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Abstract
The generation and control of large amplitude plasma gratings and other plasma structures is of paramount importance
for the realization of plasma photonics. Autoresonant excitation of such structures by means of chirped amplitude-
modulated lasers has been recently discussed and analyzed theoretically. Here we discuss the parameter space for the
realization of such a scheme and describe the laser system that was built towards this goal. We also expand our earlier
theoretical study to account for the more realistic case of a moderately focused laser beam, instead of the simplified
plane wave approximation.
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1. Introduction

In recent years, there has been an increased interest in the
interaction of light with structured plasma. For example,
plasma gratings may be used for short pulse amplification
and the compression of high-power chirped pulses[1,2], tran-
sient plasma photonic crystals used as a high reflector[3],
plasma-based optical components such as lenses, diffractive
and holographic lenses[4–6], polarization optics[7–9], crossed-
beam energy re-distribution for symmetry control in inertial
confinement fusion (ICF)[10] and crossed-beam depolariza-
tion for mitigating parametric instabilities in ICF[11]. Cur-
rently, the efficiency of the above-mentioned applications
is poor. One of the main reasons for the low efficiency of
these schemes is the difficulty of controlling these plasma
structures as they are driven into the nonlinear regime.
To overcome this limitation, we proposed to drive a high-
amplitude, standing ion acoustic wave (SIAW) by the inter-
action of a plasma medium with two counter-propagating
laser beams that are amplitude modulated with a slowly
varying frequency[12]. The beating frequency of the chirped
two counter-propagating beams starts slightly off the linear
resonance of an ion acoustic wave, and then slowly sweeps
through it. If the chirp rate is slow enough, the plasma
oscillations are automatically phase-locked to the beating
frequency and stay in resonance. This process is known as
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autoresonance (AR). AR is a proven and general technique
of exciting an oscillatory nonlinear system into high energies
by a weak chirped driving oscillation[13–15]. This method
is general and has been applied in many fields of physics,
such as particle accelerators, coherent control of molecular
vibration states[14–17], fluid dynamics[18], plasmas[19], nonlin-
ear waves[20] and planetary dynamics[21].

In this paper, we follow our previous theoretical pro-
posal[12] and report on the development of a laser system
to drive the SIAW and push it into the nonlinear regime
where the amplitude of the acoustic wave could reach a
significant fraction of the unperturbed plasma density. This
laser is designed with the ability to arbitrarily modulate its
amplitude with a modulation frequency of up to a few GHz.
For the purpose of driving the SIAW into high energies, we
chirped the amplitude modulation from about 500 MHz to
more than 3.5 GHz. It is worth mentioning here that such a
laser may be useful for other applications, such as the chirped
amplitude modulation laser radar (LADAR) for range and
Doppler measurements and for 3D imaging[22].

The paper is organized as follows. In Section 2, we
analyze the parameter space for generating the SIAW and
the required laser parameters. In Section 3, we describe
our laser system. Next, with the analysis of Section 2 and
the available laser parameters (Figure 1), we show that a
moderate focusing of the laser is needed for attaining the
AR threshold intensity, and our plane wave approximation
in Ref. [12] might not be valid. In the Appendix, we take our
previous plane wave approximation and extend it to the more
realistic case of focused laser beams with a finite waist.
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2. Parameter space of the experiment

In all autoresonant driving schemes, the driver frequency is
slowly varying, passing through the zero-amplitude natural
frequency of the system, and if the driving force exceeds
a certain threshold, the nonlinear system is automatically
phased-locked with the driver frequency. In that case,
the resonance condition ωd(t)−Ω(A) = 0 is kept during
the whole excitation process, where ωd(t) = Ω0 −αt is the
time-dependent driving frequency, Ω0 is the zero-amplitude
natural frequency of the system and Ω(A) = Ω0 − βA2 is
the amplitude-dependent natural frequency of the nonlinear
system. Thus, the amplitude A grows in time according to

A(t) =
√
ωd(t)−Ω0

β
=

√
αt
β

. The threshold of the AR obeys a
general power law that applies to all AR cases:

εth = η
α3/4

√
β
, (1)

where η is a constant of the order of 0.5 and α and β are the
chirp rate and the nonlinear coefficient of the amplitude-
dependent resonance (often given as dimensionless
parameters), respectively. In our theoretical paper on AR
excitation of SIAWs[12] we used dimensionless variables
and parameters, such that the time, the position and the
velocity are normalized with respect to the inverse ion
plasma frequency ω−1

pi = √
ε0mi/nee2 , the Debye length

λD = √
ε0Te/nee2 and the modified electron thermal velocity(

me
mi

) 1
2

ue. The plasma density and the electric potential are
normalized with respect to the unperturbed plasma density
and kBTe/e.

To realize AR-driven SIAWs in the laboratory, we have
to choose the right conditions, such as the plasma density,
electron temperature, ion mass and driving frequency chirp
rate, to fit within the experimental limitations. A prerequisite
for the success of the experiment is a laser driver with
intensity above the AR threshold. One way to keep this AR
threshold low is to reduce the chirp rate, α (see Equation (1)).
However, the wave amplitude is growing in time according
to A(t) = √

αt/β; thus, to attain the same amplitude with
a lower chirp rate, we need a longer pulse duration. These
limitations combine with other technical limitations to form
a parameter space from which we have to pick the optimal
conditions for SIAW AR excitation. Our laser system (see
the next section) consists of a seeding laser that is amplitude
modulated by an electro-optic Mach–Zehnder interferometer
(iXblue), driven by an arbitrary waveform generator (AWG)
and amplified in a regenerative amplifier[23].

We choose to set our laser wavelength at 1064 nm since
both seeding lasers are abundant, fast electro-optical modu-
lators are available and there are efficient neodymium-doped
yttrium aluminum garnet (Nd:YAG) amplifiers. This wave-
length choice imposes the wavelength of the ion acoustic

wave to be half of the laser wavelength (λIAW = 532 nm).
The laser cavity length imposes an upper-bound limitation
on the pulse duration. In our case, the cavity allowed for a
pulse duration of approximately 35 ns (a schematic of our
zig-zag folded 5.1 m long cavity is given in Figure 2). Due
to space limitations on the optical table, a substantial longer
cavity will require our cavity to be folded many times. This
in turn will increase optical losses, reduce cavity stability
and complicate cavity alignment, which is already a problem
with such a long cavity. The AWG puts an upper-bound
limitation of approximately 4.5–5 GHz on the modulation
frequency. Such a modulation will broaden the laser spec-
trum by not more than 0.02 nm, well within the Nd:YAG
gain bandwidth. Therefore, no effect on the laser efficiency
is expected, nor is observed. Figure 1 shows a selection chart
that can help us identify the optimal experimental conditions.
Figures 1(a) and 1(b) show that the energy threshold and
the time window are equal to 10/

√
α, both of which are

needed for efficient AR excitation[13]. It also shows the
swept bandwidth within a time window of 35 ns, which puts
an upper bound on the SIAW amplitude (Figure 1(c)) and
the linear ion acoustic wave frequency (Figure 1(d)). The
gray areas indicate the working area imposed by the above-
mentioned limitations. From Figure 1 we first realize that the
linear SIAW frequency for the case of helium ions is too high
for our current AWG; therefore, we aim at working with neon
ions at densities of around 10×1017 cm−3 and dimensionless
chirp rates in the range of 1×10−6 −3×10−6 (which should
be multiplied by ω2

pi to translate into the dimensional chirp
rate).

3. Laser system

According to our analysis in Section 2, our laser should
have the following parameters: central wavelength λc =
1064 nm, pulse duration τp ∼= 35 ns, amplitude modulation
with chirped frequency spanning from 3 to 1.2 GHz within
the pulse duration, that is, a chirp rate of approximately
equal to 0.0514 ns–2, and an energy/pulse of approximately
equal to 2.5–3 mJ, provided that we focus the beam to a
spot waist of 30−35 µm. Because of the high modulation
frequency and the demand for sweeping a large bandwidth
within the pulse duration, we choose to shape our pulse by
using a high-frequency LiNbO3 waveguide Mach–Zehnder
modulator (iXblue). The laser system starts from a fiber-
coupled narrow bandwidth distributed feedback (DFB) laser
diode, having a central wavelength of 1064.5 nm and an
average power of 150 mW. This seed is sliced into a square
pulse of about 20–35 ns and amplitude modulated with a
chirped quasi-sinusoidal shape at frequencies ranging from
approximately 4 GHz to a few hundred MHz. The exact
pulse-shape is imposed by an arbitrary wave generator that
feeds the Mach–Zehnder modulator.
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Figure 1. A selection chart for the best experimental conditions. (a) The pulse energy threshold (in mJ) as a function of the plasma density (in units of
1017 cm–3), assuming a beam waist of 35 µm. (b) The time window 10/

√
α (in ns) as a function of the plasma density. (c) The swept bandwidth within the

time window of 35 ns. (d) The linear ion acoustic wave frequency (GHz). The laser wavelength is chosen to be λL = 1064 nm and the electron temperature
is 0.5 eV. Orange and blue lines represent the ion mass of 20 a.u. (neon) and the dimensionless chirp rate of 1 × 10−6 or 3 × 10−6, respectively. Green and
black lines represent the ion mass of 4 a.u. (helium) and the dimensionless chirp rate of 1×10−6 or 3×10−6, respectively.

To reach the AR threshold, we have to amplify the shaped
3 nJ seed by about six orders of magnitude. A regenerative
amplifier[23] could fill this energy gap while supporting a
good beam profile. Nevertheless, the need for high pulse
energy/high laser power and maintaining the required time
structure of the pulse imposes some challenges. The first
challenge is to inject the seed pulse into the regenerative
amplifier, lock it inside the cavity and amplify it while
preserving its shape and avoiding clipping it. In a common
regenerative design[23] (see Figure 2(a)), the seed is reflected
from a polarizer into the cavity, passing through a quarter

waveplate (QWP) and a passive Pockels cell, reflected from
the first end mirror of the cavity (M1) towards the second end
mirror (M4). While going towards the second end mirror, it
goes again through the passive Pockels cell and the QWP.
Once the tail of the pulse passes the second time through
the Pockels cell, it is possible to switch on the Pockels cell
and lock the pulse inside the cavity, but care should be taken
not to clip at this time the head of the pulse. Since our
pulse duration is designed to be in the region of 35 ns, the
distance from the Pockels cell to the second end mirror and
back to the Pockels cell should be around 11 m. Such a long
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Figure 2. (a) Schematic of cavity design. M1, spherical front end-mirror with radius of 3 m; L1, 63 mm; PC, Pockels cell; L2, 60 mm; QWP, quarter
waveplate; L3, 340 mm; L4, 10 mm; lens, focal length −750 mm; L5, 500 mm; Nd:YAG, gain medium; iM, removable flat mirror used as the back end-
mirror of the short cavity; L6, 1.1 m; M2 and M3, spherical mirrors with radius of 2 m; L7, 2 m; L8, 1 m; M4, flat mirror used as the end-mirror of the long
cavity. (b) Caustic of the beam inside the cavity obtained from simulations with ReZonator 2[24].

cavity poses difficulties in aligning it and keeping it stable.
To extract high power out of it is even more challenging
because of the thermal lensing effect. Figure 2(a) shows a
schematic of our regenerative cavity. Our guidelines in the
design of the cavity were as follows: (i) make it long enough
to accommodate the approximately 35 ns pulse without
clipping it; (ii) position the Pockels cell where the beam
waist is large enough to avoid damages to the Pockels cell;
(iii) position the gain medium (Northrop Grumman, diode-
pumped, Nd:YAG rod, 2 mm diameter and length of 63 mm)

where the beam waist is filling the entire Nd:YAG rod cross-
section in order to extract as much energy as possible; (iv)
the cavity should be stable for a large range of thermal lens-
ing (see Figure 3); (v) there should be easy alignment of the
cavity.

We used ReZonator 2[24] to analyze the caustic of the beam
inside the cavity (Figure 2(b)) and the cavity stability as
a function of the gain medium thermal lensing (Figure 3).
To calculate the stability of the cavity with respect to the
thermal lensing, we modeled the thermal lensing effect by
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Figure 3. The cavity stability parameter as a function of the effective
thermal lensing (black). The red lines indicate the limits of stability.

virtually placing a lens inside the Nd:YAG rod with the focal
length as a variable parameter and calculated the stability
parameter (A+D)/2 as a function of the focal length,
where A and D are the diagonal elements of the ABCD ray
transfer matrix for a complete roundtrip inside the cavity (see
Figure 3). According to this calculation, our cavity is stable
within the range of thermal lensing f = ∞ → f = 860 mm.
For stronger thermal lensing, there is a range between 860
and 370 mm in which the cavity loses its stability, and in

between 370 and 113 mm it is stable again. We aim to work
at conditions of moderate thermal lensing; therefore, with a
stable range spanning from f = ∞ to f = 860 mm.

The cavity length as given in Figure 2 is 5.3 m. To align
such a long cavity and find the optimal cavity arrangement
is not easy. To overcome this problem, we used a modular
approach. We first built a short cavity by inserting a flat-
end mirror right after the gain medium (see the iM mirror
in Figure 2(a)) and optimized the approximately 1 m long
cavity. Once this cavity is perfected, we put an iris around
the leaked beam from the flat-end mirror and imaged it with
a 4f, 4-m long telescope on another flat mirror. With this flat
mirror we retroreflect the beam back through the iris, then
remove the iM mirror and form the 5.3 m long cavity.

Figures 4–6 show the chirped modulated signal from the
AWG, along with the output from the regenerative amplifier.
Comparing the AWG signal to the amplified optical pulse,
we can see a slight square wave distortion of the envelope in
which the tail of the pulse experiences a lower gain than the
head of the pulse.

This distortion could be compensated by shaping the pulse
with the AWG, but it is not really important for the purpose
of AR excitation since the AR threshold is mainly important
at the beginning of the pulse. Besides this distortion, we see
that the amplitude modulated high frequencies and the chirp
rate are well preserved during the six-order of magnitude
amplification. The average output power is about 1 W at the
optimal repetition rate of 400 Hz, that is, about 2.5 mJ/pulse.

Figure 4. Electronic signal from the AWG (top) chirped from 1 to 0.77 GHz, and amplified optical pulse at 400 Hz repetition rate and averaged power of
910 mW.

https://doi.org/10.1017/hpl.2023.87 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2023.87


6 M. Valdman et al.

Figure 5. The same as Figure 4, but for frequencies spanning from 2 to 1.2 GHz.

Figure 6. The same as Figures 4 and 5, but for frequencies spanning from 3 to 2 GHz.

If we look at the AR threshold conditions that are given
in Figure 1 we see that 2.5 mJ per pulse would be enough
if we focus the beam into a spot size of 30–35 µm. At
such a spot size, the plane wave approximation in our
previous work[12] is questionable and we have to revisit our
analysis while taking into account the finite width of the
beam. Detailed analysis is given in the Appendix, and here
we present the main results only. The charge distribution

inside the plasma yields potential φ. To account for the
finite width of the laser and the plasma wave we assume
φ = φ(x)

(
1 − q2r2

4

)
for any r < rmax = 2

q . This q parameter
measures the tightness of the laser and plasma waves. Our
goal in the appendix is to calculate the AR threshold as a
function of this q parameter and compare it with the case
of the plane wave approximation (q → 0). Figure 7 shows
the ratio εth(q)/εth (q = 0). It illustrates that only at tight
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Figure 7. The ratio between the AR threshold for the finite beam width to
the AR threshold for the case of a plane wave. Here, q = 2/rmax and κ0 is
the absolute value of the plane-wave wave-vector. It shows that only at tight
focusing (q/κ0 > 0.7) does the finite beam width start to play a significant
role.

focusing (q/κ0 > 0.7) does the finite width of the beam start
to play a significant role and raise the AR threshold. In the
parameter space calculated above (i.e., rmax ∼= 30−35 µm)
we can safely use the AR threshold given in our previous
work[12].

To conclude, we have analyzed the available parameter
space for the AR excitation of nonlinear ion acoustic waves
and built the required chirped amplitude-modulated laser
that could drive the ion acoustic waves. The shape of the
laser pulses is determined by an AWG with pulse duration
spanning from a few ns to approximately 30−35 ns. We
showed amplitude modulation spanning from a few hundred
MHz and up to 3 GHz. The energy per pulse is up to 3 mJ,
enough to be above the AR threshold.

Appendix. Autoresonance excitation of SIAWs by a
finite-width laser

Following a similar path as in Ref. [12], we start with the
fluid model plasma equations and assume cold ions and hot
electrons. We also assume a Boltzmann distribution for the
electrons, thus ne = n0eφ+φd where φ is the total potential
due to charge distribution and φd is the driving potential. We
write the ion fluid equations and Poisson’s equation within
the cold ion limit:

nit + (niv)x = 0, (2)

vt + vvx = − e
mi
φx, (3)

∇2φ = 4π (ne −ni), (4)

where the x and t subscripts represent a partial derivative in
space and time, respectively, and ne and ni are the electron
and ion densities, respectively. Now, to account for the finite
wave width, we are looking for a solution for φ of the
following form:

φ = φ(x)
(

1− q2r2

4

)
for r < rmax = 2

q
, (5)

where φ(x) is the value of φ on axis (r = 0). With this
assumption, Equation (4) becomes the following:

φxx = q2φ+4πe
[
n0ee(φ+φd)/kBTe −ni

]
. (6)

We convert all variables and parameters in Equations
(2), (3) and (6) and hereafter into a dimensionless form,
such that the time, the position and the velocities are nor-
malized with respect to the inverse ion plasma frequency

ωi =
(

4πn0e2

mi

)1/2
ω−1

i =
√

mi
4πn0e2 , the Debye length λD =(

kBTe
4πn0e2

)1/2
and the modified ion thermal velocity vTi =(

kBTe
mi

)1/2
. The plasma density and the electric potential are

normalized with respect to the unperturbed plasma density
and kBTe

e , respectively.
This yields the dimensionless set of ion equations:

nt + (nu)x = 0, (7)

ut +uux = −φx, (8)

φxx = q2φ+ eφ+φd −n. (9)

Our goal is to find the AR threshold under finite wave
width conditions. Next, we introduce two additional auxil-
iary potentials that are defined as follows:

u = ψx, (10)

n = 1+σx. (11)

Then Equations (7)–(9) become the following:

σxt +ψxx (1+σx)+ψxσxx = 0, (12)

ψxt +ψxψxx = −φx, (13)

φxx = q2φ+ eφ+φd −1−σx. (14)

This system satisfies a variational principle δ
(∫ L dx dt

) =
0, where the Lagrangian density for the three potentials
σ,ψ,φ is as follows:
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L = 1
2
φ2

x + 1
2

q2φ2 + eφ+φd − 1
2
(ψtσx +ψxσt)

−
(

1
2
ψ2

x +φ
)
(1+σx) . (15)

Here, we expand the exponential term in a Taylor series up
to the fourth order in φ and to linear order in φd (assuming
φd is small):

eφ+φd ≈ 1+φd +φφd +V (φ),

V = φ+ 1
2
φ2 + 1

6
φ3 + 1

24
φ4 +O

(
φ5) . (16)

The reason for expanding up to the fourth order in φ is that
the third- and fourth-order terms contribute equally to the
nonlinear self-frequency of an anharmonic oscillator[25].

After neglecting the 1+φd (as it is not contributing to the
dynamics), the Lagrangian density is as follows:

L ≈ 1
2
φ2

x + 1
2

q2φ2 +φφd +V (φ)− 1
2
(ψtσx +ψxσt)

−
(

1
2
ψ2

x +φ
)
(1+σx) . (17)

To proceed with our analysis, we make the following
ansatz:

σ = A1(t) sin kx+A2(t) sin 2kx, (18)

ψ = B1(t) cos kx+B2(t) cos 2kx, (19)

φ = C0(t)+C1(t) cos kx+C2(t) cos 2kx, (20)

where A1,B1 and C1 are first-order perturbation terms, and
all other terms are second-order perturbation. As for the
time dependence of the first-order terms, we assume the
following:

A1 = a
k

cos ωt, B1 = −b
k

sin ωt, C1 = c cos ωt, (21)

where a,b and c are constants.
To find the time dependence of the second-order terms, we

substitute Equations (18)−(20) into Equation (17), ignore the
driving term, and spatially average. This yields the averaged
Lagrangian density Λ=Λ2 +Λ4 :

Λ2 = 1
4

(
1+q2 + k2

)
C2

1 − k
4
(A1B1t −B1A1t)− k2

4
B2

1 − 1
2

kA1C1,

(22)

Λ4 =
(

1
4

+ q2

4
+ k2

)
C2

2 +
(

1
2

+ q2

2

)
C2

0

+C2
1

(
1
8

+ 1
4

C0 + 1
64

C2
1

)
+ k

2
(A2tB2 −A2B2t −A2C2)

−B2
2k2 + k3

2

(
1
2

A2B2
1 −A1B1B2

)
. (23)

Using this averaged Lagrangian density, we get the follow-
ing Euler–Lagrange equations for C0,A2,B2 and C2:

B2t = k2

4
B2

1 −C2, (24)

A2t = k2

2
A1B1 +2kB2, (25)

C0 = − C2
1

4
(
1+q2

), (26)

C2 = kA2 −C2
1/8

1/2+2k2 +q2/2
. (27)

To further simplify this set of equations, we define two
additional constants:

r = c2

8
(
1+4k2 +q2

) + b2

8
, p = c2

8
(
1+4k2 +q2

) − b2

8
,

(28)

so that Equation (24) becomes the following:

B2t = r +p cos 2ωt − 2k
1+4k2 +q2 A2. (29)

We can now try the following ansatz:

A2 = A+a2 cos 2ωt, B2 = b2 sin 2ωt, (30)

yielding the following:

−2ωa2 = −ab
4

+ kb2, (31)

r = 2kA
1+4k2 +q2 , (32)

p = 2ωb2 + 2ka2

1+4k2 +q2 , (33)

C2 = C + c2 cos 2ωt. (34)

This solution completes the weakly nonlinear ansatz
(Equations (18)−(20)) for the finite-width SIAW. To account
for the slowly varying frequency, we introduce phase
θ = ∫

ωdt instead of ωt:

σ = a1 cos θ sin kx+ (A+a2 cos 2θ) sin 2kx, (35)

ψ = b1 sin θ cos kx+b2 sin 2θ cos 2kx, (36)

φ = c0 cos 2θ + c1 cos θ cos kx+ (C + c2 cos 2θ) cos 2kx.
(37)

At this stage, we apply Whitham’s averaged variational
approach. To this end, we assume that all amplitudes are
slow functions of time, substitute Equations (35)−(37) back
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into the approximated Lagrangian equation (Equation (17)),
average it over one temporal and one spatial period and get
the averaged second- and fourth-order Lagrangian densities:

Λ2 = 1
8

[
c2

1

(
1+q2)−2ka1c1 − k2 (

b2
1 − c2

1

)−2kωa1b1
]
,

(38)

Λ4 =
(

1+q2
)(

1
4

C2 + 3
16

c2
0 + 1

8
c2

2

)
+ 1

32
c2

1 (3c0 + c2 +2C)

+ 3
512

c4
1 − k2

2

(
b2

2 − c2
2 −2C2

)

− k3

8
b1

(
1
2

a2b1 −Ab1 +a1b2

)
− k

(
ωa2b2 +AC + 1

2
a2c2

)
.

(39)

We also reintroduce the driving potential:

φd = 2ε cos (θd) cos(kx)= 2ε cos (θ +Φ) cos (kx). (40)

At this stage, we assume that the system and driving force
are phase-locked in the weakly nonlinear regime; thus, the
AR can take place if Φ(t) is a slow phase mismatch. When
multiplied by φ and averaged (over one spatial and one
temporal period) we are left with the driving Lagrangian
density:

Λd = 1
2
εc1 cosΦ, (41)

and the dynamics of the system is governed by the total
averaged Lagrangian density:

Λ=Λ2 +Λ4 +Λd, (42)

where Λ is a function of all slow amplitudes and θ entering
the Lagrangian density via the time-dependent frequency
ω = θt and the slow phase mismatch Φ = θd − θ . By
taking variations via Λ in Equation (42) with respect to
{c0, a2, b2, c2,A,C} we find all the second-order coefficients
as functions of the first-order terms. These coefficients can
be substituted back into Λ, which can then be used to take
variations with respect to the first-order terms {a1,b1,c1,Φ}.
This yields the following solutions:

b1 = −2c1 + k2b1b2

2ω
= −2c1 +Q

2ω
, (43)

a1 = 2kc1 + kk2b1b2 −ωk2 [b1 (a2 −2A)+a1b2]
2ω2

= 2kc1 + kQ−ωR
2ω2 , (44)

where

Q = k2b1b2, R = k2 [b1 (a2 −2A)+a1b2] . (45)

Next, the variations with respect to c1 and Φ yield the
following:

[
c1

(
1+q2)− ka1 + c1k2]+ 1

4
c1 (3c0 + c2 +2C)

= − 3
32

c3
1 +2ε cosΦ, (46)

d
dt

(
−1

4
ka1b1 − ka2b2

)
= 1

2
εc1 sinΦ. (47)

To the lowest significant order, Equation (47) becomes the
following:

k[a1b1]t = −2εc1 sinΦ. (48)

Furthermore, Q and R are of the third order, and the linear
approximations for a1 and b1 are as follows:

a1 ≈ k
ω2 c1, b1 ≈ −c1

ω
. (49)

By substituting this into Q and R we get the following:

Q ≈ c3
1

k6

ω4 + k4

ω2

(
1+q2 +4k2

)− k2

16
[−k2 +ω2

(
1+q2 +4k2

)], (50)

R ≈ c3
1
{−2k7/ω2 (

2+q2 +4k2)+ k5 [
3/ω2 −1−2

(
1+q2 +4k2)](

1+q2 +4k2)}
16ω

[−k2 +ω2
(
1+q2 +4k2

)]

+ c3
1
[−k3 +2kω2 (

1+q2 +4k2)]
16ω

[−k2 +ω2
(
1+q2 +4k2

)] . (51)

Thus, after the substitution of Equations (49)−(51) into
Equations (48) and (46), we have the following:

c1t ≈ −εω
3

k2 sinΦ, (52)

[
k2

ω2 − (
1+q2 + k2)]c1 = −Nc3

1 +2ε cosΦ, (53)

where we use the following new parameters:

h = 32
(
1+q2)ω6 [−k2 + (

1+4k2 +q2)ω2], (54)

J = 4k8 (
1+q2)− [−12k2 −4+ (−1+3q2 +12k2)q2]ω8

− k2 [
16k2 (

1+q2)+ (
7+5q2 +4q4)]ω6

+7
(
1+q2)k6 (

1+q2 +4k2)ω2

−2k4 (
1+q2)[(

2+2q2 +q4)+8k2 (
1+q2)+16k4]ω4,

(55)

N = J
h

. (56)

Notice that the term in the square brackets in Equation (53)
yields the ion acoustic wave dispersion relation for the case
of a finite-width wave:
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ωa = k(
1+q2 + k2

)1/2 . (57)

The capture into AR occurs during the weakly nonlinear
regime, meaning that the driving frequency is close to the
linear frequency:

ω = ωa +�ω, �ω� ωa. (58)

Then Equation (53) becomes the following:
[

k2

(ωa +�ω)2 − (
1+q2 + k2)]c1 = −Nc3

1 +2ε cosΦ,

(59)

which by expanding around ωa yields the following:

�ω ≈ − ω3

2k2

(
−Nc2

1 + 2ε
c1

cosΦ
)

. (60)

Since

ωd = ω+Φd, ωd = ωa −αt →Φt =�ω+αt, (61)

by writing β = ω3

2k2 N we get the following:

Φt ≈ βc2
1 +αt − ε

c1

ω3

k2 cosΦ. (62)

Then, as shown in Ref. [2], the critical amplitude for
transition to AR is as follows:

εth = 0.41
k2

ω3
a

α3/4

β1/2

= 5.86α3/4(1+ k2 +q2)9/4(
1+q2)1/2

·{k1/2
[
27k6(q2 +1

)2 +9k4 (
q2 +1

)(
7q4 +14q2 +5

)
+3k2 (

15q8 +60q6 +82q4 +41q2 +10
)

+9q10 +45q8 +84q6 +72q4 +28q2 +4
]1/2}−1.

(63)

In the case of q = 0, that is, for the plane wave assumption,
this critical amplitude agrees with the previous result[12]:

εth (q = 0)= 5.68 α3/4
(
1+ k2

)9/4

k1/2
(
27 k6 +45k4 +30 k2 +4

)1/2 . (64)

The plot of Equation (63) in Figure 7 shows that the
radial effect starts to play a significant role only in the tight
focusing limit and we can safely obtain AR in our system
within moderate focusing conditions.
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