control systems in

the presence of a dissipative environment. The ability of the Surrogate Hamilto-

nian method to treat time-dependent fields in a non-perturbative manner is a clear

advantage over other approaches, particularly reduced dynamical ones.
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1.3 Outline of the thesis

1.3 Outline of the thesis

The presented thesis is based on the publications listed in Appendix E and is

organized as follows: The Surrogate Hamiltonian method is introduced in Chap-

ter 2 and the possible dissipative processes are discussed. Chapter 3 contains a

numerical comparison between a spin bath employed by the Surrogate Hamiltonian

approach, and a harmonic bath. The dissipative quantum dynamics of an anhar-

monic oscillator coupled to a bath is studied with the purpose of elucidating the

differences between the relaxation to a spin bath and to a harmonic one.

The application of the method to the finite-temperature problems is discussed

in Chapter 4. A new scheme for calculating thermally averaged observables, based

on random phase thermal wavefunctions is presented. The method is tested for the

model of Morse oscillator in equilibrium with an ohmic bath, perturbed by a short

pulse.

In Chapter 5 the method is applied to a dissipation taking place in a multidi-

mensional system, which includes conical intersections. A model system consisting

of two vibronically coupled electronic states with two nuclear degrees of freedom is

considered. The dissipation is treated by two different methods, Lindblad semigroup

formalism and the Surrogate Hamiltonian approach. Pump-probe experimental ex-

pectation values such as transient emission and transient absorption are calculated

and compared to the adiabatic and diabatic population transfer.

Chapter 6 discusses an application of the Surrogate Hamiltonian method to a

problem of optimal control. Optimal control theory is employed for the task of min-

imizing the excited-state population of a dye molecule in solution. The closed-loop

feedback strategy is employed to find the optimal field. The control task is solved

for the combined system, including the excited molecule immersed in a finite, but

large environment. The latter may cause both vibrational and electronic dephasing,

as well as vibrational relaxation - processes that have a time scale comparable to

the pulse duration. The study investigates the influence of the experimental control

parameters, such as pulse fluence and chirp, on the induced dynamics.

Finally, some concluding remarks are made in Chapter 7. Numerical details

are presented in Appendices A-D.

Atomic units are employed throughout the thesis unless otherwise stated.

9



Chapter 2

The Surrogate Hamiltonian

method

The Surrogate Hamiltonian method [88] is based on the idea that for sufficiently

short times the system is not able to resolve the full density of the bath states.

Therefore it is possible to replace an infinite number of the bath modes by a finite

set of representative modes:

ĤB ∼
∞∑

k=1

ˆ̃n
true

k −→
N∑

k=1

n̂
rep

k , (2.1)

This new “surrogate” Hamiltonian faithfully represents the dynamics of the primary

system under the influence of an infinite bath for a finite time. The method then

requires to solve the time-dependent Schrödinger equation of the combined system

and the bath instead of the Liouville von Neumann equation.

In the limit of an infinite number of bath modes, the Surrogate Hamiltonian is

completely equivalent to the original, ”true” Hamiltonian. Since, at least in princi-

ple, the number of modes N can be increased, it is possible to check convergence.

The truncation leading to the Surrogate Hamiltonian, Eq. (2.1), relies on a time-

energy uncertainty argument: In a finite time, t≪ ∞, the system can only resolve a

finite number, N ≪ ∞, of bath states and not the full density of states of the bath.

The sampling density in energy of the finite set of bath states is determined by the

inverse of the time interval. This argument leads to two observations – the Surrogate

Hamiltonian is well-suited for the description of ultrashort events, and the number

of needed modes increases with the interaction strength between system and bath.

10



Strong and intermediate coupling strengths might therefore pose a computational

challenge. From the above derivation, it is clear, however, that no weak coupling

assumption was needed. In addition, and this is the major difference to standard

approaches, and therefore the major advantage, the Surrogate Hamiltonian method

yields a controllable approximation.

The two level system (TLS) bath is described by the Hamiltonian

ĤB = 11S ⊗
∑

i

εiσ̂
+
i σ̂i (2.2)

with n̂i = σ̂+
i σ̂i the occupation number operator and εi the energy of the ith bath

mode. 11S denotes the identity in the Hilbert space HS of the system, i.e. ĤB acts on

the total Hilbert spaceHS⊗HB . ForN bath modes the Hilbert spaceHB of the bath

has dimension 2N . This results from a single TLS or spin-1
2
being defined on a two-

dimensional Hilbert space and the possibility to combine each of the two basis states

for all N modes. The dimension of the total Hilbert space HS ⊗HB is then given by

the product of the dimensions of HS and 2N . If, for example, the state of the system

is described by a wave function represented on a grid and the dimension of the grid is

Ng, the state of the total system is described by 2N Ng-dimensional wave functions.

Obviously, this dimension quickly gets very large when the number of bath modes

N is increased. However, considering all 2N possibilities of combining the bath

modes corresponds to considering all possible system-bath correlations which might

not be necessary. The number of simultaneously allowed excitations can then be

restricted. In an extreme case, only single excitations are considered. This reduces

the dimension of the total Hilbert space from 2N to N+1. The approximation made

can again be checked by increasing the number of simultaneously allowed excitations,

i.e. it is controllable.

The basis of the TLS Hilbert space was chosen to be the spin-down and spin-up

states. Spin-up corresponds to the TLS being excited while for spin-down the TLS

is deexcited. This representation proved to be particularly useful, since the index

labeling the 2N components of the wave function contains the information of the

TLS being excited or deexcited, respectively.

There are two possibilities to look at the TLS bath. So far it has been introduced

in its own right, assuming the eigenvalues εi and eigenstates ni have been obtained

in a prediagonalization of the bath. However, a TLS can also be thought of as

11



a low temperature approximation to a harmonic oscillator. At low temperature,

only the ground and first excited state of a harmonic oscillator should be signif-

icantly populated. The TLS bath can therefore be viewed as a low temperature

approximation to a harmonic oscillator bath, and the parameters of the two can be

connected. In particular, the role of the spectral density for the TLS bath should

become clear. This approach has been pursued when the Surrogate Hamiltonian

was first introduced [88] and it shall briefly be reviewed here.

The starting point is the Heisenberg equations of motion for the primary sys-

tem. For simplicity, the primary system is taken to be one-dimensional with the

Hamiltonian:

ĤS = T̂+ V (Q̂) =
P̂

2

2m
+ V (Q̂) . (2.3)

A generalization to more nuclear degrees of freedom is straightforward, and the

treatment of more than electronic ground state dynamics will be discussed in the

following sections. The interaction between system and bath can be decomposed into

a sum of products of system and bath operators without loss of generality [22,113],

ĤSB = f(Q̂)⊗
∑

i

V̂i (2.4)

with Hermitian operators V̂i acting on the bath Hilbert space. The V̂i can be

written in terms of creation and annihilation operators, for simplicity real coupling

matrix elements and a linear combination of creation and annihilation operators are

assumed. The interaction Hamiltonian is then given by

ĤSB = f(Q̂)⊗
∑

i

Vi

(
Â

+

i + Âi

)
, (2.5)

where Â
+

i and Âi are creation and annihilation operators, respectively, of an abstract

bath mode i. The interaction is characterized by the coupling function f(Q̂) and

coupling constants Vi. The Heisenberg equations of motion for the system are then

given by

d

dt
Q̂ =

P̂

m
,

d

dt
P̂ = − d

dQ̂
V (Q̂)− d

dQ̂
f(Q̂)⊗

∑

i

Vi

(
Â

+

i + Âi

)
.

(2.6)
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For infinitely many modes, the sum in Eq. (2.6) can be replaced by an integral,
∑

i −→
∫

dερ(ε),

∑

i

Vi

(
Â

+

i + Âi

)
=

∫
dερ(ε)

√
J(ε)

(
â+(ε) + â(ε)

)
, (2.7)

where the density of states ρ(ε) and the spectral density J(ε) of the bath have been

introduced. The creation operators are related by

â+(ε) =
1√
J(ε)

∑

i

ViÂ
+

i δ(ε− εi) , (2.8)

and an analogous equation holds for the annihilators. The new operators â+(ε),

â(ε) can be viewed as creator and annihilator, respectively, of an interaction mode.

They enter the new, Surrogate Hamiltonian describing the combined system,

ĤSurr = T̂ + V (Q̂) +

∫
dερ(ε) ε â+(ε)â(ε)

+ f(Q̂)

∫
dερ(ε)

√
J(ε)

(
â+(ε) + â(ε)

)
.

(2.9)

If the spectral density is of finite support [ε0, εcut], the integrals in Eq. (2.9) can

be sampled by a finite number of energies, N ≪ ∞. In the limit N → ∞ the full

system-bath dynamics is then recovered. The finite sampling εi, i = 0, . . . , N − 1

specifies the energies at which creation and annihilation operators are defined,

â+
i = â+(εi) , âi = â(εi) (2.10)

and

viâ
+
i ρ(εi) =

√
J(εi)â

+(εi) , and c.c. (2.11)

The interaction of mode i with the system is then given by

vi =
√
J(εi)/ρ(εi) . (2.12)

A similar procedure to obtain the coupling constants is followed in [84]. The dis-

cretized Surrogate Hamiltonian then reads [88]

ĤSurr = T̂+ V (Q̂) +

N−1∑

i=0

εiâ
+
i âi + f(Q̂)⊗

N−1∑

i=0

vi
(
â+
i + âi

)
. (2.13)

The spectral density J(ε) enters the above expressions, Eq. (2.7) and Eq. (2.8)

as a normalization factor. Unfortunately, as no unique definition of the spectral
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density exists, some care must be devoted to ensure the same definition is used

when comparing different methods. For the harmonic oscillator bath, the spectral

density is introduced as Fourier transform of the bath correlation function [22,102].

The definition of spectral density is chosen to include the density of states [84,102],

J(ε) =
∑

i

|Vi|2δ(ε− εi) . (2.14)

The meaning of spectral density then becomes obvious: It is the system-bath cou-

pling weighted by the density of states, i.e. it specifies the effective interaction. The

influence of the bath on the system is thus fully characterized by J(ε).

The sampling density in energy of this set is determined by the inverse of the

time interval. The finite bath of N spins is constructed with a system-bath coupling

term, which in the limit N → ∞ converges to the given spectral density of the full

bath. The Surrogate Hamiltonian, consists of a finite number of bath modes, and

it is therefore limited to representing the dynamics of the investigated system for

a finite time (shorter than the Poincaré period at which recurrences appear [15]).

These recurrences are caused by the finite size of the bath so that after some time

the energy flow into the bath partly is reversed.

Eq. (2.13) and Eq. (2.12) or Eq. (2.13) together with a microscopic model for

the interaction are the starting point of the simulations. Since TLS are used as bath

modes, the abstract operators â+
i , âi are replaced by TLS or spin operators σ̂+

i , σ̂i.

Within the Surrogate Hamiltonian method, it is straightforward to introduce

into the model different system-bath interaction mechanisms, such as electronic and

vibrational pure dephasing. The process of dephasing corresponds physically to

fluctuations in the values of the system energies - electronic dephasing is then the

fluctuation in the electronic energy levels, while vibrational dephasing describes

changes in the vibrational energies. A qualitative picture of pure dephasing is based

on an almost elastic exchange of energy between bath modes, which alters the accu-

mulated phase of the system. For electronic dephasing (the primary system consists

of two electronic states), the bath modulates the electronic excitation:

Ĥ
ed

SB = ∆V (Q̂)
1

2


−1 0

0 1


⊗

∑

ij

cedij (σ̂
+
i σ̂j + σ̂+

j σ̂i) . (2.15)

∆V (Q̂) is the difference potential describing the dependence of the modulation on
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the nuclear displacement. The coefficients cij are biased to represent almost elastic

encounters,

cij = c̄e e
− (εi−εj )

2

2σ2
ε , (2.16)

with c̄e a global dephasing parameter, and σε determines the inelastic width. The

dephasing rate is proportional to the square of the band width of cij [95].

For vibrational dephasing, the bath modulates the vibrational Hamiltonian:

Ĥ
vd

SB =


Ĥg 0

0 Ĥe


⊗

∑

ij

cvdij (σ̂
+
i σ̂j + σ̂+

j σ̂i) . (2.17)

In order to activate a pure dephasing process, the bath modes must be initially

populated. The detailed algorithm of applying Eqs.(2.17-2.15) has been described

in Ref. [95] and is briefly reviewed in Appendix B.

The full Surrogate Hamiltonian contains all possible correlations between the

primary system and the environment. The combined system-bath state is described

by a 2N dimensional spinor Ψ(Q̂, β̂1, . . . , β̂2N ) with N being the number of bath

modes. The spinor is bit ordered, i.e., the jth bit set in the spinor index corresponds

to the jth TLS mode, which is excited if the counting of bits starts at j = 0. The

dimension 2N results from the total number of possibilities to combine two states N

times.

Thus the total wave function can be written as

|Ψ(Q̂, {β̂j})〉 = a0|φ0(Q̂)〉+
(N1 )∑

j=0

aj |φj(Q̂)〉

+

(N2 )∑

j,k=0

ajk|φjk(Q̂)〉 + . . . , (2.18)

where |φj(Q̂)〉 = (0, . . . , φj(Q̂), . . . , 0)T is a singly-excited spinor,

|φjk(Q̂)〉 = (0, . . . , φj(Q̂), . . . , φk(Q̂), . . . , 0)T is a doubly-excited spinor and so on.

The jth component corresponds to the jth TLS being excited.

However, considering all 2N possibilities of combining the bath modes might not

be necessary in a weak coupling limit. In this case, for short time dynamics, it is

possible to restrict the number of simultaneous bath excitations [96]. As an extreme

example, only single excitations might be considered. If one restricts the number of

simultaneous excitations, the dimension of the spinor becomes the sum of binomial
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coefficients
∑Nexc

k=0

(
Nexc

k

)
with Nexc the number of simultaneous excitations. The

construction is similar to the configuration-interaction (CI) approach in electronic

structure theories. The restriction of simultaneously allowed excitations leads to

significant numerical savings and its validity can be checked by increasing Nexc.

Observables associated with operators of the primary system are determined from

the reduced system density operator: ρ̂S(Q,Q
′) = trB {|Ψ 〉〈Ψ|}, where trB{ } is

a partial trace over the bath degrees of freedom. The system density operator

is constructed from the total system-bath wave function and only this function

is propagated. The explicit construction of the reduced density operator is only

necessary if the operator corresponding to the desired observable is not diagonal in

coordinate space.

A grid representation is used to represent each spinor component of the wave

function. The kinetic energy operator is applied in Fourier space employing FFT [4],

and the Chebychev method [3, 114] is used to compute the evolution operator (Cf.

Appendix A). Numerical details for applying the bath operators are described in

Appendix B.

A fully correlated initial state is easily obtained in the Surrogate Hamiltonian

method. Once the system-bath Hamiltonian Ĥ is set, the correlated ground state can

be determined by propagating an initial guess wave function in imaginary time using

Ĥ [114]. By employing a filter-diagonalization method [115–117] other eigenstates

are extracted directly. Thermal observables can be obtained by Boltzmann weighting

the result from individual calculations for pure states (the procedure of calculating

thermal observables is discussed in Chapter 4).

So far the general idea of the Surrogate Hamiltonian has been discussed. The

new directions and further development of the method are presented in the next two

chapters.
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Chapter 3

Comparison between spin and

harmonic baths

The Surrogate Hamiltonian method implements the bath consisting of two-level

systems, which acts as a spin bath [97–101]. However, a bath composed of a set of

noninteracting harmonic oscillators is the one most widely used. The idea originates

from a normal mode analysis combined with a weak system-bath coupling assump-

tion [58]. If the bath is only weakly perturbed by the system, it can be considered

linear, and therefore described as a collection of harmonic oscillators.

Such a bath is natural for systems interacting with the radiation field [102]. The

harmonic bath model has also been applied to less favorable scenarios such as energy

relaxation and dephasing of molecules in the liquid phase or on the solid surfaces.

In these cases a strong coupling or interactions with a low-temperature environment

may cause large system-bath correlations, and will therefore result in a failure of

the both Markovian and Born approximations. To overcome such difficulties in the

dynamics of molecules that are in intimate interaction with an environment, the

Surrogate Hamiltonian method has been developed.

The origins of the spin and harmonic baths are different. The harmonic bath

is closely related to a normal mode decomposition. Once this is done the spectral

density function is able to completely determine the relaxation dynamics. From a

computational point of view the determination of the spectral density is a major

task. The most popular working procedure is to extract it from classical mechanics

[118]. The drawback is that this procedure assumes harmonic modes and a linear
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system bath coupling term. The spin bath has its origin in a tight binding model of

condensed phase. This can also become a simulation procedure if the parameters of

the tight binding model can be estimated from first principles [94].

The purpose of this part of our study is to compare the performance of the two

baths in a simple system composed of a primary anharmonic oscillator coupled to

a multi-mode bath. In the limit of weak system-bath coupling, it has been shown

that the two baths are equivalent. For finite temperature the equivalence requires

a rescaling of the spectral density function which determines the coupling of the

primary system to the different bath modes [97–99]. The limiting coupling strength

where the dynamics induced by the two baths differ has not yet been characterized.

For stronger coupling strength, the ergodic behavior of the two baths should be

different. The bath modes of the linearly driven harmonic bath are uncorrelated. In

the spin bath the coupling to the primary system induces quantum entanglement

between the different modes. It is valuable to know how this fundamental difference

influences the dynamics of the primary system.

Our comparative study is based on a numerical model of a system coupled to a

bath, with a large but finite number of modes. For a finite interval of time determined

by the inverse of the energy level spacing, the finite bath mimics exactly a bath with

an infinite number of modes. For this interval the primary system cannot resolve

the full density of states of the bath. By renormalizing the system-bath interaction

term to the density of states, the finite bath faithfully represents the infinite bath

up to this time limit.

The dynamics of the primary oscillator coupled to the harmonic bath has been

recently calculated based on the multi-configuration time dependent Hartree ap-

proximation (MCTDH) [119, 120]. The authors were able to show that for a Morse

oscillator coupled to a bath, converged results could be obtained for a bath consist-

ing of 60 modes to a time scale of 3 ps. The present study utilized the same system

and system-bath coupling parameters, but employed a spin bath in the context of

the Surrogate Hamiltonian. The comparison allows an evaluation of the similarities

and differences between the two descriptions. Once the differences are identified, it

becomes possible to modify the Surrogate Hamiltonian bath to extend the realm of

similarity.
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3.1 Dissipative dynamics of anharmonic oscillator

In the weak coupling limit the numerical study of Nest and Meyer [119] was able

to identify a coupling parameter where the Markovian semigroup limit was reached.

One can reason that the Surrogate Hamiltonian bath should behave similarly in this

range of coupling parameters.

The system-bath construction in both cases is not Markovian and differs from

the Redfield or semigroup treatments. The Surrogate Hamiltonian approach is close

in spirit to real path integral techniques [7,58,121], where a large many-body prop-

agator is constructed and approximated. Generally, the path integral methods, are

applicable to harmonic baths and a linear system-bath coupling, and lead to a non-

Markovian description.

3.1 Dissipative dynamics of anharmonic oscillator

3.1.1 Model

The system under study describes a primary system immersed in a bath. The state

of the combined system-bath is described by the wave function Ψ(R̂, β̂1, . . . , β̂2N )

where R̂ represents the nuclear configuration of the dynamical system, and {β̂j} are

the bath degrees of freedom. The Hamiltonian of such a combined system is:

Ĥ = ĤS ⊗ 11B + 11S ⊗ ĤB + ĤSB . (3.1)

The primary system is constructed from an anharmonic (Morse) oscillator of

mass M :

ĤS =
P̂

2

2M
+D

(
e−2αR̂ − 2e−αR̂

)
. (3.2)

The coupling term is non-linear in the Morse oscillator coordinate R, but reduces

to a linear one for a small R:

f(R̂) =
1− e−αR̂

α
. (3.3)

ĤB denotes the bath Hamiltonian consisting of an infinite sum of single mode

Hamiltonians ĥj :

ĤB =
∑

j

ĥj, . (3.4)

For the harmonic bath the single mode Hamiltonians take the form:

ĥj =
p̂2
j

2mj
+
mjω

2
j

2
q̂2
j = ωjâ

+
j âj , (3.5)
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3.1 Dissipative dynamics of anharmonic oscillator

where p̂j, q̂j are the normal mode momentum and coordinate respectively, and âj =√
mjωj

2
q̂j +

i√
2mjωj

p̂j is the corresponding annihilation operator. For the spin bath:

ĥj = ωjσ̂
+
j σ̂j , (3.6)

where σ̂+
j , σ̂j are the standard spin creation and annihilation operators of mode j.

The system-bath interaction ĤSB can be decomposed into a sum of products

of system and bath operators without loss of generality. Specifically a system-bath

coupling inducing vibrational relaxation is considered:

ĤSB = −f(R̂)⊗
∑

j

V̂j , (3.7)

where V̂j = λjq̂j = λj(â
+
j + âj) for the harmonic bath and V̂j = λj(σ̂

+
j + σ̂j) for

the spin bath. f(R̂) is a function of the system coordinate operator. The influence

of the bath on the primary system is characterized by the spectral density function

J(ω).

The spectral density function was chosen to be the same for the harmonic bath

case as well as for the Surrogate Hamiltonian method. For an Ohmic bath the

damping rate γ is frequency-independent and the spectral density in the continuum

limit is given by

J(ω) =Mγω (3.8)

for all frequencies ω up to the cutoff frequency ωc. A finite bath with equally spaced

sampling of the energy range was used.

The parameters used are the same as in Ref. [119]: a well depth D of 0.018 a.u.,

α = 2 a.u., and a mass ofM = 105 a.u. The initial state was chosen to be a Gaussian

displaced by R0 = 2R̃ from the origin with a width of σ = R̃ (R̃ ≈ 0.09129 a.u.

is the characteristic length scale of the Morse oscillator). For such a displacement

the coupling term (3.3) is almost linear. The initial system-bath state has a direct

product form where the bath is at zero temperature. Such a state has no initial

correlations between the system and the bath.

There are a few characteristic time scales of the system. The period of the Morse

oscillator is τosc = 2π/Ω ≈ 127 fs, where Ω = α
√

2D/M refers to the harmonic

frequency of the potential. The bath has two time scales. τbath is associated with

the highest frequency ωc = 2.5Ω and corresponds to a time scale of 52 fs. The time
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3.1 Dissipative dynamics of anharmonic oscillator

scale corresponding to the frequency spacing ∆ω defines the Poincaré period (τrec).

It should be larger than any other time scale of interest. With ωc fixed this time

becomes:

τrec =
2π

∆ω
=

2πN

ωc

. (3.9)

Thus, with an increasing number of bath modes, the convergence progresses in time.

In our simulations the number of TLS is chosen to be N = 20 . . . 60 (for different

coupling strengths), which ensures that τrec is greater than the overall simulation

time.

The calculations were performed in three different interaction regimes identified

by considering the involved time scales: (i) weak coupling referring to γ−1 = 1630 fs

≫ τosc, τbath; (ii) the intermediate situation characterized by γ−1 = 163 fs ≈ τosc >

τbath; (iii) the strong coupling regime defined by γ−1 = 54 fs ≈ τbath < τosc.

In the simulations discussed below, the average position of the oscillator and the

energy relaxation were calculated for all three coupling strengths. For comparison,

the effective subsystem energy was defined as in [119]:

ES = 〈Ĥ
′

S〉 = 〈ĤS〉 + 0.5〈ĤSB〉 . (3.10)

It includes half of the system-bath interaction term.

The dynamics of the system combined with the bath is generated by solving the

time-dependent Schrödinger equation:

Ψ(R̂, {β̂j}, t) = e−iĤtΨ(R̂, {β̂j}, 0) . (3.11)

Each spinor component ψj(R̂) is represented on a spatial grid. The kinetic energy

operator is applied in Fourier space employing FFT [4], and the Chebychev method

[114] is used to compute the evolution operator. Numerical details of applying the

bath operators have already been given in Ref. [88, 95].

In the MCTDH method [122, 123] the wavefunction Ψ, which describes the dy-

namics of a system with M degrees of freedom, is expanded as a linear combination

of time-dependent Hartree products:

|Ψ(Q1, . . . , QM , t)〉 =
n1∑

j1=1

· · ·
nM∑

jM=1

Aj1,...,jM (t)
M∏

κ=1

|ϕ(κ)
jκ
(Qκ, t)〉 ,

where |ϕ(κ)
jκ 〉 is the single-particle function (spf) for the κ degree of freedom and the

Aj1,...,jM denote the MCTDH expansion coefficients. The total number of coefficients
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3.1 Dissipative dynamics of anharmonic oscillator
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Figure 3.1: The energy relaxation (lower panel) and damped oscillations of the average position

(upper panel) of the Morse oscillator in the weak coupling limit (γ−1 = 1630 fs). The bath is

assumed to be Ohmic with cutoff frequency ωc = 2.9 · 10−3 a.u. and consists of N = 60 TLS. The

initial state was chosen to be a Gaussian displaced by R0 = 2R̃ with a width of σ = R̃, where

R̃ ≈ 0.09129. Dashed lines refer to the MCTDH calculations with a bath of harmonic oscillators

(adopted from Ref. [119]). Dashed-dotted lines refer to the Surrogate Hamiltonian calculations

with only single excitations. Solid lines refer to calculations with two simultaneous excitations

allowed.

Aj1,...,jM and basis function combinations scales exponentially with the number of de-

grees of freedom M . Considering a system coupled to a multi-mode bath, the use of

the multiconfigurational wave function ensures the correct treatment of the system-

bath correlations [92, 124]. The method also enables grouping of several modes

together, which reduces both the number of single-particle degrees of freedom and

the correlation effects between different modes. Although the exact treatment is

contained in the limit of an infinite number of configurations, in the weak coupling

limit, the time-dependent basis employed in the MCTDH method should be rela-

tively small. Worth et al. [124] have pointed out that even for weak coupling, one spf

per bath mode (the Hartree limit) is not sufficient to fully describe the system-bath

interaction. However, the number of spf’s for the bath degrees of freedom can be in-

creased until convergence is achieved, which makes this approximation controllable.

3.1.2 Energy relaxation and small amplitude motion

First a restricted Surrogate Hamiltonian is applied, which limits the possible system-

bath correlations. The most extreme restriction includes only single excitations. The
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3.1 Dissipative dynamics of anharmonic oscillator

0 300 600 900
-0.1

0.0

0.1

0.2

po
si

ti
on

 (
a.

u.
)

0 300 600 900
time (fs)

-0.0175

-0.0170

-0.0165

-0.0160

en
er

gy
 (

a.
u.

)

MCTDH
N=40(1)
N=40(2)

Figure 3.2: The energy relaxation (lower panel) and damped oscillations of the average position

(upper panel) of the Morse oscillator in the intermediate coupling regime (γ−1 = 163 fs). The bath

parameters and the initial state are the same as in the weak coupling calculations. The number of

bath modes is N = 40. Dashed lines refer to the MCTDH calculations with a bath of harmonic

oscillators (adopted from Ref. [119]). Dashed-dotted lines refer to the Surrogate Hamiltonian

calculations with single excitations only. Solid lines refer to the calculations with two allowed

simultaneous excitations.

results for the weak coupling case (γ−1 = 1630 fs) are shown in Fig. 3.1. For a short

period of time the energy relaxes with the same rate in the two types of bath.

However, after ts ≈ 500 fs the rate decreases and eventually the system energy

becomes constant. It should be pointed out, that the saturation time is not the

recurrence (Poincaré) time (ts < τrec). This is confirmed by the fact that for time

t > ts the overall energy transfer from the bath back to the system is not complete.

Calculating the population of the bath modes shows that at t > ts most of the system

energy is transferred to very few (or even one) bath modes, which are in resonance

with the system’s frequency. Modes which are near to the resonance mode or modes

become saturated and start to transfer the excitation back to the system. A dynamic

“steady state” between the system and the bath is formed, where most of the modes

transfer energy back, while one (or very few) continue to absorb energy from the

system.

When the number of simultaneous excitations is increased to two, the effect

of saturation appears at a later stage (ts > 2000 fs). The results become similar

to those of Ref. [119] and the values of the average position (see Fig. 3.1 (upper

panel)) are nearly indistinguishable. We conclude that for the weak coupling case,
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3.1 Dissipative dynamics of anharmonic oscillator

the bath that has two simultaneous excitations is completely sufficient to reproduce

the dynamics generated by all simultaneous excitations for times up to 2 ps.

The relaxation dynamics for medium coupling are shown in Fig. 3.2. A satura-

tion effect was obtained for the bath restricted to single excitations. However, two

simultaneous excitations were sufficient to overcome this saturation and converge

the whole dynamics of the problem. A slight difference in the energy relaxation rate

of the two baths is identified. The TLS bath causes stronger relaxation, but the

results are still in good agreement with those of Ref. [119]. Since the initial state

is a function of R̂ and the system-bath coupling depends on R̂ as well, the initial

excitation influences the effective strength of the coupling. If the initial displace-

ment, i.e. the initial excitation of the primary system, is decreased, the saturation

is postponed. We can then deduce that the relaxation rate converges to the value of

Ref. [119]. Combining the results of Figs. 3.1 and 3.2 leads to the conclusion that

the differences between the two types of bath in the weak and intermediate coupling

regimes are caused by the saturation of a few “central” modes in the spin bath.

This saturation is postponed if the bath includes more correlations. For very weak

coupling, these higher order system-bath correlations become insignificant.

The problem of including all system-bath correlations is therefore crucial in the

medium and strong coupling regime. Fig. 3.3 shows the difference in the system

energy (〈ĤS〉 + 0.5〈ĤSB〉) for two cases: a bath with only single excitations and

a bath in which two simultaneous excitations are allowed. The calculations were

made for different coupling strengths. As the coupling strength is reduced, the

difference decreases. Thus in a very weak coupling limit, the TLS bath with only

single excitations (no system-bath correlations) becomes sufficient to describe the

dynamics for relatively long times. In this limit the TLS bath coincides completely

with the harmonic bath.

The issue of including system-bath correlations has also been addressed in the

MCTDH calculations. In Ref. [120] the same system has been studied with the

G-MCTDH method (the MCTDH with Gaussian expansion functions). Differences

between the single-configurational (the Hartree limit) and the multi-configurational

descriptions (with an increasing number of single particle functions) have been ob-

tained for the energy relaxation process. In these calculations at least four single
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3.1 Dissipative dynamics of anharmonic oscillator
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Figure 3.3: (Left panel) The relative difference in the effective subsystem energy (〈HS〉 +

0.5〈HSB〉) between the bath with only single excitations allowed 〈E1〉 and the bath with two

simultaneous excitations 〈E2〉 as a function of time. The difference is calculated for a few coupling

strengths. The simulation time is t = 900 fs and the number of bath modes is N = 10 . . .40. (Right

panel) The population Psim of 1 and 2 simultaneous bath excitations is compared to the bath with

two simultaneous excitations. The solid lines refer to the weak coupling limit (γ−1 = 1630 fs) and

the dashed lines refer to medium coupling (γ−1 = 163 fs).

particle functions per resonant bath modes and two spf for secondary modes were

required to achieve convergence in the relatively weak coupling limit (γ−1 = 500 fs).

In the strong coupling regime (Fig. 3.4) there is considerable deviation between

the two models. In the Surrogate Hamiltonian model the energy relaxes faster and

the oscillator is damped after a single period. As expected, convergence requires

many simultaneous excitations. For example, a bath consisting of N = 20 modes

requires at least four simultaneous excitations for converging the energy relaxation

dynamics. Although the spin bath with a few simultaneous excitations is sufficient to

overcome the saturation effect, it does not produce the same results as the harmonic

bath in the MCTDH method.

3.1.3 The interaction between the bath modes

The saturation of bath modes is expected whenever an anharmonic bath is employed.

Nevertheless, to mimic the harmonic bath more closely the saturation of the bath

modes should be reduced. This effect is obtained by allowing energy exchange

between the bath modes. For the Surrogate Hamiltonian this is done by adding to
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Figure 3.4: The energy relaxation (lower panel) and damped oscillations of the average position

(upper panel) of the Morse oscillator in the strong coupling strength (γ−1 = 54 fs). The bath

parameters and the initial state are the same as in the weak coupling calculations. The number

of bath modes is N = 20. Dashed lines refer to Nest and Meyer’s MCTDH calculations (adopted

from Ref. [119]). Dashed-dotted lines refer to the Surrogate Hamiltonian calculations with single

excitations. Solid lines refer to a bath with four excitations allowed simultaneously.

the bath Hamiltonian ĤB the following term:

Ĥint =
∑

ij

κij(σ̂
+
i σ̂j + σ̂+

j σ̂i) , (3.12)

where the parameter κij(= κ∗ji) is the interaction strength between two bath modes.

The interaction can be restricted to the nearest neighbors in energy by the condition

κij = 0 for |i − j| > 1. The detailed algorithm of applying Eq.(3.12) in the bit

representation has been described in Appendix B in the context of pure dephasing.

The term σ̂+
i σ̂j + σ̂+

j σ̂i describes a two quasi-particle interaction within the

bath. A qualitative picture is based on an almost elastic exchange of energy between

the two nearest neighbor bath modes which are almost degenerate. The process is

described by a creation of an excitation in one mode at the expense of another and

vice versa.

The new bath Hamiltonian including the interactions can be diagonalized leading

to:

ˆ̃
HB =

∑

i

ω̃i
ˆ̃σ
+

i
ˆ̃σi , (3.13)

where ω̃i are the eigenvalues of D̂
+
(ĤB + Ĥint)D̂. In the new basis of {ˆ̃σi} the

system-bath interaction term in Eq. (3.13) is also modified. However for sufficiently
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Figure 3.5: The energy relaxation with interaction between the bath modes is shown in the

weak coupling limit (γ−1 = 1630 fs). The bath is assumed to be Ohmic with cutoff frequency

ωc = 2.9 · 10−3 a.u. (Upper panel) The influence of the parameter κ is shown for a bath of N = 40

modes. (Lower panel) The energy relaxation is shown with the optimal parameter of κ = 1.5 ·10−4

(thin line). The thick solid line refers to MCTDH calculations with a bath of harmonic oscillators

( [119]). The dashed line refers to Surrogate Hamiltonian calculations with two simultaneous

excitations allowed without interaction between the bath modes. The bath consists of N = 60

modes.

small κ the eigenvalues of the bath change only slightly, but the saturation effect is

postponed to a much later time.

Fig. 3.5 shows the influence of the interaction between the bath modes on energy

relaxation in the weak coupling limit (γ−1 = 1630 fs). The dynamics are calculated

for a relatively long period of 3 ps. For such a long time the saturation effect is

observed even for a bath with two simultaneous excitations. Since the saturation

time ts is determined mostly by the saturation of the few modes close to resonance

with the subsystem, increasing the number of modes does not prolong ts.

Adding an interaction between the bath modes leads to slower decay and delayed

saturation (Cf Fig. 3.5, upper panel). This can be understood from the following

considerations: the interaction term, Eq.(3.12), describes the transport of excitation

from one bath mode to its nearest neighbor. Consequently, κ determines how quickly

the excitation is transported away from a TLS mode close to resonance with the

primary system. On the other hand, the interaction energy, i.e. the expectation

value of 〈ĤSB〉, depends on the population of the primary system and of the bath

modes close to it. If the population is removed from those bath modes and “diffuses”
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Figure 3.6: Effect of initial correlations. The energy relaxation and damped oscillations of the

average position are shown for the initially uncorrelated (solid lines) and correlated (dashed lines)

states. The dynamics for weak (γ−1 = 1630 fs) and strong couplings (γ−1 = 54 fs) are compared.

A bath consisting of N = 10 modes with 2 and 5 simultaneous excitations (for the weak and strong

coupling, respectively) is sufficient to obtain the converged results. (Left) The effective subsystem

energy (upper panel) (E
′

S = 〈HS〉 +0.5〈HSB〉) and the expectation value for the Morse coordinate

(lower panel) are shown. (Right) The bare subsystem energy (upper panel) ES = 〈HS〉 in the

strong coupling regime (γ−1 = 54 fs) is shown for the short time dynamics. The energy stored in

the system-bath coupling (lower panel) is calculated as a function of the coupling constant η = Mγ.

all over the bath, the interaction energy decreases and the decay becomes slower.

This explains the upper panel of Fig. 3.5 which shows the energy relaxation for

different values of κ.

An optimal value of the inter-spin coupling parameter κ should minimize sat-

uration without altering the spectral density. As an example, κ = 1.5 · 10−4 for

calculations carried out for N = 60 bath modes (Cf. the lower panel of Fig. 3.5).

For this value of κ the spectrum of the bath deviated less than 1%. The energy relax-

ation in this case is almost indistinguishable from the results obtained in Ref. [119]

for the harmonic bath.

3.1.4 Correlated versus uncorrelated states

The widely used assumption of an initially uncorrelated system-bath state is not

consistent with most experimental situations [26, 41, 125]. The influence of initial

correlations has been addressed in the context of the weak coupling approximation,

where it appears as an additional inhomogeneous term [26].

A fully correlated initial state is easily obtained in the Surrogate Hamiltonian
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3.1 Dissipative dynamics of anharmonic oscillator

method. Once the system-bath Hamiltonian Ĥ is set, the correlated ground state

can be determined by propagating an initial guess wave function in imaginary time

using Ĥ [114].

The influence of initial correlations is shown in Fig. 3.6. The uncorrelated state

is identical to that of the previous calculations: the primary system is defined as

a shifted Gaussian wave packet, while the bath is not excited. For the correlated

initial state, the ground state of the total system was calculated first. Then this

ground state was displaced by the shift operator in momentum space D̂ = e−iR0k̂

with R0 = 2R̃. The dynamics of the correlated state are compared to that of the

uncorrelated state for weak and strong couplings (γ−1 = 1630 fs and γ−1 = 54 fs).

The dashed and solid lines in Fig. 3.6 correspond to the initial state being correlated

and uncorrelated, respectively.

The short-time dynamics differ for the correlated and uncorrelated cases, since

the correlations need to be built up in the uncorrelated case [40]. In the latter

case an initial slippage in the system energy can be observed before the reduced

dynamics appear to be Markovian (right upper panel). This effect is insignificant

for weak coupling. Even for strong coupling, the differences between the correlated

and uncorrelated cases were found to be very small. Apparently, the displacement is

a stronger ”perturbation” than that caused by the correlations, i.e. the displacement

establishes a new initial state [126].

3.1.5 Decoherence

Decoherence has become a popular term used to describe loss of phase in coherent

superpositions of quantum states due to interaction with a bath. It is therefore

natural to compare the decoherence properties of the spin bath to those of the

harmonic bath. The first difficulty is that there are different approaches to the

definition of decoherence. Alicki [9] identifies pure decoherence (dephasing) with the

decay of the off-diagonal elements of the density operator, which is not accompanied

by dissipation. He then argues that dephasing cannot be caused by a harmonic

oscillator bath with a coupling, which is linear in coordinates or momenta.

Energy relaxation is also accompanied by loss of phase. For comparison, we will

consider decoherence as a process caused by energy relaxation, which is character-
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3.1 Dissipative dynamics of anharmonic oscillator

Figure 3.7: Wigner function W (x, p) of a superposition of two spatially displaced Gaussian wave

packets at R0 = ±0.25 a.u. with a coherent-state width of σ = (2Mω0)
−1 (Cat state). The

figure shows W (R,P ) at the initial time t = 0. The interference term, which appears between the

Gaussian packets, indicates their coherence and decays with time.

ized by a time T1 = γ−1. The decoherence effect will be illustrated in terms of

the dissipative dynamics of cat states, defined as a superposition of two coherent

states. The interaction with the environment leads to decay of the coherences of

such a superposition on an extremely short time scale, usually much shorter than

the corresponding relaxation time scale [127]. This process has been modeled using

G-MCTDH by [120], and as a result can be used for a comparative study.

The Wigner function of the cat state (Fig. 3.7) consists of two Gaussians cen-

tered at (±R0, p0) and an interference term, which is centered at the origin. The

off-diagonal part of the density matrix in the coherent-state basis, which contains in-

formation about quantum interferences between the two components of the cat state,

decays with the rate γcoh. In the Markovian limit the decay rate is proportional to

the square of the distance between the coherent states. For zero temperature it is

given by [128, 129]:

γcoh =
γMω0δ

2

2~
. (3.14)

ω0 and δ are parameters of the primary system (ω0 represents the frequency of the

harmonic oscillator, and δ is the separation distance between the coherent states).

The decoherence rate for a primary system coupled to a TLS bath is calculated

and compared to the calculations for a bath of harmonic oscillators with the G-

MCTDH method [120]. The calculations are performed for a cat state in a harmonic
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Figure 3.8: The decoherence effect in terms of decay of the coherence norm and off-diagonal

elements in the energy representation. The coherence norm ncoh is shown as a function of time

for two different couplings, γ−1 = 1630 fs and γ−1 = 500 fs. In the golden rule limit, off-diagonal

elements of the reduced system density matrix ρ(R,R
′

) decay exponentially with the decoherence

rates γ−1
coh = 130 fs and γ−1

coh = 40 fs (for the two given couplings, respectively). This decay is

shown by the full lines. The dashed lines refer to the calculated decay of the decoherence norm.

The dotted lines show the decay of trS{ρ̂2
coh} in the energy representation.

oscillator potential with ω0 = 10−3 a.u. and M = 105 a.u. The bath has the same

parameters as for the previous calculations with damping rates of γ−1 = 1630 fs and

γ−1 = 500 fs.

A quantitative measure of decoherence of the primary system is the coherence

norm used by Strunz et al. [130]:

ncoh(t) = trS
{
ρ̂coh
S (t)ρ̂coh+

S (t)
}
, (3.15)

where ρ̂coh
S refers to off-diagonal elements of the subsystem reduced density matrix

in the basis of coherent states.

Since decoherence is a basis-dependent phenomenon, one can ask if it can also

be measured in the basis of the eigenstates of the system Hamiltonian ĤS. The

question arises, whether these eigenstates form a pointer basis [131] - the basis with

respect to which off-diagonal elements in the reduced density operator disappear due

to decoherence. To perform this test the system density operator ρ̂S(t) = trB{ρ̂},
which has been calculated in the coordinate basis is transformed to the basis of the

ĤS eigenstates. Decomposing such a state to a dynamical and a static part leads

to [132]:

ρ̂S(t) = ρ̂coh(t) + C2ρ̂
eq
S (3.16)

31



3.2 Entanglement

where ρ̂eq

S is the equilibrium stationary system density operator and C2 is an overlap

functional given by

C2 = trS{ρ̂S(t) · ρ̂eq

S }/ trS{ρ̂eq

S
2} . (3.17)

ρ̂coh(t) in Eq.(3.16), has no diagonal elements in the energy representation and

is therefore traceless. Thus the decoherence effect is measured by the decay of

trS{ρ̂2
coh}.

Fig. 3.8 shows the decay of the coherence norm ncoh and trS{ρ̂2
coh} for two different

coupling strengths (both are weak). The thick lines refer to a simple exponential

decay predicted by Eq.(3.14) for a harmonic bath and confirmed by Ref. [120]. The

dashed lines refer to the calculated decay of ncoh, which is in good agreement with

the prediction. The decay of trS{ρ̂2
coh} (the dotted lines) has almost the same rate

at a relatively short time. However, the off-diagonal elements of ρ̂S in the energy

representation do not decay strictly to zero. Therefore, in this case, the system

energy eigenstates cannot be considered as a pointer basis [131].

3.2 Entanglement

Entanglement between two quantum states is a manifestation of additional quantum

correlation. For example entanglement between the system and the bath means

ρ̂ 6= ρ̂S ⊗ ρ̂B. In a dissipative environment it is expected that initial entanglement

between parts of the system are lost leading to decoherence [133,134]. In addition a

bath can also provide an indirect interaction between totally decoupled parts of the

primary system and entangle them [135, 136].

The difference between the harmonic and the spin baths should be manifested in

another type of entanglement - quantum correlations between different bath modes.

A system interacting with the spin bath, can induce entanglement between two spin

modes, which are not directly interacting with each other. In the harmonic bath on

the other hand, a system linearly coupled to different modes is not able to entangle

those modes (see Appendix C).

Peres [137] and Horodecki et al. [138] have provided a criterion, based on partial

transposition, to determine whether a given mixed state of two subsystems is entan-

gled (cf Appendix D). Since the criterion is defined only for two coupled TLS, the
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Figure 3.9: Measurement of entanglement between the bath modes as a function of time. (Upper

panel) The smallest eigenvalue of the partial transposition ρTj of the reduced density matrix for

pair of the bath modes (i, j) is calculated according to Appendix D. The negative eigenvalues are

averaged over all possible combinations of the bath modes. (Lower panel) The relative number of

entangled pairs of the bath modes as a function of time. The calculations are performed for three

different system-bath coupling strengths (γ−1 = 1630, 500, 163 fs). The bath consisting of N = 40

modes with two simultaneous excitations allowed is used in all calculations.

study of entanglement is limited to two bath modes (i) and (j). The density operator

of any two bath modes ρ̂ij is obtained as a partial trace of trk 6=i,j{ρ̂B} over the rest

of the bath modes, where the density operator of the bath is ρ̂B = trS{ρ̂}. The

procedure checks whether the partial transposition of ρ̂ij with respect to one of the

modes has negative eigenvalues. The smallest eigenvalue λ0 of the partial transpose

matrix ρTj constitutes the criteria. Then the eigenvalues with λ0 < 0 are averaged

over all entangled pairs of bath modes.

In Fig. 3.9 the averaged parameter λ0 is shown as a function of time for three

different coupling strengths. The entanglement calculations were based on converged

results obtained for a bath of N = 40 modes. This was sufficient to a time scale of

900 fs, for all three system bath coupling strength considered. Since at t = 0 the

bath is not excited, there are no entangled bath modes, therefore λ0 = 0 for all pairs.

As t increases λ0 becomes negative for some of the pairs of the bath modes, meaning

that these modes become entangled. As time progresses, the number of entangled

pairs saturates for all three couplings (Cf Fig. 3.9, lower panel). Therefore, the

increase in the absolute value of λ0 is related primarily to the growth in population

of the entangled modes. The maximum in the number of entangled modes for an
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Figure 3.10: The entanglement of formation E(ρ) is calculated for a couple of the bath modes

(i, j). The average over all possible pairs is shown as a function of time. The calculations are

performed for three different system-bath coupling strengths (γ−1 = 1630, 500, 163 fs). The bath

consisting of N = 40 modes with two simultaneous excitations allowed is used in all calculations.

early time may be associated with the creation of higher-order entanglement terms

where three or more simultaneous excitations become important. Such higher-order

entanglement is not captured by the Peres-Horodecki parameter.

To characterize the degree of entanglement we use an additional measure, the

entanglement of formation introduced by Wootters et al. [139–141] (Cf. Appendix

D). For any 2 ⊗ 2 mixed state this quantity varies from zero (separable states)

to one (maximally entangled states). Our results (Cf. Fig. 3.10) are obtained by

averaging the entanglement of formation E(ρij) (for two bath modes i and j) over

all possible pairs of modes. The dynamics of 〈E(ρ)〉 is similar to those of the partial

transpose parameter. It should be noted that the growth of entanglement shown in

Figs. 3.9-3.10 is exclusive to the spin bath.

3.3 Discussion

The similarities and differences of the relaxation dynamics of a primary system cou-

pled to a spin or to a harmonic bath have been analyzed. The study was facilitated

by the ability to obtain converged numerical results for finite period in time. In

both cases this task becomes possible by employing a large but finite number of

bath modes and controlling the degree of correlation.

For all cases studied the extremely short time dynamics was identical. This
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period represents the inertial response of the bath and is characterized by a zero

derivative of the energy at the initial time t = 0. This non-Markovian dynamical

evolution, ”the slippage”, is quite short and in many cases it can be ignored. The

initial dynamics is closely related to the issue of the choice of the initial state. Prefer-

ably it should represent equilibrium system bath correlation and not be a product

state. The Surrogate Hamiltonian method allows to create such a fully correlated

initial state of the system-bath entity. However, in the present model differences in

the dynamics between correlated and uncorrelated states seem to be insignificant,

even in the strong coupling case. It is expected that the same phenomena would be

observed in the harmonic bath.

For weak system-bath coupling the dynamics induced by both baths are also sim-

ilar. This is a numerical confirmation that in the weak coupling limit the harmonic

bath can be mapped to the spin bath [97–99]. In addition in this limit the spin bath

converges with only single excitations of the bath modes meaning that the system

and bath are almost disentangled. This fact is consistent with the convergence to

the Markovian limit [142].

The decoherence properties of the harmonic and spin baths as determined by

the loss of phase of cat states are found to be quite similar. This result is somewhat

surprising since the ergodic properties of the two baths are different. To rationalize,

one should notice that the coherence in cat states composed of a superposition of two

coherent states in a single mode does not represent entanglement. Therefore, this

phase loss does not characterize decoherence in accordance with Alicki’s notion [9].

Moreover when a pure dephasing term was added it was found that it did not erode

the phase coherence between cat states [143]. We conclude that the decoherence

properties of the two baths still require a further study.

The spin and harmonic baths begin to deviate when the initial excitation of the

primary system is increased. This difference is observed for excitations where the

dynamics generated by the harmonic bath is still Markovian. The first indication

of differences is the requirement for two simultaneous bath excitations in order to

converge the spin bath. For longer time periods, the spin bath saturates, limiting

the ability to assimilate the system’s energy. The conclusion is that the limit of

weak coupling is more restrictive in the spin bath case. The effect of the saturation
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can be reduced if the bath Hamiltonian includes a mode-mode coupling term. This

term causes diffusion of excitation between the modes, spreading the excitation

over a greater number of bath modes. Thus bath modes, which are relatively far

from resonance with the primary system become populated and the saturation is

suppressed. Practically, this allows to increase the convergence timescale of the spin

bath.

In the medium coupling regime there is an overall good agreement between the

two models. The spin bath, however, causes stronger relaxation, a fact, which be-

comes even more visible in the case of strong coupling. In this regime the deviations

between the two baths become significant.

The possibility of entanglement of bath modes mediated by the primary system is

a major conceptual difference between the spin and harmonic baths. In the spin bath

after a short initial period where only single excitations are excited, entanglement

between pairs of spins sets-in with what seems as an exponential growth. Later on

the pair entanglement is replaced by higher order terms and the pair-entanglement

saturates. All these correlations are absent from the harmonic bath. Nevertheless

the dynamics of the the primary systems are not very different, except for systems

that have extremely strong coupling. The present simulations should be extended to

finite temperatures, where different dynamics of harmonic and spin baths is expected

when the coupling is larger than the weak coupling regime [70,97,99]. The random

phase method [144], introduced in the following section, allows to extend the above

models to finite temperature applications.

While the Surrogate Hamiltonian method employs a spin bath, the construction

of the bath used in our work is still based on the idea of spectral density. The

concept of spectral density is derived from a normal mode analysis and therefore

intrinsically suffers from the assumption of a weak system-bath coupling. As a result,

using the Surrogate Hamiltonian for systems with strong system-bath coupling is

questionable, even if there is no formal restriction in the model. Future development

of the Surrogate Hamiltonian should focus on a different construction of the spin

bath. One of the possibilities is to build the bath from first principles - a strategy,

that has already been employed for modeling dissipative dynamics on solid surfaces

[94]. Alternative directions may use a random matrix modeling of the environment
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3.3 Discussion

[145–150].

The present study has been an important step in establishing the Surrogate

Hamiltonian method as a practical simulation tool. The elucidation of the system-

bath dynamics allows to tailor a simulation package in particular for ultrafast dy-

namical processes. The two bath models represent different physics. The Surrogate

Hamiltonian is more suited to a local mode bath description, while the harmonic

bath finds its origin in a global normal mode description. The very similar dynamics

observed in the weak and medium coupling cases indicates that from the viewpoint

of the reduced dynamics it is hard to identify a distinction between the two baths.
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Chapter 4

Random phase thermal

wavefunctions

The aim of theoretical simulations based on the Surrogate Hamiltonian approach is

to achieve a comprehensive description of realistic experimental systems. For that

purpose the extension of the method to finite-temperature situation is required. The

early applications of the Surrogate Hamiltonian have been practically restricted to

low temperatures due to unfavorable computational scaling. In following Chapter we

present a new scheme, which employs a concept of random phase thermal wavefunc-

tion and enables the application of the Surrogate Hamiltonian method to systems

at finite temperatures.

At zero temperature the combined system-bath is in a pure quantum state and

therefore can be described by a single wave function. However, if the temperature T

is finite the state of the system in thermal equilibrium with the bath is a quantum

mixture, represented by the density operator [20]:

ρ̂β =
e−βĤ

Tr
{
e−βĤ

} (4.1)

where β = 1/kbT , kb is Boltzmann’s constant and Ĥ is the Hamiltonian of the com-

bined system. The density operator describing a thermal mixture can be represented

in any complete basis of states (for example, the energy eigenstates of the combined

Hamiltonian Ĥ):

ρ̂β =
∑

j

e−βEj

Z
|Ψj〉〈Ψj| (4.2)
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Figure 4.1: Energy levels of the combined system-bath. Calculations are performed for the model

of a Morse oscillator linearly coupled to an Ohmic bath of two-level systems. Numerical parameters

are given in Sec. 4.2. The energy eigenstates are calculated for the primary system only (left), for

the total system with N = 10 bath modes (middle) and with N = 20 bath modes (right). All

calculations are performed for a medium temperature kbT = 0.5ω0 and only J eigenstates with

Boltzmann weights e−βEJ ≪ ǫ are calculated.

where Z =
∑

j e
−βEj is the partition function and Ej is the energy of the jth

eigenfunction |Ψj〉 of the total Hamiltonian Ĥ. In order to obtain the expectation

value 〈Â〉β of an observable Â for a thermal mixture of states, the expectation

values 〈Âj〉 of each of the pure state components have to be calculated and then

averaged by summing over all pure states multiplied by their Boltzmann thermal

weights e−βEj . Within the Surrogate Hamiltonian method a thermal averaging will

require repeating the calculation for each energy eigenstate of the combined system

and bath.

This procedure, however, becomes extremely intractable for medium or high

temperatures. The reason lies in the fact that the Hilbert space of the total system

HS ⊗ HB contains considerably more states than the Hilbert space of the primary

system alone HS. The number of states required for finite-temperature simulations

grows with temperature, and what is more important, it grows exponentially as

the number of bath modes increases (Cf. Fig. 4.1). Therefore, calculating a large

number of the energy eigenstates explicitly and then repeating the propagation step

for each initial state restricts the application of the Surrogate Hamiltonian method
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4.1 Methodology

to low temperatures. The unfavorable scaling relations of the Surrogate Hamiltonian

are behind the motivation for developing an alternative method for the problem of

thermal averaging.

4.1 Methodology

4.1.1 The thermal wavefunction

The initial state of a quantum encounter at finite temperature is described by the

mixed state density operator Eq.(4.1). The density operator is diagonal in the energy

representation therefore:

ρ̂β = Z−1

L∑

j=1

e−βEj |ψj〉〈ψj | , (4.3)

with Z =
∑L

j e
−βEj , L is the dimension of the Hilbert space H. Ej is the energy

of the the jth eigenfunction |ψj〉 of the stationary Hamiltonian Ĥ0. An evaluation

of Eq. (4.3) by direct diagonalization of Ĥ0 would scale as O(L3). For a finite

temperature, employing propagation techniques [114] Eq. (4.3) can be approximated

using only J energy eigenfunctions |ψj〉 with Boltzmann weights where J is chosen

such that e−βEJ ≪ ǫ, where ǫ is the error. In this case the numerical effort is close

to O(J3). In the application of interest, the Surrogate Hamiltonian method, both L

and J scale exponentially with the simulation time. These scaling relations are the

motivation for seeking an alternative method for thermal averaging.

The starting point is a wavefunction composed of a complete set of eigenfunctions

{|φ〉} with equal amplitude and a random set of phases ~θ :

|Φ(~θ)〉 =
√
Q

L∑

k=1

eiθk |φk〉 , (4.4)

where
√
Q is a normalization constant. The projection constructed from this wave-

function:

|Φ(~θ)〉〈Φ(~θ)| = Q
∑

n,m

ei(θn−θm)|φn〉〈φm| , (4.5)

connects all states in the Hilbert space. Using the property of the average of random

phases:
〈
ei(θn−θm)

〉
=

1

2π

∫ 2π

0

ei(n−m)θdθ = δnm , (4.6)
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4.1 Methodology

the off-diagonal elements of the projection Eq. (4.5) can be eliminated. This prop-

erty is used to obtain the identity operator Î by averaging many realizations of the

projection with different phase sets ~θ:

Î = lim
K→∞

(
1

K

K∑

k=1

|Φ(~θk)〉〈Φ(~θk)|
)

(4.7)

where ~θk is the kth realization of the random phase set ~θ. This identity can be

employed to construct the thermal state by averaging an ensemble of random thermal

wavefunctions:

ρ̂β =
1

Z
e−

β

2
Ĥ0 Î e−

β

2
Ĥ0 = lim

K→∞

1

Z

(
1

K

K∑

k=1

|Φ(β
2
, ~θk)〉〈Φ(

β

2
, ~θk)|

)
, (4.8)

where the random thermal wavefunction becomes:

|Φ(β
2
, ~θ)〉 = e−

β

2
Ĥ0 |Φ(~θ)〉 . (4.9)

The advantage of Eq. (4.9) is that the random thermal wavefunction can be obtained

by propagating an initial random phase wavefunction in imaginary time β/2. Using

this construction a thermal average of an observable 〈Â〉β becomes:

〈Â〉β = tr{ρ̂βÂ} = lim
K→∞

1

Z

(
1

K

K∑

k=1

〈Φ(β
2
, ~θk)|Â|Φ(β

2
, ~θk)〉

)
. (4.10)

The random approach to the thermal-averaged observable is subject to statistical

errors. If the realizations are statistically independent, the standard error of the

mean value decreases with the square root of the number of random phase sets:

σ2 =
λ(L)

K
. (4.11)

where λ(L) takes into account the dependence of the statistical error on the Hilbert

space size L and temperature T , but does not depend on the number of random

sets K. Using a sufficiently large number of simulations, λ(L) can be determined,

as well as the number of random phase sets which are necessary to achieve a given

accuracy σ. The dependence of λ(L) on the system size can be related to the degree

of self-averaging of the observable [151]. If λ(L) is a non-increasing function of L

with an increase in system size, the random method will become more efficient than

the direct Boltzmann thermal averaging.
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4.1 Methodology

4.1.2 Numerical details

Method A: The numerical implementation of the algorithm is as follows:

1. The first step is to build the initial random phase wavefunction Ψ(R̂, ~θ). On

each equally spaced grid point k the wavefunction is assigned a random value

eiθk , where θk is a real number, 0 ≤ θk ≤ 2π. Each spinor component is also

multiplied by eiθm .

2. The random wavefunction Ψ(R̂, ~θ) is propagated for an imaginary time β/2

by the thermal propagator e−
β

2
Ĥ0 . The Newton propagation technique is used

[152]. This random phase wavepacket is normalized, leading to Ψ(β
2
, R̂, ~θ).

3. The thermal random wavefunction is now used as an initial state for a dy-

namical simulation propagated in real time. This includes an explicit time

dependence of the Hamiltonian induced by an external field. The propaga-

tion is cut to short time segments and for each segment e−iĤ∆t is applied.

The Chebychev method [114] is used to compute the evolution operator. For

time-dependent Hamiltonian, the Chebychev propagator remains stable with

a slightly different scaling [153].

4. The relevant dynamical observables of the primary system are calculated.

5. The simulation is repeated, many times, with different sets of initial random

wavefunctions, (steps 1-4).

6. The final step is to average all the results obtained for different sets of random

phases.

Method B: An alternative method for obtaining the random phase wavefunction

is based on the assumption that the eigenvalues of Ĥ0 are quasi-random. A prop-

agation in real time e−iĤ0τ for a random period τ , will multiply to each eigenvalue

component by a random phase e−iθk , where θk = Ekτ .

1. A wavefunction is constructed with equal amplitude in all components ψ(R̂).

2. The wavepacket is propagated in imaginary time β/2 by e−
β

2
Ĥ0 and normalized

leading to ψ(β
2
, R̂) .
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4.1 Methodology

Table 4.1: The notations used herein

number of grid points N

number of bath modes M

dimension of HS ⊗HB L = N · 2M

number of eigenstates in the direct averaging J

number of random phase sets K

3. The resulting wavefunction is propagated for a random real period e−iĤ0τ

leading to ψ(τ, β
2
, R̂). The random time is chosen to be on the same order as

the simulation periods (τ ∼ tsim).

4. The wavefunction is then used as an initial state for the dynamical simulation

where the propagation includes the effect of the external field e−iĤ∆t.

5. The process (1-4) is repeated and averaged.

4.1.3 Numerical scaling

The required computational resources in CPU time of the different thermal averaging

methods determines their applicability. The framework for estimating the numerical

scaling of the simulation is set by the energy range ∆Erange = Emax −Emin and the

time scale tsim. The elementary step of the simulation is to perform the operation

of the Hamiltonian on the wavefunction φ = Ĥψ. When the Fourier method is used

for the primary system, and the Surrogate Hamiltonian method for the bath, the

scaling of this elementary step becomes O(L logL) = O(2MM ·N logN) [3].

The zero temperature simulation will serve as a reference to the cost of ther-

mal averaging. There are two steps to the calculation. The first is finding the

lowest energy state. This can be done by propagation in imaginary time τ . It is

sufficient considering the required energy resolution to propagate to a time scale

of τ = tsim. The number of propagation steps would be n ≈ 1
2

√
tsim ·∆Erange

[114]. The simulation itself would require a larger number of propagation steps

of the order of n ≈ 1
2
tsim · ∆Erange. The simulation effort will therefore scale as:

O(2MM N logN tsim ·∆Erange) or as O(M2M) ∼ O(2M) with the number of bath

modes.
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4.2 Application to a model problem

For finite temperature the numerical effort of the direct approach requires ob-

taining J eigenfunctions and in addition J real time propagations for a period tsim

of each eigenvalue. J is determined by the condition that the Boltzmann weight is

smaller than a tolerance e−βEJ/Z ≪ ǫ. Assuming an even distribution of eigenvalues

EJ ≈ ∆ErangeJ/L, leads to the estimation of J :

J ≈ 1 +
−kb log(ǫ Z)
∆Erange

L T (4.12)

In Eq. (4.12) J scales linearly with temperature T and exponentially O(2M) with

the number of bath modes. If J is small i.e. J ≤ 200, the total numerical cost is J

times the cost of the zero temperature calculation. This means that the numerical

cost should scale as O(22M). When J becomes large the cost of obtaining the J

eigenfunctions overcomes the cost of propagation. The numerical scaling of eigen-

function selection becomes proportional to ∼ J3 leading to an exponential scaling

of O(24M) with respect to the number of bath modes. This is the reason that the

direct method is practically restricted to low temperature simulations.

The numerical effort of the random phase thermal wavefunction method is split

into the computation cost of obtaining the thermal wavefunction and cost of the K

propagations of the wavefunction to obtain the thermal averaging. Both random

method require an initial propagation in imaginary time τ = β/2. The numerical

effort is small compared to the real time propagation for t = tsim. The numerical

effort in randomization by real time propagation is approximately equivalent to the

propagation effort required in the simulation. τ = 10%tsim was found to be sufficient.

This means that the numerical effort is K times the effort at zero temperature.

The number K can be estimated from Eq. (4.11) and depends on the functional

dependence of λ(L) on L. In the analyzed result (Cf. Sec. 4.2) it was found that due

to self-averaging λ(L) is a decreasing function of L. This means that the numerical

scaling of the method with respect to the number of bath modes becomes equivalent

to the zero temperature case of O(2M).

4.2 Application to a model problem

The illustrative example chosen to test the methods models a typical simulation of

ultrafast spectroscopy in condensed phases. A molecule which is first equilibrated
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4.2 Application to a model problem

with its solvent is subject to a short electromagnetic pulse. In the model the molecule

is described as a Morse oscillator V (X̂) = D(e−2αX̂ − 2e−αX̂) with X̂ = R̂ − R̂eq,

linearly coupled to the dissipative bath. The bath, assumed to be Ohmic, is described

by its spectral density:

J(ω) = γωe−ω/ωc . (4.13)

The dimensionless parameter γ determines the strength of coupling and ωc is a cutoff

frequency. A finite bath with equally spaced sampling of the energy range was used.

The primary system parameters were chosen as D = 0.05, α = 2.0 µ = 105 (all in

atomic units).

To simulate directly the absorption spectrum a short electromagnetic pulse is

applied to the system. The corresponding electric field has the following time-

dependent form:

E(t) = E0 sin2

[
π(t− t0)

tp

]
cos(ωLt), (4.14)

where E0 is the electric field amplitude, ωL is the laser carrier frequency, and tp is

the pulse duration. The laser field has the sin2 form. Other pulse shapes, such a

Gaussian resulted in essentially similar results.

The laser parameters were chosen as E0 = 0.001 a.u. and tp = 1000 fs. The

temperature was chosen to be relatively high kbT = ω0 (ω0 = α
√
2D/µ), so that at

least several of the vibrational energy levels are populated.

4.2.1 Power Absorption

The thermal averaged absorption spectrum was calculated using the methods de-

scribed above. A non-perturbative direct method is employed applicable to strong

or weak fields. The power absorbed or emitted from the radiation field is given by

the expectation value [154]:

P =

〈
∂Ĥint

∂t

〉
= trS

{
ρ̂S

∂Ĥint

∂t

}
(4.15)

To obtain the total energy ∆E absorbed by a pulse, Eq. (4.15) is integrated for the

total pulse duration. By varying the carrier frequency ωL of the pulse and calculating

∆E, a spectrum of absorbed energy vs frequency was obtained.
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Figure 4.2: Convergence of the total absorbed power of the pulse with number of random phase

sets. The peak position (top) and FWHN (bottom) of the pulse are shown. The calculations

are made for different numbers of bath modes. The thermal averaged absorption is shown for

M = 7(right). The solid line refers to the thermal average using the energy eigenstates. The dashed

lines with squares and triangles refer to average over 10 and 100 random phase sets, respectively.

The bath parameters were chosen as γ = 4.0 and ωc = 1.5ω0 and with a 5-modes

bath (M = 5), the Surrogate Hamiltonian method converges to a timescale of the

pulse duration.

As a reference, the power was calculated directly by finding the first J eigenfunc-

tions of H0. The simulation including the pulse was run for each eigenfunction and

Boltzmann averaged.

For M = 3 and kbT = ω0 the required number of eigenstates J ≈ 30, however,

for M = 9 bath J ≈ 1420.

The direct thermal averaging results were then compared with the random phase

thermal wavefunction results. The convergence of the absorbed power with K ran-

dom phase sets is shown in Fig. 4.2. For K > 50 the agreement between two

calculations is quantitatively good. The random nature is demonstrated in Fig. 4.3

showing that the statistical error decreases linearly with 1/
√
K. The function λ(L)

Eq. (4.11) which measures the self-averaging property is shown in Fig. 4.3. The best

power dependence fit through the data λ(L) ∼ Lγ is found to be γ ≈ 1
2
, (0.45± 0.09

for kbT = ω0). which means that the observable P is self-averaging.
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Figure 4.3: (Left) The error σ(P)/〈P〉 in the power absorbed at ωmax as a function of K−1/2,

where K is the number of random phase sets. The calculations are made for an increasing number

of bath modes. (Right) The function λ(L) versus the system size for two different temperatures.

4.2.2 Correlation functions

The dipole correlation function is a more stringent test since it depends directly on

the dephasing rate. The dipole autocorrelation function was calculated using the

Surrogate Hamiltonian without explicitly including the external field:

C(t) = trS

{
ρ̂SM̂

}
, (4.16)

where M̂ = µ̂∗e−iĤtµ̂eiĤt and µ̂ ∝ X̂ is the actual dipole function.

Fig. 4.5 shows the dipole autocorrelation function calculated by Eq. (4.16) for

finite temperature. The initial state for the time propagation was chosen as a random

phase thermal wavepacket. Then, the initial state was operated on by the position

operator of the oscillator and then was propagated in time. The calculations were

performed with an increasing number of the bath modes which progressively pushed

the converged part of the approximation to longer times. The thermal averaging

was performed using an increasing number of the random phase sets. Reasonably

accurate results were obtained with K = 100 random phase sets.

Fig. 4.4 shows the the expectation value of the position X̂ of the oscillator after

applying the short pulse. The pulse duration was chosen as tp = 500 fs. The bath

parameters are the same as with the previous calculations. The convergence was

obtained for a relatively large number of sets.

A comparison of the scaling of the numerical effort between the direct and random

methods is shown in Fig. 4.6. The total power absorbed by the system at ωmax was
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Figure 4.4: The expectation value of the position operator vs time. The dynamics is shown for

an increasing number of bath modes (M=3,5,7). Upper and lower panels correspond to averaging

over a different number of random phase sets (10 and 100 respectively).

calculated for two different temperatures and an increasing number of bath modes.

The direct thermal averaging shows the expected increase in the numerical effort

with the number of bath modes, as well as the increase of numerical effort with

temperature. In particular, the number of J grows linearly with increasing the

system size L and the temperature T . However, for a larger number of the bath

modesM > 11, the cost of obtaining the J eigenfunctions should overcomes the cost

of propagation. Thus, the total CPU time in the direct method will grow as O(L3).

The numerical effort required by the random phase method depends on the

desired accuracy. The number of the propagations K that are necessary to achieve a

given accuracy σ depends on the system size L and the temperature T . Determining

λ(L) by fitting Eq. (4.11) to the simulated data Cf. Fig. 4.3, we found that K(L)

decreases with L as K(L) ∼ L−1/2. This means that, in order to achieve a constant

statistical error in the simulation results when the system size L is increased, the

number of random phase sets K is decreased. It follows that for large system size i.e.

a large number of the bath modes M and for high temperature the random phase

simulation will always require less CPU time than the direct method. According

to Fig. 4.6 for kbT = ω0, the random method becomes more efficient for M > 6,

and when kbT = 0.5ω0 for M > 7. The two alternative ways for constructing

the random wavepacket gave similar results. The additional computational effort

required in method B to randomize the phase by real time propagation was found
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Figure 4.5: The absolute value of the dipole autocorrelation function for the relaxing Morse

oscillator coupled to the Ohmic bath. The dynamics is shown for an increasing number of bath

modes (M=3,5,7). Upper and lower panels correspond to averaging over a different number of

random phase sets (K=10 and K=100 respectively).

to be insignificant.

A dominant source of computational error in the random phase method is asso-

ciated with the choice of the initial wavefunction. This wavefunction should consist

of equal amplitude of all the states of the combined Hilbert space HS ⊗HB. Good

results were obtained by choosing an initial wavefunction as a δ function in coordi-

nates that is located at the minimum of the potential while each spinor component

has an equal amplitude and a different phase. The numerical tests also confirm that

the actual CPU times follow the scaling arguments.

4.3 Conclusions

In this Chapter we introduced the new method for calculating thermal-averaged

observables within the Surrogate Hamiltonian approach. The method is based on a

random phase superposition of all states in the combined Hilbert space HS⊗HB. By

averaging the sum of projections of these superpositions the identity operator can be

reconstructed for any basis set. By applying the thermal propagator e−
β
2
Ĥ0 to this

state, a thermal wavefunction is produced. This pure state serves as an initial state

for the time propagation and for the evaluation of the primary system observables.

Averaging of many random phase sets leads to the thermal averaged observables.

The random phase method was tested for the model of a Morse oscillator in
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Figure 4.6: The numerical effort measured as the number of propagations J or K required for

thermal averaging vs the system size L. The figure relates to the power absorbed at ωmax. The

temperatures used were kbT = ω0 (squares) and kbT = 0.5ω0 (triangles). The solid lines refer to

the direct method. The dashed lines refer to the number of random phase sets K needed to obtain

the converged results with an accuracy of 1%.

equilibrium with an Ohmic bath, perturbed by a short pulse. The absorbed power

and dipole correlation function were calculated for a relatively high temperature

with an increasing number of bath modes. The results obtained from the random

phase thermal averaging were compared with the results from a direct averaging

using the eigenstates of the combined system-bath.

The scaling of the computation effort with the temperature and the number of

bath modes is more favorable for the proposed random method compared to direct

thermal averaging over the energy eigenstates. Comparable results are obtained by

repeating a relatively small number of propagations. In addition since the random

phase wavepacket can be expanded in any set of states, the calculation of the energy

eigenstates becomes unnecessary.

An interesting issue is the source of the observed self-averaging. The numerical

tests indicate that the size of the statistical pool is ∼ K · L, meaning that there is

a strong self-averaging proportional to the number of states in the Hilbert space. A

possible reason is the local character of the observables, which depend only on the

primary systems operators. For sufficiently strong system-bath coupling we found

that the eigenvalue spacing distribution obeys Wigner’s semicircular law [155]. Such

densities of states appear in systems consisting of a spin coupled to a bath of spins

(for instance, in NMR) or in models with an environment described by random

matrices [149]. In the latter the dynamics of the primary system has been found
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self-averaging. For a weak system-bath coupling a Poisson spacing distribution was

found and the self-averaging phenomenon was less pronounced.

To summarize our findings, the random phase method obtains converged re-

sults for thermally averaged observables by averaging a relatively small number of

randomly chosen initial states. Moreover the number of initial states K required

to obtain convergence is a decreasing function of the system size L for the strong

system-bath coupling and decreases with temperature. This finding means that the

Surrogate Hamiltonian method has the same scaling properties for the zero tem-

perature simulation as for the finite temperature simulations. Moreover the finite

temperature simulations can be run in parallel since each random phase run is inde-

pendent of the others. As a consequence, the Surrogate Hamiltonian method can

be applied practically for moderate temperature simulations, when the bath modes

do not saturate.

The present thermal random phase method is not restricted to the Surrogate

Hamiltonian approach. The basic construction is representation-independent. There-

fore, the random phase method could be applied the same as to numerical simulations

of spin-bath decoherence [156]. The method could also be used for thermal aver-

aging in the multi-configuration time-dependent Hartree application to dissipative

dynamics [119, 157].
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Chapter 5

Dissipative dynamics of a system

passing through a conical

intersection

The Surrogate Hamiltonian method allows the analysis of multidimensional sys-

tems without restricting the potential shape. Early applications of the method

[88, 93–96], as well as the models presented in the preceding chapters, considered

a one-dimensional primary system coupled to a dissipative environment. Indeed,

some chemical processes can be described in terms of dynamics of the nuclei on a

single Born-Oppenheimer potential-energy surface (PES). However, the chemistry

of numerous systems involves nuclear dynamics on a few multidimensional excited

PESs. As a result, the Born-Oppenheimer (BO) [158] adiabatic separation of nu-

clear and electronic motions is almost certain to fail. Processes in which the BO

approximation breaks down are known as nonadiabatic processes. Typical examples

of nonadiabatic phenomena include the nonradiative relaxation of excited electronic

states, photo-induced unimolecular decay and isomerization processes of polyatomic

molecules.

The most complicated nonadiabatic processes involve conical intersections [103,

104]. These can exist in any dimensionality greater than one, so the simplest is a two-

dimensional conical structure. Here the symmetry is such that the diabatic curves

cross in an (n-1) dimensional seam. In the adiabatic representation, the curves actu-

ally cross at a single point, because of the symmetry (odd in one of the coordinates)
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of the vibronic coupling. More complicated structures (higher-dimensional conical

intersections, asymmetric conical intersections, pairs or clusters of conical intersec-

tions) can also occur. They are common for larger organic molecules [107,159,160],

and they offer complex higher order mixing patterns in the dynamics.

Early attempts to treat nonadiabatic dynamics were based on the Landau-Zener

approach [106,161–163], where motion along one coordinate modulates the nonadia-

batic transition among electronic states. While the coupling is most easily envisaged

along one coordinate, generalizing the Landau-Zener approach to multiple coordi-

nates lies at the heart of contemporary models for electron transfer [164] and for

nonradiative decay [165]. These models, however, fail to provide results for transi-

tion rates, which are in quantitative agreement with the experimental data. Exper-

imental studies using ultrafast laser techniques have measured the recovery of the

bleach (the time scale of a complete photocycle) resulting in sub-picosecond time

scales [166–169].

Because of the different geometry of curve crossing between isolated Landau-

Zener avoided crossings and higher-dimensional conical intersections, population

transfer can be very rapid in the conical case. This has led to the original interest in

conical intersections, and it has been studied extensively, particularly using density

operator methods [108, 109, 170–172]. The organic literature [107, 173] frequently

uses conical intersections to discuss sub-picosecond transitions.

Most theoretical analyses of conical intersections use either two or three nuclear

modes [108]. Electronic populations can then show ultrafast behavior returning to

the ground electronic state, and some aspects of an intramolecular vibrational relax-

ation (IVR) and phase loss can also be understood. But the fundamental behavior

of conical intersections in molecules larger than triatomic arises from the presence of

multiple modes, and explicit treatment of multiple modes remains difficult. There

is an exemplary analysis of a twenty-four mode dynamics model for pyrazine [174],

as well as calculations utilizing the Redfield [18, 19] approach to deal with the rest

of the vibrational modes as comprising a harmonic bath [175, 176].

In order to properly investigate nonadiabatic processes, the Surrogate Hamilto-

nian should be extended to at least two dimensions. The following Chapter considers

the simplest model of a symmetry-allowed conical intersection, which includes two
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electronic states and two vibrational modes. In addition to the Surrogate Hamil-

tonian, the dissipation is treated within the Lindblad formalism of semi-group dy-

namics [16, 42, 43]. This allows a direct comparison of the two simulation methods

on the same model in order to elucidate the validity of those approaches.

Most studies of nonadiabatic processes involving conical intersections consider

the overall electronic populations of the excited and the ground electronic states

[108,170,177,178]. A question that naturally occurs is how the population dynamics

is monitored experimentally. In our work, we focus on decay of photoexcited states,

and on the experimental observables of pump/probe spectra such as recovery of the

bleach. All of these are governed not only by the population dynamics, but also by

the value of the transition dipole moment and by the energy redistribution. Hence

it is necessary to deal not only with the electronic state population, but also with

the energy distribution. As a result, in nearly all cases we have (in addition to

the curve crossing problem) an IVR issue - the system must return to the starting

configuration for the bleach recovery to be observed, and back transfer (re-crossing)

can occur in the excited state, unless either IVR or effective dephasing make such

recurrences impossible.

In order to deal with these questions, our model employs transient modulations

of optical observables, which are the direct signature of the ultrafast dynamics mea-

sured in the pump-probe experiments. The use of the Surrogate Hamiltonian has

the advantage of a consistent treatment of initial correlations between the system

and the bath, as well as explicit description of the pulse field and its influence on

the system-bath interactions. The non-perturbative approach is employed to de-

scribe the dynamics induced by the pump pulse, while the weak probe is treated

within a perturbative picture. This allows us to associate a quantum mechanical

window operator to the absorption of the probe pulse centered at a certain time t.

The stimulated emission and absorption are calculated as expectation values of this

window operator. The present modeling of the pump-probe experiment enables us

to investigate the population dynamics, as well as the energy distribution during the

nonadiabatic dynamics.
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5.1 Theory

5.1 Theory

5.1.1 Model

We consider a primary system immersed in a bath. The Hamiltonian of such a

combined system is given by:

Ĥ = ĤS ⊗ 11B + 11S ⊗ ĤB + ĤSB + ĤSF (t) , (5.1)

where ĤS is the Hamiltonian of the primary system, ĤB - the bath Hamiltonian and

ĤSB describes the interaction between the system and the bath. The time-dependent

interaction of the system with the external electromagnetic field is represented by

ĤSF (t).

In the context of conical intersections, the bath may describe a condensed-phase

environment, as well as the molecule’s inactive modes.

Let us consider the simplest model of a symmetry-allowed conical intersection

[103,104,179]. It includes two electronic states g and e, and two vibrational modes:

the totally symmetric Q0 (also called the tuning mode), and the symmetry-breaking

(coupling) mode Qc, which is responsible for vibronic coupling [170]. Employing a

diabatic electronic representation, the system Hamiltonian can be written as

ĤS =



 Ĥg Vd(Q̂c)

Vd(Q̂c) Ĥe



⊗ 11B , (5.2)

with Ĥg/e = T̂ + Vg/e(Q̂, Q̂c). T̂ is the kinetic energy operator, Vg and Ve are the

potential energy operators on the ground and excited electronic states respectively,

and Vd is the diabatic coupling. The Q̂c, Q̂0 are chosen to be dimensionless.

It is customary to choose a linear form for the diabatic coupling term:

Vd(Q̂0, Q̂c) = Λ Q̂c , (5.3)

which is appropriate in the vicinity of the conical intersection. Since diabatic cou-

pling functions obtained from ab initio calculations turn out to be localized [180,181],

the more physically motivated choice is a coupling term modulated by a damping

Gaussian:

Vd(Q̂0, Q̂c) = Λ Q̂c e−(Q̂0−QCI)
2/σ2−Q̂

2
c/σ

2

(5.4)
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where QCI is the point at which the conical intersection occurs along the symmetric

mode Q0. Thus the diabatic coupling is damped out as one moves away from the

conical intersection point [95,182]. Complications will arise if the conical intersection

is close to the Franck-Condon region, which will lead to interferences with the light

induced excitation dynamics. This possibility will be excluded in the present study.

The coupling with the radiation is described by the semiclassical time-dependent

Hamiltonian

ĤSF =


 0 −ǫ(t)µ̂tr

−ǫ∗(t)µ̂tr 0


⊗ 11B , (5.5)

where µ̂tr = µ̂tr(Q̂0, Q̂c, ) is the electronic transition dipole operator, which is a

function of the nuclear configuration. ǫ(t) is the time-dependent electric field. In

the large wavelength limit the spatial dependence of ǫ(t) is ignored.

5.1.2 The interaction between system and bath within the

Surrogate Hamiltonian method

The interaction between system and bath is described by the Hamiltonian ĤSB,

which can be decomposed into a sum of products of system and bath operators

without loss of generality. The system-bath interaction ĤSB can be partitioned into

terms describing different physical processes. The most general bilinear form for

vibrational relaxation is given by the operator:

Ĥ
vr

SB =


fg(Q̂0, Q̂c) 0

0 fe(Q̂0, Q̂c)


⊗

∑

α=0,c

N∑

i

λαi (σ̂
α+
i + σ̂α

i ) , (5.6)

where f(Q̂0, Q̂c) is a function of the system coordinate(s) operator. The system-bath

coupling can vary between the ground and the excited potentials.

In the weak system-bath coupling regime the influence of the bath on the primary

system is fully characterized by the spectral density function J(ω) [7]:

Jα(ω) =
∑

i

|λi|2δ(ω − ωi) , (5.7)

Use of the density of states ρ(ωi) = (ωi+1 − ωi)
−1 in place of the delta function in

Eq. 5.7 determines the coupling constants [84, 102]:

λi =
√
J(ωi)/ρ(ωi) , (5.8)
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Within the Surrogate Hamiltonian method, it is straightforward to introduce

into the model different system-bath interaction mechanisms, such as electronic and

vibrational pure dephasing. The process of dephasing corresponds physically to

fluctuations in the values of the system energies - electronic dephasing is then the

fluctuation in the electronic energy levels, while vibrational dephasing describes

changes in the vibrational energies. A qualitative picture of pure dephasing is based

on an almost elastic exchange of energy between bath modes, which alters the ac-

cumulated phase of the system. For electronic dephasing, the bath modulates the

electronic excitation:

Ĥ
ed

SB = ∆V (Q̂0, Q̂c)
1

2



−1 0

0 1



⊗
∑

ij

cedij (σ̂
+
i σ̂j + σ̂+

j σ̂i) . (5.9)

∆V (Q̂0, Q̂c) is the difference potential describing the dependence of the modulation

on the nuclear displacement. The coefficients cij are biased to represent almost

elastic encounters,

cij = c̄e e
− (ωi−ωj)

2

2σ2
ω , (5.10)

with c̄e a global dephasing parameter, and σω determines the inelastic width. The

dephasing rate is proportional to the square of the band width of cij [95].

For vibrational dephasing, the bath modulates the vibrational Hamiltonian:

Ĥ
vd

SB =


Ĥg 0

0 Ĥe


⊗

∑

ij

cvdij (σ̂
+
i σ̂j + σ̂+

j σ̂i) . (5.11)

In order to activate a pure dephasing process, the bath modes must be initially

populated.

5.1.3 Reduced dynamics in the density operator represen-

tation

We introduce in this section a brief description of the semigroup approach, which is

applied to the problem of dissipative dynamics of conical intersection in addition to

the Surrogate Hamiltonian method, described earlier.

The reduced dynamics approach is constructed to avoid the size scaling of a full

treatment, allowing a computational scheme able to simulate a dynamical encounter
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from first principles. The equations of motion are solved explicitly for a primary sys-

tem, while the bath is treated implicitly. The approach requires equations of motion

for the subsystem which are based on Lindblad formalism of semi-group dynam-

ics [16,42,43]. One advantage of the semi-group approach is that the computational

cost scales linearly with the propagation time, unlike the exponential scaling of the

the Surrogate Hamiltonian. A disadvantage is that it is formulated in Liouville

space, which squares the number of required representation points in comparison

to a wave function description of the Surrogate Hamiltonian method. In addition,

there is a hidden assumption [25] of an uncorrelated initial state of the system and

the bath. In the Markovian limit, under the conditions of the complete positivity,

the reduced equation of motion can be diagonalized to the Lindblad form [16,42,43]:

d

dt
ρ̂S = − i

~
[ĤS, ρ̂S] +

∑

j

(
F̂jρ̂SF̂

+

j − 1

2
{F̂jF̂

+

j , ρ̂S}
)
, (5.12)

where F̂j are the Lindblad operators, representing the influence of the environment.

{Â, B̂} = ÂB̂+ B̂Â is the anticommutator.

The nature of the bath is implied in the formulation of a specific Lindblad op-

erator. Such operators can be constructed to display vibrational and electronic

dissipation [183] of the system in baths of different physical natures. The rate of

dissipation is derived from the nature of the bath and the system-bath coupling.

The choice F̂vd =
√
γvdφ

~
Ĥ dictates pure vibrational dephasing of the system

(γvd is the rate and φ is the phase shift in time). F̂ed =
√
γed(|e〉〈e| − |g〉〈g|)

represents electronic dephasing [184]. For physical reasons we chose the electronic

dephasing operator to be in the diabatic representation. The reason is that the

major interaction with the environment is induced by the transition dipole of the

molecule, proportional to (|e〉〈e| − |g〉〈g|) in the Condon approximation and the

diabatic representation.

Quantum intramolecular vibrational relaxation is achieved using equations of

motion [185, 186], which are consistent with complete positivity:

d
dt
ρ̂S = − i

~

[
Ĥ, ρ̂S

]
− i

2~
γ [q̂, {p̂, ρ̂S}]

− 1
~2
Dpp [q̂, [q̂, ρ̂S]]− 1

~2
Dqq [p̂, [p̂, ρ̂S]]− 2

~2
Dpq [q̂, [p̂, ρ̂S]] ,

(5.13)

where thermal equilibrium imposes: Dpp = γmkbT and Dqq = κ γ~2

16mkbT
. p and q

are momentum and space variables of the system. The κ is a parameter larger than
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one (for κ = 4/3 the model is Gaussian, and if κ is larger, the model is Poisson-like).

A cross diffusion term can be added Dpq =
γΩ~2

12πkbT
, where Ω is the frequency cutoff

parameter.

It should be noticed that Dij terms are independent of the field.

5.1.4 Stimulation of pump-probe experiment and time-dependent

observables

From the experimental point of view, the detection of ultrafast nonadiabatic pro-

cesses becomes possible using femtosecond pump-probe techniques [1,168,169,187–

190]. These experiments provide information on the time scales of the processes

under investigation. Nevertheless the interpretation of the results remains a non-

trivial task. A direct signature of the ultrafast dynamics in such experiments are

transient modulations of optical observables, reflecting the promotion of ground and

excited state vibrational modes. However, it is generally not possible to define the

exact number of electronic states and vibrational modes involved in the nonadiabatic

dynamics.

The present study aims to construct a simplified quantum dynamical model,

including a conical intersection, and to apply the previously developed tools [95,

132, 191] to simulate the pump-probe experiments.

The Surrogate Hamiltonian simulations start with a fully correlated ground state,

determined by propagating an initial guess function in imaginary time [114] with the

total system-bath Hamiltonian:

Ψ(Q̂; τ) = e−
Ĥτ
~ Ψ(Q̂; 0) . (5.14)

This initial state is the starting point for launching the pump-probe simulations.

The use of the Surrogate Hamiltonian has the advantage of a consistent treatment

of initial correlations between the system and the bath, as well as explicit description

of the pulse field and its influence on the system-bath interactions. Commonly in

most computational studies of nonadiabatic processes, the initial state is prepared

by a Franck-Condon transition from the ground state [108]. This choice, however,

ignores the system-bath correlations and the dynamical aspects of the pump pulse.

Upon applying the pump pulse, a significant fraction of the population is trans-
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fered to the excited state. Since the pump pulse is strong, a non-perturbative treat-

ment is needed. Our model enables us, to include explicitly the interaction between

the system and the radiation (5.5). In this study the pump pulse has a Gaussian

envelope in time:

ǫ(t) = ǫ0 e
−(t−tmax)2/2σ2

L eiωLt , (5.15)

and the carrier frequency ωL is chosen to match the difference between the ground

and excited electronic potentials at the minimum of the ground state.

The probe pulse can be applied at any stage in the cycle of events. Typically,

the probe pulse is short and weak. It can promote both excitation, leading to the

energy absorption and deexcitation, resulting in stimulated emission. In this case

a perturbative picture is justified and can save a significant computational effort.

The total absorption from the probe pulse by an observable is thus represented by

a window operator Ŵ. This operator describes a finite resolution position measure-

ment [191, 192]:

∆E ≈ −~ωL trS{ρ̂S(tp) · Ŵ} . (5.16)

The observation process is completed in a time duration proportional to the probe

pulse duration τp. Eq. (5.16) collapses the observation to a single instant of time

tp. By employing time-dependent perturbation theory the window operator for a

Gaussian shaped probe pulse becomes [191, 192]:

Ŵ(Q̂, Q̂
′
) =

π(τ 2p ǫ
2
0)

~2
e−2∆(Q̂)2τ2p /~

2 · µ̂2(Q̂)× δ(Q̂− Q̂
′
) |ψk〉〈ψk| , (5.17)

where |ψk〉〈ψk| is the electronic projection operator, which selects the ground elec-

tronic state for transient absorption. For emission, the projection operator selects

the excited electronic state. The window operator, Eq. (5.17), is a function of the

probe central frequency ωL:

2∆(Q̂) = Ve(Q̂)− Vg(Q̂)− ~ωL , (5.18)

i.e. 2∆(Q̂) is the difference potential relative to the probe frequency. The em-

ployment of the window operator assumes a random phase between the pump and

probe pulses, eliminating interference effects. An interference between pump and

probe excitations is also eliminated once the electronic dephasing is complete. The

memory of the pump phase is stored in the transition dipole phase. This is erased
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once the relative phase between the ground and excited wave packets is lost by the

electronic dephasing [193].

The present modeling of the pump-probe experiment enables us to investigate

the population dynamics, as well as the energy distribution during the nonadiabatic

dynamics. The dynamics of the excited electronic state is reflected in the stimulated-

emission signal. The vibrational relaxation of the hot ground state population, on

the other hand, can not be monitored by the time evolution of the vibrational pop-

ulation or the stimulated emission. The transient absorption, however, reflects the

energy redistribution, since it shows the returning of the system to its initial config-

uration. The ground-state absorption bleaching, induced by the pump probe, will

exhibit the recovery, reflecting the curve crossing dynamics as well as the subsequent

vibrational cooling.

Most studies of nonadiabatic processes involving conical intersections consider

the overall electronic populations of the excited and the ground electronic states [108,

170,177,178]. In the case of open-system dynamics, the time-dependent population

probabilities of the diabatic electronic states are defined as:

P di
n (t) = tr

{
N̂

di

n ρ̂S(t)
}
, (5.19)

with N̂
di

n being the projection operator of the nth electronic state in the diabatic

representation. The reduced system density operator is defined as a partial trace

over the bath degrees of freedom. The adiabatic electronic population is defined in

a similar way by using diabatic-to-adiabatic transformation [170].

A question that naturally arises is how the population dynamics is monitored

experimentally. This has been the leading argument in studies modeling femtosecond

time-resolved experiments in systems incorporating conical intersections [194, 195].
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Figure 5.1: Schematic view of the potential energy surfaces in a diabatic (upper panel) and

an adiabatic (lower panel) representations. The following parameters are used in the calculations

(all in eV): ω = 0.074, ωc = 0.0936, κg = −0.0964, κe = 0.1194, Λ = 0.18 ∆ = 0.4617 and the

coordinates are dimensionless.

5.2 Results and Discussion

5.2.1 General

The diabatic potential energy surfaces are approximated by quadratic functions with

linear intrastate couplings [170]. Using dimensionless normal coordinates:

Vg(Q̂0, Q̂c) = −∆0 +
~ω0

2
Q̂

2

0 + κgQ̂0 +
~ωc

2
Q̂

2

c , (5.20)

Ve(Q̂0, Q̂c) = ∆0 +
~ω0

2
Q̂

2

0 + κeQ̂0 +
~ωc

2
Q̂

2

c , (5.21)

where ω0 and ωc are the vibrational frequencies of the totally symmetric mode Q0

and the coupling mode Qc respectively. The 2∆0 denotes the vertical excitation

energy and κg/e are the first-order intrastate electron-vibrational couplings.

The system parameters are chosen as follows (all in eV): ω0 = 0.074, ωc = 0.0936,

κg = −0.0964, κe = 0.1194, ∆ = 0.4617 and the coordinates are dimensionless. The

inter-state coupling is described as:

Vd(Q̂0, Q̂c) = ΛQ̂c e
−(Q̂0−QCI)

2/2σ2

, (5.22)

with QCI being the point where the conical intersection occurs along the tuning

mode, and σ is the breadth of the coupling function. The coupling strength is

Λ = 0.18 eV. The above geometry corresponds roughly to potential energy surfaces

of the S1(nπ
∗) and S2(ππ

∗) excited states of pyrazine [174,196] along the two normal
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Figure 5.2: (Left) A close view of the conical intersection within the adiabatic representation.

(Right) The diabatic coupling Vd, giving by Eq.(5.22).

modes ν6a (the tuning mode) and ν10a (the coupling mode). The ground electronic

state S0 of pyrazine lies about 3.94 eV lower than S1. Here we use a simplified model

with the ground state assumed to be S1 to introduce the effect of the bleach recovery

in a general way.

Fig. 5.1 shows diabatic (a) and adiabatic (b) potential surfaces and Fig. 5.2

shows a close view of the conical intersection in the adiabatic representation, as well

as the diabatic coupling, given by Eq.(5.22). The diabatic surfaces cross along the

line ((n− 1)-dimensional seam), while in an adiabatic representation, the potentials

touch at a single point (QCI , 0).

The influence of the bath on the primary system is characterized by the spec-

tral density function Jα(ǫ). For an Ohmic bath the damping rate is frequency-

independent and the spectral density in the continuum limit is given by

Jα(ω) = ηα ω e−ω/ωα
cut (5.23)

for all frequencies ω up to the cutoff frequency ωcut. The coupling strength ηα for

the specific mode is given by the ratio of the damping rate γ and the vibrational

frequency of this mode ω0/c. A finite bath with equally spaced sampling of the

energy range is used in all calculations. The cutoff frequency is set to 2.5ω0/c, which

defines the shortest time scale of the bath (about τbath = 20 fs). The time scale

corresponding to the frequency spacing ∆ω defines the Poincaré period (τrec). It

should be larger than any other time scale of interest. With ωcut fixed, this time
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becomes:

τrec =
2π

∆ω
=

2πN

ωcut
. (5.24)

Thus, with an increasing number of bath modes, the convergence progresses in time.

In the present modeling the number of TLS is chosen to be N = 30−40 (for different

coupling strengths), which ensures that τrec is greater than the overall simulation

time. The calculations were performed in different interaction regimes identified by

considering the relevant time scales: the weak coupling referring to γ−1 = 750 fs ≫
τosc, τbath; and the intermediate situation characterized by γ−1 = 75 fs ≈ τosc > τbath.

The temperature of the bath has been neglected in these calculations and chosen to

be zero.

The pump pulse envelope is modeled as a Gaussian function of Eq. (5.15) with

the intensity ǫ0 adjusted such that approximately ∼ 10% of the ground state popu-

lation was transferred to the excited state [191]. The width (FWHM) of the pulse

which is connected to σL is chosen as 20 fs which is typical for charge transfer ex-

periments [169]. tmax is fixed by starting the propagation at t0 = tmax − 3σL. The

probe pulse has the same profile as the pump pulse, but with only 10% of the pump

intensity.

5.2.2 Simulation of pump-probe experiment

A direct signature of the ultrafast dynamics is provided by transient modulations

of optical observables. In the case of the system with two electronic states, the

absorption of the probe pulse reflects the dynamics of the ground state, while the

stimulated emission signal reveals the dynamics of the excited state. The transient

absorption and emission signals and their spectra are displayed in Figs. 5.3-5.4. The

emission and absorption signals are plotted as a function of the time delay between

the pump and probe pulses. The central frequency of the probe pulse is chosen to be

the same as of the pump pulse ωL. The dynamics of the isolated system (η = 0) are

compared with those with weak vibrational relaxation (η0 = ηc = 0.01, γ−1 = 750

fs) and medium electronic dephasing (c̄e = 0.25). It was found that pure nuclear

dephasing does not affect noticeably the system dynamics on this time scale.
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Figure 5.3: Transient stimulated-emission signal (left) and its spectrum (right) for the two-

mode system, incorporating a conical intersection. The pump and probe frequencies are chosen

to correspond to vertical excitation from the bottom of the ground electronic potential. Solid

lines: the isolated system; dashed lines: vibrational relaxation with weak system-bath coupling

(η0 = ηc = 0.01, γ−1 = 750 fs); dotted lines: vibrational relaxation (η0 = ηc = 0.01) with medium

electronic dephasing (c̄e = 0.25). The number of bath modes is N = 30 with two simultaneous

excitations allowed. Note the different scale for the spectrum of the isolated system(left ordinate

in right panel).

Transient Emission

The excited state dynamics are reflected by the transient emission of the probe pulse

(see the left panel of Fig. 5.3). After applying the pump pulse of 20 fs duration, about

∼ 10% of the ground state population has been transfered to the electronic excited

state. The excited wave packet starts to evolve and eventually reaches the vicinity

of the conical intersection. A nonadiabatic population transfer to the ground state

takes place within one vibrational period, which is seen as an initial ultrafast decay

of the emission signal (∼ 50 fs). The signal for the isolated system (full line) also

shows quasi-periodic revivals caused by the nonadiabatic transfer back (re-crossings)

to the excited potential state. The coherent motions of the excited wave packet are

reflected in the periodic oscillations of the signal.

In the presence of vibrational relaxation (dashed line in Fig. 5.3), the amplitude of

the revivals drops down significantly already after 100 fs. However, the initial peak of

the emission signal is almost unaffected by the dissipation. In the medium or strong

coupling regimes (not shown), the amplitude of the first peak decreases, while the

time of its decay (∼ 50 fs) remains unchanged. The influence of electronic dephasing

(the dotted line in Fig. 5.3) is even more pronounced. Hence the emission signal does

not show any quasi-periodic recurrences, caused by the population transfer back to
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the excited state. The periodic oscillations are almost damped down after 300 fs.

Following the dynamics, it is found that the vibrational relaxation and the elec-

tronic dephasing effectively obstruct the re-crossings of the population to the excited

state. As a result the emission signal turns off. The dissipation also damps the co-

herent motion of the excited wave packet, seen as an increase in the width of the

spectrum of the signal.

The spectrum of the emission signal (Fig. 5.3, right) was obtained by using a

filter-diagonalization method [115,116,197] with data window between 100 and 450

fs. For the isolated system (full line) it shows the first and second harmonics of the

tuning mode Q0 as well as the fundamental of the coupling mode Qc. The latter

indicates that during the internal-conversion process the coupling mode becomes

highly excited. These phenomena reflect the strong mixing induced by the conical

intersection. Vibrational relaxation and electronic dephasing reduce the emission

signal significantly (note the different scale in Fig. 5.3, right panel), by suppressing

the re-crossing process. Furthermore, vibrational relaxation leads to a finite width

of the peaks, which increases with increasing system-bath coupling. The bath also

red shifts the spectrum. Electronic dephasing causes a further broadening of the

peaks and an additional red shift. It also diminishes completely the amplitude of

the fundamental frequency of the coupling mode.

Transient Absorption

The absorption of the probe (Fig. 5.4, left) reflects the dynamics of the ground

electronic state. The transient absorption signal is calculated as the absorption of

the probe without the pump pulse subtracted from the absorption of the probe with

the pump. The initial decay of the absorption transient (bleach) reveals the loss

of ground state population due to the pump pulse. Since the pump pulse excites

∼ 10% of the ground state population to the excited state, the ground state wave

packet is only weakly perturbed by the excitation process. However, the “hole”

left on the ground electronic state creates a nonstationary density which oscillates

periodically with the ground state vibrational frequency [132,152]. These dynamics

can be measured experimentally via impulsive resonance Raman scattering.

The absorption signal for the isolated system (full line) shows primarily the
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Figure 5.4: Transient absorption signal (left) and its spectrum (right) for the two mode system,

involving conical intersection. The pump and probe frequencies are chosen to correspond to the

bottom of the ground electronic potential. Solid lines: the isolated system; dashed lines: vibrational

relaxation with weak system-bath coupling (η0 = ηc = 0.01, γ−1 = 750 fs); dotted lines: vibrational

relaxation (η0 = ηc = 0.01) with medium electronic dephasing (c̄e = 0.25). The number of bath

modes is N = 30 and two simultaneous excitations are allowed in the surrogate bath.

coherent motion of the remaining ground state wavepacket.

The power spectrum of the absorption signal is given in the right panel of Fig. 5.4.

It shows the first, the second and higher harmonics of the symmetric mode Q0 as

well as the weak fundamental of the coupling mode Qc. Since the pump frequency

corresponds to the center of the ground electronic potential, the dynamical hole

in coordinate space is produced with reflection symmetry with respect to the min-

imum point of the potential well. A momentum kick induced by the pump will

break this symmetry leading to the appearance of a first harmonic component in the

signal [191]. In the presence of dissipation, the fundamental of the coupling mode

vanishes, while the harmonics of the symmetric mode are diminished significantly.

The vibrational relaxation suppresses the higher harmonics faster. Electronic de-

phasing diffuses the localization of the hole, causing the peak broadening.

After the excited state wave packet has reached the conical intersection, popula-

tion is nonadiabatically transferred back to the ground state. Therefore the transient

absorption of the probe pulse from the ground state should reflect the increase in

population, known experimentally as the ”recovery of the bleach” [169]. The newly

created population on the ground electronic surface is vibrationally excited and its

appearance in the observation window of the probe is delayed by the time scale of

vibrational relaxation. The “recovery of the bleach” phenomenon is governed not

only by the population dynamics, which indeed happens on sub-picosecond time
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Figure 5.5: Time evolution of diabatic (left) and adiabatic (right) population probability of the

excited electronic state. Gaussian laser pulse of τp = 20 fs duration and ωL = 1.25 eV frequency

is applied (the envelope of the pulse is shown). Full line: the isolated system (η = 0); dashed line:

vibrational relaxation with weak coupling strength (η0 = ηc = 0.01, γ−1 = 750 fs); dotted line:

weak vibrational relaxation (η0 = ηc = 0.01) and medium electronic dephasing (c̄e = 0.25). The

number of bath modes is N = 30 and two simultaneous excitations are allowed.

scale, but also by the energy redistribution. The system must return to the starting

configuration for bleach recovery to be observed. The present model shows that even

for moderate vibrational relaxation, no “recovery of the bleach” is observed on the

time scale shorter than 500 fs.

Population probabilities

It is interesting to compare the pump-probe signals to the time evolution of the

population probabilities of electronic states. These probabilities have been widely

considered as an appropriate measure of nonadiabatic dynamics in systems involving

conical intersections [108, 170, 177, 178, 195].

The time evolution of the diabatic population of the excited state is shown in

Fig. 5.5 (left panel). The full lines refer to the dynamics of the isolated system.

It exhibits ultrafast decay on a time scale of about 20 fs after the pump pulse has

been completed. The population has dropped below 0.02 (note that only ∼ 10% of

the ground state population has been transferred by the pump pulse). This initial

decay is followed by pronounced quasiperiodic revivals and the population does not

decrease any longer.

Similar behaviors have been obtained for a large variety of multi-dimensional

systems involving conical intersections [170,175,198–200], including the model with

an explicit treatment of the intramolecular environment [174]. All these studies
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Figure 5.6: The diagonal elements (Qn = Q′

n) of the reduced density matrices in the vibrational

coordinate representation ρ̂S(Q0, Qc;Q
′

0, Q
′

c; ) in the adiabatic excited (left panel) and ground

(right panel) states. Snapshots are shown at 20 fs (top), 100 fs (middle) and 300 fs (bottom). The

red contour lines refer to the adiabatic ground state, while the green contour lines represent the

excited state.

use a Franck-Condon excitation initial state, while the present study starts from an

equilibrium initial state and the excitation is caused by the ultrafast pulse. For this

reason direct comparison is not possible, nevertheless the timescale of population

dynamics is of the same order.

The addition of weak (η0 = ηc = 0.01) vibrational relaxation (dashed line in

Fig. 5.5) lowers the amplitude of the revivals and reduces the population in the

excited electronic state. In the presence of pure electronic dephasing (dotted lines in

Fig. 5.5) the amplitude of the revivals drops down even more significantly. Neither

vibrational relaxation nor pure electronic dephasing changes the rate of the initial

interstate crossing, meaning that the ultrafast time scale of the electronic population

decay is a feature of the system topology, and is only slightly perturbed by the

dissipative environment [175].

The time evolution of the adiabatic population of the excited state is shown in

Fig. 5.5 (right panel). While the differences from the diabatic picture are minor,

in the long-time limit the population decays to a value slightly lower than in the

diabatic picture.

The additional decay in the population probability of the excited state (after 100
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Figure 5.7: The stimulated emission (left) and the transient absorption (right) signals for the

two-mode system, containing a conical intersection, are calculated using the Surrogate Hamiltonian

(dashed lines) and the semi-group approaches (solid lines). The vibrational relaxation parameters

are in the weak system-bath coupling range (η0 = ηc = 0.01, γ−1 = 1000 fs);

fs), caused by the coupling to the environment, indeed reflects the fact that high

vibrational levels of the electronic ground state are populated in the initial internal-

conversion process [175,201]. Vibrational relaxation cools down this population, and

together with electronic dephasing prevents an efficient transfer of the population

back to the excited state. However, further energy relaxation to lower vibrational

levels of the ground state continues on a much longer time scale. The system’s

returning to its initial configuration, which can be seen experimentally as recovery of

the bleach, is not reflected in the early time evolution of the population probabilities.

Fig. 5.6 displays the diagonal elements (Qn = Q′
n) of the reduced density matrix

in the vibrational coordinate representation ρ̂S(Q0, Qc;Q
′
0, Q

′
c; ) (in the diabatic elec-

tronic representation). It shows the fast disappearance of the excited wave packet

via the conical intersection, and its reappearance in high vibrational levels of the

lower surface.

The time evolution of the diabatic state population as well as transient modu-

lations of optical observables are indeed affected by the conical intersection. The

population probabilities, however, do not reflect the energy redistribution process

and the experimentally measured recovery of the bleach.
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5.2.3 The Surrogate Hamiltonian method versus the semi-

group approach

The differences between the two methods lie in the initial system-bath correlations

and the influence of the excitation pulse on the system bath coupling. The con-

struction of the Surrogate Hamiltonian approach is non-Markovian and therefore it

is preferable for treatment of ultra-short dynamics at conical intersections. However,

in the present study the non-Markovian character of the system-bath interactions

hardly affects the dynamics of any of the system’s observables. The qualitative fea-

tures of semi-group dynamics compare well to the Surrogate Hamiltonian approach,

as can be seen in Fig. 5.7. The presented results support the finding that for short

time dynamics in the weak coupling limit, the two approaches should converge [202].

In the Surrogate Hamiltonian calculations the temperature of the bath has been

taken to zero, while in the semi-group approach it is set to a finite (low) value to

avoid singularities in the relaxation terms Dij. The temperature effects are negligible

in the studied system, due to the large excess of energy coming from the electronic

excitation.

From a numerical perspective, the Surrogate Hamiltonian method is advanta-

geous for short simulation times. For example, for dynamical simulations up to 500

fsec 40 bath modes were sufficient to obtain the converged results. The wavepacket

calculation was faster than the equivalent density operator propagation. In addition

the Surrogate Hamiltonian method treats the excitation process more realistically

since it includes implicitly the influence of the external field on the system bath

coupling. For longer times the computational effort of the Surrogate Hamiltonian

can become prohibitively expensive due to exponential scaling. The semi-group ap-

proach is able to simulate long time dynamics with linear scaling with time. This

suggest combining the two methods.

In this case the simulation starts using the Surrogate Hamiltonian with a fully

correlated system-bath initial state. The Surrogate Hamiltonian is also employed

for the pump step, therefore the influence of the field is included. After the pump

a reduced system density operator is calculated. This is done by tracing over the

bath degrees of freedom from the projection defined by the Surrogate Hamiltonian

wavefunction ρ̂S = trB {|Ψ 〉〈Ψ|}. This density operator is used as an initial state
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Figure 5.8: The recovery of the bleach: a long time simulation of the transient absorption for the

two-mode system with a conical intersection. The Surrogate Hamiltonian is employed to simulate

the system’s interaction with the pump pulse used to initiate the dynamics. The system reduces

density operator was calculated at the end of the pump pulse and then used as an initial state

for the rest of the simulation using the semi-group approach. The parameters of the vibrational

relaxation are in the range of medium system-bath coupling (γ−1 = 500 fs).

for Liouville dynamical simulation, which can be carried out to longer times. In

order to evaluate relaxation parameters entering the Lindblad equation Eq.(5.13),

two approaches have been compared in a time-window, in which the dynamics are

Markovian.

The above procedure was employed to calculate the recovery of the bleach. The

time scale, required to propagate the system to achieve full bleach recovery is in the

order of a few picoseconds. Fig. 5.8 shows a monotonic recovery of the bleach on

the picosecond time scale obtained from the combined approach.

5.2.4 Diabatic coupling geometry

It is well documented that nonadiabatic transfer events are extremely sensitive to

the landscape of the potentials involved as well as to the nonadiabatic coupling

functions [105]. Influence of the dimensionality on nonadiabatic dynamics has been

widely discussed [106–109]. In the context of conical intersections, the issue of the

topology also includes a comparison of a true crossing case versus an avoided one, as

well as the influence of the form of the diabatic coupling. Studies carried out with

slightly anharmonic potentials show the same qualitative behavior [203].

In many calculations the inter-state coupling amplitude is chosen as a constant.

A better choice is to localize it near the region of the conical intersection point

according to Eq. (5.22). Fig. 5.9 shows a short-time evolution of the excited state

72



5.2 Results and Discussion

0 20 40 60 80 100
time (fs)

0

0.05

0.1

0.15

ex
ci

te
d 

st
at

e 
po

pu
la

ti
on

Figure 5.9: The population of the excited state for global (Vd = ΛQc, solid line) and local

(Vd = ΛQc e
−(Q0−QCI )

2/σ2
−Q2

c
/σ2

, dashed line) diabatic couplings. Short time dynamics is shown

in the presence of weak vibrational coupling (η0 = ηc = 0.01, γ−1 = 750 fs).

population for the global diabatic coupling Vd(Q̂c) = ΛQ̂c and the localized one [cf.

Eq.(5.22)]. With the global coupling, the excited state is already populated before

the excitation. Furthermore, the coupling immediately induces population transfer

between the excited and the ground states. This is seen as fast oscillations with

a frequency proportional to the electronic excitation energy 2∆. As the diabatic

coupling becomes more localized, one can observe a turnover effect [204]. First, the

initial decay of the excited state population becomes more pronounced and then for

very localized coupling the population is trapped in the excited state. This behavior

is similar to the turnover effect as a function of the coupling constant Λ. The effect

of the damping is less profound for the systems with a conical intersection compared

with the one-dimensional nonadiabatic systems [95].

Next we compare the nonadiabatic dynamics of the 2D system, involving a con-

ical intersection, and those of the 1D system with a local diabatic coupling. The

parameters of the one-dimensional system are chosen to be the same as the tuning

mode’s geometry in the two-dimensional model (ω0 = 0.074, κg = −0.0964, κe =

0.1194,∆ = 0.4617, all in eV). The diabatic coupling potential has a form of a

damped Gaussian:

Vd(Q̂) = Λ e−(Q̂−Q∗)2/2σ2

, (5.25)

with Q∗ being the position of the maximum coupling (referring to the point where

the conical intersection occurs along the tuning mode in the 2D model). The same

strength of the coupling (Λ = 0.18 eV) has been chosen for the both systems.

Fig. 5.10 displays the transient stimulated emission as a function of the time
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Figure 5.10: The nonadiabatic dissipative dynamics of a two dimensional system, involving a

conical intersection (full lines) versus a one dimensional system with a local (σ = 0.95) nonadia-

batic coupling (dashed lines). Dashed-dotted lines: a one dimensional system with more localized

coupling (σ = 0.1). The transient stimulated-emission signal (left) and the population probability

of the excited state (right) are shown. The strength of the diabatic coupling is Λ = 0.18 eV for all

cases. The calculations are made for the system with weak vibrational relaxation (η0 = ηc = 0.01)

and medium electronic dephasing (c̄e = 0.25).

delay (left) and the time evolution of the diabatic population probability of the

excited state (right) for two systems. The nonadiabatic dynamics are shown in the

presence of dissipation (both vibrational relaxation and electronic dephasing are

included). An initial fast decay of the excited state’s population, typical for the

system incorporating a conical intersection, does not occur in the one-dimensional

system. There, the population, as well as the stimulated emission signal, exhibit

much slower decay. The dynamics can be accelerated by further localizing of the

diabatic coupling, but the turnover will eventually stop an additional increase in the

decay rate.

Next we compare the nonadiabatic dynamics for the two-state two-mode sys-

tem with different forms of the diabatic couplings. Fig. 5.11 shows the stimulated-

emission signal (left) and the dynamics of the population probabilities (right) for

three models. The dynamics of the system with a conical intersection (a true cross-

ing) is compared to the system which involves an avoided surface crossing. In the

avoided crossing model the diabatic coupling does not depend on the Qc coordinate

and is represented by a damped Gaussian according to Eq.(5.25). The third model

has a symmetric diabatic coupling:

Vd(Q̂0, Q̂c) = Λ|Q̂c| e−(Q̂0−QCI )
2/2σ2

, (5.26)

The dynamics of the population in the system with the avoided crossing are qualita-
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Figure 5.11: The nonadiabatic dissipative dynamics of a system with (a) a conical intersection

(full lines), (b) an avoided crossing (dashed lines) and (c) a symmetric coupling (dashed-dotted

lines). The transient stimulated-emission (left) and the population probability of the excited state

(right) are shown for the system in presence of weak vibrational relaxation (η0 = ηc = 0.01) and

electronic dephasing (c̄e = 0.25). The strength of the diabatic coupling is Λ = 0.18eV for all cases.

tively similar to the dynamics in the one-dimensional model (Fig. 5.10). The decay

is slower than in the crossing model. The oscillations of the stimulated-emission

signal, indicating the coherent motion of the excited wave packet, persist for a quite

long time (more than 500 fs). If the diabatic coupling is symmetric, the adiabatic

surfaces exhibit a true crossing. The coupling, however, does not change a sign at

the crossing point (QCI , 0). In this case the stimulated-emission exhibits a fast de-

cay, which is nevertheless slower than one for the system with a conical intersection.

Only for the true conical intersection does the highly localized diabatic coupling

cause the fastest initial decay of the observables associated with the excited state

population.

5.3 Conclusions

The present study elucidates the dynamics of a system incorporating a conical in-

tersection in the presence of a dissipative environment. The system was described

by a model consisting of two vibronically coupled electronic states and two nuclear

degrees of freedom. Dissipation is treated by using the Surrogate Hamiltonian ap-

proach and a reduced density operator dynamics based on the Lindblad formalism.

The use of the Surrogate Hamiltonian has the advantage of a consistent treatment

of initial correlations, non-Markovian dynamics and an explicit description of the

pulse field. The latter is of a special importance, since our study is aimed at time-
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dependent observables, which can be directly related to experiments.

Widely discussed adiabatic electronic state populations can only be partially con-

nected to experimental pump-probe signals. Therefore the present study emphasizes

the transient modulations of optical observables, which are a direct signature of the

ultrafast dynamics, measured in the pump-probe experiments. The non-perturbative

approach has been employed for describing the dynamics induced by the pump pulse,

while the weak probe has been treated within a perturbative picture. This allows

us to associate a quantum mechanical window operator to the absorption of the

probe pulse centered at time t. The stimulated emission and absorption have been

calculated as expectation values of this window operator.

The stimulated emission signals show a rapid initial decay on a time-scale of tens

of femtoseconds, which can be associated with an ultrafast nonadiabatic transition

via a conical intersection. This initial decay is almost unaffected by vibrational

relaxation and the electronic dephasing. The dissipation becomes important in the

following stage: it prevents a back transfer (re-crossing) leading to a sub-picosecond

relaxation of the excited state population.

At the same time, it is clear that the pump/probe spectra are governed not only

by the population dynamics, but also by the energy redistribution. After the initial

curve crossing, the system may return close to its initial pre-pump configuration.

Experimentally this is associated with the recovery of the bleach observed in the

transient absorption signal. The ground state recovery dynamics, i.e. the bleach

recovery and the cooling of the hot vibrational population, are not reflected in the

electronic population probabilities. In our model the absorption signal shows coher-

ent oscillations of the slightly perturbed ground state wave packet and apparently

no fast recovery of the bleach up to 500 fsec. We can conclude that the energy

relaxation, dominated by an intramolecular vibrational relaxation, proceeds much

more slowly.

To summarize our findings, while the two-dimensional coupling scheme can mix

states very rapidly, it cannot by itself (in the absence of ultrafast IVR or dephasing)

lead to the fast bleach recovery. These observations have several implications: they

suggest for example that the occurrences of 100 fs timescale bleach recovery in

transition metal complexes in solution [167–169] might be better explained by simple
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avoided crossings with strong outer sphere reorganization coupling terms than by

invoking a conical intersection. They also suggest that conical mixing symmetry is

not itself sufficient to generate a femtosecond bleach recovery or relaxation.
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Chapter 6

Minimizing broadband excitation

under dissipative conditions

Along with availability of ultrafast lasers, various techniques have been developed

to design arbitrary shaped pulses. The pulse-shaping modulation has become an

essential part of ongoing attempts to achieve a control of chemical reactions. The

most studied feature of modulated pulses is frequency chirping, which describes the

process of arranging the frequency components in a laser pulse with a certain phase

ordering. Chirped pulses have been a subject of numerous experimental [205–214]

and theoretical [110,215–220] investigations. These studies have demonstrated that

properly chirped broad-band pulses are superior to their transform-limited analogues

in achieving a variety of dynamical goals.

Since the vast majority of the control experiments take place in condensed-phase

environments, it is natural to ask to what extent the control of chemical processes

is possible in the presence of the dissipation. Very often the only practical way to

find an optimal control solution is to employ a feedback-loop optimization scheme

[221–225] based on Genetic [226] or other evolutionary algorithms.

The subject of this Chapter is the interaction of an optimized chirped pulse with

a molecule embedded in a solvent. The main objective of the simulations is to find

an optimal field, which leads to minimal excitation without changing the frequency

spectrum of the pulse. This control task is solved for the combined system, including

the excited molecule immersed in a finite, but large environment. The latter may

cause both vibrational and electronic dephasing, as well as vibrational relaxation -
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processes, that have a time scale comparable to the pulse duration.

Employing the Surrogate Hamiltonian is advantageous due to a number of rea-

sons. The method is based on a combined system-bath wavefunction, which en-

ables a consistent treatment of initial correlations between the system and the bath.

Moreover, an explicit treatment of a time-dependent field and its influence on the

system-bath interactions are included. When the system coupled to the dissipa-

tive environment interacts with a strong electromagnetic field, the latter affects the

system-bath coupling in an indirect way. Therefore it is particularly important to

include the fields influence into the dynamics of the combined system. Finally, the

Surrogate Hamiltonian enables the incorporation of a laser pulse of an arbitrary

shape.

When an ultrashort pulse is transmitted through a solution containing a dye

molecule, it is unavoidable that the photon energy will be partially converted into

exciting the dye molecule. This excitation is enhanced if the frequency band of the

pulse matches the absorption band of the molecule (cf Fig. 6.1). Can one minimize

the excitation with the condition that there is no change in the frequency profile

of the pulse and its energy? Considering the close relation between excitation and

transmittance of the pulse such a control manipulation will also increase the trans-

parency of the medium.

This problem has been addressed experimentally by Cerullo et al. [207] demon-

strating that a negatively chirped pulse causes a minimum excitation. It was found

that at low pulse fluence, the absorption and the fluorescence signal were indepen-

dent of the chirp. However, as the fluence was increased, the fluorescence intensity

exhibited a minimum at negative chirp, indicating that at this particular chirp the

population transfer to the excited state was minimal. The optimal chirp for obtain-

ing this minimum was found to be insensitive to variation of the pulse fluence in a

broad range of fluencies.

Recently Nahmias et. al [227] have employed a closed-loop pulse shaping tech-

nique to search for better adopted pulse shapes, that will minimize the excitation.

The main objective was to test whether nonlinear chirped pulses could reduce pop-

ulation transfer in a polyatomic chromophore in solution below levels attained by

their linear chirped analogue. Moreover, dependence of the optimal solutions on the
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Figure 6.1: The pulse intensity spectrum along with absorption (solid line) and fluorescence

(dashed line) spectra of LDS750 molecule in acetonitrile. Adapted from Ref. [227].

pulse fluence and on the nature of the solvent was investigated.

The present study is aimed at gaining insight on the interplay between the pulse

parameters and the molecular response which lead to minimal excitation and max-

imal transmission. This task is carried by setting simulations which include light-

matter interaction in an explicit fashion. Such a simulation allows to check the main

control parameters in a well defined model.

The modeling of the process is based on a quantum description of the molecule

and its environment using the Surrogate Hamiltonian method and on a semiclassical

description of the radiation field.

The optimization scheme used in the present calculations employs a genetic al-

gorithm [226], the global optimization method, proposed by Rabitz [221]. This is

a closed-loop learning strategy that designs the optimal field to achieve a certain

control task. Searching for the optimal solution, which leads to minimal transfer and

maximal transmittance, dictates the condition of a constant frequency profile of the

pulse. Therefore the optimization scheme should include varying the phases, rather

than the pulse’s amplitudes. The phases are used as input variables for the genetic

algorithm. Different parameterization schemes are employed including expansion of

the phase function in a Taylor series, as well as in a basis of periodic functions.
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6.1 Theory

6.1.1 Model

The system under study describes a primary system immersed in a bath, while the

external field is applied. The Hamiltonian of such a combined system is given by:

Ĥ = ĤS ⊗ 11B + 11S ⊗ ĤB + ĤSB + ĤSF (t) , (6.1)

where ĤS is the Hamiltonian of the primary system, ĤB - the bath Hamiltonian

and ĤSB describes the interaction between the system and the bath. The time-

dependent interaction of the system with the electromagnetic field is represented by

ĤSF (t).

We consider a molecular model with two electronic states and a single vibra-

tional coordinate Q, coupled by an electromagnetic field. The system Hamiltonian

is written as

ĤS =



 Ĥg −E(t) · µ̂tr

−E∗(t) · µ̂tr Ĥe



⊗ 11B , (6.2)

with Ĥg/e = T̂+Vg/e(Q̂). T̂ is the kinetic energy operator, Vg and Ve are the potential

energy operators on the ground and on the excited electronic states respectively. The

coupling to the field is described in the dipole approximation with µ̂tr = µ̂tr(Q̂)

being the electronic transition dipole operator. The electric field is given by

E(t) = 1
2
E0(t) e

−iω0t + c.c. , (6.3)

where E0(t) is a slowly varying envelope function and ω0 is the carrier frequency. In

the large wavelength limit, the spatial dependence of E(t) is ignored.

The control objective is the total change in the population of the electronic state:

Ni(t) = 〈Ψ|P̂i|Ψ〉 , (6.4)

where P̂i is the projection operator on either the ground or the excited electronic

state and Ψ the total system-bath wavefunction. The flow of population from one

electronic state to the other is given by the Heisenberg equation of motion [154,228]:

dNg

dt
=

2

~
Im[〈ψe|µ̂|ψg〉 · E(t)] (6.5)

81



6.1 Theory

which also can be written in the form

dNg

dt
=

2

~
|〈ψe|µ̂|ψg〉||E(t)| sin(φµ + φE) (6.6)

where φµ and φE are the phase angle of the transition dipole moment and of the

radiation field respectively. Without loosing generality φE can be set to zero because

a constant phase of the field maps onto the phase of the transition dipole moment.

Therefore, the direction of the population transfer is fully determined by the induced

instantaneous phase of the transition dipole. In order to achieve, for example, the

unidirectional population transfer from the ground to the excited state, the value of

the relative phase angle is restricted to be negative [229].

6.1.2 Optimization scheme

The objective of the control is to reduce the population transfer from the ground

electronic state to the excited state while maintaining the frequency spectrum of

the pulse. This means that the control levers are the vector of phases of each

frequency. The optimization strategy employs so-called closed-loop scheme [221,222]

with Genetic algorithm [226].

The term ”Genetic algorithm” describes a global optimization method based

on several metaphors from biological evolution, commonly employed in coherent

control [221, 224, 225]. The method generates a search in the space of solutions,

guided by a set of rules. The operators of the genetic algorithm simulate selection,

mutation and recombination processes [226]. The optimization procedure repeats

those processes until the optimal solution is found.

The optimization scheme starts with a transform-limited pulse having a Gaussian

envelope:

E(t) = E0 exp

[
−(t− t0)

2

2τ 2p
− iω0(t− t0)− iφE(t)

]
(6.7)

where ω0 and τp are the carrier frequency and the temporal width of the pulse

respectively.

The pulse is then transformed to the frequency domain:

E(ω) = E0 exp

[
−(ω − ω0)

2

2Γ2
− iφE(ω)

]
(6.8)

and parameterized by changing its phases φE(ω). One way is to add random phases

at each point of the discrete spectrum. These random phases are considered as an

82



6.1 Theory

input for the genetic algorithm. This procedure, however, increases the pulse width

in the time-domain significantly. The alternatives include either an expansion of

the phase in a polynomial form
∑N

k=1 ck(ω − ω0)
k or on the basis of the periodic

functions [230]. In the first case each set of the polynomial coefficients represents

a gene for the genetic algorithm. Considering the lowest order terms in the phase

expansion (linear and quadratic), the pulse with linear chirp in the time domain is

given by:

E(ω) = E0 exp

[
−(ω − ω0)

2

2Γ2
− iχ′ (ω − ω0)

2

2

]
(6.9)

The chirp rate term χ′ causes a phase shift of each spectral component of the field

proportional to its ’distance’ from the carrier frequency. Thus a negatively chirped

pulse the central frequency decreasing with time, and a positively chirped pulse the

central frequency increases with time.

In the case of a periodic function, the phase is expanded as

φ(ω) =
K∑

k=1

ck cos(k(ω − ω0)τm + θk) , (6.10)

and the input for the genetic algorithm consists of the expansion coefficients ck, θk.

The periodic phase mask adds higher harmonics to the spectral phase function and

splits the single pulse into train of sub-pulses in the time domain. The total duration

of the optimized pulse is determined by the order of expansion and τm.

The new pulse is Fourier-transformed back to the time domain and introduced

into the Schrödinger equation of the total system. Then the excited state population

at the end of the pulse, defined as a fitness, is calculated.

The Genetic algorithm is implemented in the following way: the initial set of

N = 10 candidate solutions is generated randomly using a uniform random num-

ber generator. Each set (a gene) consists of the phases expansion coefficients and

represent a possible solution for the optimal pulse. Once the initial generation is

formed, the fitness values of the different candidates solutions is calculated. At the

next step the real number adaptive genetic algorithm (RAGA) operators are applied

to construct a new generation.

The following RAGA operators [224, 231] were used in the simulations:

(1) (Obest): copy the kbest = 2 highest fitness candidate solutions to the new gener-

ation.
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(2) (Orand): formation of krand = 2 random candidates.

The range of formation of random candidates (noise) can be adjusted iteratively,

depending on the fitness average.

(3) (Ocros2): two point cross-link between two parents to form two children.

(4) (Ocrosn): n-point cross-link between two parents to form two children. The rear-

rangement was accomplished by the following steps: a random number η was chosen

from a uniform distribution in the range of [0,1]. If η ≥0.5, the element of parent 1

was copied to child 2 and the corresponding element from parent 2 to child 2, while

if η <0.5, the order was switched.

The procedure is repeated until the convergence criteria is fulfilled.

6.2 Results and Discussion

Let us consider two harmonic potential energy surfaces S0 and S1 of equal frequency.

Following Cerullo et al. [207] a highly displaced low-frequency harmonic mode (ω0

= 170 cm−1 and ∆ = 2.9 in dimensionless coordinates) is chosen. The vertical

excitation energy E0 is 16.1·10−3 cm−1. This model was purported to schematically

represent the effects the combination of both underdamped (intramolecular) and

overdamped (intermolecular) motions.

The duration of the transform-limited pulses was chosen to tp0=10 fs for all

calculations and the intensity was within the experimental data [227]. The central

frequency was slightly red-shifted according to the resonance.

The influence of the bath on the primary system is characterized by the spec-

tral density function J(ω). For an Ohmic bath the damping rate is frequency-

independent. The spectral density in the continuum limit is given by

J(ω) = η ω e−ω/ωcut (6.11)

for all frequencies ω up to the cutoff frequency ωcut. The coupling strength η is given

by the ratio of the damping rate γ and the vibrational frequency ω0. A finite bath

with equally spaced sampling of the energy range is used in all calculations. The

cutoff frequency is set to 2.5ω0, which defines the shortest time scale of the bath

(about τbath = 80 fs). The time scale corresponding to the frequency spacing ∆ω

defines the Poincaré period (τrec). It should be larger than any other time scale of
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Figure 6.2: Excited state population as a function of the linear chirp for the isolated system

(η = 0). The population is shown at the end of the pulse for the high (solid line) and the low

(dashed line) fluences. The duration of the corresponding transform-limited pulse is tp0
= 10 fs.

Note the different scale for the excited population for two energy regimes.

interest. With ωcut fixed, this time becomes:

τrec =
2π

∆ω
=

2πN

ωcut
. (6.12)

Thus, with an increasing number of bath modes, the convergence progresses in time.

In the present modeling the number of TLS has been chosen to be N = 15 − 20

(for different coupling strengths). This ensures that τrec is greater than the overall

simulation time. The temperature of the bath has been chosen to be zero.

6.2.1 Linear chirped pulse

Isolated system

We start the study with a system without dissipation, subject to a chirped electro-

magnetic field of the following form [232]:

E(t) = E0 exp

[
−(t− t0)

2

2τ 2p
+ i

χ

2
(t− t0)

2 + iω0t

]
, (6.13)

where ω0 is the transform-limited carrier frequency of the field and χ is the chirped

rate in the time representation . The pulse duration τp and the chirp rate χ are

defined as:

τ 2p = τp0
2 + [2Φ′′(ω0)/τp0]

2 , (6.14)

χ = −4Φ′′(ω0){τ 4p0 + 4Φ′′(ω0)
2}−1 , (6.15)
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Figure 6.3: (Left) Time evolution of the excited state population Ne(t) of the isolated system

(η = 0) for the high energy excitation. The population is calculated for a negatively (Φ′′(ν) =

−7500 fs2, solid line) and a positively (Φ′′(ν) = 7500 fs2, dashed line) chirped pulses. (Right) The

imaginary part of the transition dipole moment multiplied by the field amplitude.

where Φ′′(ν) = 4π2Φ′′(ω) is a linear chirp parameter and ∆tFWHM = 2τp0
√

ln2 is

the full width half maximum of the temporal intensity profile of the corresponding

transform-limited pulse.

Fig. 6.2 shows the excited state population at the end of the pulse as a function

of the linear chirp parameter Φ′′(ν) in two energy limits. In the high-energy limit

Fig. 6.2 shows a minimum at a negative chirp (about Φ′′(ν) = -7500 fs2) indicating

that at this particular chirp the population transfer to the excited state is minimal.

Thus at low intensity the chirp hardly affects the population transfer. However, the

minimum is slightly shifted to a larger negative value of the chirp.

Fig. 6.3 shows the time evolution of the excited state population Ne(t) and the

time derivative dNg

dt
(calculated independently as an imaginary part of the transition

dipole moment multiplied by the field according to Eq. 6.6) for pulses with a chirp

parameter Φ′′(ν) = ±7500 fs2. For a high-intensity field the dynamics caused by

a negatively chirped pulse differs from those induced by a positive one. For both

pulses, the phase first gains a negative value and the population is transferred from

the ground state to the excited one. However, for a negatively chirped pulse, the

phase changes its sign (twice) during the dynamics and the pulse also dumps some

population back to the ground state.

Positively chirped pulses lead to a monotonic population transfer. With sufficient

intensity, this may cause a population inversion [207, 211, 229, 232]. The coupling

window, given by an instantaneous frequency of the chirped pulse moves from lower
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Figure 6.4: (Left) Trajectories of the transition dipole moment, renormalized by its maximal

amplitude, for excitation by the linear negatively chirped pulse (Φ′′(ν) = −7500 fs2). (Right)

Excited state population at the end of the pulse as a function of the linear chirp parameter Φ′′(ν).

The calculations are performed for the system without dissipation (solid line) and for the system

with vibrational relaxation with weak (γ−1 = 1000 fs, dashed line), medium (γ−1 = 500 fs, dashed-

dotted line) and strong (γ−1 = 125 fs, dotted line) system-bath couplings.

to higher frequencies. The excited wavepacket, however, moves down due to the

potential gradient of the excited state. Thus the evolution of the imaginary part of

the transition dipole is restricted to negative values with pure absorption dominating.

For negatively chirped pulses, the coupling window follows the motion of the

excited wavepacket, which gains an extra phase. These dynamics induce the relative

phase shift, that may modify the total relative phase relation between the ground

and excited state wavefunctions [229]. The imaginary part of the transition dipole

moment is not restricted to negative values anymore and the pulse induces both

absorption and stimulated emission.

Dissipative system

The top panel of Fig. 6.4 displays the transition dipole trajectories during the exci-

tation process for the dissipative system with vibrational relaxation and dephasing.

The calculations are performed for the negatively chirped pulse with an optimal

linear chirp parameter Φ′′(ν) ≈ -7500 fs2 (the pulse, which leads to the minimum

population transfer). The trajectory corresponding to a system without dissipation

lies in both the negative and the positive imaginary quadrants. As mentioned above,

when the phase gains negative values the population is transfered from the ground

state to the excited one and vise versa. The addition of vibrational relaxation slows
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Figure 6.5: (Left) Trajectories of the transition dipole moment, renormalized by its maximal

amplitude, for excitation by the linear negatively chirped pulse (Φ′′(ν) = −7500 fs2). (Right)

Excited state population at the end of the pulse as a function of the linear chirp parameter Φ′′(ν).

The calculations are performed for the isolated system (solid line) and for the system with pure

electronic dephasing: weak (γ−1
ed = 250 fs, dashed line), medium (γ−1

ed = 125 fs, dashed-dotted line)

and strong (γ−1
ed = 20 fs, dotted line) couplings.

down the dynamics and decreases the value of the relative phase angle. As a re-

sult less population is transferred to the excited state, when the phase is negative

(absorption).

The bottom panel of Fig. 6.4 shows the excited state population at the end of

the pulse as a function of the linear chirp parameter Φ′′(ν). Including vibrational

relaxation leads to a shift of the minimum toward smaller negative chirps, while

for large negative chirps the population becomes constant. The latter is consistent

with the experimental results for the LD690 dye in a solution, obtained by Cerullo

et al. [207]. For very long negatively chirped pulses, the time scale of the excited

state dynamics becomes significantly longer relative to the pulse duration. Thus the

red tail of the pulse misses the excited population and does not contribute to the

stimulated emission. Since the vibrational relaxation leads to an additional delay of

the excited state wavepacket, the population becomes constant for shorter pulses.

Delay in the dynamics due to the vibrational relaxation may lead to enhancement in

the population transfer, if the excitation pulse is positively chirped [233]. The effect

of vibrational relaxation may be more involved. For high-fluence pulses a significant

hole is created in the ground state distribution, initiating the ground state dynamics.

Vibrational relaxation on the ground state will dump these dynamics, which may

influence indirectly the population transfer.

88



6.2 Results and Discussion

Next the influence of a pure electronic dephasing on the population transfer is

considered. Electronic dephasing has the fastest time scale of dissipative processes in

a condensed phase environment. Coherent superposition of the ground and excited

electronic states, created by the pulse, will be affected by the electronic dephasing

if its time scale is similar to the pulse duration. Fig. 6.5 shows (right) the excited

state population at the end of the pulse as a function of the chirp parameter, and

(left) the trajectories of the transition dipole moment in the presence of the pure

electronic dephasing. The main effect of dephasing is the destruction of the phase

coherence between the excited and the ground state wavefunctions. If the dephasing

rate (γ−1
ed = 250 fs) is longer than the pulse duration, the change in the population

transfer is minor. The effect, however, is more profound for longer pulses (both

negatively and positively chirped). Medium and strong electronic dephasing reduces

significantly the amount of population transfered to the excited state. While the

trajectories of the transition dipole moment for the optimal pulse decreases as the

dephasing becomes stronger, the character of the dynamics remains the same. The

trajectories lie in both negative and positive quadrants, meaning that the pulse

initiates absorption, followed by stimulated emission. The optimal chirp rate seems

to be insensitive to the electronic dephasing.

6.2.2 Nonlinear chirped pulses

Isolated system

The performance of the linearly optimal chirped pulses can be compared to unre-

stricted optimal pulses such as a pulse with a different phase at each point of the

discrete frequency spectrum. Such an optimal pulse is displayed in Fig. 6.6. The

evolution of the excited state population is shown for the linearly chirped and for

the optimized pulses. The total duration of the pulse is four times longer than the

experimental data of Ref. [227]. The optimization algorithm chooses the optimal

pulse with the best distribution of energy, which eventually dumps all population

back to the ground state. This pulse is not unique and may have a complex structure

(the inset figure in Fig. 6.6). The question of obtaining such pulses depends on the

abilities of particular pulse shapers. However, since there is always experimental
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Figure 6.6: Time evolution of the excited state population Ne(t) of the isolated system for the

high-energy excitation. The population is calculated for a linear negatively chirped pulse (solid

line), and for the optimal pulse (dashed line), obtained by using a genetic algorithm with the

random phases, generated at discrete points of the frequency spectrum. The inset figure shows the

temporal profile of the optimized pulse.

restrictions of phase modulation and as a result the pulse duration is confined, only

pulses with duration limited to the experimental data are studied [227].

To obtain optimized pulses with a limited time duration, the frequency-dependent

phase was expanded either in Taylor series (up to the second order) to obtain the

linearly chirped pulse or in the basis of periodic functions (up to 4th-5th order). The

expansion coefficients were introduced as input genes in the genetic algorithm. The

procedure reduces significantly the size of the search space in comparison to the free

parameterization (multiplying by random phase at each of the frequency spectrum

components) and therefore results in faster convergence.

The minimization of the excited state population at the end of the pulse con-

verges after approximately 30-40 generations to a value that is 40% lower than the

population transfered by the initial randomly generated pulse (the first generation).

The optimal pulse performs better than the linearly chirped pulse, transferring 30%

less of the population to the excited state at the end of the pulse (see Fig. 6.8, left

panel).

Fig. 6.7 shows the Wigner time-frequency representation of the linear negatively

chirped pulse (left panel) and an example of an optimized nonlinearly chirped pulse

(right panel). Note that the latter shows negative amplitude indicating a phase

structure between the two large subpulses. The first one (approximately t < 0)

shows mainly negative quadratic phase behavior (a linear chirp in the time domain).
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Figure 6.7: Calculations for non-dissipative system. Time-frequency Wigner distribution corre-

sponding to the optimized linear (left) and nonlinear (right) chirped pulses. The right sides show

the frequency spectra of the pulses, while their temporal profiles are shown in the upper panels.

The phase is expanded in the Taylor series up to the second order (linear chirp) and in the basis

of periodic functions (nonlinear chirp).
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Figure 6.8: (Left) Evolution of the excited state population Ne(t) of the isolated system for the

high-energy excitation. The population is calculated for a linear negatively chirped pulse (solid

line), and for the optimal pulse (dashed line), obtained by using a genetic algorithm with the phase

expanded in the basis of periodic functions. (Right) Trajectories of the transition dipole moment,

renormalized by its maximal amplitude. Solid and dashed lines refer to the linear chirped pulse

and its nonlinear analogue respectively.

Consisting of the “blue” portion of the spectrum, this part of the total pulse leads to

absorption. The second subpulse is highly nonlinear (while shows very small positive

chirp) and causes mainly stimulated emission.

Evolution of the transition dipole moment sheds some light on the pulse’s be-

havior. The left panel of Fig. 6.8 displays the transition dipole trajectories during

the excitation process. Besides the small overlap, the phase of the first subpulse

gains mostly negative value and as a result the population is transfered from the

ground state to the excited one. The phase of the second subpulse is primarily in

the positive quadrants and the pulse’s chief contribution is stimulated emission.

The nonlinear feature of the optimal pulse supports the idea that the pulse

follows the dynamics of the excited state wavepacket. The red edge of the pulse

arrives earlier than in the case of the linearly chirped pulse, since the wavepacket

has already reached the minimum of the excited state potential. The total duration

of the optimal pulse is shorter than its linear analogue.

We have shown that without time restriction, it is easy to obtain shaped pulses,

which lead to zero fluorescence. Optimal pulses with time duration confined to the

experimental data (not longer than 100 fs) may actually be shorter than linearly

chirped pulses and still perform better (transferring 30 % less of the population).
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Figure 6.9: (Left) Time evolution of the excited state population Ne(t) of the dissipative system

for the high-energy excitation. The population is calculated for a linear negatively chirped pulse

(solid line) and for the optimal pulse, obtained by using a genetic algorithm (dashed line). (Right)

Trajectories of the transition dipole moment, renormalized by its maximal amplitude. Calculations

were performed for the system with with weak vibrational relaxation (γ−1 = 500 fs) and medium

pure electronic dephasing (γ−1
ed ≈ 150 fs).

Dissipative system

The effect of dissipation on the optimal pulses is next considered. Electronic de-

phasing, as shown previously for the linearly chirped pulses, reduces the population

in the excited state at the end of the pulse, simply by destroying the transition

dipole. The effect of the vibrational relaxation is minor, at the time scales typical

for a molecule in solution.

Fig. 6.9 shows the evolution of the excited state population (left panel) and the

transition dipole trajectories during the excitation process (right panel) for a system

with medium vibrational relaxation (γ−1
vr = 500 fs) and medium electronic dephasing

(γ−1
ed ≈ 150 fs). Results for the linearly chirped pulse were compared with those of the

optimal pulse. Surprisingly, the nonlinear pulse leads to almost the same result as its

linearly chirped analogue. The difference in the population at the end of the pulse is

less that 4% (while for the nondissipative system it is approximately 30 %) The total

population transfered to the excited state is significantly lower (approximately 50

%), as a result of including electronic dephasing. The trajectories of the transition

dipole moment (Fig. 6.9, right) lie in both negative and positive quadrants, meaning

that the pulses lead to both absorption and stimulated emission, but the value of

the relative phase decreases as the dephasing becomes stronger.

Fig. 6.10 shows the Wigner time-frequency representation of the linear negatively
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Figure 6.10: Calculations for the dissipative system. Time-frequency Wigner distribution cor-

responding to the optimal linear (left) and nonlinear (right) chirped pulses. Calculations were

performed for the system with medium vibrational relaxation (γ−1 = 500 fs) and electronic de-

phasing (γ−1
ed ≈ 150 fs).

chirped pulse (left panel) and the optimized nonlinearly chirped pulse (right panel).

The shape of the optimized pulse is similar to the one obtained for the non-dissipative

system. While it consists of few subpulses, there is a part with noticeable negative

chirp and a part, which shows a profound positive chirp. The appearance of the

positively chirped part can be associated with the backward movement of the excited

state wavepacket.

Does the specific form of the optimized pulse depend on the parameters of the

primary system? Fig. 6.11 shows the Wigner distribution of the optimized pulse for

the primary system with a different set of parameters. The calculations are per-

formed for the high-frequency vibrational mode of 1662 cm−1 with dimensionless

displacement of D=0.35. These parameters refer to one of the vibrational modes

of LD690 [208, 234]. Since the excited state period is about 20 fs, we choose an

artificially short time scale of the vibrational relaxation and pure electronic dephas-

ing. The obtained optimized pulse consists of a train of subpulses, which follow the

dynamics of the excited wavepacket. Since the oscillation period is much shorter

than the one for the low-frequency mode, the phase of the transition dipole moment

changes its sign a few times according to the position of the excited state wavepacket.

The result is a more complex interplay between absorption and stimulated emission.

The optimal pulse can not be defined anymore as a “pure” negatively chirped one.
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Figure 6.11: (Left) Time evolution of the excited state population Ne(t) of the dissipative system

for the high-energy excitation. The population is calculated for a linear negatively chirped pulse

(solid line) and for the optimal pulse, obtained by using a genetic algorithm (dashed line). (Right)

Time-frequency Wigner distribution corresponding to the optimized nonlinear chirped pulse. The

calculation are performed for the primary system with the following parameters: the ground and

the excited state frequencies ω=1662 cm−1 and the dimensionless displacement of D=0.35. The

right sides show the frequency spectra of the pulses, while their temporal profiles are shown in the

upper panels. The phase is expanded in the basis of periodic functions.

Compiling the presented results one can not find direct semiclassical analogy

between the dynamics on the excited state and the chirp rate as mentioned in Ref.

[235]. This point will be investigated in the future studies.

6.2.3 Role of intensity

Cerullo et al. [207] have reported that the optimal linear chirp for fluorescence min-

imization was insensitive to the pulse intensity. The experimental study of Nahmias

et al. [227] seems to confirm these findings. The calculations for a non-dissipative

system show strong dependence of the population transfer on the pulse intensity.

The value of the optimal linear chirp as a function of fluence is shown in Fig. 6.12.

The fluence range lies within the experimental data reported in Ref. [227].

The position of the optimal linear chirp is shifted to smaller values as the flu-

ence increases. Vibrational relaxation hardly affects this tendency, while electronic

dephasing reduces this dependence.

The left panel of Fig. 6.13 shows the excited state population at the end of
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Figure 6.12: Effect of the intensity for linearly chirped pulses. The value of the linear chirp is

plotted as a function of the pulse fluence (the amplitude of the corresponding transform-limited

pulse. Calculations were performed for the isolated system (squares) and as well as for a dissipative

system (triangles) with with medium vibrational relaxation (γ−1 = 500 fs) and medium pure

electronic dephasing (γ−1
ed ≈ 150 fs).

the pulse as a function of the pulse intensity (the amplitude of the corresponding

transform-limited pulse) for non-dissipative system. The results for the linearly

chirped pulses (triangles) are compared to those obtained for the optimized nonlinear

pulse (squares). The intensity of the pulse runs over the range with a maximum

factor of two higher than in the experiment of Nahmias et al. [227]. We can determine

at least three regions in the whole range of intensities. At a low-fluence region, the

population at the end of the pulse depends linearly on the pulse intensity. The

difference between the linearly chirped and optimal nonlinear pulses is minor. The

additional region is at very high intensities. Here both kind of pulses become very

close to transform-limited 2π-pulse, which can “dump” all population back to the

ground state. The nonlinear pulses perform better at this region. The assumption

of a one-photon process is probably incorrect for the high-intensity region and for

real physical systems.

The intermediate-region (centered about the intensity, referred to the transform-

limited π-pulse) shows a very distinct behavior for two kinds of pulses. The optimal

nonlinearly chirped pulses lead to noticeably better results, transferring between 20%

to 70 % less population, than linearly chirped pulses. The right panel of Fig. 6.13

displays results for the system with weak vibrational dephasing and medium elec-

tronic dephasing. Dissipation affects the above dependence in the following way:

first, the electronic dephasing reduces the amount of population, that eventually
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Figure 6.13: The excited state population at the end of the pulse as function of the pulse fluence

(the amplitude of the corresponding transform-limited pulse). Calculations were performed (left

panel) for the system without dissipation and (right panel) for the system with medium vibrational

relaxation (γ−1 = 500 fs) and medium pure electronic dephasing (γ−1
ed ≈ 150 fs). The arrow points

to the maximal fluence used in the experiment by Nahmias et al. [227].

transfered to the excited state. The effect is however less profound for the very high

intensity region, since the optimal pulses in this region (both linearly and nonlin-

early chirped) are shorter than the time scale of the electronic dephasing. Secondly,

it blurs the difference between linearly chirped and nonlinear optimized pulses, since

the former are affected to the larger extent.

6.3 Conclusions

The present study simulates an ultrafast light-induced process under dissipative

conditions. Defining the optimal pulse, which leads to minimal fluorescence without

change in the frequency profile, was considered to be the optimal task. This task

is equivalent to preserving the number of photons transmitted through the medium

with allowance for shifting the photon frequency from blue to red. Can one obtain

a well-defined optimal solution for such a system with dissipation, especially if the

pulse duration exceeds the time scale of relaxation processes? To what extent does

the optimal pulse perform better than its linearly chirped analogue?

The dynamics of the primary system were modeled as a single, highly-displaced

low-frequency mode. This particular choice is used to represent schematically the

effect of both intramolecular and intermolecular coordinates on the rapid dynamic
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Stokes shift of the dye emission. Dissipation was treated by using the Surrogate

Hamiltonian approach, which has an advantage of a consistent treatment of initial

correlations, non-Markovian dynamics, and an explicit description of the pulse field.

Using the learning feedback control we were able to obtain pulse shapes leading to

a minimum fluorescence with maximal transmittance. These pulses have a complex

structure and are extended to long durations. It is possible however to determine

optimal pulses with restricted time duration, which are still preferable relative to

linearly chirped ones. These pulses usually consist of a large negatively chirped part

and an additional nonlinear subpulse. In the high-intensity region nonlinear pulses

suppresses the population transfer to the excited state more efficiently than their

linearly chirped analogue. The amount of population transferred to the excited state

at the end of the pulse is 30-70% lower for the linearly chirped pulses.

Vibrational relaxation has a minor effect on the optimal solutions. For linearly

chirped pulses it shifted the optimal chirp parameter to slightly smaller values due

to dephasing of the excited wavepacket. The electronic dephasing, on the other

hand, may reduce the amount of the population transferred to the excited state

significantly, especially if its time scale is comparable with the duration of the pulse.

The influence of the electronic dephasing on the form of the optimal pulse was

however insignificant. This confirms the experimental findings of Nahmias et al. [227]

of the negligible solvent effect on the optimal pulse shapes.

Contrary to the experiment, we found a significant effect of the pulse fluence.

While at low-intensity , the difference between the linearly chirped and the op-

timized nonlinearly chirped pulses is hardly noticeable, the situation changes at

high-intensity limit. The optimal pulses perform better than the linearly chirped

pulses. Including electronic dephasing may reduce this difference, affecting the lin-

early chirped pulses (which have longer duration). At very high intensities, both

pulses become similar to the transform-limited 2π pulses. In agreement with exper-

iment, changing the pulse fluence in the range of experimental data, has a negligible

effect on the form of the optimal pulse.

When comparing the current simulations with experiments, the effect of nonuni-

form intensity should be considered. The molecules in solution have a random

orientation leading to a cos2 distribution. In addition the high intensity is the result
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of tight focusing which adds a Gaussian spatial intensity distribution. Finally we

have also ignored the propagation effect in the medium which can alter the pulse

shape and intensity. The present model is restricted to two electronic states and

one primary vibrational mode. If an additional electronic excited state is positioned

for excited state absorption the present optimal solutions will be modified to avoid

such a state. For these reasons a comparison with experiment is only qualitative. It

is aimed to clarify the main effects of chirp and intensity on population transfer in

a two state model.
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Chapter 7

Epilogue

The vast majority of chemical processes occur in condensed-phase environments.

Therefore the development of theoretical tools, able to describe quantum many-

body systems from first principles, is essential. The chief obstacle facing dynamical

simulations of extended systems is the exponential scaling of the computational effort

with the number of degrees of freedom. Despite the growing number of theoretical

methods, no comprehensive solution to this scaling problem has been achieved. Most

of the existing theoretical methods fail to provide a consistent treatment of all aspects

of a quantum system interacting with a dissipative environment.

The Surrogate Hamiltonian method, which is the basis of the presented work,

has been developed for simulating quantum transient phenomena taking place in a

condensed-phase environment. The numerical and physical properties of the method

make it advantageous for treating a wide range of dissipative processes. While

the method is formally based on the idea of system-bath partitioning, it requires

solving of the time-dependent Schrödinger equation for the combined system rather

than the Lioville equation for the reduced density matrix. This construction leads

to a number of advantages: the ability to start with the fully correlated initial

state, to include properly non-Markovian effects, and in addition, to treat time-

dependent fields nonperturbatively. Employing a finite Hamiltonian to describe the

dynamics of the combined system makes the method well-suited for studying short-

time phenomena far from thermal equilibrium.

The presented study summarizes the development of the Surrogate Hamiltonian

extending the realm of its applications significantly .
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The original construction of the method was limited to phenomena at low tem-

peratures. The new method, presented in Chapter 4 enables employing the Sur-

rogate Hamiltonian to a wider range of temperatures with more favorable scaling

properties. The method is based on averaging over random phase thermal wavefunc-

tions - Boltzmann-weighted, random-phase superpositions of states in the combined

system-bath Hilbert space.

The random phase method obtains converged results for thermal observables by

averaging a relatively small number of randomly chosen initial states. Moreover the

number of initial states required to obtain convergence is a decreasing function of

the size of the total Hilbert space due to self-averaging, and it also decreases with

temperature. These findings suggest that the Surrogate Hamiltonian method has

the same scaling properties for the zero temperature simulation as for the finite

temperature simulations. Moreover the finite temperature simulations can be run in

parallel since each random phase run is independent of the others. As a consequence,

the Surrogate Hamiltonian method can be applied for moderate temperature simu-

lations, as long as the bath modes do not saturate. Moreover, the present thermal

random phase method is not restricted to the Surrogate Hamiltonian approach.

Since the basic construction is representation-independent, the method could also

be used for thermal averaging in the multi-configuration time-dependent Hartree

application for dissipative dynamics [119].

The Surrogate Hamiltonian method employs a bath of two-level systems, which

has different quantum properties from those of the widely-used harmonic bath. The

possibility of entanglement of bath modes, mediated by the primary system supports

the fact that there is a conceptual difference between the spin bath and the harmonic

baths. The aim of the numerical comparison between the two kinds (presented in

Chapter 3) was to check if the differences were reflected in the dynamics of the

primary system.

The main findings confirmed the fact that in the weak coupling limit the harmonic

bath can be mapped to the spin bath [97–99]. In addition, under this limit the spin

bath converges with only single excitations of the bath modes, which means that

the system and the bath are almost disentangled. This fact is consistent with the

convergence to the Markovian limit [142].
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The spin and harmonic baths begin to deviate when the initial excitation of the

primary system is increased. This difference is observed for excitations where the

dynamics generated by the harmonic bath are still Markovian. The first indication

of differences is the requirement for two simultaneous bath excitations in order to

converge the spin bath. For longer time periods, the spin bath saturates, limiting

the ability to assimilate the system’s energy. The conclusion is that the limit of

weak coupling is more restrictive in the spin bath case. The effect of the saturation

can be reduced if the bath Hamiltonian includes a mode-mode coupling term. This

term causes diffusion of excitation between the modes, spreading the excitation

over a greater number of bath modes. Thus bath modes, which are relatively far

from resonance with the primary system become populated and the saturation is

suppressed. In practice, this allows increasing the convergence timescale of the spin

bath.

The possibility of entanglement of bath modes mediated by the primary system

is a major difference between the spin bath and the harmonic bath. After a short

initial period where only single excitations occur, in the spin bath entanglement

between pairs of spins sets-in with what seems as an exponential growth. Later on

the pair entanglement is replaced by higher order terms. All these correlations are

absent from the harmonic bath. Nevertheless, the dynamics of the primary systems

are not very different, except for systems that have extremely strong coupling. The

very similar dynamics observed in the weak and medium coupling cases indicate

that from the viewpoint of the reduced dynamics it is hard to distinguish between

the two baths.

While the Surrogate Hamiltonian method employs a spin bath, the construction

of the bath used in our work is still based on the idea of spectral density. The concept

of spectral density is derived from normal mode analysis and therefore intrinsically

suffers from the assumption of a weak system-bath coupling. As a result, using the

Surrogate Hamiltonian for systems with strong system-bath coupling is questionable,

even if there is no formal restriction in the model. Future development of the

Surrogate Hamiltonian should focus on a different construction of the spin bath.

One of the possibilities is to build the bath from first principles - a strategy, that

has already been employed for modeling dissipative dynamics on solid surfaces [94].
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Alternative directions may use a random matrix modeling of the environment [145–

150].

The effect of dissipation on nonadiabatic dynamics has been discussed in Chap-

ter 5. Particularly, the Surrogate Hamiltonian method was applied to a system

containing a conical intersection in the presence of a dissipative environment. It is

well documented that nonadiabatic transfer events are extremely sensitive to the

landscape of the potentials involved [105]. The influence of the dimensionality on

nonadiabatic transitions has been acknowledged [106–109]. In this case, the numeri-

cal extension of the Surrogate Hamiltonian method to multidimensional models was

employed to provide a new insight into nonadiabatic processes. The purpose of the

study was to identify a mechanism for extremely rapid transfer of electronic energy

into a vibrational one, measured experimentally as a sub-picosecond recovery of the

bleach [166–169].

This task posed the challenge of introducing optical observables, which are a

direct signature of the ultrafast dynamics, measured in the pump-probe experiments.

The use of the Surrogate Hamiltonian has the advantage of an explicit description

of the pulse field and its influence on the system-bath interactions. The method

enables a consistent treatment of initial correlations between the system and the

bath and the dynamical aspects of the pump pulse. All those are absent in most

computational models employing the initial state prepared by the Franck-Condon

transition from the ground state.

In our model, the non-perturbative approach has been employed to describe the

dynamics induced by the strong pump pulse, while the weak probe has been treated

within a perturbative picture. This allowed us to associate a quantum mechanical

window operator to the absorption of the probe pulse centered at time t. The

stimulated emission and absorption have been calculated as expectation values of

this window operator. The present modeling of the pump-probe experiment enabled

us to investigate the population dynamics, as well as the energy distribution during

the nonadiabatic dynamics.

The main findings of our work support the physical picture of rapid curve-crossing

in the case of conical intersection. The stimulated emission signals have shown de-

cay on a time-scale of tens of femtoseconds. However, the origin of the fast bleach
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recovery, measured in charge-transfer experiments [167–169] remained unclear. The

energy relaxation, dominated by an intramolecular vibrational relaxation and mon-

itored by the transient absorption signal, proceeded at a much slower time scale.

This suggests that conical mixing symmetry is in itself not sufficient to generate a

femtosecond bleach recovery or relaxation.

The comparison between the semi-group approach and the Surrogate Hamilto-

nian method, introduced in the thesis, supports the findings, that for short dynamics

in a weak coupling limit, the two approaches converge [202]. The difference between

the two methods lies in the initial correlation and the influence of the excitation

pulse on the system bath coupling. The construction of the Surrogate Hamiltonian

approach is non-Markovian and therefore it is preferable for treatment of ultra-short

dynamics at conical intersections.

From a numerical perspective, the Surrogate Hamiltonian method is advanta-

geous for short simulation times. The wavepacket calculation was faster than the

equivalent density operator propagation. For longer times the computational effort

of the Surrogate Hamiltonian can become prohibitively expensive due to exponen-

tial scaling. The semi-group approach can simulate long time dynamics with linear

scaling with time. These findings suggest combining the two methods. The first

step of the combined simulation starts using the Surrogate Hamiltonian with a fully

correlated system-bath initial state. The Surrogate Hamiltonian is also employed for

the pump step, guaranteeing that the influence of the field is included. The reduced

system density operator is calculated at the next step, serving as an initial state for a

Liouville dynamical simulation. In order to evaluate relaxation parameters entering

the Lindblad equation, two approaches have to be compared in a time-window, in

which the dynamics are Markovian.

The interaction of an optimized chirped pulse with a molecule embedded in a

solvent has been investigated in the study presented in Chapter 6. The study was

aimed at gaining insight on the interplay between the pulse parameters and the

molecular response, which leads to minimal excitation and maximal transmission.

This task was carried out by setting simulations which included light-matter inter-

action in an explicit fashion. The closed-loop feedback strategy has been employed

to find the optimal field. The effect of the dissipation on the optimized solutions
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has been investigated, and the results of the simulations were compared to the ex-

perimental data.

In this thesis the Surrogate Hamiltonian has been developed as an efficient and

practical tool. It has shown the ability to treat strongly driven chemical systems con-

sistently, including the system-bath correlations and the influence of electromagnetic

fields. The numerical extension of the Surrogate Hamiltonian beyond one dimension

(currently to three dimensions) allows the treatment of realistic chemical systems

with nonadiabatically coupled potential energy surfaces. The random-phase ther-

mal wavefunction enables numerical simulations at a wider range of temperatures.

The limitation of the Surrogate Hamiltonian to short times can be overcome by its

combination with the semi-group approach. The combined method enables us, in

principle, to simulate long-time dynamics, approaching equilibrium.

Although the Surrogate Hamiltonian is not restricted to a particular type of bath

correlation functions, the construction of the bath, formally based on the concept

of the spectral density, should be revised. Other dissipative environments should be

formulated within the framework of the Surrogate Hamiltonian.

The Surrogate Hamiltonian joins a growing number of theoretical methods, whose

aim is to supply comprehensive models for quantum dynamics of many-body sys-

tems. Its numerical and physical advantages make us believe that the Surrogate

Hamiltonian is an appropriate and even a superior method for treating a wide range

of dissipative processes. Nevertheless, the presented study is only the beginning

of the journey towards establishing a better understanding of quantum dissipative

phenomena.
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Appendix A

The representation and

propagation of a wave function

The dynamics of a molecular system is represented by a wavefunction propagating

in time according to the time-dependent Schrödinger equation,

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 , (A.1)

The starting point is an effective scheme to represent the wavefunction |Ψ〉. Within

this scheme, the basic mapping operation generated by the operator Ĥ has to be

defined.

A.1 The grid representation

Representing the state |Ψ(t)〉 in the Schrödinger picture as a wave function 〈q|Ψ(t)〉 =
Ψ(q, t) on a grid in coordinate space is an extremely flexible choice. It allows for

the treatment of a broad class of problems independent of the shape of the potential

energy surfaces.

A wave function Ψ(q) can be approximated by a finite set of analytical functions

(see for example [3, 6])

Ψ(q) ≈
Nf∑

n=1

angn(q) . (A.2)

The expansion coefficients are determined by matching the approximation to the
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A.1 The grid representation

true wave function at Ng grid points qj ,

Ψ(qj) ≡
Ng∑

n=1

angn(qj) . (A.3)

If the gn(q) are orthogonal functions and Nf = Ng, the expansion coefficients are

given by

an =

Nf∑

n=1

Ψ∗(qj)gn(qj) . (A.4)

A special case of the orthogonal representation is the Fourier method [3]. The

functions gn(q) are then chosen as plain waves,

gn(q) = e2πinq/L , n = −
(
Nf

2
− 1

)
, . . . , 0, . . . ,

Nf

2
, (A.5)

with equally spaced sampling points qj = (j − 1)∆q on a grid of length L. The

approximation of the wave function becomes

Ψ(q) ≈
Nf/2∑

n=−(Nf/2−1)

an e
2πinq/L , (A.6)

and the Fourier expansion coefficients,

an =
1

Nf

Nf∑

n=1

Ψ(qj) e
−2πinqj/L , (A.7)

represent the amplitude of the wave function in Fourier, or momentum, space. The

grid distance in momentum space is given by ∆p = 2π/L, the grid distance in

coordinate space is related to the largest representable momentum by ∆q = π/pmax.

The power of the Fourier method results from the fact that the operators entering

the Hamiltonian can each be applied locally in coordinate or momentum space, and

the transformation connecting these two representations is the fast Fourier transform

with its favorable scaling of Nf log(Nf ). All operator functions depending on q̂ like

the potential energy operator correspond to diagonal matrices in coordinate space,

and the wave function Ψ(qj) can simply be multiplied by them. The kinetic energy

operator as well as other operator functions depending on p̂ can be applied by

multiplication in momentum space,

T (pj)Ψ(pj) =
p2j
2m

Ψ(pj) (A.8)

where m is mass and pj are the momentum space grid points.
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A.2 The Chebychev propagator

The Chebychev method [236] employs the idea of a polynomial expansion of the

time evolution operator,

Û(t) = e−iĤt ≈
N∑

n=0

anPn(−iĤt) (A.9)

with complex Chebychev polynomials Pn(X̂) = Φn(X̂) as basis set. The complex

Chebychev polynomials are defined in the range [−i, i]. Therefore the h̋as to be

renormalized by its spectral range ∆E = Emax − Emin, and for efficiency it should

be shifted such that the spectral range is [−1, 1]:

Ĥnorm = 2
Ĥ− 11(1

2
∆E + Vmin)

∆E
. (A.10)

Inserting Eq. (A.10) into Eq. (A.9) leads to

Ψ(t) = Û(t)Ψ(0) ≈ e−i( 1
2
∆E+Vmin)t

N∑

n=0

an(α)Φn(−iĤnorm)Ψ(0) (A.11)

with the argument α = ∆Et/2. The expansion coefficients are related to the Bessel

functions of the first kind Jn:

an(α) =

∫ i

−i

dx
eiαxΦn(x)√

1− x2
= 2Jn(α) , (A.12)

and the Chebychev polynomials are calculated using the recursion relation

Φn+1(x) = 2xΦn(x)− Φn−1(x) ,

Φ0(x) ≡ 1 , Φ1(x) = x .
(A.13)

The error of the Chebychev method is uniformly distributed over the whole range

of eigenvalues of Ĥ and can be reduced to machine precision due to a property of

the Bessel functions Jn(α): When the order n becomes larger than the argument

α, Jn decreases exponentially fast. The number of terms required in the expansion

is therefore determined by the spectral range of the a̋nd by the desired time step.

It should be noted that the time step does not affect the accuracy of the method.

The Chebychev method is therefore suited for large time steps, and a practical lower

limit imposed by numerical efficiency is about 40 terms in the expansion [3].
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A.3 Eigenfunctions through imaginary time prop-

agation

The Fourier method can also be used to compute eigenvalues and eigenfunctions of

a given Hamiltonian [114]. To this end the imaginary time τ = it is introduced into

the formal solution of the time-dependent Schrödinger equation,

|Ψ(τ)〉 = e−Ĥτ |Ψ(0)〉 . (A.14)

An arbitrary initial guess wave function can be expanded into eigenstates of the

Hamiltonian, |Ψ(0)〉 =
∑

n cn|ϕn〉. For τ → ∞, only the ground state component

of the initial guess will survive. The imaginary time propagation, Eq. (A.14), is

obviously not unitary, the wave function therefore needs to be renormalized during

propagation.

The choice of the initial guess determines the convergence of the method. The en-

ergy expectation value, 〈Ψ(τ)|Ĥ|Ψ(τ)〉, or the standard deviation of energy, 〈Ψ(τ)|Ĥ2|Ψ(τ)〉−
〈Ψ(τ)|Ĥ|Ψ(τ)〉2, which is a measure of the purity of the eigenstate, is monitored to

determine convergence. Higher eigenstates than the ground state can be calculated

by projecting out lower lying eigenstates, i.e. to obtain the nth eigenstate a new

Hamiltonian,

Ĥn = Ĥ−
n−1∑

i=0

|ϕi〉〈ϕi| (A.15)

can be defined and used in Eq. (A.14). Since all lower lying eigenstates |ϕi〉 need to

be stored to compute |ϕn〉, this is feasible only for a few eigenstates. Furthermore,

long propagation times τ are necessary to differentiate between nearly degenerate

states due to a time-energy uncertainty relation.

However, imaginary time propagation with the Hamiltonian, Eq. (A.15), repre-

sents a special choice of the more general Filter Diagonalization approach [115–117].

The basic idea of Filter Diagonalization to extract eigenvalues and eigenstates of a

given operator consists of a combined use of applying a filter and algebraic diagonal-

ization [115]. The correlations present in the initial guess are eliminated through a

short-time filter between distant eigenstates and by diagonalization between closely

lying eigenstates [115–117]. Imaginary time propagation can be viewed as a long

term filter, with no diagonalization part. It is therefore less efficient than full filter
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diagonalization, but it requires only minor changes of existing programs.
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Appendix B

The bit representation of a bath of

two level systems

More comprehensive description of numerical features of the Surrogate Hamiltonian

method is given in Ref. [88, 95, 237].

B.1 The wave function

The state of the system combined with the bath is described by a 2N -dimensional

spinor with N being the number of modes. The dimension 2N results from the num-

ber of possibilities to combine 2 states (spin-up/spin-down, bath mode excited/not

excited, bit set/not set) N times.

For N = 1 and N = 2, respectively, this wave function spinor becomes

ΨN=1(Q̂) =



ψ0(Q̂, α)

ψ1(Q̂, α)



 , ΨN=2(Q̂) =




ψ0(Q̂, α)

ψ1(Q̂, α)

ψ2(Q̂, α)

ψ3(Q̂, α)




, (B.1)

where Q̂ represents the nuclear degrees of freedom of the wave function and α the

electronic degrees of freedom. The spinor is bit ordered, i.e. the kth bit set in the

spinor index corresponds to the ith TLS mode excited if the counting of bits starts at

k = 0. This means that the zeroth component corresponds to no bath mode being

excited, the first and second component to the excitation of the first and second

bath mode, and the third component corresponds to the first and second bath mode
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B.2 The operators

being excited simultaneously, and so forth.

The number of simultaneous excitations can be restricted. The occurrence of the

kth excitation in N bits is a combination,

(
N

k

)
=

N !

k!(N − k)!
.

The dimension of the spinor D is then given by the sum of binomial coefficients

D =

Nexc∑

k=0

(
Nexc

k

)
(B.2)

with Nexc the number of simultaneously allowed excitations. Assume a bath with 4

modes and at most 2 simultaneous excitations. Then D is:

D =

(
4

0

)
+

(
4

1

)
+

(
4

2

)
= 1 + 4 + 6 = 11 ,

which means there is one spinor component corresponding to none of the bath modes

excited, four components have one bit set and there are 6 possibilities to excite 2

bits out of 4. Making use of the Binomial Theorem

(a+ b)N =

N∑

k=0

(
N

k

)
aN−kbk

with a = b = 1, it again is found that D = 2N if all N excitations are allowed

simultaneously. The restriction of simultaneously allowed excitations leads to sig-

nificant numerical savings, both in computation time and storage, and its validity

can simply be checked by increasing Nexc.

B.2 The operators

The bath operators entering the Hamiltonian are sums over the operators acting on

a single mode. In bit representation the operator of mode k acts on bit k (assuming

k = 0, . . . , N − 1), i.e. on the spinor components which have the kth bit set in their

indices. One should clearly distinguish between bath modes and spinor components.

For example, the k = 0 mode which may or may not be excited should not be

confused with the zeroth spinor component corresponding to all modes deexcited.

As a simple example, consider the operator Ŝz =
1
2

(−1 0
0 +1

)
and a bath consisting

of N = 3 modes. Then the total Ŝ
(N=3)

z is a diagonal 8×8-matrix. The Ŝ
(k=2)

z acts on
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the total 8-dimensional space with the first four diagonal elements −1 since the k = 2

bit is 0, i.e. the third mode is not excited, and the second four diagonal elements

+1 since the k = 2 bit is 1, i.e. the third mode is excited. The Ŝ
(k=1)

z -operator

acting on the second mode acts on the two 4-dimensional subspaces with the first

two diagonal elements −1 and the second two +1. Finally the Ŝ
(k=0)

z -operator acts

on the four 2-dimensional subspaces. Since the total Ŝ
(N=3)

z -operator is the sum over

the Ŝ
k

z operators, its bit representation is given by

S(N=3)
z =

1

2




−3 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −1 0 . . . . . . . . . . . . . . . . . . . . . .

. . . 0 −1 0 . . . . . . . . . . . . . . . . .

. . . . . . . . 0 +1 0 . . . . . . . . . . . .

. . . . . . . . . . . . 0 −1 0 . . . . . . .

. . . . . . . . . . . . . . . . . 0 +1 0 . . .

. . . . . . . . . . . . . . . . . . . . . . 0 +1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 +3




. (B.3)

However, this matrix neither needs to be stored nor explicitly computed. Instead, the

fact that computers are built on bit operations and modern programming languages

offer built-in functions for testing for and operating on bits can be used.

The occupation number n̂k needed in the bath Hamiltonian, Eq. (2.2), can be

computed in a similar fashion. The matrix representation for two modes is given by

1∑

k=0

εkn̂k =




0 0 0 0

0 ε0 0 0

0 0 ε1 0

0 0 0 ε0 + ε1




. (B.4)

If more complicated operators acting on the bath shall be obtained, it is useful

to write down rigorously how to build bath operators acting in D-dimensional space

from spin operators acting in two-dimensional space. All bath operators can be

expressed as a combination of creation and annihilation operators. The creation

operator for mode k can be written as

σ̂+
k
N
=

N−k∏

j=1

112 ⊗ σ̂+ ⊗
k−1∏

j=1

112 (B.5)
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B.2 The operators

with

σ̂+ =


0 0

1 0


 , (B.6)

and the kth annihilator is given by the conjugated expression built on σ̂. With

the help of Eq. (B.6) the bath operators needed in the interaction Hamiltonian,

Eq. (2.5), can now be constructed.

The matrix representation of
∑

k dk(σ̂
+
k + σ̂k) describing energy relaxation has

already been given [88], it is noted here for completeness:

∑

k

dk(σ̂
+
k + σ̂k) =




0 d0 d1 0 d2 0 0 0

d0 0 0 d1 0 d2 0 0

d1 0 0 d0 0 0 d2 0

0 d1 d0 0 0 0 0 d2

d2 0 0 0 0 d0 d1 0

0 d2 0 0 d0 0 0 d1

0 0 d2 0 d1 0 0 d0

0 0 0 d2 0 d1 d0 0




. (B.7)

The upper triangle in Eq. (B.7) corresponds to annihilation, and the lower triangle

to creation of bath modes. The action of the bath operators
∑

k dk(σ̂
+
k + σ̂k) is

given by an exclusive or, which is true only if one of the bit is 1 while the other is 0.

To illustrate the exclusive or, for example for N = 3 the fourth spinor component

is obtained from

Ψ̃4 = d2Ψ0︸ ︷︷ ︸ + d0Ψ5 + d1Ψ6︸ ︷︷ ︸
creation annihilation

with

d2 → 22 : 100 d0 → 20 : 001 d1 → 21 : 010

Ψ0 → 0 : 000 Ψ5 → 5 : 101 Ψ6 → 6 : 110

Ψ̃4 → 4 : 100 100 100

(it should be remembered that bits are counted from right to left starting from 0).

In the above example, all combinations of 2k and j leading to i = 4 are listed. For
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B.2 The operators

all other combinations the exclusive or leads to false, i.e.

d2 → 22 : 100 d0 → 20 : 001

Ψ1 → 1 : 001 Ψ6 → 6 : 110

Ψ̃4 → 4 6= 5 : 101 Ψ̃4 → 4 6= 7 : 111 .

The dephasing operator Ô =
∑

kl ckl(σ̂
+
k σ̂l + σ̂+

l σ̂k) reads for N = 3 modes

2∑

k,l=0

Okl =




0 0 0 0 0 0 0 0

0 0 c01 0 c02 0 0 0

0 c10 0 0 c12 0 0 0

0 0 0 0 0 c12 c02 0

0 c20 c21 0 0 0 0 0

0 0 0 c21 0 0 c01 0

0 0 0 c20 0 c10 0 0

0 0 0 0 0 0 0 0




. (B.8)

The application of Eq. (B.8), Ψi =
∑

klOklΨj, requires several bit tests: First, the

number of excitations in the spinor indices i and j must be equal. This corresponds

to the requirement that dephasing doesn’t alter the energy of the bath, i.e. conserves

the number of bath excitations. Second, the indices of Okl in Eq. (B.8) numbering

the bath modes bit-added, k+ l, must be equal to the exclusive or of i and j. This is

a generalization of the single application of the exclusive or described in the previous

paragraph for the case when only one bath operator acts on the spinor, and not two

consecutively.
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Appendix C

Harmonic bath vs spin bath

The differences between harmonic and spin baths can be illuminated by studying

the simple system of a spin-1
2
coupled to a bath. For the harmonic bath the total

Hamiltonian in second quantization is given by:

Ĥ =
1

2
Ωσ̂z +

∑

j

ωjb̂
+

j b̂j +
∑

j

λj(b̂j + b̂
+

j )(σ̂+ + σ̂−) . (C.1)

Thus the Heisenberg equations of motion for the system operators are:

d

dt
σ̂± =

1

i
[σ̂±, Ĥ] = ±iΩσ̂± − iσ̂z

∑

j

λj(b̂j + b̂
+

j ) . (C.2)

Similarly, the equations of motion for the bath operators are:

d

dt
b̂j = −iωj b̂j − iλj(σ̂+ + σ̂−) . (C.3)

Since the annihilation and creation operators b̂j and b̂
+

j , satisfy the standard Bose

commutation relation, [b̂j , b̂
+

j′] = δj,j′, a closed set of equations is obtained for each

of the independent bath modes.

Now, let us consider a different model, where the primary system is coupled to a

bath of spins-1
2
. The total Hamiltonian may be written in the form:

Ĥ = Ωσ̂0
z +

1

2

∑

j

ωjσ̂
j
z −

1

2

∑

j

λj σ̂
0
+σ̂

j
− + h.c. , (C.4)

where σ̂x,y,z designates the set of Pauli operators and σ̂i
± = σ̂i

x ± σ̂i
y are the usual

ladder operators. For simplicity, we consider a system (0) consisting of a spin-1
2

which interacts with a pair (1,2) of spins. Thus, the Hamiltonian of the whole
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system reads:

Ĥ = Ωσ̂0
z +

1

2
(ω1σ̂

1
z + ω2σ̂

2
z)−

λ1
2
(σ̂0

+σ̂
1
− + σ̂0

−σ̂
1
+)−

λ2
2
(σ̂0

+σ̂
2
− + σ̂0

−σ̂
2
+) . (C.5)

The Heisenberg equations of motion for the system operator are:

d

dt
σ̂0
± = ±i(2Ωσ̂0

± +
λ1
2
σ̂0
z σ̂

1
± +

λ2
2
σ̂0
z σ̂

2
±) , (C.6)

and the equation of motion for the bath operator reads:

d

dt
σ̂

1,2
± = ±i(ω1,2σ̂

1,2
± +

λ1,2
2
σ0
±σ̂

1,2
z ) . (C.7)

The commutation relations for spin operators are different from those of bosons:

[σ̂i, σ̂j] = −2iσ̂k , (C.8)

which makes the set of the equations above non-closed. After some algebra, the

equation for the bath operators becomes:

d

dt
(σ̂0

zσ̂
1,2
± ) = ±iω1,2σ̂

0
z σ̂

1,2
± ± i

λ1
2
σ̂0
± +

iλ2(σ̂
0
+σ̂

1,2
± σ̂

2,1
− − σ̂0

−σ̂
1,2
± σ̂

2,1
+ ) . (C.9)

The triple correlations of the type σ̂0
+σ̂

1
±σ̂

2
− is a manifestation of the build-up of

quantum entanglement - a specific correlation between different modes, which has

no analogy in classical physics. These correlations make a difference between the

spin bath and the harmonic oscillator one, since the latter does not have quantum

correlations between the bath modes.
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Appendix D

Entanglement between different

bath modes

In order to check whether the reduced two-system density matrix ρ̂ is entangled, first

we will use the partial transposition criterion proposed by Peres [137] and Horodecki

et al. [138]. A mixed state described by density matrix ρ̂ is non-separable (and

therefore cannot be written as a product state of two subsystems (i) and (j), ρ̂ =

ρ̂i ⊗ ρ̂j), iff the partial transposition of ρ̂ with respect to one of the two subsystems

has negative eigenvalues. The partial transpose ρ̂Tj is obtained by transposing in

a matrix representation of ρ̂ only those indices corresponding to subsystem (j), i.e.

ρ
Tj
mµ,nν = ρmν,nµ. The following notation for matrix elements of a composite system

is used:

ρmµ,nν = 〈em ⊗ fµ|ρ̂|en ⊗ fν〉 , (D.1)

where em and fµ denote the arbitrary orthonormal bases in Hilbert space describing

the first (i) and second (j) system, respectively.

Checking the positivity of the partial transpose is equivalent to checking the signs

of the eigenvalues of ρ̂Tj or ,alternatively, the signs of the following determinants:

W1 = ρ
Tj

11,11ρ
Tj

22,22 − ρ
Tj

11,22ρ
Tj

22,11, (D.2)

W2 = ρ
Tj

12,12ρ
Tj

21,21 − ρ
Tj

12,21ρ
Tj

21,12. (D.3)

In the case when one of the above determinants is negative, the state ρ̂ is non-

separable, and hence there is entanglement between the two subsystems ρ̂i, ρ̂j.

Another entanglement measure for a mixed state of two spin-1
2
particles is the
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entanglement of formation [139–141]. Explicitly, for the reduced two-system density

matrix ρ̂ the entanglement of formation is defined by

E(ρ) = h

(
1

2

[
1 +

√
1− C(ρ)2

])
, (D.4)

where h is the binary entropy function h(x) = −x log2 x − (1 − x) log2(1 − x) and

C(ρ) is the concurrence. The concurrence is calculated in the following way: first we

define the ”spin-flipped” density matrix to be

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) , (D.5)

where the asterisk denotes complex conjugation of ρ̂ in the standard basis {|00〉, |01〉, |10〉, |11〉, }
and σy expressed in the same basis is the matrix

σy =


 0 −i

i 0


 . (D.6)

As both ρ and ρ̃ are positive operators, it follows that the product ρρ̃, though non-

Hermitian, also has only real and non-negative eigenvalues. Let the square roots of

these eigenvalues, in decreasing order , be λ1, λ2, λ3, and λ4. Then the concurrence

of the density matrix ρ is defined as C = max{λ1 − λ2 − λ3 − λ4, 0}. It should be

noted that C = 0 corresponds to a non-entangled state, while C = 1 - to a completely

entangled state and the entanglement of formation E is a monotonically increasing

function of C.
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